
Foundations and TrendsR© in Optimization
Vol. 1, No. 4 (2014) 241–433
c© 2015 L. Vandenberghe and M. S. Andersen
DOI: 10.1561/2400000006

Chordal Graphs and Semidefinite Optimization

Lieven Vandenberghe
University of California, Los Angeles

vandenbe@ucla.edu

Martin S. Andersen
Technical University of Denmark

mskan@dtu.dk



Contents

1 Introduction 242

2 Graphs 245
2.1 Undirected graphs . . . . . . . . . . . . . . . . . . . . . . 245
2.2 Ordered undirected graphs . . . . . . . . . . . . . . . . . 247
2.3 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
2.4 Path decomposition . . . . . . . . . . . . . . . . . . . . . 251

3 Chordal Graphs 256
3.1 Chordal graph . . . . . . . . . . . . . . . . . . . . . . . . 256
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
3.3 Minimal vertex separator . . . . . . . . . . . . . . . . . . 260
3.4 Simplicial vertex . . . . . . . . . . . . . . . . . . . . . . . 263
3.5 Clique tree . . . . . . . . . . . . . . . . . . . . . . . . . . 265
3.6 Rooted clique tree . . . . . . . . . . . . . . . . . . . . . . 268
3.7 Tree intersection graph . . . . . . . . . . . . . . . . . . . 271
3.8 Junction tree . . . . . . . . . . . . . . . . . . . . . . . . . 273

4 Perfect Elimination Ordering 274
4.1 Filled graph . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.2 Perfect elimination ordering . . . . . . . . . . . . . . . . . 276
4.3 Elimination tree . . . . . . . . . . . . . . . . . . . . . . . 278

ii



iii

4.4 Clique tree from elimination tree . . . . . . . . . . . . . . 282
4.5 Supernodal elimination tree . . . . . . . . . . . . . . . . . 288
4.6 Topological reordering . . . . . . . . . . . . . . . . . . . . 291
4.7 Testing chordality . . . . . . . . . . . . . . . . . . . . . . 292

5 Combinatorial Optimization 295
5.1 Minimum clique cover . . . . . . . . . . . . . . . . . . . . 295
5.2 Minimum vertex coloring . . . . . . . . . . . . . . . . . . 297
5.3 Perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . 298

6 Graph Elimination 300
6.1 Elimination graph . . . . . . . . . . . . . . . . . . . . . . 300
6.2 Elimination tree . . . . . . . . . . . . . . . . . . . . . . . 303
6.3 Postordering . . . . . . . . . . . . . . . . . . . . . . . . . 306
6.4 Monotone degrees, cliques, and supernodes . . . . . . . . 308
6.5 Filled graph . . . . . . . . . . . . . . . . . . . . . . . . . 309
6.6 Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . 309

7 Discrete Applications of Graph Elimination 312
7.1 Dynamic programming . . . . . . . . . . . . . . . . . . . 314
7.2 Probabilistic networks . . . . . . . . . . . . . . . . . . . . 323
7.3 Generalized marginalization . . . . . . . . . . . . . . . . . 328

8 Sparse Matrices 329
8.1 Symmetric sparsity pattern . . . . . . . . . . . . . . . . . 329
8.2 Chordal sparsity pattern . . . . . . . . . . . . . . . . . . . 331
8.3 Chordal extension . . . . . . . . . . . . . . . . . . . . . . 336

9 Positive Semidefinite Matrices 337
9.1 Cholesky factorization . . . . . . . . . . . . . . . . . . . . 337
9.2 Positive semidefinite matrix cone . . . . . . . . . . . . . . 340
9.3 Multifrontal factorization . . . . . . . . . . . . . . . . . . 344
9.4 Supernodal factorization . . . . . . . . . . . . . . . . . . . 347
9.5 Projected inverse . . . . . . . . . . . . . . . . . . . . . . 350
9.6 Logarithmic barrier . . . . . . . . . . . . . . . . . . . . . 353



iv

10 Positive Semidefinite Matrix Completion 355
10.1 Positive semidefinite completable matrix cone . . . . . . . 355
10.2 Maximum determinant completion . . . . . . . . . . . . . 358
10.3 Positive semidefinite completion . . . . . . . . . . . . . . 362
10.4 Logarithmic barrier . . . . . . . . . . . . . . . . . . . . . 365
10.5 Sparse Bregman projection . . . . . . . . . . . . . . . . . 366
10.6 Sparse quasi-Newton updates . . . . . . . . . . . . . . . . 369

11 Correlation and Euclidean Distance Matrices 373
11.1 Correlation matrices . . . . . . . . . . . . . . . . . . . . . 373
11.2 Euclidean distance matrices . . . . . . . . . . . . . . . . . 374
11.3 Euclidean distance matrix completion . . . . . . . . . . . . 376

12 Partial Separability in Convex Optimization 380
12.1 Partial separability . . . . . . . . . . . . . . . . . . . . . . 380
12.2 Partially separable matrix cones . . . . . . . . . . . . . . . 383
12.3 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 386

13 Conic Optimization 391
13.1 Schur complement sparsity . . . . . . . . . . . . . . . . . 393
13.2 Conversion and decomposition . . . . . . . . . . . . . . . 395

14 Sparse Semidefinite Optimization 399
14.1 Aggregate sparsity . . . . . . . . . . . . . . . . . . . . . . 400
14.2 Conversion methods . . . . . . . . . . . . . . . . . . . . . 403
14.3 Interior-point methods . . . . . . . . . . . . . . . . . . . . 406
14.4 Nonsymmetric formulation . . . . . . . . . . . . . . . . . 409

Acknowledgments 412

Notation 413

References 415



Abstract

Chordal graphs play a central role in techniques for exploiting spar-
sity in large semidefinite optimization problems and in related con-
vex optimization problems involving sparse positive semidefinite ma-
trices. Chordal graph properties are also fundamental to several clas-
sical results in combinatorial optimization, linear algebra, statistics,
signal processing, machine learning, and nonlinear optimization. This
survey covers the theory and applications of chordal graphs, with an
emphasis on algorithms developed in the literature on sparse Cholesky
factorization. These algorithms are formulated as recursions on elim-
ination trees, supernodal elimination trees, or clique trees associated
with the graph. The best known example is the multifrontal Cholesky
factorization algorithm, but similar algorithms can be formulated for
a variety of related problems, including the computation of the partial
inverse of a sparse positive definite matrix, positive semidefinite and
Euclidean distance matrix completion problems, and the evaluation of
gradients and Hessians of logarithmic barriers for cones of sparse pos-
itive semidefinite matrices and their dual cones. The purpose of the
survey is to show how these techniques can be applied in algorithms
for sparse semidefinite optimization, and to point out the connections
with related topics outside semidefinite optimization, such as proba-
bilistic networks, matrix completion problems, and partial separability
in nonlinear optimization.

L. Vandenberghe and M. S. Andersen. Chordal Graphs and Semidefinite
Optimization. Foundations and TrendsR© in Optimization, vol. 1, no. 4,
pp. 241–433, 2014.
DOI: 10.1561/2400000006.



1
Introduction

This survey gives an introduction to techniques from graph and sparse
matrix theory that are important in semidefinite optimization. The
results from graph theory we discuss are related to chordal graphs and
graph elimination.

A chordal graph is an undirected graph with the property that every
cycle of length greater than three has a chord (an edge between noncon-
secutive vertices in the cycle). Chordal graphs have attracted interest
in graph theory because several combinatorial optimization problems
that are very difficult in general turn out to be easy for chordal graphs
and solvable by simple greedy algorithms. Examples are the graph col-
oring problem and the problem of finding the largest clique in a graph.
Chordal graphs have been studied extensively since the 1950s and their
history shares some key events with the history of semidefinite opti-
mization. In particular, it was Shannon’s 1956 paper [203] that led
Berge to the definition of perfect graphs, of which chordal graphs are
an important subclass [28], and Lovász to one of the most famous early
applications of semidefinite optimization [158].

Chordal graphs in applications often result from graph elimination,
a process that converts a general undirected graph into a chordal graph
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by adding edges. Graph elimination visits the vertices of the graph in
a certain order, called the elimination order. When vertex v is visited,
edges are added between the vertices that are adjacent to v, follow v in
the elimination order, and are not yet mutually adjacent. If no edges are
added during graph elimination the elimination order is called a per-
fect elimination order. It has been known since the 1960s that chordal
graphs are exactly the graphs for which a perfect elimination order ex-
ists. A variety of algorithms based on different forms of ‘variable elimi-
nation’ can be described and analyzed via graph elimination. Examples
include the solution of sparse linear equations (Gauss elimination), dy-
namic programming (eliminating optimization variables by optimizing
over them), and marginalization of probability distributions (eliminat-
ing variables by summation or integration). Variable elimination is a
natural approach in many applications and this partly explains the
diversity of the disciplines in which chordal graphs have been studied.

The first part of this survey (Chapters 2–7) covers the basic theory
of chordal graphs and graph elimination, with an emphasis on tree data
structures developed in sparse matrix theory (elimination trees and
supernodal elimination trees) and efficient analysis algorithms based
on elimination trees.

The second part (Chapters 8–11) describes applications of chordal
graphs to sparse matrices. The sparsity pattern of a symmetric sparse
matrix can be represented by an undirected graph and graph elimi-
nation describes the fill-in during Cholesky factorization of a sparse
positive definite matrix. Hence, the sparsity pattern of a Cholesky fac-
tor is chordal, and positive definite matrices with chordal sparsity pat-
terns can be factored with zero fill-in. This fact underlies several clas-
sical decomposition results, discovered in the 1980s, that character-
ize sparse positive semidefinite matrices, sparse matrices with a pos-
itive semidefinite completion, and sparse matrices with a Euclidean
distance matrix completion, when the sparsity pattern is chordal.
We give an overview of these chordal decompositions and comple-
tion problems. We also present practical algorithms for solving them
and several related problems, including computing the partial inverse
of a sparse positive definite matrix, the inverse factorization of the
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maximum determinant positive definite completion, and calculating
derivatives of logarithmic barriers for cones of sparse symmetric matri-
ces. We refer to these algorithms as multifrontal algorithms because
they use similar recursions on elimination trees as the multifrontal
Cholesky factorization algorithm. A library with implementations of
most of the algorithms described in these chapters can be found at
http://cvxopt.github.io/chompack [13].

In the last three chapters (Chapters 12–14) we discuss applications
of chordal sparse matrix techniques in continuous optimization. The
main focus is on decomposition results that exploit partial separability
in nonlinear and conic optimization problems, and on techniques that
exploit sparsity in interior-point methods for semidefinite optimization.

A summary of the notation used in the paper can be found on
page 413.

We assume the reader is familiar with semidefinite optimiza-
tion and its applications. Introductions and surveys of semidefinite
optimization can be found in several books and articles, including
[15, 223, 235, 24, 217, 226, 43]. On the other hand we do not assume
any background in graph or sparse matrix theory. The main purpose of
this survey is to give an extended introduction to the theory of chordal
graphs and graph elimination, and the algorithms and elimination tree
structures developed in the literature on sparse Cholesky factorization,
and to describe the different ways in which these techniques can be
applied in semidefinite and conic optimization algorithms. In addition,
we aim to show the connections with related topics outside semidef-
inite optimization, such as probabilistic networks, matrix completion
problems, and partial separability in nonlinear optimization.

http://cvxopt.github.io/chompack


2
Graphs

In this chapter we collect some basic definitions and results from graph
theory, and introduce the notation that will be used in the paper.

2.1 Undirected graphs

An undirected graph is a pair G = (V,E), with V a finite set and E a
subset of {{v, w} | v, w ∈ V }. The elements of V are the vertices of the
graph, the elements of E its edges. The notation {v, w} for the edge
between vertices v and w is used to emphasize that edges are unordered
pairs of distinct vertices. Hence, edges are not directed, there are no
self-loops, and at most one edge exists for every pair of vertices. We do
not distinguish between {v, w} and {w, v}.

In pictures of undirected graphs the vertices are represented by cir-
cles or rectangles and edges are shown as lines connecting the vertices.
Figure 2.1 is an example with V = {a, b, c, d, e} and

E = {{a, b}, {a, c}, {a, e}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e}}.

The subgraph of G induced by a subset W ⊆ V is the undirected
graph with vertices W and all edges between vertices in W . The graph
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a b

c d

e

Figure 2.1: Undirected graph.

induced by W is denoted G(W ) = (W,E(W )) and has edge set

E(W ) = {{v, w} ∈ E | v, w ∈W}.

One does not always distinguish between a subset of the vertices and
the subgraph induced by it. It is common to refer to ‘the subgraph W ’
instead of ‘the subgraph G(W )’ or ‘the subgraph induced by W ’.

Two vertices v and w are adjacent if {v, w} ∈ E. A path between
v and w 6= v is a sequence of distinct vertices (v0 = v, v1, . . . , vk =
w) with {vi, vi+1} ∈ E for i = 0, . . . , k − 1. (Some authors omit the
requirement that the vertices are distinct, and refer to a path with
distinct vertices as a simple path.) The length of the path is the number
of edges k. The vertices v1, . . . , vk−1 are called the interior vertices on
the path. Two vertices of V are connected if there exists at least one
path that has the two vertices as its end points. Note the distinction
between adjacent vertices (connected by a path of length one) and
connected vertices (connected by a path of any length). A graph is
connected if every pair of vertices is connected. A connected component
of a graph is a maximal subset of vertices that induces a connected
subgraph.

A sequence (v0 = v, v1, . . . , vk = v) with {vi, vi+1} ∈ E for i =
0, . . . , k − 1 and k > 1, is called a cycle if no edges are repeated and
the vertices v0, . . . , vk−1 are distinct. (Some authors allow cycles with
repeated vertices and use the terms simple cycle or circuit if the vertices
v0, . . . , vk−1 are distinct.)

A graph is complete if all vertices are pairwise adjacent, i.e., E =
{{v, w} | v, w ∈ V, v 6= w}. A clique is a set of vertices W ⊆ V that
induces a maximal complete subgraph. Many authors define a clique as
any set of vertices that induces a complete subgraph, maximal or not.
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In this survey we use the term complete subgraph for this purpose, and
reserve the term clique to denote maximal complete subgraphs. The
cliques of the graph in Figure 2.1 are {a, b, e}, {b, e, d}, {e, c, d}, and
{a, c, e}.

The neighborhood or adjacency set adj(v) of a vertex v is the set of
vertices adjacent to it:

adj(v) = {w | {v, w} ∈ E}.

The set {v} ∪ adj(v) is called the closed neighborhood of v. The degree
of vertex v is the number of vertices adjacent to it: deg(v) = |adj(v)|.

2.2 Ordered undirected graphs

An ordering of an undirected graph G = (V,E) is a numbering of
its vertices (a bijection from {1, 2, . . . , n} to V if n is the number of
vertices). An ordering σ : {1, 2, . . . , n} → V can also be interpreted as
a sequence of vertices σ = (σ(1), . . . , σ(n)). We refer to σ−1(v) as the
index of vertex v. An ordered graph is an undirected graph G = (V,E),
plus an ordering σ of its vertices. We write this as Gσ = (V,E, σ). We
will often use inequality notation v ≺σ w for σ−1(v) < σ−1(w) and
v �σ w for σ−1(v) ≤ σ−1(w). The subscripts in ≺σ and �σ are omitted
if the ordering σ is clear from the context.

To visualize an ordered graph Gσ, we annotate the unordered
graph G with the vertex indices σ−1(v). It is also convenient to rep-
resent ordered graphs as triangular tables or arrays, with the vertex
names on the diagonal and a dot in row i and column j of the table if
i > j and the vertices σ(i) and σ(j) are adjacent. An example is shown
in Figure 2.2.

Two types of monotone neighborhoods can be distinguished in an
ordered graph:

adj+(v) = {w ∈ adj(v) | w � v},
adj−(v) = {w ∈ adj(v) | w ≺ v}.

The first set is called the higher neighborhood or higher adjacency set
of v; the second set is the lower neighborhood or lower adjacency set.
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a1 b 4
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Figure 2.2: Ordered undirected graph.

a b

c d

e

Figure 2.3: The ordered graph of Figure 2.2 as a directed acyclic graph.

We also define the higher and lower degrees as

deg+(v) = |adj+(v)|, deg−(v) = |adj−(v)|.

In the array representation of ordered graphs the higher and lower
neighborhoods of v are easily identified. The indices of the elements
of adj−(v) are the column indices of the entries in row σ−1(v) of
the array; the indices of adj+(v) are the row indices of the entries
in column σ−1(v). In the example of Figure 2.2, adj−(c) = {a} and
adj+(c) = {d, e}. We will use the notation col(v) and row(v) for the
closed monotone neighborhoods

col(v) = {v} ∪ adj+(v), row(v) = {v} ∪ adj−(v).

An ordered undirected graph can be converted into a directed graph
by orienting the edges from lower to higher index; see Figure 2.3. (A di-
rected graph is a pair (V,E) with E a set of ordered tuples (v, w), with
v, w ∈ V and v 6= w.) Such a directed graph is necessarily acyclic,
i.e., it contains no directed cycles. Conversely, it is always possible to
interpret a directed acyclic graph as an ordered undirected graph by
numbering the vertices so that the edges go from lower to higher la-
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a

b c d

e f g

h i j

Figure 2.4: Rooted tree.

bel. To see this, we first note that every finite directed acyclic graph
has at least one source vertex, i.e., a vertex with only outgoing edges,
and at least one sink, i.e., a vertex with only incoming edges. (This
follows from the observation that a directed path (v0, v1, . . . , vk) with
(vi, vi+1) ∈ E of maximum length starts at a source and ends at a sink.
Such a path exists if the graph is acyclic and has a finite number of
vertices.) We can define a numbering σ of the vertices as follows. We
take σ(1) = v where v is any source vertex, then remove v and its
incident edges from the graph, pick a source vertex w in the reduced
graph, set σ(2) = w, et cetera. Continuing in this way, we obtain a
numbering with the desired property.

2.3 Trees

An undirected graph is a tree if it is connected and does not contain any
cycles. A unique path exists between any two vertices of a tree (there
is a path because the tree is connected; the path is unique because the
concatenation of two distinct paths between the same vertices would
create a cycle). An undirected graph is a forest if it does not contain
cycles. Each connected component in a forest is a tree. A rooted tree is
a tree with a special vertex designated as the root of the tree. Rooted
trees are usually displayed with the root at the top, as in Figure 2.4.

If v is a non-root vertex and w is the first vertex on the path from
v to the root, then w is called the parent of v and v is a child of w.
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a 10

b 4 c 5 d 9

e 1 f 3 g 8

h 2 i 6 j 7

Figure 2.5: A postordering of the tree in Figure 2.4.

We often use the convention that the parent of the root is itself, so
that the parent function is a function p : V → V . Parents of degree k,
with k a nonnegative integer, are defined recursively as

p0(v) = v, pk+1(v) = p(pk(v)).

In the example of Figure 2.4, we have p(h) = f , p2(h) = b, p3(h) = a.
If w = pk(v) for some k ≥ 0 then w is an ancestor of v and v is a
descendant of w. An ancestor w of v is a proper ancestor if w 6= v. A
descendant w of v is a proper descendant if w 6= v. The set of children
of v is denoted ch(v). A childless vertex is called a leaf of the tree.

The depth or level lev(v) of a vertex v in a rooted tree is its distance
to the root (the number of edges in the unique path that connects v to
the root). If lev(v) = k then pk(v) is the root of the tree. The depth can
be defined recursively: lev(v) = 0 if v is the root; for the other vertices
lev(v) = lev(p(v)) + 1.

An ordering σ of a rooted tree is a topological ordering if v ≺σ p(v)
for all non-root vertices v. If there are n vertices, then in a topological
ordering the root has index n and every other vertex has a lower index
than its parent. A postordering is a topological ordering in which the
descendants of a vertex are given consecutive numbers: if σ−1(v) = j

and v has k proper descendants, then the proper descendants of v are
numbered j−k, j−k+1, . . . , j−1. A postordering can be generated by
assigning the indices n, n−1, . . . , 1 in decreasing order during a depth-
first search traversal of the tree. An example is shown in Figure 2.5.
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Other useful information that can be gathered during a depth-first
search traversal includes, for each vertex v, the level lev(v), the number
of descendants, and the first descendant fdesc(v), i.e., the descendant
with the lowest index. Several common questions simplify considerably
when a postordering is used. For example, to check whether a vertex
w is a proper descendant of v one only needs to verify the inequalities
fdesc(v) � w ≺ v.

2.4 Path decomposition

In this section we discuss a specialized topic that will be important
only in §6.4. Suppose we are given a family of subtrees (connected
subgraphs) of a large rooted tree T . Each subtree is specified by its ex-
treme vertices: its root and leaf vertices. We are interested in efficient
algorithms for two problems. First, the problem of computing the size
(number of edges) of each subtree, and second, the problem of com-
puting the number of subtrees each vertex of T belongs to. We will
describe efficient methods with a complexity that is nearly linear in
the total number of extreme vertices of the subtrees [94], [65, chapter
4]. (In contrast, straightforward algorithms based on traversing all the
subtrees have a complexity proportional to the total number of edges.)
We assume T is described by its parent function p(v), that a postorder-
ing of T is given, and that we know the level lev(v) of every vertex v
in T .

The least (nearest) common ancestor lca(v, w) of two distinct ver-
tices v, w in a rooted tree is the deepest vertex that is an ancestor of
v and w, i.e., the first vertex on the intersection of the path from v to
the root and the path from w to the root. The complexity of finding
the least common ancestors of a set of m vertex pairs of a tree with n
vertices is almost linear in n+m [214, page 698].

We first consider a single subtree R of T . Assume R has k + 1
extreme vertices, sorted as v1 ≺ v2 ≺ · · · ≺ vk+1 in the postordering of
T , so v1, . . . , vk are leaves and vk+1 is the root of R. For i = 1, . . . , k,
we define P (vi) as the set of edges on the path from vi to the least
common ancestor lca(vi, vi+1) of vi and vi+1. (For the vertex vk, the
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a 14

c 7 d 8 e 12

f 3 j 9

l 2 m 5 n 10

b 13

g 4 h 6 i 11

k 1

Figure 2.6: A tree T and a subtree R with root b and leaves k, g, h, i. The number
next to each vertex is its index in a postordering.

edges in P (vk) form the path from vk to the root vk+1 of R, since
lca(vk, vk+1) = vk+1.) This is illustrated in Figures 2.6 and 2.7. The
sets P (v1), . . . , P (vk) form a partition of the edges in R [94, lemma
2.1], called the path decomposition of R. To see this, consider an edge
{u, p(u)}, where u is a non-root vertex of R. Let vi be the highest leaf
vertex that is a descendant of u, i.e., the highest leaf that satisfies
fdesc(u) � vi � u. We show that the edge {u, p(u)} is contained in
P (vi) and in no other set P (vj), j 6= i. (For example, in Figure 2.6,
the edge {c, b} is contained in P (h) because h is the highest among
the leaves that are descendants of c.) If i < k then, by definition of i,
the leaf vi+1 is not a descendant of u. Therefore u ≺ lca(vi, vi+1) and
p(u) � lca(vi, vi+1). Hence {u, p(u)} ∈ P (vi). If i = k, then u is on
the path from vk to the root and therefore {u, p(u)} ∈ P (vk). This
shows that {u, p(u)} ∈ P (vi). We now show that P (vi) is the only set
in the partition that contains {u, p(u)}. Suppose P (vj), j 6= i, also
contains the edge {u, p(u)}. The leaf vj is a descendant of u and not
the highest descendant among the leaves of R (the highest descendant
is vi). Therefore vj ≺ vj+1 � u. In a postordering this means that vj+1
is a descendant of u. Therefore lca(vj , vj+1) � u. This contradicts the
assumption that {u, p(u)} ∈ P (vj).



2.4. Path decomposition 253

f

c

c

c

e

k

g

b

h

b

i

Figure 2.7: Path decomposition of the subtree in Figure 2.6. The edges are par-
titioned in four sets P (k), P (g), P (h), P (i) that form paths in the subtree. Each
of the first three paths starts at a leaf (k, g, h, respectively) and ends at the least
common ancestor of that leaf and the next leaf in the postordering. The fourth path
P (i) starts at the highest leaf vertex (vertex i) and ends at the root of the subtree.

We now make two observations about the path decomposition that
will become useful when we apply them to a family of subtrees. First,
the number of edges mR of R is equal to the sum of the sizes of the sets
P (vi) in the partition. The number of edges of P (vi) is the difference
of the levels of its end points. Therefore

mR =
k∑
i=1

(lev(vi)− lev(lca(vi, vi+1))) . (2.1)

To evaluate the sum we only need to compute the least common an-
cestors lca(vi, vi+1), i = 1, . . . , k.

Second, consider the following function on the vertices of T :

ηR(v) = δR(v)−
∑

u∈ch(v)
δR(u)

= δR(v)− the number of children of v in R

where ch(v) is the set of children of v in T and δR(v) is the 0-1 indicator
function of R,

δR(v) =
{

1 v is a vertex of R
0 otherwise.
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a −1

c −2 d 0 e 0

f 0 j 0

l 0 m 0 n 0

b −1

g 1 h 1 i 1

k 1

Figure 2.8: The number next to each vertex v is the function ηR(v) for the subtreeR
of Figure 2.6. If v is a vertex in R, then ηR(v) is defined as one minus the number
of children of v in R. For the parent of the root of R, ηR(v) = −1. For all other
vertices, ηR(v) = 0.

Summing the function ηR in topological order (i.e., visiting every vertex
before its parent) gives δR(v):

δR(v) =
∑
u∈Tv

ηR(u)

where Tv = {u | fdesc(v) � u � v} is the set of descendants of v in T .
These definitions are illustrated in Figures 2.8 and 2.9.

The function ηR(v) is readily computed from the path decomposi-
tion. If v is a vertex in R, and not the root or a leaf, then ηR(v) is the
negative of the number of paths in the path decomposition that end
at v:

ηR(v) = − |{i ∈ {1, 2, . . . , k − 1} | v = lca(vi, vi+1)}| . (2.2)

This expression is also valid if v is the root of R. In that case it is equal
to one minus the number of paths that end at v, because the last path
P (vk) is not counted in (2.2). We can therefore compute ηR as follows.
We initialize ηR(v) as ηR(v) = 0 for all v. We add one to ηR(vi) for
i = 1, . . . , k. For i = 1, . . . , k−1, we subtract one from ηR(lca(vi, vi+1)).
If vk+1 is not the root of T , we also subtract one from ηR(p(vk+1)).
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a 0

c 1 d 0 e 1

f 1 j 0

l 0 m 0 n 0

b 1

g 1 h 1 i 1

k 1

Figure 2.9: The number next to each vertex is δR(v), the 0-1 indicator function
of R. This number can be obtained as the sum of the values of ηR(u) over all
descendants u of v in T .

Now consider a family R of subtrees of T , with each subtree speci-
fied by its extreme vertices. Path decompositions for all subtrees in R
can be computed with a complexity that is almost linear in the total
number of extreme vertices [214]. From the path decompositions, we
immediately obtain the number of edges in each subtree, via the for-
mula (2.1). We can also compute, for each vertex v of T , the number
of subtrees v belongs to. This number is given by

δ(v) =
∑
R∈R

δR(v) =
∑
u∈Tv

∑
R∈R

ηR(u).

The function η(v) =
∑
R∈R ηR(v) is easily computed from the path

decompositions. We initialize η(v) as zero and enumerate the subtrees
R ∈ R. For each R we add ηR(v) to η(v) via the simple rule described
above. Finally we compute δ(v) from η(v) by a recursion on the ver-
tices of T . We enumerate the vertices in topological order and for each
vertex v, compute

δ(v) = η(v) +
∑

u∈ch(v)
δ(u).



3
Chordal Graphs

3.1 Chordal graph

A chord in a path of an undirected graph is an edge between non-
consecutive vertices on the path. A chord in a path (v0, v1, . . . , vk) is
an edge {vi, vj} with |j − i| > 1. One can think of a chord as a one-
edge ‘shortcut’. If a path (v, v1, . . . , vk, w) from v to w has chords, then
it can be reduced to a shorter chordless path (v, vi1 , . . . , vij , w) with
1 ≤ i1 < i2 < · · · < ij ≤ k and 0 ≤ j < k, i.e., a path that skips
some or all of the interior vertices vi. Clearly, a shortest path between
two vertices must be chordless, but a chordless path is not necessarily
a shortest path. Figure 3.1 illustrates the definition.

A chord in a cycle (v0, v1, . . . , vk−1, v0) is an edge {vi, vj} with (j−
i) mod k > 1 (Figure 3.1). An undirected graph is chordal if every
cycle of length greater than three has a chord. Using chords to take
shortcuts, every cycle (v0, v1, . . . , vk−1, v0) of length greater than three
in a chordal graph can therefore be reduced to a cycle of length three,
i.e., a triangle (v0, vi, vj , v0) with 1 ≤ i < j ≤ k − 1. The last graph in
Figure 3.1, for example, is not chordal, because the cycle (a, b, d, c, a)
has length four but does not have a chord. Adding the edge {b, c} or
{a, d} would make the graph chordal.

256
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a b

c d

e

a b

c d

e

a b

c d

e

a b

c d

e

Figure 3.1: The edge {e, d} is a chord in the path (a, e, c, d) of the first graph. The
path (a, b, d, c) is chordless. The edge {a, e} is a chord in the cycle (a, b, e, c, a) of
the second graph. The cycle (a, b, d, c, a) is chordless.

We note the useful property that subgraphs G(W ) = (W,E(W ))
of a chordal graph G = (V,E) are chordal. This is an immediate con-
sequence of the definition, because cycles and chords in the subgraph
G(W ) are also cycles and chords in G.

The fundamental theory of chordal graphs was developed in the
1960s and 1970s, and while the term ‘chordal’ is common today, several
other names have appeared in the literature. Chordal graphs have been
called rigid-circuit graphs [74, 88, 46], triangulated graphs [27, 193, 101],
perfect elimination graphs, decomposable graphs [146, 58], and acyclic
graphs [149].

Two complementary approaches to the theory of chordal graphs ex-
ist. The first approach, reviewed in §3.3 and §3.4, focuses on properties
of vertex separators and cliques in chordal graphs. The second approach
emphasizes the role of chordal graphs in sparse matrix factorizations
and is discussed in §4. Surveys of the theory of chordal graphs can be
found in the articles [193, 38] and the book [101].

3.2 Examples

Examples of graphs that satisfy the definition of chordal graph in
a trivial way are the complete graphs, trees and forests (undirected
graphs with no cycles), and undirected graphs with no cycles of length
greater than three (such graphs are sometimes called cactus graphs [27,
page 160]).
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Figure 3.2: Two 2-trees. Vertices are named in the order they were created in the
recursive definition.

k-trees. A more interesting class of chordal graphs are the k-trees,
which are defined recursively as follows [193, 194]. Every k-tree has
at least k vertices and the only k-tree with k vertices is the complete
graph. To construct a k-tree with n > k vertices, one adds a vertex
to a k-tree with n − 1 vertices in such way that the new vertex has
degree k and its neighborhood is complete. Figure 3.2 shows two 2-trees
constructed as prescribed in the definition, starting with the complete
graph of two vertices a, b. As the name suggests, k-trees generalize
ordinary trees (the 1-trees).

Chordality of k-trees can be shown by induction. A k-tree with k
vertices is chordal because it is complete. Suppose it is true that all
k-trees with n − 1 vertices or less are chordal, and that G is a k-tree
with n vertices. Suppose G was constructed by adding the vertex v to
a k-tree G′ with n − 1 vertices in such a way that adj(v) is complete
and deg(v) = k. All cycles in G that do not pass through v are cycles
in G′. By the induction assumption these cycles have a chord if they
have length greater than three. A cycle of length greater than three in
G that passes through v must contain at least two vertices in adj(v)
(namely, the two neighbors of v in the cycle). By construction, adj(v)
is complete, so these two vertices are adjacent and define a chord in
the cycle.

Interval graphs. Let V be a finite family of sets. The intersection
graph of V is the undirected graph (V,E) with E = {{v, w} | v, w ∈
V, v ∩ w 6= ∅}. The intersection graph of a family of intervals on the
real line is called an interval graph. Figure 3.3 shows an example.
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Figure 3.3: Interval graph.

Interval graphs have been studied since the 1960s [149, 88, 82] and
often arise in scheduling problems. Here, each interval represents the
period of time occupied by a certain activity; edges indicate activities
that overlap in time [101, 67].

All intervals graphs are chordal [101, page 15]. Indeed, a chordless
cycle of length greater than three would correspond to a sequence of
four or more intervals on the real line, such that consecutive intervals
in the sequence intersect, non-consecutive intervals do not intersect,
and the last interval is identical to the first. This is clearly impossible.
To prove this more formally, suppose there exists a chordless cycle
(v0, v1, . . . , vk−1, vk = v0) of length k ≥ 4. Choose points ai ∈ vi ∩ vi+1
for i = 0, . . . , k − 1. This is possible, since vi ∩ vi+1 6= ∅. Moreover the
points a0, . . . , ak−1 are distinct because non-consecutive intervals vi, vj
in the cycle have an empty intersection. Now consider any three points
ai−1, ai, ai+1 for 0 < i < k−1. Since ai 6= ai−1 we either have ai > ai−1
or ai < ai−1. Suppose ai > ai−1. Then we must have ai+1 > ai, because
otherwise the interval (ai+1, ai), which is a subset of vi+1 because its
two endpoints are in vi+1, and the interval (ai−1, ai), which is a subset
of vi−1, intersect, contradicting the assumption that vi+1 and vi−1 do
not intersect. Similarly, one shows that if ai < ai−1 then ai+1 < ai.
Applying this recursively, we see that either a0 < a1 < · · · < ak−1 or
a0 > a1 > · · · > ak−1. However, by the same argument applied to ak−1,
a0, a1 we find that ak−1 < a0 implies a0 < a1 and ak−1 > a0 implies
a0 > a1, which leads to a contradiction.
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a

b c

d

e f

Figure 3.4: Split graph. The vertex set can be partitioned in two sets: the first set
{a, b, c, d} induces a complete subgraph; the second set {e, f} is independent.

Later we will encounter a more general class of chordal intersection
graphs, the tree intersection graphs (§3.7). We will also see that every
chordal graph can be represented as a tree intersection graph.

Split graphs. A graph G = (V,E) is a split graph if its vertices can be
partitioned in two sets such that one set induces a complete subgraph
and the other set is independent, i.e., its vertices are mutually non-
adjacent. Therefore the complement of a split graph, the graph Gc =
(V,Ec) with edge set

Ec = {{v, w} | v, w ∈ V, {v, w} 6∈ E},

is also a split graph. Figure 3.4 shows an example.
Threshold graphs form a class of split graphs [101, 163]. A graph

G = (V,E) is a threshold graph if there exists a function f : V → R
such that {u, v} ∈ E if and only if f(u) + f(v) > 0.

It is easy to see that split graphs are chordal. In fact a graph is a
split graph if and only if it is chordal and has a chordal complement
[101, theorem 6.3].

3.3 Minimal vertex separator

A set S ⊂ V is a vertex separator for two vertices v, w of an undirected
graph G = (V,E), or simply a vw-separator, if the vertices v, w are
in different connected components of the subgraph G(V \ S). A vertex
separator for two vertices v, w is a minimal vertex separator if no
proper subset of it is also a vw-separator. For example, in the graph of
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Figure 3.5: A chordal graph and its five minimal vertex separators.

Figure 3.5, {c, e} is a minimal ag-separator and {b, c, e} is a minimal
ad-separator. As the example shows, a minimal vertex separator can
contain another minimal vertex separator, if they are vertex separators
for different vertex pairs. Minimal vertex separators are also called
relatively minimal cutsets [74, 46].

Our first theorem is perhaps the most fundamental result in the
theory of chordal graphs and is due to Dirac [74, theorem 1].

Theorem 3.1. A graph is chordal if and only if all minimal vertex
separators are complete.

Proof. Suppose every minimal vertex separator in G = (V,E) is com-
plete. Consider a cycle of length greater than three. We show that the
cycle has a chord. Let v and w be two non-consecutive vertices in the
cycle. If v and w are adjacent, the edge {v, w} is a chord. If v and w are
not adjacent, there exists a vw-separator (for example, S = V \{v, w})
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and every vw-separator must contain at least two other non-consecutive
vertices of the cycle. Let S be a minimal vw-separator and let x, y ∈ S
be two non-consecutive vertices in the cycle different from v, w. By
assumption, S is complete, so x, y are adjacent. The edge {x, y} is a
chord in the cycle.

Conversely, suppose S is a minimal vw-separator in a chordal graph
G = (V,E). Let Cv and Cw be the connected components of G(V \ S)
that contain v and w, respectively. Consider two arbitrary vertices
x, y ∈ S. We show that x and y are adjacent. Since S is a mini-
mal vertex separator, x is adjacent to a vertex in Cv and to a ver-
tex in Cw (otherwise S \ {x} would still be a vw-separator, contra-
dicting the assumption that S is minimal). For the same reason, y
is adjacent to a vertex in Cv and to a vertex in Cw. Choose a path
Pv = (x, v1, . . . , vk, y) of minimum length with k ≥ 1 interior vertices
vi in Cv, and a path Pw = (y, w1, . . . , wl, x) of minimum length with
l ≥ 1 interior vertices in Cw. Concatenate the two paths to create a
cycle (x, v1, . . . , vk, y, w1, . . . , wl, x) of length at least four. Since G is
chordal the cycle has a chord. We show that the only possible chord is
{x, y}. First, since Cv and Cw are different connected components of
G(V \ S), there are no edges {vi, wj}. Moreover, since Pv was chosen
to have minimum length, there exist no edges {vi, vj} for |i − j| > 1,
{vi, x} for i > 1, or {vi, y} for i < k. Similarly, since Pw has minimum
length, there are no edges {wi, wj} for |i− j| > 1, {wi, x} for i < l, or
{vi, y} for i > 1. This leaves the edge {x, y} as only possible chord. �

Note that in the second half of the proof we actually have k = l = 1,
since (x, v1, . . . , vk, y, x) and (y, w1, . . . , wl, x, y) are chordless cycles, so
they have length three. Therefore x, y ∈ adj(v̂)∩adj(ŵ) for v̂ = v1 ∈ Cv
and ŵ = w1 ∈ Cw. The following theorem strengthens this result and
states that there exist vertices v̂ ∈ Cv and ŵ ∈ Cw that are adjacent to
all vertices in the minimal vw-separator S. This result appears in [46].

Theorem 3.2. Let S be a minimal vw-separator in a chordal graph.
Denote by Cv and Cw the connected components of G(V \ S) that
contain v and w, respectively. Then there exist vertices v̂ ∈ Cv, ŵ ∈ Cw
such that S = adj(v̂) ∩ adj(ŵ).
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Proof. First note that if S is a vw-separator (in any graph, chordal
or not) then adj(v̂) ∩ adj(ŵ) ⊆ S for all v̂ ∈ Cv and ŵ ∈ Cw. It is
therefore sufficient to show that a minimal vw-separator S in a chordal
graph satisfies S ⊆ adj(v̂) ∩ adj(ŵ) for some v̂ ∈ Cv and ŵ ∈ Cw.
Define v̂ and ŵ as the points in Cv and Cw that have the maximum
numbers of neighbors in S. We show that v̂ and ŵ are adjacent to
every vertex in S. The proof is by contradiction. Suppose there is a
point x in S not adjacent to v̂. Choose a path P = (x, v1, . . . , vk, v̂) of
minimum length with interior vertices vi ∈ Cv. We have k ≥ 1 because
x is not adjacent to v̂. Also there are no chords in the path because
it has minimum length. Choose an arbitrary y ∈ adj(v̂) ∩ S and make
P into a cycle (x, v1, . . . , vk, v̂, y, x) by adding the edges {v̂, y} and
{y, x}. The cycle has length at least four, so it has a chord. Since P is
chordless and {x, v̂} 6∈ E, all chords are between y and a vertex vj . In
particular, {y, v1} is a chord. Since the point y was chosen arbitrarily
in adj(v̂) ∩ S, we have shown that the vertex v1 is adjacent to all
vertices in adj(v̂) ∩ S. However v1 is also adjacent to x 6∈ adj(v̂), and
this contradicts the choice of v̂ as a vertex in Cv with the maximum
number of neighbors in S. We conclude that if v̂ ∈ Cv has the maximum
number of neighbors in S of all the vertices in Cv, then it is adjacent to
all vertices x ∈ S, i.e., S ⊆ adj(v̂). By the same argument S ⊆ adj(ŵ)
and therefore S ⊆ adj(v̂) ∩ adj(ŵ). �

We note the following important consequence of Theorems 3.1
and 3.2 [46, lemma 2.3]. Since the sets S ∪ {v̂} and S ∪ {ŵ} define
complete subgraphs, and v̂ and ŵ are not adjacent, the minimal ver-
tex separator S is contained in at least two cliques: there is at least
one clique that contains S ∪ {v̂} and at least one clique that contains
S ∪ {ŵ}. Cliques that contain S ∪ {v̂} have vertices in S ∪ Cv; cliques
that contain S ∪ {ŵ} have vertices in S ∪ Cw.

3.4 Simplicial vertex

A vertex v of an undirected graph is simplicial if its neighborhood
adj(v) is complete. The closed neighborhood adj(v)∪{v} of a simplicial
vertex v is a clique and it is the only clique that contains v. To see
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Figure 3.6: The simplicial vertices in the graph of Figure 3.5 are a, f , i. Note that
these are the vertices that do not appear in any of the minimal vertex separators of
Figure 3.5.

this, simply note that every complete vertex set W that contains v is
included in adj(v)∪ {v}. Therefore if adj(v)∪ {v} is complete, it is the
unique maximal complete subgraph that contains v, i.e., a clique. This
characterization of simplicial vertices holds regardless of whether the
graph is chordal or not.

If v is not simplicial and x, y are non-adjacent vertices in adj(v),
then v is in every xy-separator. Every non-simplicial vertex therefore
belongs to at least one minimal vertex separator. This holds for all
graphs, chordal or not. However, for chordal graphs, the converse also
holds. If there exists a minimal vertex separator that contains v, then,
as we saw at the end of the previous section, v is contained in at least
two cliques, so it is not simplicial. The vertices of a chordal graph can
therefore be partitioned in two groups: the simplicial vertices, which
belong to a unique clique, and the elements of minimal vertex separa-
tors, which belong to at least two different cliques [193, corollary 2].
This is illustrated in Figure 3.6.

The following two theorems on the existence of simplicial vertices
are due to Dirac [74, theorem 4] and Rose [193, lemma 6].

Theorem 3.3. Every chordal graph has at least one simplicial vertex.
Every non-complete chordal graph has at least two non-adjacent sim-
plicial vertices.

Proof. The proof is by induction on the number of vertices n. If n = 1
the graph is complete and the unique vertex is simplicial. Suppose
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G = (V,E) is a chordal graph with n ≥ 2 vertices and the theorem holds
for chordal graphs with less than n vertices. If G is complete, all vertices
are simplicial and adjacent. Suppose G is not complete and v, w are
two non-adjacent vertices. Let S be a minimal vw-separator and denote
by Cv, Cw the connected components of G(V \ S) containing v and w,
respectively. By Theorem 3.1, S is complete. The two graphs Gv =
G(Cv ∪ S) and Gw = G(Cw ∪ S) are chordal with less than n vertices.
Consider Gv. By the induction hypothesis Gv is either complete and all
its vertices are simplicial (inGv) or it has two non-adjacent vertices that
are simplicial (in Gv). In the second case, at least one of the simplicial
vertices must be in Cv because S is complete and the simplicial vertices
are not adjacent. Since no vertex in Cv is adjacent to a vertex in another
connected component of G(V \ S), a vertex of Cv that is simplicial in
Gv is also simplicial in G. We conclude that Cv contains at least one
vertex v̂ that is simplicial (in G). By the same argument, Cw contains
a simplicial vertex ŵ. Moreover v̂ and ŵ are not adjacent because Cv
and Cw are different connected components of G(V \ S). �

Theorem 3.4. If W is a complete subgraph of a non-complete chordal
graph G, then G has a simplicial vertex outside W .

This is an immediate consequence of Theorem 3.3. The graph G

has at least two non-adjacent simplicial vertices, and if W is complete,
at least one simplicial vertex must be outside W .

3.5 Clique tree

A clique tree of a graph G = (V,E) is a tree which has the cliques
of G as its vertices. A clique tree T has the induced subtree property
if for every v ∈ V , the cliques that contain v form a subtree (con-
nected subgraph) of T . We will use the notation Rv for this subtree
(or, equivalently, for the vertices of this subtree, i.e., the set of cliques
that contain v). An example is shown in Figure 3.7.

Buneman [46, theorem 2.7] and Gavril [92, theorem 3] have shown
that chordal graphs are exactly the graphs for which a clique tree with
the induced subtree property exists. In this section we show one di-
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a, b, c, e

b, c, d, e

f, d, e

c, e, g

h, e, g i, h, g

Figure 3.7: Clique tree with the induced subtree property for the graph of Fig-
ure 3.6.

rection of this result and discuss some of its implications. The other
direction is shown in §3.7.

We will show that when applied to a chordal graph, the follow-
ing recursive algorithm returns a clique tree with the induced subtree
property. The algorithm is ‘conceptual’ because at this point we are
not concerned with practical details. Practical methods for computing
clique trees will be discussed in Chapter 4.
Algorithm 3.1 (Clique tree).

Input. A chordal graph G = (V,E).
Output. A clique tree T for G with the induced subtree property.
Algorithm. If V is a singleton, return T = ({V }, ∅). Otherwise, find a

simplicial vertex v of G and define the clique W = adj(v) ∪ {v}.
Construct a clique tree T ′ with the induced subtree property for
G′ = G(V \ {v}). Distinguish two cases.
Case 1. If adj(v) is a clique of G′, define T as the tree T ′ with W

substituted for adj(v).
Case 2. If adj(v) is not a clique of G′, let W ′ be any clique of G′

that contains adj(v). Define T as the tree T ′ with the vertex
W and an edge {W,W ′} added.

Note that we do not assume that G is connected. If G is not con-
nected, then at some point during the recursion we encounter a simpli-
cial vertex v with adj(v) empty. Case 2 then applies and since adj(v) = ∅
is contained in all cliques of G′, we make W = {v} adjacent to an ar-
bitrary clique W ′ of G′.
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Theorem 3.5. Every chordal graph has a clique tree with the induced
subtree property.

Proof. We use induction on the number of vertices to show correctness
of Algorithm 3.1. If n = 1, the algorithm returns the clique tree T =
({V }, ∅) which certainly has the induced subtree property. Suppose that
G has n vertices and the algorithm is correct for chordal graphs with
less than n vertices. As in the algorithm outline, let T ′ be a clique tree
with the induced subtree property for the subgraph G′ = G(V \ {v}),
where v is a simplicial vertex of G.

We first verify that the vertices of T are the cliques of G. Since v is
a simplicial vertex, W = adj(v)∪{v} is a clique of G and it is the only
clique of G that contains v. All other cliques of G must be cliques of
G′. If W ′ is a clique of G′ and not equal to adj(v), then it includes at
least one vertex that is not adjacent to v. Therefore W ′ ∪ {v} is not a
complete subgraph of G, and W ′ is also a clique of G. If W ′ = adj(v) is
a clique of G′, then it is not a clique of G because it is strictly contained
in the clique W . We conclude that the cliques of G are W plus all the
cliques of G′ with one possible exception: if adj(v) happens to be a
clique of G′, then it is not a clique of G. The vertices of T generated
by the algorithm are therefore exactly the cliques of G.

Next we show that T satisfies the induced subtree property. Let R′u
be the set of cliques in G′ that contain a given vertex u ∈ V \ {v}.
By the induction assumption each R′u forms a tree. Let Ru be the set
of cliques in G that contain a given vertex u ∈ V . We need to show
that Ru is a tree for all u ∈ V . First consider u = v. The only clique
of G that contains v is W , therefore Rv = {W}, a single-vertex tree.
Next consider a vertex u ∈ V \ adj(v). We have Ru = R′u which is a
tree by assumption. Finally, consider u ∈ adj(v). We distinguish the
two cases in the algorithm. In case 1, Ru is the tree R′u with adj(v)
replaced by W . In case 2, Ru is the tree R′u with the vertex W added
and made adjacent to a vertex W ′ of Ru. In both cases, Ru is a tree. �

From Algorithm 3.1 we obtain a simple bound on the number of
cliques in a chordal graph. Since in each cycle of the algorithm a dif-
ferent vertex v is considered and at most one new clique is added, the
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number of cliques is bounded by the number of vertices n. (In fact, the
only chordal graph with n vertices and n cliques is the graph with n

isolated vertices. A connected chordal graph has at most n−1 cliques.)
The induced subtree property is also referred to as the running

intersection property [38] because it can be rephrased as follows. If two
cliques W and W ′ intersect, then W ∩W ′ is included in all the cliques
on the path in the clique tree between W and W ′. This is easily seen
to be equivalent to the induced subtree property. For every vertex v in
the intersection ofW andW ′, the cliquesW andW ′ are in the induced
subtree Rv. Therefore all cliques on the path between W and W ′ are
also in the subtree.

3.6 Rooted clique tree

Clique trees provide very useful information about the structure of the
graph. For example, the edges in the clique tree provide a complete
list of the minimal vertex separators. This is most easily explained in
terms of a rooted clique tree. Let T be a clique tree with the induced
subtree property. Pick an arbitrary clique as the root of T and denote
the parent function in the rooted clique tree as pc(W ). Each non-root
clique W can then be partitioned in two sets:

sep(W ) = W ∩ pc(W ), res(W ) = W \ sep(W ). (3.1)

For the root clique W we define res(W ) = W . The sets sep(W ) will
be called the clique separators and the sets res(W ) the clique residu-
als. These definitions are illustrated in Figure 3.8 for the clique tree in
Figure 3.7. The two rows shown at each vertex of the clique tree cor-
respond to the partitioned clique: the top row is sep(W ), the bottom
row is res(W ).

Two important properties follow immediately from the induced sub-
tree property and the definition of clique separators and residuals. For
future reference we state them as a theorem.

Theorem 3.6. Let G = (V,E) be a chordal graph and let T be a
rooted clique tree with the induced subtree property. Define sep(W )
and res(W ) as in (3.1).
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Figure 3.8: Clique tree of Figure 3.7 as a rooted clique tree with root {c, e, g}. The
top row of each vertex is the intersection of the clique with its parent clique (the
clique separator). These sets are the minimal vertex separators of the graph. The
bottom row is the clique residual.

• The clique residuals partition V : every vertex v ∈ V belongs to
exactly one clique residual res(W ).

• For each v ∈ V , the clique W for which v ∈ res(W ) is the root of
the induced subtree Rv of cliques that contain v. The other vertices
of Rv are the cliques that contain v in sep(W ).

Proof. If v ∈ sep(W ) then v ∈ pc(W ), by definition of sep(W ). This
simple fact implies that if v ∈ W , then v ∈ pjc(W ) for j = 0, 1, . . . , k
where k ≥ 0 satisfies v ∈ res(pkc (W )). Such an integer k exists because
Ŵ = res(Ŵ ) for the root of the clique tree. This, combined with the fact
that the cliques that contain v form a subtree (Theorem 3.5), implies
that v is in exactly one set res(W ) and that this clique W is the root
of the induced subtree. �

The terminology for sep(W ) is motivated by the following theorem,
which states that the clique separators in the clique tree are the minimal
vertex separators of the graph [38, theorem 4.3].

Theorem 3.7. Let G = (V,E) be a chordal graph and let T be a
rooted clique tree of G with the induced subtree property. The clique
separators sep(W ) where W ranges over all non-root cliques, are the
minimal vertex separators of G.
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Proof. Consider any non-root clique W . We show that the clique sep-
arator sep(W ) is a minimal vertex separator. Removal of the edge
{W,pc(W )} in the clique tree decomposes the clique tree in two con-
nected subtrees. Let T1 be the set of cliques in the subtree containing
W , i.e., W and all its descendants in the clique tree. Let T2 the set of
cliques in the subtree containing pc(W ), i.e., all cliques that are not
descendants of W . The sets

sep(W ), V1 =
⋃

W̃∈T1

W̃ \ sep(W ), V2 =
⋃

W̃∈T2

W̃ \ sep(W )

partition V . (It is obvious that the union of the three sets is V . Moreover
V1 and V2 do not intersect because if v ∈ V1∩V2, then v is an element of
a clique in T1 and a clique in T2, and, by the induced subtree property,
an element of all the cliques on the path between these two cliques.
Hence v ∈ sep(W ), contradicting the definition of V1 and V2.) Moreover
there exists no edge {v1, v2} with v1 ∈ V1 and v2 ∈ V2, because this
would mean there is a clique containing v1 and v2. This clique must
be either in T1 or in T2, implying that v1, v2 ∈ V1 or v1, v2 ∈ V2. We
conclude that sep(W ) separates V1 and V2. To see that sep(W ) is in
fact a minimal vertex separator it is sufficient to note that sep(W )
is a subset of two cliques W and pc(W ), and therefore every vertex
in sep(W ) is adjacent to all vertices in res(W ) = W \ sep(W ) and all
vertices in pc(W )\sep(W ). Therefore sep(W ) is a minimal ab-separator
for any a ∈ res(W ) and b ∈ pc(W ) \ sep(W ).

To show the converse, let S be a minimal uv-separator. Let Ru
and Rv be the induced subtrees of the clique tree with the cliques
that contain u and v, respectively. These subtrees are disjoint be-
cause u and v are not adjacent. Therefore there exists a (unique) path
(W0,W1, . . . ,Wr) in the clique tree with u ∈W0, u 6∈Wi for 1 ≤ i ≤ r,
v ∈Wr, v 6∈Wi for 0 ≤ i < r. Define Si = Wi∩Wi+1 for i = 0, . . . , r−1.
From the first part of the proof, we know that each set Si is a sepa-
rator of two sets, one including u, the other including v, i.e., every
edge {Wi,Wi+1} on the path defines a uv-separator Si. We show that
one of these uv-separators is equal to S. Since S is a minimal sepa-
rator we cannot have Si ⊂ S. Therefore, if Si 6= S, we can choose a
vertex xi ∈ Si \ S. If Si 6= S for i = 0, . . . , r − 1, this gives a path
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(u, x0, . . . , xr−1, v) in G from u to v with interior vertices outside S,
contradicting the assumption that S is a uv-separator. Hence we must
have Si = S for at least one i. �

Note that a chordal graph can have several clique trees, and for the
same clique tree the definition of the sets sep(W ) and res(W ) depends
on the choice of root. However all clique trees have the same vertices
(namely, the cliques of G) and the same clique separators (namely, the
minimal vertex separators of G).

We can now also bound the number of minimal vertex separators.
Since there are at most n cliques in a chordal graph with n vertices,
there are at most n − 1 edges in a clique tree and, hence, at most
n− 1 minimal vertex separators. The number of minimal vertex sepa-
rators is not necessarily equal to the number of edges in the clique tree
(the number of cliques minus one), because the same minimal vertex
separator can appear more than once as a clique separator.

3.7 Tree intersection graph

In §3.5 (Algorithm 3.1) we showed how to construct a clique tree with
the induced subtree property for a chordal graph G. Conversely, we can
easily construct the graph G = (V,E) from a clique tree T for it: the
vertex set V is the union of all the vertices of T ; two vertices u and v
are adjacent if and only the induced subtrees Ru and Rv intersect, i.e.,
there exists at least one clique that contains both u and v.

This construction of a graph G from the clique tree is an example of
a more general class of graphs, known as tree intersection graphs. Let
{Rv | v ∈ V } be a family of subtrees of a tree T , indexed by a param-
eter v. The intersection graph associated with the family of subtrees
is an undirected graph G = (V,E) in which each vertex represents a
subtree Rv and an edge {v, w} ∈ E indicates that Rv∩Rw 6= ∅ Here we
do not distinguish between a tree and its vertex set: Rv ∩ Rw denotes
the set of vertices common to Rv and Rw, as well as the subtree of T
defined by those vertices; see Figure 3.9.

Gavril [92] and Buneman [46, theorem 2.1] have shown that all tree
intersection graphs are chordal (see also [101, theorem 4.8]).
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Figure 3.9: Five subtrees of the tree in Figure 2.4, and the associated tree inter-
section graph.

Theorem 3.8. Let {Rv | v ∈ V } be a family of subtrees of a tree T and
G = (V,E) the associated tree intersection graph. Then G is chordal.

Proof. By contradiction. Suppose there exists a chordless cycle
(v0, v1, . . . , vk−1, vk = v0) of length k ≥ 4 in G. We show that this
implies there exists a cycle in T , contradicting the fact that T is a tree.
To simplify the indexing we define Ri = Rvi , i = 0, . . . , k.

Since the cycle is chordless, the subtrees Ri and Rj intersect only if
|i− j| mod k ≤ 1. For i = 0, . . . , k − 1, define Si = Ri ∩Ri+1. The sets
Si form nonempty subtrees of T , and are mutually disjoint because the
intersection of any three or more subtrees Rj is empty. We can therefore
define paths P1, . . . , Pk, P ′0, . . . , P ′k−1 as follows. For i = 1, . . . , k − 1,
the path Pi starts at a vertex in Si−1, ends at a vertex in Si, and
has interior vertices that are in Ri but outside Si and Si+1. The path
Pk starts at a vertex in Sk−1, ends at a vertex in S0, and its interior
vertices are in R0 = Rk but outside Sk−1 and S0. For k = 1, . . . , k − 1,
the path P ′i starts at the end point of path Pi and ends at the starting
point of Pi+1, and therefore has vertices in Si. The path P ′0 starts at
the end poin of Pk and ends at the starting point of P1, and therefore
has vertices in S0. Concatenating the paths P ′0, P1, P ′1, . . . , Pk−1, P ′k−1,
Pk gives a cycle in T . �
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3.8 Junction tree

Combining Theorems 3.5 and 3.8 we conclude that a graph is chordal if
and only if it can be expressed as the tree intersection graph of a family
of subtrees {Rv | v ∈ V }. In §3.5 we already described one method for
representing a chordal graph as a tree intersection graph. In this rep-
resentation the tree is a clique tree with the induced subtree property;
the subtrees Rv are formed by the cliques that contain a specific ver-
tex v. Later we will encounter several generalizations of clique trees, in
which the condition that its vertices are maximal complete subgraphs
is omitted. In the generalized definition a chordal graph G = (V,E) is
represented as the tree intersection graph of a tree T that satisfies the
following properties.

• The vertices of T are subsets of V that induce complete subgraphs
of G. The subgraphs induced by the verticesW of T cover G, i.e.,
V is the union of the vertices W of T and E is the union of the
sets E(W ).

• The vertices of T that contain a given vertex v ∈ V form a subtree
Rv of T .

In artificial intelligence and machine learning a tree with these proper-
ties is called a junction tree [58, section 4.3] or a join tree [22, 184, 64].



4
Perfect Elimination Ordering

In this chapter we develop a view of chordal graphs that is comple-
mentary to the clique tree representation of the previous chapter. We
show that chordal graphs are exactly the undirected graphs for which
a perfect elimination ordering exists.

4.1 Filled graph

An ordered graph Gσ = (V,E, σ) is filled or monotone transitive if
all higher neighborhoods adj+(v) induce complete subgraphs: for all
v ∈ V ,

w, z ∈ adj+(v) =⇒ {w, z} ∈ E. (4.1)
Equivalently,

i < j < k, {σ(i), σ(j)} ∈ E, {σ(i), σ(k)} ∈ E
⇓

{σ(j), σ(k)} ∈ E.
(4.2)

Figure 4.1 shows an example. Monotone transitivity is easily verified
from the array representation in the figure: for each column i, if it
contains entries in rows j and k, with i < j < k, then column j has an
entry in row k.

274
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Figure 4.1: Left. Filled graph with 9 vertices. The number next to each vertex is
the index σ−1(v). Right. Array representation of the same graph.

If the ordered graph is interpreted as a directed graph with edges
oriented from lower to higher index (as described in §2.2), then mono-
tone transitivity means that if there are edges from v to w and from v

to z, then w and z are adjacent, i.e., there is an edge from w to z or
from z to w.

Another useful formulation of monotone transitivity is as follows.
If two vertices w and z in a filled graph are connected by a path (v0 =
w, v1, . . . , vk−1, vk = z) with interior vertices that precede w and z in
the ordering (i.e., σ−1(vi) < min{σ−1(w), σ−1(z)} for i = 1, . . . , k−1),
then w and z are adjacent. This follows by repeated application of
monotone transitivity. Let vi be the interior vertex of the path with
the lowest index σ−1(vi). By monotone transitivity its two neighbors
in the path are adjacent and form a chord in the path. Therefore there
exists a shorter path (v0 = w, . . . , vi−1, vi+1, . . . , vk = z) from w to z
with interior vertices that precede w and z. Continuing this process one
can remove all interior vertices and eventually arrives at a single-edge
path (w, z).

The same property can be stated in another interesting form: if
(v0 = w, v1, . . . , vk−1, vk = z) is a chordless path, then

σ−1(vi) ≥ min{σ−1(w), σ−1(z)}, i = 1, . . . , k − 1.

The function σ−1 : V → {1, 2 . . . , n} therefore satisfies a generalized
quasiconcavity property. Recall that a function f : Rn → R is quasi-
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concave if f(v) ≥ min{f(w), f(z)} for all v on the line segment [w, z].
In the generalized definition, Rn is replaced by the vertex set V of an
undirected graph and line segments in Rn are replaced by chordless
paths in the graph [204].

An immediate consequence of monotone transitivity is that G =
(V,E) is chordal. To see this, consider a cycle of length greater than
three in G. Let v be the vertex in the cycle with least index σ−1(v)
and let w, z be the two neighbors of v in the cycle. The vertices w and
z are in adj+(v) and are adjacent if the graph is monotone transitive.
The edge {w, z} is a chord in the cycle.

In the next section (Theorem 4.1) we will see that the converse
holds: if G is chordal then there exists an ordering σ for which Gσ is a
filled graph.

4.2 Perfect elimination ordering

An ordering σ of an undirected graph G = (V,E) is called a perfect
elimination ordering of G if the ordered graph Gσ = (V,E, σ) is filled.
(The term ‘elimination’ will be explained in Chapter 6.) Fulkerson and
Gross have shown that the graphs for which a perfect elimination order-
ing exists are exactly the chordal graphs [88, page 851]. This explains
why chordal graphs are also known as perfect elimination graphs.

Theorem 4.1. A graph is chordal if and only if it has a perfect elimi-
nation ordering.

Proof. The ‘if’-part was shown in §4.1. The ‘only if’-part can be proved
by induction on the number of vertices n. The case n = 1 is trivial.
Suppose G is a chordal graph with n > 1 vertices, and every chordal
graph with fewer than n vertices has a perfect elimination ordering.
By Dirac’s simplicial vertex theorem (Theorem 3.3) the graph G has
a simplicial vertex v. The subgraph G′ = G(V \ {v}) is chordal with
less than n vertices, so by the induction hypothesis it has a perfect
elimination ordering σ′. Define an ordering σ for G by

σ(1) = v, σ(i) = σ′(i− 1), i = 2, . . . , n.
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We verify that σ is a perfect elimination ordering for G. Since v is the
first vertex in the ordering, its higher neighborhood is adj(v) and this
set is complete because v is simplicial in G. The higher neighborhoods
of the vertices w 6= v in Gσ are the same as in G′σ′ and are complete
because σ′ is a perfect elimination ordering of G′. �

The inductive proof suggests a conceptual recursive algorithm for
finding a perfect elimination ordering: for i = 1, . . . , n, choose σ(i) = v

where v is a simplicial vertex of G(V \{σ(1), . . . , σ(i−1)}). The method
succeeds in finding a perfect elimination ordering if and only if the
graph is chordal. This is called simplicial elimination.

A perfect elimination ordering for a chordal graph is also easily
obtained from a rooted clique tree with the induced subtree property.
Recall from §3.6 that the clique residuals res(W ) partition the vertex
set V . Suppose there are l cliques, and let β be a topological ordering
of the clique tree (W �β pc(W ) for every clique W ). We order the
vertices in V by visiting the cliques W in topological order and assign-
ing consecutive numbers to the vertices in the clique residuals. More
specifically, for i = 1, . . . , l, let W = β(i) and number the vertices in
res(W ) so that

{σ−1(v) | v ∈ res(W )} = {ni + 1, . . . , ni + |res(W )|}

where ni =
∑
W ′≺βW |res(W ′)|. To see that this is a perfect elimination

ordering, we have to verify that for every vertex v, the higher neighbor-
hood adj+(v) is complete. Consider a vertex w ∈ adj+(v). Since w is
adjacent to v, it belongs to at least one clique that also contains v, i.e.,
a clique in the induced subtree of cliques that contain v. The root of the
induced subtree is the cliqueW for which v ∈ res(W ). Suppose w ∈W ′
and W ′ is a proper descendant of W in the clique tree. If w ∈ res(W ′),
then by construction of the ordering, w ≺σ v so w 6∈ adj+(v). There-
fore if w ∈ adj+(v) ∩W ′ and W ′ is a proper descendant of W , then
w ∈ sep(W ′) and hence w ∈ pc(W ′). By repeated application of this
argument, we find that w is also an element of W , the root of the in-
duced subtree of cliques that contain v. We conclude that adj+(v) ⊂W
and therefore adj+(v) is complete.
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The perfect elimination ordering derived from a clique tree is gener-
ally not unique. We can use any topological ordering β of the clique tree
to number the cliques, and for the same ordering β, use any consecutive
ordering for the vertices in the clique residuals.

More practical methods for finding perfect elimination orderings
and verifying chordality will be discussed in §4.7. Rose’s simplicial ver-
tex theorem (Theorem 3.4) is important in this context. It can be used
to show, using an inductive argument similar to the proof of Theo-
rem 4.1, that if W is any complete subgraph of a chordal graph, then
there exists a perfect elimination ordering that orders the vertices inW
last. In particular, for any given vertex w, there is a perfect elimination
ordering that orders w last (σ(n) = w). Therefore, while the first vertex
in a perfect elimination ordering must be simplicial, the last vertex can
be chosen arbitrarily.

4.3 Elimination tree

In §3.6 and §3.7 we described how every chordal graph G can be rep-
resented as the tree intersection graph of an associated junction tree
(namely, a clique tree with the induced subtree property). If a perfect
elimination ordering for G is known, there is a more straightforward
representation of G as the tree intersection graph of a junction tree,
based on the elimination tree associated with the filled graph Gσ. For
simplicity we will assume that G is connected (however, all results ex-
tend to unconnected graphs).

Let Gσ = (V,E, σ) be a connected filled (monotone transitive)
graph with n vertices. The elimination tree of Gσ is a rooted tree with
vertices V and root σ(n). The parent p(u) of a non-root vertex u is
defined as the first vertex in adj+(u):

p(u) = argmin{σ−1(v) | v ∈ adj+(u)}.

The parent function is well defined because adj+(u) is non-empty for
u 6= σ(n). Indeed, suppose u 6= σ(n) and adj+(u) is empty. Since G
is connected, there exists a path (u, v1, . . . , vk−1, w) from u to some
vertex w � u with interior vertices vi that precede u and w. By mono-
tone transitivity, this implies u and w are adjacent, contradicting our
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Figure 4.2: Filled graph and elimination tree.

assumption that adj+(u) is empty. From the definition of the parent
function, it is also clear that u ≺σ p(u) for all non-root vertices u, so
the graph with vertices V and edges {u, p(u)} is acyclic, i.e., a tree,
and the ordering σ is a topological ordering of the tree. An example is
shown in Figure 4.2.

Monotone transitivity implies that all elements of adj+(u) are mu-
tually adjacent. In particular,

adj+(u) ⊆ col(p(u)) = {p(u)} ∪ adj+(p(u)) (4.3)

for every non-root vertex u. Repeated application of this inclusion gives

adj+(u) ⊆ {p(u), p2(u), . . . , pk(u)} ∪ adj+(pk(u)) (4.4)

for k = 1, . . . , lev(u), where pi(u) is the parent of u of degree i and
lev(u) is the depth of u in the elimination tree. For k = lev(u), pk(u)
is the root of the elimination tree and (4.4) reduces to

adj+(u) ⊆ {p(u), p2(u), . . . , pk(u)}.

This shows that the elements of adj+(u) are proper ancestors of u
in the elimination tree. In other words, adjacent vertices in a filled
graph are ancestor-descendant pairs in the elimination tree: if u and
v are adjacent then u is a proper ancestor of v (if u � v) or a proper
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descendant (if u ≺ v). In Figure 4.2, for example, we can conclude from
the elimination tree that adj(h) ⊆ {g, i, o, p, q}.

There exists a close similarity between elimination trees and clique
trees. To develop this connection, it is useful to identify each vertex u
in the elimination tree with its closed higher neighborhood col(u). Each
of these sets col(u) is a complete subgraph of G and can be partitioned
in two sets: adj+(u) (which, by (4.3), is included in the parent set
col(p(u))) and the remainder, {u}. This corresponds to the partitioning
of a clique W into a clique separator sep(W ) (the intersection of W
and the parent of W in the clique tree) and the clique residual res(W ).
When interpreted this way, the expanded elimination tree is a junction
tree, as defined in §3.8 [153, section 4.2]. Its vertices col(v) are complete
subgraphs of G, and for every given v, the set

row(v) = {u | v ∈ col(u)}

forms a subtree of the elimination tree, with root v. This follows
from (4.4) which implies that if v ∈ adj+(u), then v ∈ col(pj(u)) for
j = 1, . . . , k, where k satisfies pk(u) = v. In other words, if v ∈ adj+(u),
then v ∈ col(w) for all vertices w on the path between u and v in the
elimination tree. For this reason the closed lower neighborhoods row(v)
are also called the row subtrees. This is illustrated in Figure 4.3 for the
example of Figure 4.2. As an example,

row(o) = {o} ∪ adj−(o) = {a, c, d, e, g, h, i, o}

is a subtree of the elimination tree in (4.2), with root o and leaves
a, g. In the expanded elimination tree of Figure 4.3 the vertices of this
subtree are the sets col(v) that contain o.

The inclusions (4.4) imply some important inequalities involving the
higher degrees deg+(v) = |adj+(v)|. Comparing the number of elements
in the sets on the left- and right-hand sides gives

deg+(u) ≤ k + deg+(pk(u)), k = 1, . . . , lev(u). (4.5)

The inequality in (4.5) holds with equality if and only if

adj+(u) = {p(u), p2(u), . . . , pk(u)} ∪ adj+(pk(u)).
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Figure 4.3: The junction tree obtained from the elimination tree of Figure 4.2. In
the junction tree we replace each vertex v of the elimination tree with its closed
neighborhood col(v). Each vertex col(v) is partitioned as col(v) = {v} ∪ adj+(v),
with v shown in the bottom row and adj+(v) in the top row. Monotone transitivity
implies that adj+(v) ⊂ col(p(v)) for every non-root vertex v: the elements of the top
row of a tree vertex are included in the parent vertex.

Moreover, if the inequality in (4.5) holds with equality for k = j, then
it holds with equality for 1 ≤ k ≤ j. If the inequality in (4.5) is a strict
inequality for k = j, then it is a strict inequality for j ≤ k ≤ lev(u).

The higher degree inequalities are important in applications where
filled graphs are constructed by graph elimination of non-chordal
graphs (see Chapter 6), and the elimination tree and the higher degrees
can be efficiently computed from the original, non-filled graph, with-
out explicitly constructing the filled graph. For example, the relations
between the higher degrees allow us to identify the leading elements of
the higher neighborhoods by examining the elimination tree and the
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higher degrees. Suppose, for example, that we are given the elimination
tree in Figure 4.2, plus the additional information that

deg+(a) = 4, deg+(c) = 3, deg+(d) = 2, deg+(e) = 3.

Then

deg+(a) = 1 + deg+(p(a)) = 2 + deg+(p2(a)) < 3 + deg+(p3(a)),

and without knowing more about the graph we can conclude that

adj+(a) = {c, d} ∪ adj+(d) = {c, d, e, . . .}.

4.4 Clique tree from elimination tree

In this section we describe how the cliques in a filled graph can be
found from the elimination tree and the higher degrees of the vertices.
We also show how to construct a clique tree with the induced subtree
property based on the same information.

Consider a clique W in a filled graph Gσ = (V,E, σ) and let v =
argmin{σ(w) | w ∈W} be the lowest vertex in W . Every vertex w 6= v

in the clique belongs to adj+(v), since w � v by choice of v, and w and
v are adjacent because w and v belong to the same clique. Therefore
W ⊆ col(v) and, sinceW is a maximal complete subgraph,W = col(v).
We conclude that every clique can be expressed as W = col(v) where v
is the lowest vertex of W [88, page 852] [91, page 183] [150, proposition
2]. This fact provides another easy proof that a connected chordal graph
with n vertices has at most n − 1 cliques. The vertex v is called the
representative vertex of the clique W = col(v).

Enumerating the cliques in a filled graph therefore amounts to find-
ing the representative vertices. The following simple criterion only re-
quires the elimination tree and the higher degrees [188, page 185].

Theorem 4.2. Let T be the elimination tree of a connected filled graph.
A vertex v is a representative vertex if and only if

deg+(w) < deg+(v) + 1 ∀w ∈ ch(v), (4.6)

where ch(v) denotes the set of children of v in T .
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Proof. It follows from (4.5) that deg+(w) ≤ deg+(v) + 1 for all w ∈
ch(v). We show that v is not a representative vertex if and only if
deg+(w) = deg+(v) + 1 for at least one child w of v.

The set col(v) is not a clique if and only if col(v) ⊂ col(u) for a
representative vertex u 6= v. The vertex u must be a proper descendant
of v, because otherwise v and u cannot be adjacent. From (4.4) this
implies that col(v) ⊂ col(w) for all w on the path from u to v in T and,
in particular, for the child w of v on this path. In other words, col(v)
is not a clique if and only if col(v) ⊂ col(w) for some w ∈ ch(v). Since,
adj+(w) ⊆ col(v) always holds for every child w of v (this is (4.4) for
k = 1) the property col(v) ⊂ col(w) is equivalent to the statements
col(v) = adj+(w) and deg+(v) + 1 = deg+(w). �

The representative vertex criterion in Theorem 4.2 can be further
developed into an algorithm for constructing a clique tree with the
induced subtree property [150, 188]. Suppose there are l cliques in G.
Let V c be the set of representative vertices. The vertex set V of G can
be partitioned in l sets

snd(v) = {v, p(v), . . . , pnv(v)} (4.7)

where v ∈ V c and nv = |snd(v)| − 1 satisfies

deg+(v) = deg+(pnv(v)) + nv. (4.8)

This last condition is equivalent to deg+(v) = deg+(pk(v)) + k for
k = 1, . . . , nv. The sets snd(v) are called maximal supernodes and the
first vertex v is called the representative vertex of the supernode snd(v).
(In [150, 188] the notation new(v) is used for snd(v).) A maximal super-
node partition can be constructed recursively, by visiting the vertices
in the elimination tree in topological order. We initialize the super-
nodes snd(u), u ∈ V c, as empty sets. We use a topological order (i.e.,
every vertex is visited before its parent) to assign the vertices v of
the elimination tree to supernodes. If v is a representative vertex, we
add v to snd(v). If v is not a representative vertex, then, by Theo-
rem 4.2, v has at least one child w with deg+(w) = deg+(v) − 1. We
arbitrarily select a child w with this property and add v to the maxi-
mal supernode snd(u) that contains w. After processing all the vertices
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Figure 4.4: A maximal supernode partition of the elimination tree of Figure 4.2.
The numbers next to the vertices are the higher degrees deg+(v). The clique rep-
resentative vertices are shown in rectangles. For each representative vertex v, the
maximal supernode snd(v) contains the vertices on the solid path that starts at v.

in the elimination tree, the sets snd(v) partition V and satisfy (4.7)
and (4.8). Note that the partition is not unique in general, because for
every non-representative vertex v there may be more than one child w
with deg+(w) = deg+(v) − 1. Figures 4.4 and 4.5 show two maximal
supernode partitions for the elimination tree of Figure 4.2.

The maximal supernodes can be arranged in a supernodal elimina-
tion tree T c. The vertex set of T c is V c (or, equivalently, the maximal
supernodes {snd(v) | v ∈ V c}). The root of T c is the representative
of the supernode snd(v) that contains the root of the elimination tree
σ(n). For every other representative v ∈ V c, we define the first an-
cestor a(v) as the parent in the elimination tree of the highest ele-
ment of snd(v): if snd(v) = {v, p(v), . . . , pnv(v)} and lev(v) > nv, then
a(v) = pnv+1(v) (the name ‘first ancestor’ is from [150, 188]). The par-
ent q(v) of v in T c is the representative vertex of the supernode that
contains a(v), i.e., q(v) is defined by the relation

a(v) ∈ snd(q(v)). (4.9)
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Figure 4.5: Another maximal supernode partition of the elimination tree of Fig-
ure 4.2.

This defines q(v) unambiguously because the sets snd(u) partition V

so a(v) belongs to exactly one supernode snd(u). The graph with ver-
tex set V c and edges {v, q(v)} is acyclic (i.e., a tree), because the
definition (4.9) implies the ordering a(v) ≺σ a(q(v)). The supernodal
elimination trees for the maximal supernode partitions of Figures 4.4
and 4.5 are shown in Figure 4.6.

The next theorem states the most important properties of super-
nodal elimination trees.

Theorem 4.3. Let T c be a supernodal elimination tree of a filled graph
Gσ = (V,E, σ), based on a partition of V in maximal supernodes
snd(v). Then for all non-root vertices v ∈ V c,

col(v) \ snd(v) ⊂ col(q(v)), (4.10)

where q(v) is the parent of v in T c. For any given u ∈ V , the set
{v ∈ V c | u ∈ col(v)} is a subtree of T c, with as root the vertex v that
contains u in snd(v).
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Figure 4.6: The supernodal elimination trees for the maximal supernode partition
in Figure 4.4 (left) and Figure 4.5 (right). The first vertex in each rectangle is the
representative vertex of the supernode.

Proof. The identity col(v) = snd(v) ∪ adj+(pnv(v)) holds by definition
of snd(v) (see equation (4.7)). Therefore, if v is not the root of T c,

col(v) \ snd(v) = adj+(pnv(v))
⊆ {a(v)} ∪ adj+(a(v))
⊆ col(q(v)).

The second line follows from the fact that a(v) = pnv+1(v). The last
line follows from a(v) ∈ col(q(v)). Moreover, (4.10) is a strict inclusion
because v and q(v) are different representative vertices, and the clique
col(q(v)) cannot be subset of another clique col(v).

The induced subtree property follows from (4.10). For any given
u ∈ V , there is a unique representative vertex v for which u ∈ snd(v).
Suppose u ∈ col(w) where w is a representative vertex different from v.
Then u 6∈ snd(w), and therefore u ∈ col(w) \ snd(w). By (4.10), we
have w ∈ col(q(w)). Repeating this argument, we reach the conclusion
that u ∈ col(qi(w)), for i = 0, . . . , k, where qk(w) = v. �

From the maximal supernodes and a supernodal elimination tree
one immediately obtains a clique tree with the induced subtree prop-
erty. The parent function pc of the clique tree is defined as pc(col(v)) =
col(q(v)). The clique residuals and separators are

res(col(v)) = snd(v), sep(col(v)) = col(v) \ snd(v).
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Figure 4.7: The two clique trees obtained from the maximal supernode partitions
of Figures 4.4 and 4.5. The bottom rows are the maximal supernodes snd(v). The
top rows are the sets col(v) \ snd(v). The first element of each top row is the first
ancestor a(v).

This follows from (4.10) and the fact that snd(v)∩col(q(v)) = ∅. (Since
the vertices in snd(v) precede a(v) in the ordering σ, they cannot be in
col(q(v)), because this would mean they are in snd(q(v)), contradicting
the fact the sets snd(u) partition V .) The clique trees for the two
supernodal elimination trees of Figure 4.6 are shown in Figure 4.7.

We will sometimes use the term nodal elimination tree for the elim-
ination tree (as defined in §4.3) to avoid confusion with the supernodal
elimination tree. Note that knowledge of the nodal elimination tree and
the higher degrees is sufficient to identify the representative vertices,
the maximal supernodes snd(v), the first ancestors a(v), and the super-
nodal elimination tree. However, in general the elimination tree and the
higher degrees do not give enough information to find all the elements
of the cliques (i.e., the top rows in the vertices of Figure 4.7).

We summarize this section with an algorithm that computes the
representative vertices, maximal supernodes snd(v), first ancestors
a(v), and the parent function q(v) of the supernodal elimination tree.
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The algorithm was proposed by Pothen and Sun [188, page 185] as
a simplification of an earlier algorithm by Lewis, Peyton, and Pothen
[150, page 1154]. It only requires knowledge of the elimination tree and
the higher degrees of all vertices.

Algorithm 4.1 (Maximal supernodes and supernodal elimination tree).

Input. An elimination tree for a connected filled graph Gσ = (V,E, σ) and
the higher degrees deg+(v) for all v ∈ V .

Output. The set V c of clique representatives, the maximal supernodes
snd(v) for v ∈ V c, the parent function q(v) of the supernodal elimina-
tion tree, and the first ancestor a(v) of each non-root representative
vertex.

Algorithm. Initialize V c as V c = ∅. Enumerate the vertices v of T in
topological order. For each v, execute the following steps.

• If deg+(v) > deg+(w)− 1 for all w ∈ ch(v), then v is a represen-
tative vertex. Add v to V c, set snd(v) := {v}, and define u := v,
W := ch(v).
Otherwise, choose a vertex ŵ ∈ ch(v) with deg+(ŵ) = deg+(v) +
1. Let u be the vertex in V c that satisfies ŵ ∈ snd(u). Add v to
snd(u) and set W := ch(v) \ {ŵ}.

• For all w ∈ W , set q(z) := u and a(z) := v where z is the vertex
in V c that satisfies w ∈ snd(z).

4.5 Supernodal elimination tree

The maximal supernode partition used in the previous section can be
generalized as follows. A general supernode partition of a filled graph
(V,E, σ) is a partition of V in sets snd(v) for v ∈ V s, where each set
snd(v) is of the form (4.7) with nv satisfying (4.8). The sets snd(v) are
called supernodes and the elements of V s are the representative vertices
of the supernodes. The set of supernode representatives V s contains
the clique representatives V c, but may also contain other vertices. The
most important choices of V s are the following.

• Nodes. If we take V s = V and snd(v) = {v} the supernodes
reduce to single-vertex sets (or ‘nodes’).
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Figure 4.8: Fundamental supernode partition for the elimination tree of Figure 4.2.
The numbers next to the vertices are the higher degrees deg+(v). The representative
vertices of the fundamental supernodes are shown in rectangles. For each represen-
tative vertex v, the set snd(v) contains the vertices on the solid path that starts at
vertex v.

• Fundamental supernodes. The representative vertices of the fun-
damental supernodes include the representative clique vertices,
plus the vertices with more than one child in the elimination tree.
An example is shown in Figure 4.8. Liu, Ng, and Peyton [155, page
245-246] give reasons why fundamental supernodes are easier to
work with than the maximal supernodes described in §4.4. One
can note, for example, that fundamental supernodes are uniquely
defined for a given filled graph, unlike maximal supernodes.

• A variation on fundamental supernodes. In the definition of
Peyton [186] the supernode representatives V s contain all ver-
tices v that satisfy deg+(v) = deg+(w)− 1 for at most one child
w ∈ ch(v). In the elimination tree of Figure 4.4, for example, we
would take V s = V c ∪ {p}.
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Figure 4.9: The junction tree corresponding to the fundamental supernode par-
tition in Figure 4.8. The bottom row at each vertex is the fundamental supernode
snd(v), the top row is the set col(v) \ snd(v). The first element in the top row is the
first ancestor a(v).

• Maximal supernodes (clique supernodes). These are the super-
nodes discussed in §4.4. Here V s = V c, the set of clique represen-
tatives.

The supernodes (or, equivalently, their representative vertices) can be
arranged in a supernodal elimination tree in exactly the same way
as described in the previous section. The vertex set of the supernodal
elimination tree is V s. The root of the tree is the representative vertex v
of the supernode that contains the root σ(n) of the elimination tree. For
every other representative vertex v ∈ V s, we define the first ancestor
as a(v) = pnv+1(v) and the parent q(v) as the representative of the
supernode snd(q(v)) that contains a(v). When V s = V the supernodal
elimination tree reduces to the nodal elimination tree. When V s = V c

it is the supernodal elimination tree for the maximal supernodes. An
example for the fundamental supernodes is shown in Figure 4.9. It can
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be verified that Theorem 4.3 holds for supernodal elimination trees
defined using any supernode partition, not only maximal supernodes.

Supernodal elimination trees generalize and unify several differ-
ent representations of a chordal graph as the intersection graph of
a junction tree. Every supernodal elimination tree defines a junction
tree, with vertices col(v) for v ∈ V s and edges {col(v), col(q(v))}.
The subtrees that define the intersection graph are the subgraphs
Rv = {u ∈ V s | v ∈ col(u)}.

4.6 Topological reordering

If Gσ = (V,E, σ) is a filled graph with elimination tree T , then σ is
a topological ordering of T , because, by definition, a vertex precedes
its parent in the ordering. If ρ is any other topological ordering of T ,
then it is also a perfect elimination ordering for G and the elimination
tree for the filled graph Gρ = (V,E, ρ) is equal to T , the elimination
tree for Gσ [153, section 6.1]. This can be seen as follows. We noted
in §4.2 that adjacent vertices in G are ancestor-descendant pairs in an
elimination tree: if {v, w} ∈ E, then w is a proper descendant or a
proper ancestor of v. Now a topological reordering of the tree preserves
the ordering of the vertices on every path from a leaf vertex to the root.
Hence if {w | {v, w} ∈ E, w �σ v} = {w1, w2, . . . , wk} is the higher
neighborhood of v for the ordering σ, with w1 ≺σ w2 ≺σ · · · ≺σ wk,
then it is also the higher neighborhood {w | {v, w} ∈ E, w �ρ v} of v
in the ordering ρ and w1 ≺ρ w2 ≺ρ · · · ≺ρ wk. It follows that the higher
neighborhood in the ordering ρ is complete if the higher neighborhood
in the ordering σ is complete, and that the parent vertex w1 of v is the
same for the two orderings.

In particular, for a given supernode partition {snd(v) | v ∈ V s}, we
can always find an ordering ρ (for example, by a suitable postordering
of the elimination tree) with the following two properties.

• The elements of each supernode snd(v) are numbered consecu-
tively: if ρ−1(v) = i and nv = |snd(v)| − 1, then

snd(v) = {ρ(i), ρ(i+ 1), . . . , ρ(i+ nv)}.
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Figure 4.10: Right. A postordering ρ of the elimination tree in Figure 4.2. The
number next to vertex v is the position ρ−1(v) in the ordering. This ordering gives
the elements of the maximal supernodes in the left-hand partition of Figure 4.6
consecutive indices and defines a topological ordering of the supernodal elimination
tree on the left-hand side of Figure 4.6. Left. The reordered filled graph of Figure 4.2
using the ordering ρ. The supernodes {g, h}, {f}, {b}, {a, c, d}, {e, i}, {o}, {j, k},
{l,m, n, p, q} contain consecutive vertices with identical column structure.

• The ordering ρ defines a topological ordering of the representative
vertices in the supernodal elimination tree: v ≺ρ q(v) if v ∈ V s

and q(v) is the parent of v in the supernodal elimination tree.

This is illustrated in Figure 4.10.

4.7 Testing chordality

Perfect elimination orderings for chordal graphs can be found by algo-
rithms that have an O(n+m) complexity, where n = |V | and m = |E|.
(Note that O(m+ n) = O(m) for a connected graph since m ≥ n− 1.)
This provides the easiest method for testing chordality: apply an al-
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gorithm that is guaranteed to find a perfect elimination ordering for
chordal graphs, then check that the ordering is a perfect elimination
ordering.

The oldest linear-time algorithm for constructing perfect elimina-
tion orderings is the lexicographic breadth-first-search (Lex-BFS) algo-
rithm invented by Rose, Tarjan, and Lueker [195]. Later, Tarjan and
Yannakakis developed a simpler algorithm, known as maximum cardi-
nality search (MCS) [215]. MCS assigns numbers in decreasing order
σ−1(v) = n, n− 1, . . . , 1. At each step it selects the vertex that is adja-
cent to the largest number of already numbered vertices.

Algorithm 4.2 (Maximum cardinality search).

Input. A chordal graph G = (V,E).
Output. A perfect elimination ordering σ of G.
Algorithm. For i = n, n− 1, . . . , 1, let σ(i) be a vertex v that maximizes

|adj(v) ∩ {σ(i+ 1), . . . , σ(n)}| .

In each step ties are broken arbitrarily. Implementation details and
a derivation of the O(m+n) complexity can be found in [215, page 569].
When applied to a chordal graph, MCS produces a perfect elimination
ordering [215, theorem 2].

Theorem 4.4. MCS generates a perfect elimination ordering for
chordal graphs.

Proof. The proof is by contradiction. Let σ be an ordering generated
by MCS applied to the chordal graph G. Suppose σ is not a perfect
elimination order. Then there exists a vertex u for which adj+(u) is
not complete, so it contains at least two vertices v, w that are not
mutually adjacent. Define v0 = v, v1 = u, v2 = w. The path (v0, v1, v2)
is a chordless path that satisfies v0 � v1, v2 � v1. We show that
this is impossible. More generally, it is impossible that there exists
a chordless path P = (v0, v1, . . . , vk−1, vk) with k ≥ 2 and interior
vertices v1, . . . , vk−1 that precede v0 and vk in the ordering. Suppose
such a path exists. Among all paths with this property choose P for
which min{σ−1(v0), σ−1(vk)} is maximum. We assume without loss of
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generality that v0 � vk. We then have v0 � vk � v1, with v0 adjacent to
v1 but not to vk. Since MCS selected vk before v1, there must be a vertex
z � vk that is adjacent to vk and not to v1. Let i = min{i = 2, . . . , k |
{vi, z} ∈ E}. Since z � vk and the vertices v1, . . . , vk−1 precede vk
and v0 in the ordering, the path (v0, v1, . . . , vi, z) has interior vertices
that precede v0 and z in the ordering. Moreover, the path is chordless
because z is not adjacent to v1, . . . , vi−1 (by choice of i) and has length
at least three since i 6= 1. Therefore v0 is not adjacent to z, since an
edge {v0, z} would create a chordless cycle of length at least four. Hence
(v0, v1, . . . , vi, z) is a chordless path with interior vertices that precede
v0 and z in the ordering. However, min{σ−1(v0), σ−1(z)} > σ−1(vk) =
min{σ−1(v0), σ−1(vk)} which contradicts the maximality property used
to select P . �



5
Combinatorial Optimization

A number of combinatorial problems that are NP-complete for general
graphs can be solved in polynomial time for chordal graphs. We have
already encountered an example in §4.4, where we saw that a chordal
graph with n vertices has at most n cliques, and that the representative
vertices and their monotone degrees (which are equal to the clique sizes
minus one) can be found in linear time. The size of the largest clique
(the clique number ω(G)) of a chordal graph can therefore be computed
in linear time. However determining the clique number of a general
graph is NP-complete [199, page 1084].

5.1 Minimum clique cover

A set S ⊆ V is a stable or independent set of an undirected graph
G = (V,E) if no two vertices in S are adjacent, i.e., the induced edge
set E(S) = {{v, w} ∈ E | v, w ∈ S} is empty. The size of the largest
stable set is called the stable set number of the graph, denoted α(G).
A clique cover of G is a set of cliques that cover the vertex set V . The
clique cover number χ̄(G) is the minimum number of cliques in a clique
cover.

295



296 Combinatorial Optimization

If {C1, . . . , Ck} is a clique cover with k cliques and S is a stable
set, then no two elements of S can be in the same clique Ci. Therefore
|S| ≤ k. It follows that the stability number is a lower bound on the
clique cover number, i.e., the inequality

α(G) ≤ χ̄(G) (5.1)

holds for any graph G. For chordal graphs this inequality holds with
equality [112] and both numbers can be computed in polynomial time
[91].

The following algorithm is Gavril’s algorithm [91] formulated in
terms of an elimination tree. It returns a stable set S with the property
that V is the union of the sets col(v) for v ∈ S. The complete subgraphs
induced by the sets col(v) are not necessarily maximal, but each is
a subset of at least one clique and since the union of these cliques
covers V , one obtains from S at least one clique cover with k = |S|
cliques. As k ≥ |S| in general, we have |S| = α(G) = χ̄(G).

Algorithm 5.1 (Minimum clique cover).

Input. A connected chordal graph G = (V,E) and an elimination tree
for G.

Output. A stable set S with
⋃
v∈S col(v) = V .

Algorithm. Initialize S as the empty set. Enumerate the vertices v of the
elimination tree in topological order. For each v, execute the following
steps.
• Form the set

W =
⋃

w∈ch(v)

Uw

(with the convention that W = ∅ if v is a leaf of the elimination
tree).

• If v 6∈ W , add v to S and define Uv = W ∪ col(v). Otherwise,
define Uv = W .

The set Uv is the union of the sets col(w) for the vertices w ∈ S
that are descendants of v, and is constructed recursively, from the sets
Uw of the children w of v. By construction w ∈ Uv for all descendants
w of v. Therefore, at the end of the algorithm, when v is the root of
the elimination tree, we have Uv = ∪{col(w) | w ∈ S} = V .
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Moreover, throughout the algorithm, the set S is a stable set, i.e.,
no vertices v, w ∈ S are adjacent. For vertices v, w ∈ S that are not
ancestor-descendant pairs this is a general property of elimination trees.
For v, w ∈ S with w a descendant of v, it follows from the condition used
to determine whether v is added to S, which implies that v 6∈ col(w)
for all w ∈ S that are descendants of v.

5.2 Minimum vertex coloring

A partitioning of the vertices V into stable sets Ci, i = 1, . . . , k, is
called a (vertex) coloring. The partitioning can be interpreted as an
assignment of colors to the vertices in such a way that no adjacent
vertices use the same color. Following this interpretation the sets Ci
in the partitioning are also called the colors. The coloring number or
chromatic number χ(G) is the minimum number of colors needed for a
vertex coloring.

If C1, . . . , Ck is a vertex coloring andW is a clique, then all elements
of W must receive different colors. Hence |W | ≤ k. The clique number
is therefore always a lower bound on the chromatic number:

ω(G) ≤ χ(G). (5.2)

For chordal graphs this holds with equality [27]. A simple polynomial
algorithm for coloring chordal graphs was proposed by Gavril [91].

The following greedy algorithm colors a chordal graph with ω(G)
colors.

Algorithm 5.2 (Minimum vertex coloring).

Input. A connected chordal graph G = (V,E) and an elimination tree
for G.

Output. A minimum vertex coloring.
Algorithm. Initialize k = 0. Enumerate the vertices v of the elimination

tree in inverse topological order. For each vertex v, execute the fol-
lowing steps.

• If deg+(v) ≥ k, increment k by one and define Ck = {v}.

• Otherwise, select a set Ci, i = 1, . . . , k, with Ci ∩ adj+(v) = ∅
and add v to Ci.
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The algorithm guarantees that after each step the vertices in col(v)
are assigned different colors. This can be shown by induction and the
fact that adj+(v) ⊂ col(p(v)) in a chordal graph. On exit the number
of colors used is

k = 1 + max
v

deg+(v) = max
v
|col(v)|.

This is equal to ω(G) because every clique is of the form col(v). The
lower bound (5.2) then implies that the coloring is optimal.

Applications of minimum vertex coloring with chordal graphs are
described in [67, 185].

5.3 Perfect graphs

The complement of a graph G = (V,E) is the graph Gc = (V,Ec) with
edge set

Ec = {{v, w} | v, w ∈ V, {v, w} 6∈ E}.
Two vertices are adjacent in Gc if and only if they are not adjacent
in G. Therefore stable sets of G induce complete subgraphs in Gc and
vice-versa, and we have

α(G) = ω(Gc), χ̄(G) = χ(Gc), ω(G) = α(Gc), χ(G) = χ̄(Gc).

For a general graph, determining any of these four numbers is an NP-
complete problem [199, theorems 64.1, 64.2].

A graph is perfect if the inequality (5.2) holds with equality for the
graph and all its subgraphs, i.e.,

ω(G(W )) = χ(G(W ))

for all W ⊆ V . Lovász [157] has shown that this is equivalent to the
condition that (5.1) is an equality for G and all its induced subgraphs,
i.e.,

α(G(W )) = χ̄(G(W ))
for allW ⊆ V . Equivalently, a graph is perfect if and only if its comple-
ment is perfect. The results of the previous sections, combined with the
fact that subgraphs of chordal graphs are chordal, show that chordal
graphs are perfect.
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Perfect graphs were introduced by Berge in the early 1960s. As re-
counted in [28] the definition was motivated by Shannon’s work on the
zero-error capacity of a channel [203]. Suppose the vertices of the graph
G = (V,E) represent symbols and the edges {v, w} ∈ E are pairs of
symbols that can be confused during transmission over a communica-
tion channel. The kth power of G is defined as the graph Gk = (V k, Ek)
with vertex set V k = V × V × · · · × V (all k-tuples of vertices of G)
and an edge

{(v1, v2, . . . , vk), (w1, w2, . . . , wk)} ∈ Ek

if and only if {vi, wi} ∈ E for i = 1, . . . , k. The vertices V k represent
words of length k; the edges indicate pairs of words that can be con-
fused during transmission. Stable set of Gk are therefore of interest as
‘dictionaries’ of words that cannot be confused. The zero-error capacity
or Shannon capacity of a graph G is defined as

Θ(G) = sup
k
α(Gk)1/k.

Now it is easy to see that α(Gk) ≥ α(G)k (if S is a stable set of G, then
S × · · · × S is a stable set of Gk). Also, cliques of Gk are of the form
C1×· · ·×Ck where C1, . . . , Ck are cliques of G. Hence χ̄(Gk) = χ̄(G)k.
Applying (5.1) to Gk we obtain

α(G)k ≤ α(Gk) ≤ χ̄(Gk) = χ̄(G)k.

Therefore
α(G) ≤ Θ(G) ≤ χ̄(G)

and for perfect graphs, α(G) = Θ(G) = χ̄(G).
Given the topic of this survey, it is interesting to note that the

Shannon capacity of a graph later played a key role in the development
of semidefinite optimization, when the calculation of Lovász’s upper
bound became one of the first applications of semidefinite optimization
to combinatorial optimization [158, 110].

We refer the interested reader to the books [101], [111, section 9.2]
[45] [189] [199, part VI] for more background on perfect graphs.



6
Graph Elimination

Filled graphs are often created from non-filled graphs by graph elimi-
nation, a process that models the progressive fill-in during Gauss elim-
ination.

6.1 Elimination graph

Let Gσ = (V,E, σ) be an ordered undirected graph. The elimination
graph of Gσ is defined as follows [195, page 267]. We take E0 = E and,
for i = 1, . . . , n− 1,

Ei = Ei−1 ∪ (6.1)
{{v, w} | v � σ(i), w � σ(i), and {σ(i), v}, {σ(i), w} ∈ Ei−1}.

The graph (V,En−1, σ) is the elimination graph of Gσ. In step i of the
process described by (6.1), the higher neighborhood of vertex σ(i) in
the intermediate graph (V,Ei−1, σ) is made complete by the addition
of edges between all non-adjacent vertices. An example is shown in
Figure 6.1.

We use the notation G∗σ = (V,En−1, σ) for the elimination graph of
Gσ, and E∗σ = En−1 for its edge set. The set of added edges E∗σ \ E is

300



6.1. Elimination graph 301

a
1
b

4
c
3

d

2

e

5
f
6

a
1
b

4
c
3

d

2

e

5
f
6

a
1
b

4
c
3

d

2

e

5
f
6

a
1
b

4
c
3

d

2

e

5
f
6

a

d
c

b
e
f

a

d
c

b
e
f

a

d
c

b
e
f

a

d
c

b
e
f

Figure 6.1: The first three steps in the graph elimination of the ordered graph on
the left. Filled edges are shown as dashed lines and open circles.

called the fill-in or fill, and its elements are the filled edges. An elim-
ination graph is filled (monotone transitive) because, by construction,
the addition of the edges in (6.1) makes the higher neighborhood of
vertex σ(i) in (V,Ei, σ) complete. After completion of the process the
higher neighborhoods of all vertices in (V,E∗σ, σ) are complete. Hence
(V,E∗σ) is chordal and σ is a perfect elimination ordering for it. The
elimination graph is also called the filled graph of Gσ, or its monotone
transitive extension [193, page 600]. The unordered graph (V,E∗σ) is a
chordal embedding or chordal extension of G. (However, not all chordal
extensions can be constructed by elimination; see §6.6).

If G is a chordal graph and σ a perfect elimination ordering for
it, then the higher neighborhoods of all vertices in Gσ are complete.
Therefore graph elimination does not add any edges and Gσ = G∗σ.

The following theorem shows how adjacency in the elimination
graph depends on the connectivity in the original graph [195, lemma 4].

Theorem 6.1. Let Gσ = (V,E, σ) be an ordered graph and G∗σ =
(V,E∗σ, σ) its elimination graph. The edge {v, w} is in E∗σ if and only
if there exists a path (v, z1, . . . , zk, w) in G with interior vertices z1,
. . . , zk that precede v and w in the ordering σ (i.e., zj ≺ v and zj ≺ w
for j = 1, . . . , k).
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Proof. We show by induction on i that the following holds for i =
0, . . . , n− 1: if v ≺ w then {v, w} ∈ Ei (with Ei defined in (6.1)) if and
only if there exists a path (v, z1, . . . , zk, w) in G with interior vertices
zj that precede v in the ordering and satisfy σ−1(zj) ≤ i. For i = n−1,
the second condition is redundant and we obtain the statement in the
theorem.

This result clearly holds for i = 0, since all edges in E0 = E

form a path (v, w) in G. Suppose the result holds for Ei−1. Let
{v, w} be an edge in Ei, with v ≺ w. We show there exists a path
(v, z1, . . . , zk, w) in G with zj ≺ v and zj � σ(i) for j = 1, . . . , k.
If {v, w} ∈ Ei−1 the result follows immediately from the induction hy-
pothesis. Otherwise, {v, w} ∈ Ei \Ei−1 and by (6.1) this requires that
{σ(i), v}, {σ(i), w} ∈ Ei−1 and σ(i) ≺ v. By the induction assumption
there exist paths (v, z1, . . . , zr = σ(i)) and (zr = σ(i), zr+1, . . . , zk, w)
with interior vertices that precede σ(i) in the ordering. Concatenating
the two paths gives a path (v, z1, . . . , zr, . . . , zk, w) with zj ≺ v and
zj � σ(i) ≺ v for all j.

To show the converse, let (v, z1, . . . , zk, w) be a path in G with
interior vertices that precede v and w, and satisfy σ−1(zj) ≤ i.
If σ−1(zj) ≤ i − 1 for all interior vertices, then by the induction
assumption, {v, w} ∈ Ei−1. Otherwise, let zr be the interior vertex
with σ−1(zr) = i. By the induction assumption, the existence of the
paths (v, z1, . . . , zr = σ(i)) and (zr = σ(i), . . . , zk, w) in G implies that
{σ(i), v} ∈ Ei−1 and {σ(i), w} ∈ Ei−1. From (6.1), {v, w} ∈ Ei. �

As an example, in the graph on the left-hand side of Figure 6.1
there is a path (b, c, d, e) with interior vertices c, d that have indices
less than min{σ−1(b), σ−1(e)} = 4. Therefore {b, e} is a filled edge.

Efficient algorithms exist for analyzing an elimination graph G∗σ
based on the structure of the original graph Gσ, and without explicitly
constructing E∗σ. These algorithms have a complexity that is linear or
nearly linear in the size |E|+ |V | of the graph Gσ. They include algo-
rithms for constructing the elimination tree, calculating the lower and
higher degrees of all vertices, identifying the clique representatives, and
creating supernode partitions. These algorithms are briefly described
in the following sections.
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We will use a subscript to distinguish attributes of the elimination
graph from those of the original graph:

adj−∗ (v) = {w | {w, v} ∈ E∗σ, w ≺ v},
adj+∗ (v) = {w | {w, v} ∈ E∗σ, w � v}

will denote the monotone neighborhoods in the elimination graph, and
row∗(v) = {v} ∪ adj−∗ (v) and col∗(v) = {v} ∪ adj+∗ (v) will denote the
closed monotone neighborhoods. The monotone degrees in the elimina-
tion graphs are deg−∗ (v) = |adj−∗ (v)| and deg+

∗ (v) = |adj+∗ (v)|.

6.2 Elimination tree

We first consider the problem of constructing the elimination tree of an
elimination graph G∗σ, directly from Gσ and without first carrying out
the graph elimination. This is described in more detail in [152, section
4.2] [153, section 5.2] [65, section 4.1]. As in §4.3 we assume that G is
connected.

Since the elimination graph G∗σ is filled, the results of §4.3 apply to
the elimination tree of G∗σ. In particular, the closed lower neighborhood
row∗(v) of a vertex v induces a subtree of the elimination tree with v
as its root. As an example, in Figure 6.2, row∗(o) = {c, d, e, g, h, i, o}
induces a subtree of the elimination tree with root o and leaves c, g.

The following theorem characterizes the leaves of the row subtrees
[152, corollary 2.5] [153, corollary 3.6] [65, theorem 4.6]. It follows from
an earlier theorem by Tarjan and Yannakakis [215, theorem 3].

Theorem 6.2. Let w be a proper descendant of vertex v in the elimi-
nation tree of G∗σ. Then w is a leaf of the row subtree row∗(v) if and
only if {w, v} ∈ E and w does not have a proper descendant u with
{u, v} ∈ E.

Proof. We show the following equivalent statement: a proper descen-
dant w of v is in the row subtree row∗(v) if and only if w has a descen-
dant u with {u, v} ∈ E.

Assume u is a descendant of w in the elimination tree, and adja-
cent to v in G. We have w = pk(u) for some k ≥ 0, where p(·) is
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Figure 6.2: Ordered graph (filled circles), its elimination graph (with fill edges
shown as open circles), and the elimination tree of the elimination graph.

the parent function in the elimination tree. For j = 1, . . . , k, we have
{pj−1(u), pj(u)} ∈ E∗σ, so by Theorem 6.1 there exists a path from
pj−1(u) to pj(u) in G, with interior vertices that precede pj−1(u) in
the ordering. Concatenating these paths gives a path (u, z1, . . . , zk, w)
in G with interior vertices that precede w in the ordering. Appending
the edge {u, v} gives a path (v, u, z1, . . . , zk, w) from v to w ≺ v in
G with interior vertices that precede w. By Theorem 6.1 this implies
{v, w} ∈ E∗σ. This shows the ‘if’ direction of the theorem.

Next the ‘only if’ direction. Suppose w ≺ v and {w, v} ∈ E∗σ. From
Theorem 6.1, there exists a path (w, z1, . . . , zk, v) in G with interior
vertices zi that precede w in the ordering. If k = 0, we have {w, v} ∈ E
and the result holds with u = w. Suppose k ≥ 1. Let zj be the interior
vertex of the path (w, z1, . . . , zk, v) with the highest index σ−1(zj). If
j = k, then by Theorem 6.1, {zk, w} ∈ E∗σ. Therefore zk is a descendant
of w in T and the result holds with u = zk. If j < k, the existence of
the paths (w, z1, . . . , zj) and (zj , zj+1, . . . , zk) in G implies, again by
Theorem 6.1, that {w, zj} ∈ E∗σ and {zj , zk} ∈ E∗σ. Moreover zk ≺ zj ≺
w, so zk is a descendant of zj in T and zj is a descendant of w. Hence
zk is a descendant of w in T and the result holds with u = zk. �
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Figure 6.3: The elimination tree of Figure 6.2. The dashed lines are the edges of
E that connect o to vertices in adj−(o). These edges allow us to identify vertices c
and g as the leaves of the row subtree row∗(o).

The theorem is illustrated in Figure 6.3. The leaves of row∗(o) are
c and g, because these two vertices are adjacent to o in the graph G

and no proper descendants of them are adjacent to o in G. The vertex
e is also adjacent to o in G, but it has a descendant (namely, c) which
is adjacent to o, and therefore e is not a leaf of the row subtree row(o).

The theorem leads to a simple recursive algorithm for constructing
the elimination tree of the elimination graph. We visit the vertices in
the order given by σ. The purpose of the cycle in which the vertex v is
processed is to identify all the children of v in the elimination tree and
to assign v as their parent. To do this we use the fact that adj−(v) is
a subset of the vertices of row∗(v) and that it includes all the leaves of
row∗(v). Moreover when we process v, the children of every vertex in
the row subtree, except v itself, are known, since they precede v in the
ordering. We can therefore find the children of v simply by tracing the
path from each vertex of adj−(v) to v in the elimination tree until we
reach a vertex w that has not been assigned a parent yet. Such a vertex
must be a child of v. A straightforward but inefficient implementation
of this idea is as follows [152, page 138].
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Algorithm 6.1 (Elimination tree of elimination graph).

Input. An ordered graph Gσ = (V,E, σ).
Output. The parent function p(·) of the elimination tree of the elimination

graph G∗σ.
Algorithm. Initialize the parent function as p(v) := v for all v. For i =

1, . . . , n, take v = σ(i) and repeat the following steps for each w ∈
adj−(v).

• u := w.

• While u 6= p(u), repeat u := p(u).

• p(u) := v.

Algorithm 6.1 is inefficient because paths in the elimination tree
are traced multiple times. Consider the example of Figures 6.2 and 6.3.
When the algorithm arrives at vertex o, the elimination tree has been
partially constructed, up to the vertices i and n, and their descendants.
We have adj−(o) = {c, e, g}, so in the iteration with v = o we first trace
the path from c to i and set p(i) = v. We then needlessly trace the paths
from e to o and from g to o (both paths end at o because p(o) = o).

An improved version of Algorithm 6.1 keeps a record, for each ver-
tex, of the most distant ancestor known from previous cycles in the
algorithm. This information is used to skip segments of the paths in
the search process. The technique is called path compression and is
described in detail in [152, algorithm 4.2] [65, page 41].

The complexity of the elimination tree algorithm with path com-
pression is O(m logn) in the worst case, where m = |E| [153, theorem
5.2], and has been observed to be nearly linear in m in practice [65,
page 41]. We refer the reader to [152, 153, 65] for further discussion.

6.3 Postordering

In §4.6 we mentioned that if σ is a perfect elimination ordering for a
chordal graph G, then any topological reordering ρ of the elimination
tree of Gσ is also a perfect elimination ordering for G, with the same
elimination tree. A similar property holds for elimination graphs. If
ρ is a topological reordering of the elimination tree of an elimination
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Figure 6.4: Right. Postordering of the elimination tree in Figure 6.2. Numbers next
to the vertices indicate the position in the ordering. Left. Elimination graph for the
topological order. Note that the fill-in is identical to the fill-in in the elimination
graph of Figure 6.2.

graph G∗σ = (V,E∗σ, σ), then the elimination graph G∗ρ = (V,E∗ρ , ρ)
has the same edge set E∗ρ = E∗σ as G∗σ and the same elimination tree
[153, theorem 6.1][65, theorem 4.8]. This follows from the fact that
a topological reordering preserves the ordering of the vertices along
every path from leaf to root of the elimination tree (see §4.6). This is
illustrated in Figure 6.4.

After computing the elimination tree, we are therefore free to re-
order the vertices using any topological reordering of the elimination
tree. Choosing a postordering of the elimination tree simplifies the anal-
ysis of elimination graphs considerably. We illustrate the simplifications
that result from using a postordering with two examples. Assume σ is a
postordering of the elimination tree of G∗σ. In addition we assume that
for every vertex v, we know lev(v) (the level in the elimination tree, i.e.,
distance to the root) and the first descendant fdesc(v) (the descendant
of v with the lowest index). As explained in §2.3 this information can
be collected during the depth-first-search traversal of the elimination
tree used to find a postordering. Suppose adj−(v) = {w1, w2, . . . , wk}
with w1 ≺ w2 ≺ · · · ≺ wk.
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• Membership of row subtree. Theorem 6.2 implies that a vertex u
is in row∗(v) if u is a descendant of v and an ancestor of one of
the vertices wi. In a postordering this can be verified by checking
that the inequalities fdesc(u) � wi � u � v hold for some wi.

• Leaves of row subtree. Theorem 6.2 characterizes the leaves of the
row subtrees row∗(v) as follows: w is a leaf of the row∗(v) if w ∈
adj−(v) and no other vertex in adj−(v) is a descendant of w. This
is easy to check if σ is a postordering of the elimination tree: wj
is a leaf of row∗(v) if either j = 1, or j > 1 and fdesc(wj) � wj−1
[152, theorem 4.1]. For example, in Figure 6.4, we have adj−(o) =
{g, c, e} with g ≺ c ≺ e. The first descendants are fdesc(g) = g,
fdesc(c) = fdesc(e) = b. Therefore the leaves of row∗(o) are g
(the first vertex in adj−(o)) and c (because fdesc(c) = b � g).
The vertex e is not a leaf because fdesc(e) = b ≺ c.

6.4 Monotone degrees, cliques, and supernodes

The next task we consider is the calculation of the monotone degrees
deg−∗ (v) = |adj−∗ (v)| and deg+

∗ (v) = |adj+∗ (v)| for all vertices. Effi-
cient algorithms for computing the monotone degrees were developed
by Gilbert, Ng, and Peyton [94]. These algorithms are based on the
path decomposition methods of §2.4 and have a complexity approxi-
mately linear in |E|.

The row subtrees of the filled graph form a family of subtrees of the
elimination tree. The root of the row subtree row∗(v) is v; its leaves
form a subset of adj−(v) and are easily identified in a postordering, as
we saw in the last section. The path decomposition methods of §2.4
can therefore be used to determine the number of edges in each row
subtree row∗(u), i.e., deg−∗ (u), and the number of row subtrees each
vertex v belongs to, i.e., deg+

∗ (v) + 1. See [94] for details.
Knowledge of the lower or higher degrees immediately gives us the

size of the edge set |E∗σ| of the elimination graph, which is equal to
the sum of the lower or the higher degrees, and the size of the fill-in
|E∗σ| − |E|. This also provides a practical test for checking whether a
given ordering σ is a perfect elimination ordering.
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As explained in §4.4 and §4.5 the higher degrees and the elimination
tree are also sufficient to determine the cliques in the filled graph,
construct a clique tree, and a supernodal elimination tree.

6.5 Filled graph

The edge set of the elimination graph can be generated in various ways,
for example, directly from the definition (6.1). If the elimination tree
of the filled graph is known, the calculations can be organized as a
recursion on the elimination tree, using the equation

col∗(v) = col(v) ∪
⋃

w∈ch(v)
adj+∗ (w). (6.2)

Here ch(v) is the set of children of v in the elimination tree of the
elimination graph. To find the higher neighborhoods of the filled graph,
one starts at the leaves of the elimination tree (with adj+∗ (v) = ∅),
enumerates the vertices in a topological ordering, and uses (6.2) to find
the higher neighborhood of each vertex from the higher neighborhoods
of its children.

6.6 Triangulation

A triangulation, or chordal embedding, or chordal extension of a graph
G = (V,E) is a chordal graph G′ = (V,E′) with E ⊂ E′. The graph
elimination process discussed in the previous sections gives a method
for finding triangulations: we choose an ordering σ and apply graph
elimination to the graph Gσ = (V,E, σ); the graph (V,E∗σ) is a trian-
gulation of G. Not all triangulations can be generated by graph elimina-
tion; a simple example is shown in Figure 6.5 [180, page 627]. However,
if G′ = (V,E′) is a triangulation and σ is a perfect elimination or-
dering for G′, then E∗σ ⊆ E′, so by graph elimination with ordering σ
we find a triangulation (V,E∗σ) which is at least as efficient as G′. Put
differently, all (inclusion-)minimal triangulations can be obtained by
graph elimination [180, lemma 1]. In this section we therefore restrict
the discussion to triangulations (V,E∗σ) obtained by graph elimination.
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Figure 6.5: Graphs (b), (c), (d) are triangulations of the graph (a). Graphs (b)
and (c) can be generated by applying graph elimination to (a) using an ordering
that starts with vertices b or d, or with a or d, respectively. Graph (d), however,
cannot be obtained by graph elimination of (a).

In the following chapters we describe several graph and sparse ma-
trix problems that are easily solved when the graph is chordal, by algo-
rithms that can be formulated as recursions over a junction tree. When
applied to a triangulation these algorithms can be used to give exact or
approximate solutions for non-chordal graphs. Clearly, the efficiency or
accuracy of such approaches varies with the size and properties of the
triangulation. Two criteria in particular are important when judging
the quality of a triangulation. The first is the amount of fill, |E∗σ|− |E|,
or, equivalently, the sum of the higher degrees in the triangulation:∑

v∈V
deg+
∗ (v) = |E∗σ|.

An ordering that minimizes this quantity over all possible orderings is
called a minimum ordering. Yannakakis has shown that finding mini-
mum orderings is an NP-complete problem [240]. The second criterion
is the size of the largest clique in the triangulation or, equivalently, the
maximum higher degree

max
v∈V

deg+
∗ (v)

(this is one less than the maximum clique size; see §4.4). The mini-
mum value of this quantity, over all possible orderings, is known as the
treewidth of G [191, 39, 40]. Determining the treewidth, i.e., finding
the ordering that minimizes the largest clique size in the triangulation,
is also NP-complete [16].

A more tractable problem is the computation of minimal orderings.
An ordering σ is minimal if there exists no ordering ρ for which E∗ρ ⊂
E∗σ. Minimal ordering schemes also provide a test for chordality of a
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graph. Since a graph is chordal if and only if it has a perfect elimination
ordering σ, i.e., an ordering with zero fill-in (Fσ = ∅), all minimal
orderings of a chordal graph are perfect elimination orderings. One can
therefore test chordality by applying any minimal ordering algorithm
and checking whether the result is a perfect elimination ordering.

The first minimal ordering algorithms were proposed in [180, 179,
195]. The algorithm by Ohtsuki [179] and Rose, Tarjan, and Lueker
[195] have an O(mn) complexity, where m = |E| and n = |V |. The
algorithm in [195] is an extension of the O(m+ n) Lex-BFS algorithm
for finding a perfect elimination ordering for chordal graphs, and is now
known as Lex-M. More recently, a similar generalization of the MCS
algorithm, which finds a perfect elimination ordering of chordal graphs
in O(m+n) time, was presented in [29]. The complexity of this MCS-M
algorithm for finding minimal orderings is also O(mn).

Minimality of an ordering method is no guarantee for low fill-in.
The most common ordering methods used in practice are heuristic fill-
reducing ordering methods that are not necessarily minimal, such as the
minimum degree or nested dissection ordering methods [65, chapter 7].
Several algorithms have also been developed for finding a minimal tri-
angulation that improves on a given non-minimal triangulation, for ex-
ample, the triangulation produced by a fill-reducing ordering heuristic.
The algorithms in [37, 186, 30, 114] are examples. For more discussion
of minimal triangulations we refer the reader to the survey [113].



7
Discrete Applications of Graph Elimination

The terminology of the previous sections (graph elimination, elimina-
tion tree, . . . ) refers in the first place to Gauss elimination and Cholesky
factorization of sparse positive definite matrices, a subject that will be
covered in Chapter 9. Graph elimination and the associated tree struc-
tures also appear in a wide range of applications outside matrix algebra,
and they have a long and independent history in many disciplines. In
this section we discuss a few examples.

We use the term index set for an ordered sequence of distinct inte-
gers. If x is an n-tuple (x1, x2, . . . , xn) and β = (β(1), β(2), . . . , β(r))
an index set with elements in {1, 2, . . . , n}, then xβ denotes the r-tuple
(xβ(1), xβ(2), . . . , xβ(r)). If X1, . . . , Xn are sets, then Xβ denotes the set
Xβ(1)×Xβ(2)×· · ·×Xβ(r). The difference between the index set β and
the set {β(1), β(2), . . . , β(r)} is the ordering of the elements in β.

The applications discussed in this section involve a set of functions
f1(xβ1), f2(xβ2), . . . , fl(xβl) that depend on different, possibly over-
lapping, subsets of a variable x = (x1, x2, . . . , xn). The index set βk
specifies the arguments of the function fk. We associate with the func-
tions an undirected graph G = (V,E) with vertex set V = {1, 2, . . . , n}
and an edge {i, j} ∈ E between vertices i and j if and only if there
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Figure 7.1: Interaction graph for 5 variables and functions f1(x1, x4, x5), f2(x1, x3),
f3(x2, x3), f4(x2, x4).

exists at least one index set βk that contains the indices i and j. The
graph G is called the interaction graph [32] or co-occurrence graph [59].
Figure 7.1 shows an example for five variables and functions

f1(x1, x4, x5), f2(x1, x3), f3(x2, x3), f4(x2, x4), (7.1)

i.e., index sets β1 = (1, 4, 5), β2 = (1, 3), β3 = (2, 3), β4 = (2, 4).
Note that the interaction graph does not uniquely determine the index
sets. The graph in Figure 7.1, for example, is also the interaction graph
for the functions f1(x1, x4), f2(x1, x5), f3(x4, x5), f4(x1, x3), f5(x2, x3),
and f6(x2, x4). Throughout this section we assume that the interaction
graph is connected. Problems with an interaction graph that is not
connected can be decomposed by partitioning the functions fk(xβk) in
groups with connected interaction graphs.

Although many of the ideas discussed below extend to functions of
continuous variables, we will assume that each variable xi takes values
in a finite set Xi of size si = |Xi|. Hence, the function fk(xβk) can be
thought of as a |βk|-dimensional table with si cells in dimension i. The
total number of cells in the table for fk is

∏
i∈βk si.

The algorithms discussed in this section can be described concisely
in terms of the elimination graph of the interaction graph (or filled
interaction graph) and depend on an elimination ordering of the ver-
tices. We will see that the complexity of the algorithms depends on
the sizes of the cliques in the filled interaction graph and is typically
exponential as a function of the largest clique size. The methods are
therefore practical only if the interaction graph has small treewidth
and if an elimination ordering is known that results in an elimina-
tion graph with small cliques (see §6.6). The techniques for analyzing
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elimination graphs without explicitly constructing them that were pre-
sented in Chapter 6 are useful in this context, since they allow us to
estimate the complexity for different elimination orderings at a cost
that is roughly linear in the size of the interaction graph.

7.1 Dynamic programming

We first consider the problem of computing

min
x∈X

l∑
k=1

fk(xβk) (7.2)

where X = X1 ×X2 × · · · ×Xn. The function f(x) =
∑
k fk(xβk) is a

sum of functions of subsets of the variables x1, x2, . . . , xn. In nonlinear
optimization this type of structure is called partial separability (see
§12.1). We discuss methods for evaluating (7.2) that exploit partial
separability and are much more efficient than a complete enumeration
of the

∏
i si elements in X if the interaction graph is sufficiently sparse.

Graphical methods that take advantage of the interaction graph
and their connection with graph elimination are discussed in [32], as
an extension of dynamic programming for finite-state deterministic op-
timal control, and in [59], in a discussion of elimination algorithms
for optimization over Boolean variables [118, chapter VI]. Determin-
istic dynamic programming is concerned with a special case in which
l = n−1 and βk = (k, k+ 1), k = 1, . . . , n−1, i.e., the minimization of

f1(x1, x2) + f2(x2, x3) + · · ·+ fn−1(xn−1, xn). (7.3)

The variable xi typically represents a state at time i, and takes values
in a finite set Xi; the function fi(xi, xi+1) includes a cost of the state
xi and/or xi+1 plus the transition cost from state xi to xi+1. The
interaction graph for this problem is a path: E = {{i, i + 1} | i =
1, . . . , n−1}. The backward dynamic programming algorithm computes

uk(xk−1) =
min

xk,...,xn
(fk−1(xk−1, xk) + fk(xk, xk+1) + · · ·+ fn−1(xn−1, xn))
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for k = n, n− 1, . . . , 1, via the iteration

un(xn−1) = min
xn

fn−1(xn−1, xn),

uk(xk−1) = min
xk

(fk−1(xk−1, xk) + uk+1(xk)) , k = n− 1, . . . , 2,

u1 = min
x1

u2(x1).

The function uk(xk−1) is the optimal ‘cost-to-go’ from state xk−1 at
time k − 1. The final value u1 is equal to the minimum of (7.3). The
forward dynamic programming algorithm uses a similar recursion to
compute the optimal ‘cost-to-arrive’ functions

uk(xk+1) = min
x1,...,xk

(f1(x1, x2) + f2(x2, x3) + · · ·+ fk(xk, xk+1))

for k = 1, . . . , n − 1, and then computes the minimum minx f(x) =
minxn un−1(xn). Both algorithms can be interpreted as eliminating the
optimization variables (i.e., optimizing over them) one by one, either in
the numerical order (the forward algorithm) or inverse numerical order
(the backward algorithm) [33, section 2.1].

The key difference between (7.3) and (7.2) is that the general prob-
lem allows functions fk(xβk) of more than two arguments. As an ex-
ample that illustrates the extension of the dynamic programming ap-
proach to problem (7.2) we take the functions (7.1) and the problem
of minimizing

f(x) = f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4). (7.4)

To simplify the complexity analysis we will assume that si = s for all i.
We compare the cost of variable elimination with the complete enumer-
ation of the s5 elements in X. First consider the numerical elimination
ordering σ = (1, 2, 3, 4, 5). To eliminate x1, we separate the first two
terms in f , which depend on x1, from the rest, and minimize their sum:

min
x1

f(x) = u1(x3, x4, x5) + f3(x2, x5) + f4(x2, x4) (7.5)

where u1(x3, x4, x5) = minx1(f1(x1, x4, x5)+f2(x1, x3)). Calculating u1
requires an enumeration of the s4 possible values of (x1, x3, x4, x5) in
X1 ×X3 ×X4 ×X5. Next, we minimize (7.5) over x2:

min
x1,x2

f(x) = u1(x3, x4, x5) + u2(x3, x4) (7.6)
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where u2(x3, x4) = minx2(f3(x2, x3) + f4(x2, x4)). This calculation re-
quires an enumeration of s3 possible values of (x2, x3, x4) ∈ X2×X3×
X4. Continuing in this manner with the other three variables, we obtain

min
x∈X

f(x) = min
x3,x4,x5

(u1(x3, x4, x5) + u2(x3, x4))

= min
x4,x5

u3(x4, x5)

= min
x5

u4(x5)
= u5

where

u3(x4, x5) = min
x3

(u1(x3, x4, x5) + u2(x3, x4)) ,

u4(x5) = min
x4

u3(x4, x5).

Computing u3, u4, and u5 requires enumerating s3, s2, and s values,
respectively, so the total cost is dominated by the minimization over
x1, which has a complexity s4. The algorithm can be summarized in
one line by the following nested minimization formula for minx f(x):

min
x
f(x) = min

x5
min
x4

min
x3

(
min
x2

(f3(x2, x5) + f4(x2, x4))

+ min
x1

(f1(x1, x4, x5) + f2(x1, x3))
)
.

The complexity is lower for some other elimination orders. For example
if we use σ = (5, 1, 2, 3, 4), i.e., calculate the minimum via the formula

min
x
f(x) = min

x4
min
x3

(
min
x2

(f3(x2, x3) + f4(x2, x4))

+ min
x1

(
f2(x1, x3) + min

x5
f1(x1, x4, x5)

))
, (7.7)

then the most expensive steps are the minimizations over x5, x1, and
x2, which each require an enumeration of s3 values.

The variable elimination algorithm has a simple graph interpre-
tation, illustrated in Figure 7.2. In the first step, when we minimize
over xσ(1), we enumerate all values of xσ(1) and of the variables asso-
ciated with the vertices adjacent to σ(1) in the interaction graph G.



7.1. Dynamic programming 317

2

3

4 5

3

4 5 4 5 5

Figure 7.2: The four interaction graphs after elimination of the variables x1, x2,
x3, x4 in Figure 7.1. Dashed lines indicate fill edges.
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Figure 7.3: The elimination graphs for the graph of Figure 7.1 for the ordering
σ = (1, 2, 3, 4, 5) (left) and σ = (5, 1, 2, 3, 4) (right).

To construct the interaction graph for the function minxσ(1) f(x) we
add edges between the vertices adjacent to σ(1) in G and then remove
vertex σ(1). In the notation of §6, this is the subgraph of the graph
(V,E1) induced by the vertices σ(2), . . . , σ(n), where E1 is defined in
equation (6.1). In the second step, when we minimize over xσ(2), we
enumerate all possible combinations of xσ(2) and the vertices adjacent
to σ(2) in the interaction graph of minxσ(1) f(x), add edges between
the vertices adjacent to σ(2) that are not already adjacent, and then
remove σ(2). The result is the interaction graph for minxσ(1),xσ(2) f(x).
Using the notation of (6.1), this interaction graph can be described as
the subgraph of (V,E2) induced by the vertices σ(3), . . . , σ(n). The
elimination process continues until all vertices have been removed.

The algorithm can therefore be described in terms of the filled in-
teraction graph G∗σ (Figure 7.3). We start with the set of functions
F = {f1(xβ1), . . . , fl(xβl)} and enumerate the vertices in V in the or-
der σ. When considering vertex σ(i) we remove from F the functions
that have the variable xσ(i) as one of their arguments and minimize the
sum of these functions over xσ(i). This defines a new function, with the
variables indexed by adj+∗ (σ(i)) as its arguments, where adj+∗ (σ(i)) is
the higher neighborhood of σ(i) in the filled interaction graph G∗σ. We
add this new function to F and move on to the next vertex.
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The cycle in which we minimize over xσ(i) requires enumerating

sσ(i)
∏

j∈adj+∗ (σ(i))

sj =
∏

j∈col∗(σ(i))
sj

values. If we assume that sj = s for j = 1, . . . , n, this is equal to
sdeg+

∗ (σ(i))+1. Hence, the complexity is exponential in the size of the
largest clique of the filled interaction graph.

Algorithm 7.1 summarizes the method as a recursion on the elim-
ination tree of the filled interaction graph. We use the notation αi to
denote the index set with the elements of adj+∗ (i), ordered numerically.
We also define

Fi = {k ∈ {1, 2, . . . , l} | argmin
j∈βk

σ−1(j) = i}, i = 1, . . . , n.

We say that the functions fk(xβk) with k ∈ Fi are assigned to vertex i.
The function fk(xβk) is assigned to vertex i if i is the first index (in
the order σ) of the elements of βk.

Algorithm 7.1 (Minimization of a partially separable discrete function).

Input. A partially separable function f(x) =
∑
k=1,...,l fk(xβk) of variables

(x1, . . . , xn) ∈ X = X1 ×X2 × · · · ×Xn, and an elimination tree of
a filled interaction graph.

Output. The minimum of f(x) over X.
Algorithm. Enumerate the vertices of the elimination tree in topological

order. For each vertex i, compute

ui(xαi) = min
xi∈Xi

∑
k∈Fi

fk(xβk) +
∑

j∈ch(i)

uj(xαj )

 . (7.8)

The second sum is understood to be zero if i is a leaf vertex.

On completion, uσ(n) is a constant, equal to minx f(x). The function
minimized on the right-hand side of (7.8) depends on the variables
indexed by the index sets βk for k ∈ Fi and αj for j ∈ ch(i). The vertices
in βk, for k ∈ Fi, are in the closed neighborhood col(i) of vertex i in the
interaction graph (by definition of Fi), and therefore also in the closed
neighborhood col∗(i) of the filled interaction graph. The vertices in αj
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1f1, f2 2 f3, f4

u2(x3, x4)u1(x3, x4, x5)

u3(x4, x5)
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Figure 7.4: Elimination trees of the filled interaction graph of Figure 7.1 for the
elimination orders σ = (1, 2, 3, 4, 5) (left) and σ = (5, 1, 2, 3, 4) (right). Each of
the functions f1(x1, x4, x5), f2(x1, x3), f3(x2, x3), f4(x2, x4) is assigned to the first
vertex (in the ordering σ) of the vertices associated with its arguments. The function
ui is the sum of the functions assigned to the descendants of vertex i, minimized
over all the variables associated with these descendants. Each function ui is a local
variable, and passed from vertex i to its parent, as indicated by the arrows.

for j ∈ ch(i) are included in col∗(i) by properties of the elimination
tree (in particular, (4.3) applied to the filled interaction graph). After
minimizing over xi, the right-hand side of (7.8) is therefore a function
of the variables indexed by adj+∗ (i) = col∗(i) \ {i}, i.e., of xαi .

The functions ui in (7.8) have the following meaning. For each i,
the function ui(xαi) is the sum of the functions fk(xβk) assigned to
the descendants of vertex i in the elimination tree, minimized over the
variables indexed by the descendants.

Figure 7.4 illustrates the algorithm for the two elimination orderings
of the example. To apply Algorithm 7.1 with the second ordering, we
take F5 = {1}, F1 = {2}, F2 = {3, 4}, F3 = F4 = ∅, α5 = (1, 4),
α1 = (3, 4), α2 = (3, 4), α3 = (4), α1 = ∅. The functions ui are

u5(x1, x4) = min
x5

f1(x1, x4, x5),

u1(x3, x4) = min
x1

(f2(x1, x3) + u5(x1, x4))

= min
x1,x5

(f1(x1, x4, x5 + f2(x1, x3))) ,

u2(x3, x4) = min
x2

(f3(x2, x3) + f4(x2, x4)) ,
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u3(x4) = min
x3

(u2(x3, x4) + u1(x3, x4))

= min
x1,x2,x3,x5

(f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3)

+ f4(x2, x4)) ,
u4 = min

x4
u3(x4)

= min
x

(f1(x1, x4, x5) + f2(x1, x3) + f3(x2, x3) + f4(x2, x4)) .

The algorithm evaluates the nested formula (7.7), with the variables ui
as intermediate variables for the results of the minimization steps.

Algorithm 7.2 is a supernodal version of Algorithm 7.1, based on
a recursion over a supernodal elimination tree for the filled interaction
graph G∗σ. Here we assign each function fk(βk) to the supernode snd(i)
that contains the first index (in the ordering σ) of the arguments xβk .
(Recall from §4.4 and §4.5 that the supernodes snd(i) in a supernode
partition, form a partition of the vertex set V , so this definition assigns
every function to a unique supernode.) The set of functions assigned
to the supernode snd(i) is therefore given by

Fi = {k ∈ {1, 2, . . . , l} | argmin
j∈βk

σ−1(j) ∈ snd(i)}, i ∈ V s.

For each supernode representative i ∈ V s we define index sets νi, con-
taining the elements of snd(i) ordered numerically, and αi, containing
the elements of col∗(i)\snd(i), also ordered numerically. At each step of
the supernodal algorithm we minimize over a subset xνi of the variables,
as opposed to over a single variable xi in the (nodal) Algorithm 7.1.
Algorithm 7.2 (Minimization of a partially separable discrete function).

Input. A partially separable function f(x) =
∑
k fk(xβk) of variables

(x1, . . . , xn) ∈ X = X1 × X2 × · · · × Xn, and a supernodal elimi-
nation tree T s of a filled interaction graph.

Output. The minimum of f(x) over X.
Algorithm. Enumerate the representative vertices i ∈ V s of T s in topolog-

ical order. For each supernode representative i, compute

ui(xαi) = min
xνi∈Xνi

∑
k∈Fi

fk(xβk) +
∑

j∈ch(i)

uj(xαj )

 . (7.9)

The second sum is understood to be zero if i is a leaf vertex.
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The function ui(xαi) in the recursion is the sum of the functions
fk(xβk) assigned to the descendants of the vertex i in the supernodal
elimination tree, minimized over the variables in the supernodes rep-
resented by these descendants. On completion, i is the representative
vertex of the root of the supernodal elimination tree and ui is a con-
stant equal to minx∈X f(x). The nodal Algorithm 7.1 is a special case
of the supernodal Algorithm 7.2, if we use the supernodal partition
V s = V (see §4.5). Algorithms 7.2 and 7.1 both have a complexity that
is exponential in the size of the largest clique in the filled interaction
graph. An advantage of the supernodal algorithm is that it requires
fewer and smaller intermediate variables ui.

Figures 7.5 and 7.6 illustrate the supernodal algorithm for an ex-
ample with eight variables and five functions. The algorithm computes
the minimum of

f(x) = f1(x1, x4, x5) + f2(x2, x3, x4, x6) + f3(x5, x8)
+ f4(x6, x8) + f5(x7, x8)

via the nested minimization formula

min
x
f(x) = min

x5,x6,x8

(
f3(x5, x8) + f4(x6, x8) + min

x7
f5(x7, x8)

+ min
x4

(
min
x2,x3

f2(x2, x3, x4, x6) + min
x1

f1(x1, x4, x5)
))

. (7.10)

The intermediate variables ui in Figure 7.6 are defined as

u1(x4, x5) = min
x1

f1(x1, x4, x5),

u2(x4, x6) = min
x2,x3

f2(x2, x3, x4, x6),

u4(x5, x6) = min
x4

(u1(x4, x5) + u2(x4, x6)) ,

u7(x8) = min
x7

f5(x7, x8),

u5 = min
x5,x6,x8

(f3(x5, x8) + f4(x6, x8) + u4(x5, x6) + u7(x8)) .
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Figure 7.5: Interaction graph for 8 variables and functions f1(x1, x4, x5),
f2(x2, x3, x4, x6), f3(x5, x8), f4(x6, x8), f5(x7, x8) and elimination graph for the nu-
merical elimination ordering.
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f1(x1, x4, x5)
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f5(x7, x8)

5, 6, 8 f3(x5, x8), f4(x6, x8)

u1(x4, x5) u2(x4, x6)

u4(x5, x6) u7(x8)

Figure 7.6: Clique tree and intermediate variables for Algorithm 7.2, applied to
the maximal supernode partition associated with the clique tree.
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7.2 Probabilistic networks

In the second application, we compute the sum of a product of functions

∑
x∈X

l∏
k=1

fk(xβk). (7.11)

The discussion of the previous section carries over almost verbatim
to this problem, with summation over x ∈ X replacing minimization
over X, and the product of the functions fk replacing their sum. In the
example of Figure 7.6, we replace (7.10) by∑

x∈X
f1(x1, x4, x5)f2(x2, x3, x4, x6)f3(x5, x8)f4(x6, x8)f5(x7, x8)

=
∑

x5,x6,x8

(
f3(x5, x8)f4(x6, x8)(

∑
x7

f5(x7, x8))

×
(∑
x4

(
∑
x2,x3

f2(x2, x3, x4, x6))(
∑
x1

f1(x1, x4, x5))
))

.

To modify Algorithms 7.1 and 7.2 we only need to change (7.8) to

ui(xαi) =
∑
xi∈Xi

∏
k∈Fi

fk(xβk)
∏

j∈ch(i)
uj(xαj )


and (7.9) to

ui(xαi) =
∑

xνi∈Xνi

∏
k∈Fi

fk(xβk)
∏

j∈ch(i)
uj(xαj )

 . (7.12)

Graphical methods for computing sums of the form (7.11) have
been studied since the 1980s in the literature on probabilistic graphical
models. In these applications the functions fk(xβk) are nonnegative and
f(x) =

∏
k fk(xβk) is a factored probability distribution. In a Markov

network a joint probability of n random variables x1, . . . , xn is ex-
pressed as a product

Pr(x) =
l∏

k=1
fk(xβk) (7.13)
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Figure 7.7: Bayesian network and its interaction graph.

of nonnegative functions fk(xβk). The functions fk are called potential
functions or factors. The interaction graph of Pr(x) is an undirected
graphical model of the distribution. In a Bayesian network [184, 64] a
joint probability distribution of a random variable (x1, x2, . . . , xn) is
represented by a directed acyclic graph with vertices V = {1, 2, . . . , n}.
The probability of x = (x1, x2, . . . , xn) is expressed as a product of
conditional probabilities

Pr(x) =
∏

k=1,...,n
Pr
(
xk | xpar(k)

)
, (7.14)

where par(i) is an index set containing the parents of vertex i, i.e., the
vertices j that are connected to vertex i by a directed edge (j, i). If ver-
tex i has no parents then par(i) is empty, and Pr(xi | xpar(i)) is replaced
with Pr(xi) in (7.14). The joint probability distribution (7.14) is of the
same factored form as (7.13), with l = n and fk(xβk) = Pr(xk | xpar(k)).
The index set βk therefore contains k and the elements of par(k). To
construct the interaction graph from the directed acyclic graph that
defines (7.14) we replace the directed edges by undirected edges and
add an edge between every two non-adjacent vertices that are parents
of the same vertex. Figure 7.7 illustrates this for the distribution

Pr(x1) Pr(x2) Pr(x3 | x1) Pr(x4 | x1, x2) Pr(x5 | x3) Pr(x6 | x4, x5).

Detailed surveys of probabilistic networks are available in several books,
including [184, 146, 58, 227, 64, 133].

Two common tasks in applications of probabilistic networks are in-
ferencing and marginalization. In the inferencing problem we are given
observations of a subset of the variables and are asked to compute the
posterior probability for the other variables. Consider a set of discrete
random variables x = (x1, x2, . . . , xn) with a (prior) joint probability of
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the form (7.13), where x takes values in the finite setX = X1×· · ·×Xn.
Suppose we observe values ai for some the variables xi. If for the ob-
served variables we replace the set Xi by the singleton {ai}, then the
posterior probability of x is given by

Pr(x | observations) =

 (1/S)
l∏

k=1
fk(xβk) x ∈ X

0 otherwise,

where

S =
∑
x∈X

l∏
k=1

fk(xβk). (7.15)

The normalization constant S is a sum of the form (7.11) and can
be computed using Algorithm 7.1 or 7.2 (with the max-sum update
formulas replaced with sum-product updates).

The second problem is marginalizing a product function f(x) =∏
k fk(xβk) over a subset of the variables. If η is an index set in
{1, 2, . . . , n}, then we will use the notation η̄ to denote a complemen-
tary index set, with the elements of {1, 2, . . . , n} \ η. The η-marginal
of f is defined as the function

gη(xη) =
∑

xη̄∈Xη̄

l∏
k=1

fk(xβk).

Suppose we compute S in (7.15) using the sum-product version of
Algorithm 7.2, applied to a supernodal elimination tree with root r.
The last step of the algorithm is to compute ur =

∑
xνr

gνr(xνr) where

gνr(xνr) =
∏
k∈Fr

fk(xβk)
∏

j∈ch(r)
uj(xαj ) =

∑
xν̄r∈Xν̄r

f(x).

Hence, we also obtain the νr-marginal of f . If a maximal supernode par-
tition is used (the supernodal elimination tree corresponds to a clique
tree), then the elements of νr form the clique in the filled interaction
graph that was chosen as the root of the clique tree.

An extension of the algorithm computes the marginals for all the
cliques in the filled interaction graph, by adding a recursion in inverse
topological ordering. This is summarized in Algorithm 7.3. Here the
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index sets νi, αi, γi, and µi are defined as follows. As in Algorithm 7.2, νi
contains the elements of snd(i) and αi contains the elements of col∗(i)\
snd(i). In addition, we define an index set γi with the elements of
col∗(i), and an index set µi with the elements of col∗(q(i)) \ col∗(i),
where q(i) is the parent of i in the supernodal elimination tree. Hence
αi contains the elements in the intersection of col∗(i)∩col∗(q(i)), νi the
difference col∗(i) \ col∗(q(i)) and µi the difference col∗(q(i)) \ col∗(i).

Algorithm 7.3 (Marginals of a discrete product function).

Input. A product function f(x) =
∏
k=1,...,l fk(xβk) of variables

(x1, . . . , xn) ∈ X = X1 × X2 × · · · × Xn, and a supernodal elimi-
nation tree T s of a filled interaction graph.

Output. The γi-marginals gi(γi) =
∑

xγ̄i∈Xγ̄i
f(x) for i ∈ V s.

Algorithm.

• Enumerate the vertices i ∈ V s of T s in topological order. For each
i ∈ V s, compute

ui(xαi) =
∑

xνi∈Xνi

∏
k∈Fi

fk(xβk)
∏

j∈ch(i)

uj(xαj )

 .

The second product is understood to be one if i is a leaf vertex.

• Define vr = 1 for the root r of T s. Enumerate the vertices i ∈ V s

of T s in inverse topological order. For each i ∈ V s and all j ∈
ch(i), compute

vj(xαj ) =
∑

xµj∈Xµj

vi(xαi) ∏
k∈Fi

fk(xβk)
∏

k∈ch(i), k 6=j

uk(xαk)

 .

On completion of the algorithm, the γi-marginals of f(x) are avail-
able as products

gγi(xγi) = vi(xαi)
∏

j∈ch(i)
uj(xαj )

∏
k∈Fi

fk(xβk).

If a maximal supernode partition is used, the sets γi are exactly the
cliques of the filled interaction graph and we obtain all the clique
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marginals. If a non-maximal supernode partition is used the sets γi
include all the cliques, but also some subsets of cliques.

Applied to the example of Figure 7.5, the first (bottom-up) half of
the algorithm, illustrated in Figure 7.6, computes

u1(x4, x5) =
∑
x1

f1(x1, x4, x5),

u2(x4, x6) =
∑
x2,x3

f2(x2, x3, x4, x6),

u4(x5, x6) =
∑
x4

u1(x4, x5)u2(x4, x6),

u7(x8) =
∑
x7

f5(x7, x8),

u5 =
∑

x5,x6,x8

f3(x5, x8)f4(x6, x8)u4(x5, x6)u7(x8).

In the second part of the algorithm (Figure 7.8) we take v5 = 1 and
compute

v4(x5, x6) =
∑
x8

f3(x5, x8)f4(x6, x8)u7(x8),

v7(x8) =
∑
x5,x6

f3(x5, x8)f4(x6, x8)u4(x5, x6),

v1(x4, x5) =
∑
x6

v4(x5, x6)u2(x4, x6),

v2(x4, x6) =
∑
x5

v4(x5, x6)u1(x4, x5).

From the functions ui and vi we find the clique marginals

gγ1(x1, x4, x5) = f1(x1, x4, x5)v1(x4, x5),
gγ2(x2, x3, x4, x6) = f2(x2, x3, x4, x6)v2(x4, x6),

gγ4(x4, x5, x6) = u1(x4, x5)u2(x4, x6)v4(x5, x6),
gγ7(x7, x8) = f5(x7, x8)v7(x8),

gγ5(x5, x6, x8) = f3(x5, x8)f4(x6, x8)u4(x5, x6)u7(x8).

Algorithm 7.3 is an example of a message-passing algorithm; the
functions (tables) ui(xαi) and vi(xαi) are the ‘messages’ passed be-
tween adjacent cliques in the clique tree. For a deeper discussion of
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4, 5
1

f1(x1, x4, x5)
4, 6
2, 3

f2(x2, x3, x4, x6)

5, 6
4

8
7

f5(x7, x8)

5, 6, 8 f3(x5, x8), f4(x6, x8)

v1(x4, x5) v2(x4, x6)

v4(x5, x6) v7(x8)

Figure 7.8: Clique tree and intermediate variables for the top-down recursion in
Algorithm 7.3.

the theory, applications, and implementation of message passing algo-
rithms in probabilistic networks, and historical notes on their origins,
we refer the interested reader to the reference texts [162, chapter 26],
[58, section 6.3], [64, chapter 7], [133, chapter 10].

7.3 Generalized marginalization

We have discussed variable elimination methods for calculating the
minimum of the sum and the sum of the product of functions fk(xβk).
The algorithms for the two problems cases are essentially the same.
The techniques for the min-sum and max-product problems can be ex-
tended to other pairs of operations [201, 147, 2], [58, section 6.4]. Aji
and McEliece in [2] refer to the general problem as marginalizing a
product function in a commutative semiring and give several examples
from communications, information theory, and signal processing. They
describe a general message-passing algorithm, the generalized distribu-
tive law, and show that it includes as special cases a large family of
fast algorithms, with a history going back to decoding algorithms de-
veloped in the 1960s. The connections between the machine learning
and coding theory applications are further discussed in [162, 164].



8
Sparse Matrices

The second part of the paper (Chapters 8–11) covers applications of
chordal graphs to sparse symmetric matrices. Graph theory has been
an important tool in sparse matrix analysis since the 1960s [183] and
much of the development of chordal graph theory was motivated by its
relevance for sparse Cholesky factorization [193]. In this section we set
out the notation and definitions that will be used in our discussion of
sparse symmetric matrices.

8.1 Symmetric sparsity pattern

We define a symmetric sparsity pattern of order n as a set

E ⊆ {{i, j} | i, j ∈ {1, 2, . . . , n}}.

A symmetric matrix A is said to have sparsity pattern E if Aij =
Aji = 0 whenever i 6= j and {i, j} 6∈ E. The diagonal entries Aii and
the off-diagonal entries Aij with {i, j} ∈ E may or may not be zero.
The graph G = (V,E) with V = {1, 2, . . . , n} is called the sparsity
graph associated with the sparsity pattern. Figure 8.1 shows a sparsity

329
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1 2

3 4

5

Figure 8.1: Sparsity graph for the matrix (8.1).

graph for the matrix

A =


A11 A21 A31 0 A51
A21 A22 0 A42 0
A31 0 A33 0 A53
0 A42 0 A44 A54
A51 0 A53 A54 A55

 . (8.1)

Note that the sparsity pattern and sparsity graph of a matrix are not
unique (except for a matrix with no zero off-diagonal entries). If A has
sparsity pattern E and E ⊂ E′, then A also has sparsity pattern E′.
The sparsity pattern E′ is called an extension or embedding of the
sparsity pattern E.

The notation Sn will be used for the set of symmetric matrices
of order n and SnE for the set of symmetric matrices of order n with
sparsity pattern E. When we refer to ‘nonzeros’ or ‘dense submatrices’
of a sparsity pattern, it should be understood that this refers to the
entire set of matrices SnE , i.e., it means that there exist matrices in
SnE with nonzero entries or dense submatrices in these positions. In
particular, if W ⊆ {1, 2, . . . , n} induces a complete subgraph of G,
then the principal submatrix with rows and columns indexed by W

is referred to as a dense principal submatrix of the sparsity pattern.
The clique W = {1, 3, 5} in Figure 8.1, for example, defines a ‘dense’
submatrix  A11 A31 A51

A31 A33 A53
A51 A53 A55

 ,
because there exist matrices in SnE with nonzero entries in these nine
positions.
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We use the term index set for an ordered sequence of distinct inte-
gers from {1, 2, . . . , n}. If β = (β(1), . . . , β(r)) is an index set of length
r ≤ n, then Pβ denotes the r × n matrix with entries

(Pβ)ij =
{

1 j = β(i)
0 otherwise.

If r = n this is a permutation matrix. Multiplying an n-vector x with
Pβ forms an r-vector with the entries indexed by β, i.e., a permuted
subvector of x:

Pβx = xβ = (xβ(1), . . . , xβ(r)).

Multiplying an n × n matrix with Pβ on the left and with P Tβ on the
right extracts the r × r principal submatrix with rows and columns
indexed by β, and applies a symmetric reordering to it:

PβXP
T
β = Xββ =


Xβ(1)β(1) Xβ(1)β(2) · · · Xβ(1)β(r)
Xβ(2)β(1) Xβ(2)β(2) · · · Xβ(2)β(r)

...
...

...
Xβ(r)β(1) Xβ(r)β(2) · · · Xβ(r)β(r)

 .

The product of an r-vector y with P Tβ is an n-vector x with xβ = y

and xi = 0 in the positions outside β: for i = 1, . . . , r,

(P Tβ y)i =
{
yj i = β(j)
0 i 6∈ {β(1), . . . , β(r)}.

Multiplying an r× r matrix Y with P Tβ on the left and Pβ on the right
forms an n × n matrix X with Xββ = Y and other entries zero: for
k, l = 1, . . . , n,

(P Tβ Y Pβ)kl =
{
Yij (k, l) = (β(i), β(j))
0 (k, l) 6∈ {β(1), . . . , β(r)} × {β(1), . . . , β(r)}.

8.2 Chordal sparsity pattern

A sparsity pattern E is said to be chordal if the corresponding sparsity
graph is chordal. In our discussion of matrices with chordal sparsity
patterns we will often make the following assumptions. They can be
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made without loss of generality and simplify the analysis and interpre-
tation of sparse matrix algorithms considerably.

First, we will assume that the sparsity graph G = (V,E) is con-
nected. If not, one can apply a reordering of the rows and columns to
convert the matrices in SnE to block-diagonal form. The sparsity pat-
terns of the diagonal blocks are the connected components of G and
can be analyzed separately.

Second, again by applying a suitable reordering, we can assume
that the numerical ordering σ = (1, 2, . . . , n) is a perfect elimination
ordering for G. Moreover, for any given supernodal partition {snd(i) |
i ∈ V s} with V s ⊆ {1, 2, . . . , n}, we can select a perfect elimination
ordering that satisfies the two additional properties in §4.6: the vertices
in each supernode are numbered consecutively (snd(i) = {i, i+1, . . . , i+
ni} if snd(i) has ni + 1 elements), and the numerical ordering is a
topological ordering of the supernodal elimination tree (i < q(i) if
supernode snd(q(i)) is the parent of supernode snd(i) in the supernodal
elimination tree T s).

For convenience, we will use the term postordered supernodal elim-
ination tree to describe all of these assumptions. Given a postordered
supernodal elimination tree, we can define the following index sets.

• For i = 1, . . . , n, the index set γi contains the elements of col(i),
sorted using the numerical ordering σ. The index set γi contains
the row indices of the lower-triangular nonzeros in column i.

• For i = 1, . . . , n, the index set ηi contains the elements of {j | j ≥
i}\col(j), sorted using the numerical ordering σ. The index set ηi
contains the row indices of the lower-triangular zeros in column i.

• For i ∈ V s, the index set νi contains the elements of snd(i),
sorted using the numerical ordering: νi = (i, i + 1, . . . , i + ni) if
ni = |snd(i)| − 1.

• For i ∈ V s, the index set αi contains the elements of col(i)\snd(i),
sorted using the numerical ordering σ. The index set αi is empty
if i is the root of the supernodal elimination tree.
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Figure 8.2: A chordal sparsity pattern of order 17 with perfect elimination ordering
(1, 2, . . . , 17) and the corresponding elimination tree.

Hence, for a representative vertex i ∈ V s, the leading part of γi is the
index set νi and the remaining part is αi. By Theorem 4.3, the indices
in αi are included in the index set γq(i), where q(i) > i is the parent of
the supernode represented by i in the supernodal elimination tree T s.
The first element of αi is the first ancestor a(i) of i.

This notation can be used for any of the supernodal partitions de-
scribed in §4.5. When applied to a standard elimination tree, any topo-
logical ordering of the elimination tree satisfies these assumptions. In
this case, the representative vertex set is V s = V = {1, 2, . . . , n}, every
supernode νi consists of a single element i, and αi contains the sorted
entries of adj+(i).

An example is shown in Figure 8.2. In this example,

γ5 = (5, 6, 7, 8, 10), ν5 = 5, α5 = (6, 7, 8, 10),

and
η5 = (9, 11, 12, 13, 14, 15, 16, 17).

For the same sparsity pattern, Figure 8.3 shows a maximal supernode
partition with an ordering that satisfies our assumptions. The elements
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Figure 8.3: Left. The sparsity pattern of Figure 8.2. The dashed lines separate the
supernodes in a maximal supernode partition. Right. The corresponding clique tree.

of the supernodes are numbered consecutively, and the ordering is a
topological ordering of the representative vertices. In this case,

γ5 = (5, 6, 7, 8, 10), ν5 = (5, 6, 7), α5 = (8, 10),

and
η5 = (9, 11, 12, 13, 14, 15, 16, 17).

The parent of ν5 in the supernodal elimination tree is the supernode
ν8 = (8, 9).

When deriving or interpreting algorithms for chordal sparse matri-
ces, it is often useful to consider a few common basic patterns. The
simplest non-complete chordal pattern has two cliques. Matrices with
this pattern consist of two overlapping diagonal blocks, as shown in Fig-
ure 8.4. Two other simple chordal sparsity patterns are band patterns
(Figure 8.5) and arrow patterns (Figures 8.6 and 8.7). The sparsity
graphs for band and arrow patterns are k-trees with k = w (see §3.2).
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p

q n− q + 1, n− q + 2, . . ., p
1, 2, . . ., n− q

n− q + 1, n− q + 2, . . ., n

Figure 8.4: Chordal sparsity pattern with two overlapping diagonal blocks of order
p and q and associated clique tree.

w

2, 3, . . ., w + 1
1

3, 4, . . ., w + 2
2

n− w, n− w + 1, . . ., n− 1
n− w − 1

n− w, n− w + 1, . . ., n

Figure 8.5: Band pattern with bandwidth 2w + 1 and a clique tree.

w

Figure 8.6: Block arrow pattern with block width w.
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n− w + 1, . . . , n
1

n− w + 1, . . ., n
2

n− w + 1, . . ., n
n− w − 1

n− w, n− w + 1, . . ., n

Figure 8.7: Clique tree for the block arrow pattern in Figure 8.6.

8.3 Chordal extension

If E′ is chordal and E ⊂ E′ then we say E′ is a chordal extension
or chordal embedding of the sparsity pattern E. Chordal extensions of
non-chordal sparsity patterns can be constructed by choosing an or-
dering σ and computing the elimination graph G∗σ of Gσ = (V,E, σ).
A common ordering choice is a fill-reducing heuristic such as the mini-
mum degree or approximate minimum degree ordering, but depending
on the application other choices may be appropriate (see §6.6).



9
Positive Semidefinite Matrices

In this chapter we discuss positive semidefinite matrices with chordal
sparsity patterns.

9.1 Cholesky factorization

We define the Cholesky factorization of a symmetric positive definite
matrix A as a decomposition

PσAP
T
σ = LDLT (9.1)

with L unit lower-triangular, D positive diagonal, and σ =
(σ(1), . . . , σ(n)) a permutation of (1, 2, . . . , n). Equivalently, A is fac-
tored as A = P Tσ LDL

TPσ. It is a basic result in linear algebra that if
A is positive definite, then for every permutation σ there exist unique
L and D that satisfy (9.1). If A is positive semidefinite but singular, a
decomposition (9.1) with nonnegative diagonal entries in D exists for
every permutation σ, but it is not unique (and difficult to compute
in finite precision); see [117]. To make the semidefinite factorization
unique, we will define the entries of L below the jth diagonal entry to
be zero if Djj is zero.

337



338 Positive Semidefinite Matrices

The graph elimination process of Chapter 6 describes the relation
between the sparsity patterns of A and L + LT . We will show that if
A ∈ SnE then

P Tσ (L+ LT )Pσ ∈ SnE′ (9.2)
where E′ = E∗σ is the edge set of the filled ordered sparsity graph
Gσ = (V,E, σ). To simplify the notation we will assume that σ is the
numerical ordering (1, 2, . . . , n) and derive the sparsity pattern of L+
LT in the factorization A = LDLT . In the ‘outer product’ formulation
of the Cholesky factorization algorithm [100, section 4.2.5], one starts
from the partitioned matrix

A =
[
d1 bT1
b1 C1

]
and factors it as A = L1D1L

T
1 where

L1 =
[

1 0
(1/d1)b1 I

]
, D1 =

[
d1 0
0 C1 − (1/d1)b1b

T
1

]
.

(If singular positive semidefinite matrices A are allowed, the leading
element d1 may be zero, but then b1 must be zero, and one replaces
1/d1 by zero in the definition of L1 and D1.) After this first step,
L1 +D1 + LT1 ∈ SnE1

where

E1 = E ∪ {{j, k} | 1 < j < k, {1, j} ∈ E, {1, k} ∈ E} .

This is the edge set after one step of the graph elimination process
(defined in (6.1)). The added edges in E1 account for possible new
nonzero entries introduced by the outer product term b1b

T
1 . The matrix

C1− (1/d1)b1b
T
1 is positive (semi-)definite if A is, so D1 can be further

factored as D1 = L̃2D2L̃
T
2 with

L̃2 =

 1 0 0
0 1 0
0 (1/d2)b2 I

 , D2 =

 d1 0 0
0 d2 0
0 0 C2 − (1/d2)b2b

T
2

 .
(Again, we substitute zero for 1/d2 if d2 = 0.) Here d2, b2, and C2 refer
to the partitioned matrix

C1 −
1
d1
b1b

T
1 =

[
d2 bT2
b2 C2

]
.
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We now have a factorization A = L2D2L
T
2 where L2 = L1L̃2 and

L2 +D2 + LT2 ∈ SnE2
where

E2 = E1 ∪ {{j, k} | 2 < j < k, {2, j} ∈ E1, {2, k} ∈ E1} .

In the next step we factor the (n−2)×(n−2) matrix C2−(1/d2)b2b
T
2 , et

cetera. After i steps of this process, we have a factorization A = LiDiL
T
i

with Li +Di + LTi ∈ SnEi , where

Ei = Ei−1 ∪ {{j, k} | i < j < k, {i, j} ∈ Ei−1, {i, k} ∈ Ei−1} .

After n − 1 steps, we obtain the complete factorization with sparsity
pattern En−1 = E∗σ.

If E is a chordal pattern and σ is a perfect elimination ordering
for it, then E∗σ = E and we obtain a ‘zero-fill’ Cholesky factorization,
since (9.2) gives L + LT ∈ SnE . This explains the term ‘perfect elim-
ination ordering’. The connection between chordal graphs and matrix
elimination was made by Rose [193].

Theorem 9.1. A sparsity pattern E is chordal if and only if every
positive definite matrix in SnE has a Cholesky factorization with

P Tσ (L+ LT )Pσ ∈ SnE . (9.3)

Proof. If E is chordal, then there exists a perfect elimination ordering σ
(Theorem 4.1). We have E∗σ = E and (9.3) follows from (9.2). If E is
not chordal, then for every ordering σ one can find positive definite
A ∈ SnE for which the Cholesky factors do not satisfy (9.3), for example,
using the following construction. Let σ be an arbitrary ordering of
V = {1, 2, . . . , n}. Since E is not chordal, the sparsity graph has a
chordless cycle of length greater than three. Let σ(i) ∈ V be the vertex
in the cycle with the lowest index i, and let σ(j) and σ(k) with k > j be
its two neighbors in the chordless cycle. Define A ∈ SnE as the matrix
with unit diagonal, Aσ(i)σ(i) Aσ(i)σ(j) Aσ(i)σ(k)

Aσ(j)σ(i) Aσ(j)σ(j) Aσ(j)σ(k)
Aσ(k)σ(i) Aσ(k)σ(j) Aσ(k)σ(k)

 =

 1 1/2 1/2
1/2 1 0
1/2 0 1

 ,
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and all other off-diagonal elements equal to zero. It can be verified that
A is positive definite, with a factorization (9.3) that has entries Lii 0 0

Lji Ljj 0
Lki Lkj Lkk

 =

 1 0 0
1/2 1 0
1/2 −1/3 1

 ,
 Dii 0 0

0 Djj 0
0 0 Dkk

 =

 1 0 0
0 3/4 0
0 0 2/3

 .
The other strictly lower-triangular entries of L are zero and the other
diagonal entries of D are one. Since Lkj 6= 0, the matrix P Tσ (L+LT )Pσ
is not in SnE . �

9.2 Positive semidefinite matrix cone

The positive semidefinite matrices with sparsity pattern E form a con-
vex cone

Sn+ ∩ SnE = {A ∈ SnE | A � 0}.
This is a proper cone in SnE , i.e., closed, pointed, and with nonempty
interior. It is clearly a closed convex cone, since it is the intersection of
a subspace and a closed convex cone. It is pointed because A and −A
are positive semidefinite only if A = 0. Its interior is Sn++ ∩ SnE , where
Sn++ = {A ∈ Sn | A � 0} is the set of positive definite matrices.

When the sparsity pattern E is chordal, the cone Sn+ ∩ SnE can be
decomposed as a sum of simple convex cones, as stated in the following
theorem [106, theorem 4] [1, theorem 2.3] [122, theorem 1].

Theorem 9.2. Let E be a chordal sparsity pattern of order n. Then
A ∈ Sn+ ∩ SnE if and only if it can be expressed as

A =
∑
β∈C

P Tβ HβPβ (9.4)

where C is the set of cliques of the sparsity graph and the matrices Hβ

are symmetric and positive semidefinite.

Proof. Clearly, any decomposition (9.4) with Hβ � 0 implies that A is
positive semidefinite and has sparsity pattern E. The other direction
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=
Hβ1 +

Hβ2

Figure 9.1: A chordal sparsity pattern with two overlapping dense principal sub-
matrices. A matrix with this pattern is positive semidefinite if and only if it can
be written as a sum of two positive semidefinite matrices, each with only one dense
principal submatrix Hβi � 0.

(existence of a decomposition (9.4) if E is a chordal pattern) follows
from the zero-fill property of the Cholesky factorization. Without loss
of generality we assume that the numerical ordering σ = (1, 2, . . . , n) is
a perfect elimination ordering for E. Let V c ⊆ {1, 2, . . . , n} be the set
of representative vertices of the cliques in the sparsity graph, {snd(i) |
i ∈ V c} a maximal supernode partition, and γj , j = 1, . . . , n, the index
sets with the elements of col(j).

If A ∈ Sn+ ∩ SnE , then it has a Cholesky factorization A = LDLT

and the matrix product can be expressed as a sum of outer products

A =
n∑
j=1

DjjP
T
γjLγjjL

T
γjjPγj =

∑
i∈V c

∑
j∈snd(i)

DjjP
T
γjLγjjL

T
γjjPγj . (9.5)

We observe that if j ∈ snd(i), then the elements of γj are included in
γi and therefore P TγjLγjj = P TγiPγiP

T
γjLγjj . This allows us to write the

sum in (9.5) as A =
∑
i∈V c P TγiBiPγi where

Bi = Pγi

 ∑
j∈snd(i)

P TγjLγjjL
T
γjjPγj

P Tγi � 0.

Since C = {γi | i ∈ V c} is the set of cliques of the sparsity graph, we
have decomposed A as in (9.4). �

Figures 9.1 and 9.2 illustrate the theorem and its proof with a simple
chordal pattern consisting of two overlapping diagonal blocks.

The result of Theorem 9.2 can be written concisely as a decompo-
sition of the cone Sn+ ∩ SnE as a sum of cones:

Sn+ ∩ SnE =
∑
β∈C
Kβ, Kβ = {P Tβ HβPβ | Hβ � 0}. (9.6)
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= +

Figure 9.2: Construction of the decomposition in Figure 9.1 from a zero-fill
Cholesky factorization.

Each cone Kβ has a very simple structure. Its elements consist of one
positive semidefinite principal submatrix, in the rows and columns in-
dexed by β, and are zero outside this block. The cones Kβ are closed,
convex, and pointed, but not proper because they have empty interiors
(unless the sparsity graph is complete and there is only one clique).

Theorem 9.2 implies that the sum
∑
β Kβ is closed, since Sn+ ∩ SnE

is closed. This can also be seen from [192, corollary 9.1.3] where the
following sufficient condition is given for the sum of closed convex cones
to be closed: if Ci, i = 1, . . . , l, are closed convex cones that satisfy the
condition

l∑
i=1

xi = 0, xi ∈ Ci, i = 1, . . . , l =⇒ xi = 0, i = 1, . . . , l,

then
∑l
i=1 Ci is closed. This sufficient condition holds for the cones Kβ

defined in (9.6), because
∑
β P

T
β HβPβ = 0 with Hβ � 0 implies that

the diagonal of each Hβ is zero, hence Hβ = 0.
If A is a positive semidefinite matrix with a non-chordal sparsity

pattern, then a decomposition (9.4) may still exist. However, one can
show that for every non-chordal pattern there exist positive semidefinite
matrices that cannot be decomposed as in (9.4). Instances can be con-
structed by the following method from [106, page 41]. Suppose the spar-
sity graph (V,E) has a chordless cycle of length greater than three. Af-
ter a suitable reordering we can assume that the cycle is (1, 2, . . . , k, 1)
with k > 3. Define A as the matrix with

Aii = λ, i = 1, . . . , k, Ai,i+1 = Ai+1,i = 1, i = 1, . . . , k − 1,

Ak1 = A1k = (−1)k−1, and other entries zero. Hence, A has a leading
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k × k diagonal block

Ã =



λ 1 0 · · · 0 0 (−1)k−1

1 λ 1 · · · 0 0 0
0 1 λ · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · λ 1 0
0 0 0 · · · 1 λ 1

(−1)k−1 0 0 · · · 0 1 λ


and is otherwise zero. For odd k, Ã is a circulant Toeplitz matrix with
eigenvalues λ + 2 cos(2iπ/k), i = 0, . . . , k − 1. For even k, Ã is an
anticirculant Toeplitz matrix with eigenvalues λ + 2 cos((2i + 1)π/k),
i = 0, . . . , k − 1. In both cases, Ã is positive semidefinite for λ ≥
2 cos(π/k).

Each clique of the sparsity pattern contains at most one edge of
the cycle, since a second edge would create a chord in the cycle. Since
A is zero outside of the block Ã, a decomposition (9.4) exists if and
only Ã can be decomposed as Ã =

∑
i P

T
βi
HiPβi with βi = (i, i+ 1) for

i = 1, . . . , k−1, βk = (1, k), and positive semidefinite 2×2-matrices Hi.
This is equivalent to existence of scalars u1, . . . , uk such that

Hi =
[
ui 1
1 λ− ui+1

]
� 0, i = 1, . . . , k − 1,

and
Hk =

[
λ− u1 (−1)k−1

(−1)k−1 uk

]
� 0.

The conditions on the coefficients ui are that 0 ≤ ui ≤ λ for i = 1, . . . , k
and

1 ≤ ui(λ− ui+1), i = 1, . . . , k − 1, 1 ≤ uk(λ− u1).

We now show that these inequalities have no solution if λ < 2. Combin-
ing the quadratic inequalities and using the arithmetic-geometric mean
inequality, we obtain that the coefficients ui must satisfy

1 ≤
(

k∏
i=1

ui(λ− ui)
) 1

2k

≤ λ

2 .
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Therefore a decomposition (9.4) does not exist if λ < 2. However the
matrix A is positive semidefinite if λ ≥ 2 cos(π/k) and this lower bound
is less than 2. We conclude that for λ in the interval [2 cos(π/k), 2)
the matrix A is positive semidefinite but does not have a decomposi-
tion (9.4).

9.3 Multifrontal factorization

Elimination trees and the theory from Chapter 4 play a key role in the
the multifrontal Cholesky factorization algorithm [75, 153, 154].

We use the notation and conventions of §8.2. In particular, σ =
(1, 2, . . . , n) is the numerical ordering (Pσ = I) and we examine the
Cholesky factorization A = LDLT with diagonal D. We first examine
how the product in A = LDLT determines A. Assume D is a nonneg-
ative diagonal matrix, L is unit lower-triangular with L + LT ∈ SnE ,
and E is a chordal sparsity pattern with perfect elimination ordering σ.
The i, j entry of A, for i ≥ j, is

Aij =
∑
k<j

DkkLikLjk +DjjLij . (9.7)

This shows that Aij = 0 when {i, j} 6∈ E (by monotone transitivity,
i > j > k and {i, k} ∈ E, {j, k} ∈ E imply {i, j} ∈ E). Hence, A
has sparsity pattern E and it is sufficient to examine Aij for i = j

or {i, j} ∈ E. We denote the elimination tree for E by T and use the
index set notation of §8.2: αj , γj are the index sets containing the sorted
elements of adj+(j) and col(j), respectively. From (9.7) the subvector
Aγjj can be expressed as[

Ajj
Aαjj

]
=

∑
k<j

DkkLjk

[
Ljk
Lαjk

]
+Djj

[
1

Lαjj

]

=
∑

k∈Tj\{j}
DkkLjk

[
Ljk
Lαjk

]
+Djj

[
1

Lαjj

]

=
∑

i∈ch(j)

∑
k∈Ti

DkkLjk

[
Ljk
Lαjk

]
+Djj

[
1

Lαjj

]
, (9.8)
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where Tj denotes the subtree of the elimination tree formed by the
descendants of vertex j, and ch(j) is the set of children of j in the
elimination tree. The second line follows because if k < j then {j, k} ∈
E only if k is a descendant of j in the elimination tree. (More precisely,
k must be in the jth row subtree.) Now suppose that with each vertex
in the elimination tree we associate an |αj | × |αj | matrix

Uj =
∑
k∈Tj

DkkLαjkL
T
αjk.

We call this the jth update matrix. The update matrices satisfy a re-
cursive equation

Uj = DjjLαjjL
T
αjj +

∑
i∈ch(j)

∑
k∈Ti

DkkLαjkL
T
αjk

= DjjLαjjL
T
αjj + Pαj

 ∑
i∈ch(j)

P Tαi

∑
k∈Ti

DkkLαikL
T
αik

Pαi
P Tαj

= DjLαjjL
T
αjj + Pαj

 ∑
i∈ch(j)

P TαiUiPαi

P Tαj .
On line 2 we use Lαjk = PαjP

T
αiLαik for k ∈ Ti and i ∈ ch(j). (This

follows from (4.4).) Combining the last expression with (9.8) we get[
Ajj ATαjj
Aαjj Uj

]
=

Djj

[
1

Lαjj

] [
1

Lαjj

]T
+ Pγj

 ∑
i∈ch(j)

P TαiUiPαi

P Tγj . (9.9)

This formula allows us to compute A, column by column, by enumer-
ating the vertices of the elimination tree in topological order. We start
at the leaves of the elimination tree (with ch(j) = ∅). At vertex j we
compute Ajj , Aαjj , and the update matrix Uj from Djj , Lαjj , and the
update matrices of the children of j.

The equation (9.9) also shows us how to compute the Cholesky fac-
tors from A, column by column in a topological ordering. This becomes
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clear if we rearrange (9.9) as[
Ajj ATαjj
Aαjj 0

]
− Pγj

 ∑
i∈ch(j)

P TαiUiPαi

P Tγj
= Djj

[
1

Lαjj

] [
1

Lαjj

]T
−
[

0 0
0 Uj

]

=
[

1 0
Lαjj I

] [
Djj 0
0 −Uj

] [
1 LTαjj
0 I

]
.

The left-hand side matrix is called the frontal matrix in step j. The jth
frontal matrix can be assembled from column j of A and the update
matrices of the children of j in the elimination tree. From the frontal
matrix, one easily compute Djj , Lαjj , and the update matrix Uj . The
update matrices of the children of vertex j can be discarded once the
frontal matrix for vertex j has been formed. This is summarized in the
following algorithm.
Algorithm 9.1 (Multifrontal Cholesky factorization).

Input. A positive definite matrix A ∈ SnE , where G = (V,E) is a chordal
sparsity pattern with perfect elimination ordering σ = (1, 2, . . . , n),
and a postordered elimination tree for Gσ.

Output. The Cholesky factorization A = LDLT .
Algorithm. Enumerate the vertices j ∈ V = {1, 2, . . . , n} of the elimina-

tion tree in topological order. For each j execute the following two
steps.
• Form the frontal matrix[

F11 FT21
F21 F22

]
=
[
Ajj ATαjj
Aαjj 0

]
− Pγj

 ∑
i∈ch(j)

PTαiUiPαi

PTγj .

• Calculate Djj , Lαj , and the update matrix Uj from

Djj = F11, Lαjj = 1
Djj

F21, Uj = −F22 +DjjLαjjL
T
αjj .

The algorithm can be generalized to handle singular positive
semidefinite matrices. In the extended version, if the leading entry F11
of the frontal matrix is zero, we takeDjj = 0, Lαjj = 0, and Uj = −F22.
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The main calculations in Algorithm 9.1 are the sums in the con-
struction of the frontal matrix and the outer product in the definition
of Uj .

9.4 Supernodal factorization

The efficiency of the multifrontal factorization algorithm can be im-
proved by applying block elimination to groups of columns with the
same structure. The theory of supernodal partitions, discussed in §4.4
and §4.5, was developed for this purpose (see [154] for a survey and
historical notes).

We will use the notation and assumptions of §8.2 for a supernodal
elimination tree T s with vertex set V s. We define a blocked or super-
nodal Cholesky factorization

A = LDLT ,

where D is block-diagonal with dense symmetric positive definite diag-
onal blocks Dνiνi , and L is block unit lower-triangular with Lνiνi = I

and a nonzero lower-diagonal block Lαiνi in block-column νi. This block
Cholesky factorization is easily transformed into the standard one (with
diagonal D) by taking dense Cholesky factorizations of the diagonal
blocks Dνiνi and combining their Cholesky factors with L.

The extension of equation (9.9) to the supernodal Cholesky factor-
ization reads[

Aνjνj ATαjνj
Aαjνj Uj

]
=

[
I

Lαjνj

]
Dνjνj

[
I

Lαjνj

]T
+ Pγj

 ∑
i∈ch(j)

P TαiUiPαi

P Tγj (9.10)

for j ∈ V s where ch(j) now refers to the children of vertex j in the
supernodal elimination tree T s. The update matrices are defined as

Uj =
∑
k∈T s

j

LαjνkDνkνkL
T
αjνk

where T s
j is the subtree of T s formed by vertex j and its descendants.
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The equation (9.10) shows us how to compute the supernodal Cholesky
decomposition using a generalization of Algorithm 9.1.

Algorithm 9.2 (Supernodal multifrontal Cholesky factorization).

Input. A positive definite matrix A ∈ SnE , where G = (V,E) is a chordal
sparsity pattern with perfect elimination ordering σ = (1, 2, . . . , n),
and a postordered supernodal elimination tree for Gσ.

Output. The supernodal Cholesky factorization A = LDLT .
Algorithm. Enumerate the supernode representatives j ∈ V s in topological

order. For each j execute the following two steps.

• Form the frontal matrix[
F11 FT21
F21 F22

]
=

[
Aνjνj ATαjνj
Aαjνj 0

]
− Pγj

 ∑
i∈ch(j)

PTαiUiPαi

PTγj . (9.11)

• Calculate the matrices Dνjνj , Lαjνj , from

Dνjνj = F11, Lαjνj = F21D
−1
νjνj (9.12)

and the update matrix Uj from

Uj = −F22 + LαjνjDνjνjL
T
αjνj .

This algorithm includes Algorithm 9.1 as a special case, obtained by
taking V s = V , T s = T . As for the (nodal) multifrontal Algorithm 9.1,
we can generalize Algorithm 9.2 to handle singular positive semidefi-
nite matrices, by allowing singular positive semidefinite blocks Dνjνj .
If the 1, 1-block F11 of the frontal matrix is singular, we must have
F21 = F21F

+
11F11 if A is positive semidefinite and we can replace the

expression for Lαjνj in (9.12) with Lαjνj = F21D
+
νjνj where D

+
νjνj is the

pseudoinverse of Dνjνj .
The main steps in the algorithm are the construction of the frontal

matrices, the factorization of Dνjνj needed to compute Lαjνj , and the
matrix outer-product in the formula for Uj .

The algorithm can also be interpreted as computing a decompo-
sition as described in Theorem 9.2. If we use a maximal supernode
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Figure 9.3: Scatter plot of test problem dimensions.

partition (V s = V c and γj are the cliques) and define

Hj = Fj +
[

0 0
0 Uj

]

where Fj is the frontal matrix (9.11), then Hj is positive semidefinite
(from (9.10)) and

∑
j∈V c

P TγjHjPγj =
∑
j∈V c

P Tγj

[
Aνjνj ATαjνj
Aαjνj 0

]
Pγj = A.

The first equality follows because in the sum over j the contributions
of the update matrices cancel out.

To illustrate the advantage of the supernodal factorization, we in-
clude in Figure 9.4 a scatter plot that shows the computation times for
the nodal and supernodal multifrontal Cholesky factorizations based
on 667 test problems with sparsity patterns from the University of
Florida Sparse Matrix Collection [66]. The order of the test matrices
range from 5 to approximately 130,000; see Figure 9.3. Notice that the
computation times are very similar for small problems, but for many
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Figure 9.4: Scatter plot of computation times (in seconds) for nodal and supernodal
multifrontal Cholesky factorizations.

large problems, the supernodal factorization is up to an order of mag-
nitude faster than the nodal factorization. Both factorizations were
computed using Chompack [13].

9.5 Projected inverse

The inverse of a large sparse matrix is usually dense, expensive to
compute, and rarely needed in practice. However the problem of com-
puting a partial inverse, i.e., a small subset of the entries of the in-
verse, arises in several applications and can be solved quite efficiently
[78, 99, 49, 61, 9, 6]. In this section, we consider the problem of comput-
ing ΠE(A−1) for a positive definite matrix A ∈ SnE , where ΠE denotes
projection on the subspace SnE : for Y ∈ Sn,

ΠE(Y )ij =
{
Yij {i, j} ∈ E or i = j

0 otherwise. (9.13)

We will show that if E is chordal, then ΠE(A−1) can be efficiently
computed from the sparse Cholesky factorization of A [61, 9].
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As in the previous section we assume the numerical ordering σ is
a perfect elimination ordering for E. To compute the projected inverse
ΠE(A−1) we first factor A as A = LDLT with L unit lower-triangular
and D positive diagonal. The equation

A−1L = L−TD−1 (9.14)

relates A−1 and the Cholesky factors L and D. Define B = ΠE(A−1).
For j = 1, . . . , n, the submatrix Bγjγj of B satisfies[

Bjj BT
αjj

Bαjj Bαjαj

] [
1

Lαjj

]
=
[

1/Djj

0

]
. (9.15)

This follows from (9.14), the fact that the jth column of L is zero in
the positions not included in γj , and that L−T is upper triangular with
unit diagonal. The equation (9.15) shows that if Bαjαj is given, then
Bjj and Bαjj are easily computed as follows:

Bαjj = −BαjαjLαjj , Bjj = 1
Djj
−BT

αjjLαjj .

Since the indices in αj are included in the index set γi for the parent
i = p(j), we can compute the columns of B via a recursion on the
elimination tree in inverse topological order, starting at the root j = n

(where αn is empty). The algorithm closely resembles the multifrontal
Cholesky factorization, with Uj = Bαjαj in the role of update matrix,
the matrix [

Bjj BT
αjj

Bαjj Uj

]
replacing the frontal matrix, and the direction of the recursion re-
versed. This formulation is especially useful when B is stored in a
column-compressed storage (CCS) scheme [65]. In the CCS scheme it is
straightforward to locate the subvector Bαjj with the lower-triangular
nonzeros in each column j, but it is not as easy to extract a submatrix
Bαjαj . Passing the matrices Bαjαj as dense update matrices between
vertices of the elimination tree and their children avoids the need to
retrieve Bαjαj .
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As for the multifrontal Cholesky factorization, there is a supernodal
version of this algorithm, based on the supernodal Cholesky factoriza-
tion A = LDLT . In the notation of §9.4 and Algorithm 9.2, the blocked
equivalent of equation (9.15) is[

Bνjνj BT
αjνj

Bαjνj Bαjαj

] [
I

Lαjνj

]
=
[
D−1
νjνj

0

]
, (9.16)

for j ∈ V s. This equation is the γj×νj subblock of the matrix equation
A−1L = L−TD−1.

The following outline summarizes the supernodal algorithm for
computing the projected inverse. The nodal algorithm (based on equa-
tion (9.15)) is a special case for T s = T , V s = {1, 2, . . . , n}, νj = j.

Algorithm 9.3 (Projected inverse).

Input. The supernodal Cholesky factors L, D of a positive definite matrix
A ∈ SnE , where G = (V,E) is a chordal sparsity pattern with perfect
elimination ordering σ = (1, 2, . . . , n), and a postordered supernodal
elimination tree for Gσ.

Output. The projected inverse B = ΠE(A−1).
Algorithm. Enumerate the representative vertices j ∈ V s in inverse topo-

logical order. For each j execute the following two steps.

• Calculate Bαjνj and Bνjνj from

Bαjνj = −UjLαjνj , Bνjνj = D−1
νjνj −B

T
αjνjLαjνj . (9.17)

• For i ∈ ch(j) compute the update matrix

Ui = PαiP
T
γj

[
Bνjνj BTαjνj
Bαjνj Uj

]
PγjP

T
αi . (9.18)

The cost of computing the projected inverse is similar to that of
computing the Cholesky factorization. This is illustrated in Figure 9.5
which shows a scatter plot of the computation times for the projected
inverse and the Cholesky factorization. Indeed, the computation times
are roughly the same for large problems. The results are based on the
test problems that were described in §9.4.
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Figure 9.5: Scatter plot of computation times (in seconds) for multifrontal pro-
jected inverse and Cholesky factorization.

9.6 Logarithmic barrier

The function φ : SnE → R, with domain domφ = Sn++ ∩ SnE (the
positive definite matrices in SnE) and function value

φ(S) = − log detS, (9.19)

is important in semidefinite optimization as a logarithmic barrier for
the cone Sn+ ∩SnE . It is readily evaluated from a Cholesky factorization
of S. For example, if a factorization PσSP

T
σ = LDLT is available,

with D positive diagonal and L unit lower-triangular, then φ(S) =
−
∑
i logDii.
The gradient of φ (for the trace inner product 〈A,B〉 = tr(AB)) is

defined as
∇φ(S) = −ΠE(S−1),

i.e., the negative of the projected inverse, and can be efficiently com-
puted using Algorithm 9.3. Similar algorithms exist for higher deriva-
tives. The Hessian of φ at S is a linear operator that maps a matrix
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Y ∈ SnE to the matrix

∇2φ(S)[Y ] = d

dt
∇φ(S + tY )

∣∣∣∣
t=0

= ΠE(S−1Y S−1).

This expression can be evaluated without explicitly computing the in-
verse S−1 or the (generally dense) matrix product S−1Y S−1, via two
recursions on an elimination tree, one in topological order and the
second in an inverse topological order [61, 9]. The two recursions in
the algorithm can be interpreted as linearizations of the calculations
needed to compute the gradient at S. The first recursion, in topological
order, computes the directional derivatives of the Cholesky factors of S
in the direction Y . The second recursion, in inverse topological order,
computes the directional derivative of the projected inverse. It is also
interesting to note that the linear operators evaluated by the two recur-
sions are adjoints. This provides a useful factorization of the Hessian
∇2φ(S) as a composition ∇2φ(S)[Y ] = R∗S(RS(Y )) of a linear operator
RS and its adjoint R∗S . Moreover, the inverse operator R−1

S and its ad-
joint can also be evaluated using similar algorithms, leading to efficient
methods for evaluating the inverse of ∇2φ(S). These algorithms and
their applications are discussed in greater detail in [61, 9].



10
Positive Semidefinite Matrix Completion

In a positive semidefinite completion problem, one is given a sparse
matrix A ∈ SnE , representing a partially specified dense matrix. The
diagonal entries Aii and the off-diagonal entries Aij with {i, j} ∈ E

are fixed; the off-diagonal entries for {i, j} 6∈ E are free. The prob-
lem is to find values for the free entries that make the matrix positive
semidefinite. Geometrically, we are expressing the matrix A ∈ SnE as the
projection ΠE(X) of a positive semidefinite matrix X on the subspace
SnE . Positive semidefinite completion problems have been studied exten-
sively since the 1980s [76, 108, 20]. In this section we survey the most
important results and present algorithms for solving positive semidefi-
nite completion problems with chordal sparsity patterns E. Surveys of
the vast literature on this subject can be found in [121, 141, 142] and
the book [19].

10.1 Positive semidefinite completable matrix cone

We denote by ΠE(Sn+) the set of matrices in SnE that have a positive
semidefinite completion:

ΠE(Sn+) = {ΠE(X) | X ∈ Sn+}.

355
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This is a proper convex cone. It is the projection of the positive semidef-
inite cone in Sn on the subspace SnE and therefore itself a convex cone,
with nonempty interior in SnE . It is pointed because A ∈ ΠE(Sn+) and
−A ∈ ΠE(Sn+) implies that A = ΠE(X) = −ΠE(Y ) for some X � 0
and Y � 0 and, hence, ΠE(X + Y ) = 0, X + Y � 0, which is only pos-
sible if X = Y = 0 (since ΠE(X + Y ) = 0 implies that the diagonal of
X + Y is zero). Closedness of ΠE(Sn+) follows from [192, theorem 9.1],
which states that if C is a closed convex cone and A a linear mapping
that satisfies

nullspace(A) ∩ C = {0},
then A(C) is closed. Applying this to C = Sn+ and A = ΠE shows that
ΠE(Sn+) is closed. (In this case, ΠE(X) = 0 implies that the diagonal
of X is zero, which for a positive semidefinite matrix implies X = 0.)

The positive semidefinite completable cone ΠE(Sn+) and the positive
semidefinite cone Sn+ ∩SnE form a pair of dual cones in SnE . To see this,
we first verify that the dual of ΠE(Sn+) is Sn+ ∩ SnE :

(ΠE(Sn+))∗ = {B ∈ SnE | tr(AB) ≥ 0 ∀A ∈ ΠE(Sn+)}
= {B ∈ SnE | tr(ΠE(X)B) ≥ 0 ∀X � 0}
= {B ∈ SnE | tr(XB) ≥ 0 ∀X � 0}
= Sn+ ∩ SnE .

Since the dual of the dual of a convex cone is the closure of the cone
[192, page 121], we also have

(Sn+ ∩ SnE)∗ = (ΠE(Sn+))∗∗ = cl(ΠE(Sn+)) = ΠE(Sn+).

These properties hold for any sparsity pattern E, chordal or not. For a
chordal pattern, the decomposition result for the cone Sn+∩SnE in The-
orem 9.2 leads to the following characterization of the positive semidef-
inite completable cone ΠE(Sn+) [108, theorem 7].

Theorem 10.1. Let E be a chordal sparsity pattern of order n. Then
A ∈ ΠE(Sn+) if and only if

Aββ � 0 (10.1)

for all cliques β of the sparsity graph. A ∈ int ΠE(Sn+) = ΠE(Sn++) if
and only if Aββ � 0 for all cliques β.
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Proof. A ∈ ΠE(Sn+) if and only if tr(AB) ≥ 0 for all B ∈ Sn+ ∩ SnE .
Using the characterization of Sn+∩SnE of Theorem 9.2, this holds if and
only if

0 ≤ tr

∑
β∈C

P Tβ HβPβA

 =
∑
β∈C

tr(HβPβAP
T
β ) (10.2)

for all matrices Hβ � 0. This is equivalent to (10.1). Similarly, A ∈
int ΠE(Sn+) if and only if strict inequality holds in (10.2) for all positive
semidefinite Hβ that are not all zero. This is equivalent to Aββ � 0 for
all cliques β. �

If E is not chordal, the condition (10.1) is necessary but not
sufficient. A counterexample can be constructed as follows. Suppose
the sparsity graph contains a chordless cycle of length greater than
three. After a suitable reordering we can assume that the cycle is
(1, 2, . . . , k, 1) with k > 3. Every clique of the sparsity graph contains
at most one edge of this cycle, since a second edge would define a chord.
Now take A ∈ SnE to have diagonal one,

Ai,i+1 = Ai+1,i = 1, i = 1, . . . , k − 1, Ak1 = A1k = −1

and Aij = 0 for all other edges {i, j} ∈ E. This matrix satisfies Aββ � 0
for every clique β, because each matrix Aββ is either an identity ma-
trix (if the clique does not contain an edge of the cycle), or a matrix
with unit diagonal and one symmetric pair of off-diagonal entries equal
to one (if the clique contains an edge {i, i + 1} of the cycle) or neg-
ative one (if the clique contains the edge {1, k}). However A has no
positive semidefinite completion. If X were such a completion, then
necessarily Xηη = 11T for the two principal submatrices indexed by
η = (1, 2, . . . , k − 1) and η = (2, . . . , k). This gives a contradiction
because then the submatrix X11 X21 Xk1

X21 X22 Xk2
Xk1 Xk2 Xkk

 =

 1 1 −1
1 1 1
−1 1 1


is indefinite.
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10.2 Maximum determinant completion

The positive semidefinite completion of a matrix in ΠE(Sn+) is not
unique in general. For matrices in the interior of ΠE(Sn+), the comple-
tion with maximum determinant is of special interest. The maximum
determinant positive definite completion of a matrix A ∈ ΠE(Sn++) is
defined as the solution of the optimization problem

maximize log detW
subject to ΠE(W ) = A,

(10.3)

with variable W ∈ Sn, where we define the domain of log detW to be
the set of positive definite matrices Sn++. The solution W is also called
the maximum entropy completion of A, since it maximizes the entropy
of the normal distribution N(0,W ), which is given by

1
2(log detW + n log(2π) + n),

subject to the constraint ΠE(W ) = A; see [68].
The Lagrange dual of (10.3) is the minimization problem

minimize tr(AY )− log detY − n, (10.4)

where the variable Y ∈ SnE is a Lagrange multiplier for the equality
constraint in (10.3). (As elsewhere, we define the domain of − log detY
to be Sn++ ∩ SnE so there is an implicit constraint that Y is positive
definite.) The dual problem (10.4) has an important application in
statistics and machine learning. The solution Y can be shown to be the
inverse of the maximum likelihood estimate of the covariance matrix
of a Gaussian random vector variable, subject to a set of conditional
independence constraints. In this interpretation A is the projection
ΠE(C) on SnE of a sample covariance matrix C. Absence of an edge
{i, j} in E indicates that the components i and j of the random vector
are conditionally independent [68] [146, chapter 5]. Another application
of problem (10.4) will be discussed in section 10.5.

The optimality conditions for the convex optimization prob-
lem (10.3) and its dual are

ΠE(W ) = A, W � 0, W−1 = Y. (10.5)
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The two equalities show that the inverse of the maximum determinant
completion W has sparsity pattern E. Since W is usually dense, its
inverse or the Cholesky factors of the inverse therefore provide a con-
venient and economical representation of the maximum determinant
completion W .

We now show that if E is a chordal sparsity pattern, then the
Cholesky factors of W−1 = Y can be computed directly from A, by
exploiting the same equations (9.15) and (9.16) as used in the algorithm
for computing the projected inverse of a matrix in Sn++ ∩SnE . This also
gives a constructive proof that (10.3) is solvable for all A ∈ ΠE(Sn++).
As in the previous sections, we consider a chordal sparsity pattern E
with perfect elimination ordering σ = (1, 2, . . . , n) and formulate the
algorithm in terms of a supernodal elimination tree T s. We make the
assumptions and use the index set notation of section 8.2.

The factors L and D in a supernodal Cholesky factorizationW−1 =
LDLT satisfy WL = L−TD−1. The constraint ΠE(W ) = A specifies
the submatrices Wγiγi , so the γj × νj subblock of the equation WL =
L−TD−1 can be written[

Aνjνj ATαjνj
Aαjνj Aαjαj

] [
I

Lαjνj

]
=
[
D−1
νjνj

0

]
. (10.6)

The equation (10.6) determines Lαjνj and Dνjνj uniquely if Aγjγj � 0:

Lαjνj = −A−1
αjαjAαjνj ,

Dνjνj =
(
Aνjνj +ATαjνjLαjνu

)−1

=
(
Aνjνj −ATαjνjA

−1
αjαjAαjνj

)−1
.

The last expression also shows that Dνjνj is positive definite. The order
in which we enumerate the supernodes νj to calculate Lαjνj and Dνjνj

in this method is arbitrary. However, if we use an inverse topological
order we obtain an algorithm that is very similar to the multifrontal
algorithms of the previous chapter.
Algorithm 10.1 (Factorization of maximum determinant completion).

Input. A matrix A ∈ ΠE(Sn++), where G = (V,E) is a chordal sparsity
pattern with perfect elimination ordering σ = (1, 2, . . . , n), and a
postordered supernodal elimination tree for Gσ.
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Output. The supernodal Cholesky factors L, D of the inverse W−1 of the
maximum determinant positive definite completion of A.

Algorithm. Enumerate the representative vertices j ∈ V s in inverse topo-
logical order. For each j, execute the following two steps.
• Calculate Lαjνj and Dνjνj from

Lαjνj = −U−1
j Aαjνj , Dνjνj = (Aνjνj +ATαjνjLαjνj )

−1. (10.7)

• For i ∈ ch(j) compute the update matrix

Ui = PαiP
T
γj

[
Ajj ATαjj
Aαjj Uj

]
PγjP

T
αi . (10.8)

The update matrices are defined as Ui = Aαiαi . If A is stored in a
CCS format, propagating these submatrices as temporary dense matrix
variables is easier than retrieving them from the CCS data structure. It
also allows us to exploit the fact that (10.8) typically involves the addi-
tion and deletion of only a few rows and columns of Uj . This makes it
possible to efficiently update the factorization of Uj , needed to solve the
equation in (10.7). The details are discussed in [9]. Figure 10.1 shows
a scatter plot comparing the computation times for the multifrontal
Cholesky factorization and the inverse completion factorization for the
sparsity patterns in the benchmark set.

It is interesting to examine what happens if we allow matrices A
on the boundary of ΠE(Sn+). From Theorem 10.1 we know that if A ∈
ΠE(Sn+), then the submatrices

Aγjγj =
[
Aνjνj ATαjνj
Aαjνj Aαjαj

]
, j ∈ V s,

are positive semidefinite but possibly singular. Equivalently,

Aαjαj � 0, Aαjνj = AαjαjA
+
αjαjAαjνj , (10.9)

and
Aνjνj −ATαjνjA

+
αjαjAαjνj � 0, (10.10)

where A+
αjαj is the pseudoinverse. Using these properties, one can show

that if the inverses in (10.7) are replaced with pseudoinverses, i.e., Lαjνj
and Dνjνj are computed as

Lαjνj = −U+
j Aαjνj , Dνjνj = (Aνjνj +ATαjνjLαjνj )

+, (10.11)
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Figure 10.1: Scatter plot of computation times (in seconds) for multifrontal inverse
factorization of the maximum determinant completion and Cholesky factorization.

then the matrix W = L−TD+L−1 is a positive semidefinite completion
of A. To see this, we first note that (10.9) and (10.10) imply that the
matrix

Dνjνj = (Aνjνj +ATαjνjLαjνj )
+ = (Aνjνj −ATαjνjA

+
αjαjAανj )

+

is positive semidefinite. Therefore the matrices LDLT and W =
L−TD+L−1 are positive semidefinite. Next, we use the equationWL =
L−TD+ and, more specifically, its γj × νj blocks[

Wνjνj W T
αjνj

Wαjνj Wαjαj

] [
I

Lαjνj

]
=
[
D+
νjνj

0

]
, j ∈ V s, (10.12)

to show that ΠE(W ) = A. First consider the root of T s, i.e., the first
representative vertex j in the inverse topological ordering. At the root
supernode we have νj = γj and αj is empty. Equation (10.12) then
reduces to

Wγjγj = Wνjνj = D+
νjνj = Aνjνj .

Next suppose that Wγiγi = Aγiγi for the proper ancestors of super-
node j in the supernodal elimination tree. Therefore Wαjαj = Aαjαj
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in (10.12) and the definition of Lαjνj and Dνjνj in (10.11) implies

Wαjνj = −WαjαjLαjνj

= AαjαjA
+
αjαjAαjνj

= Aαjνj ,

Wνjνj = D+
νjνj −W

T
αjνjLαjνj

= Aνjνj −ATαjνjA
+
αjαjAαjνj +ATαjνjA

+
αjαjAαjνj

= Aνjνj .

Hence Wγjγj = Aγjγj . Continuing the recursion in the inverse topolog-
ical order we arrive at the conclusion that Wγiγi = Aγiγi for all i ∈ V s.

10.3 Positive semidefinite completion

The Cholesky factors L and D computed in Algorithm 10.1 give a
compact, sparse representation of the positive semidefinite completion
W = L−TD+L−1 and are sufficient for most applications. If W is
needed explicitly, Algorithm 10.1 (and its extension to matrices on the
boundary of ΠE(Sn+)) can be modified to compute W directly. Recall
from §8.2 that ηj denotes the index set with the row indices of the
lower-triangular zeros in column j of the sparsity pattern.

Algorithm 10.2 (Positive semidefinite completion).

Input. A matrix A ∈ ΠE(Sn+), where G = (V,E) is a chordal sparsity
pattern with perfect elimination ordering σ = (1, 2, . . . , n), and a
postordered supernodal elimination tree for Gσ.

Output. A positive semidefinite completion W .
Algorithm. Initialize W as W := A. Enumerate the supernodes j ∈ V s in

descending order. For each j, compute

Wηjνj = WηjαjW
+
αjαjWαjνj , Wνjηj = WT

ηjνj . (10.13)

Since this algorithm computes a dense matrix W , we do not use
a multifrontal formulation as in the previous algorithms. (The multi-
frontal formulation is mainly of interest for matrices stored in a sparse
matrix format such as the CCS format.)
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Algorithm 10.2 completes the matrix W starting in the bottom
right corner. After step j the entire submatrix Wβjβj with βj = (j, j +
1, . . . , n) has been computed. The expression forWηjνj follows from the
ηj × νj block of the equation WL = L−TD+, i.e.,[

Wηjνj Wηjαj

] [ I

Lαjνj

]
= 0,

with Lαjνj = −W+
αjαjWαjνj . Note that the indices in αj do not nec-

essarily precede those in ηj and therefore Wηjαj may contain upper
triangular entries of Wβjβj . This is the reason why a descending enu-
meration order is used in Algorithm 10.2 and not just any inverse topo-
logical order.

Algorithm 10.2 is related to several existing methods for positive
semidefinite completion [108, 206]. To show the connection we now
give a direct argument (i.e., independent of the results of the previ-
ous section and Algorithm 10.1) why the algorithm returns a positive
semidefinite completion W for any matrix A ∈ ΠE(Sn+).

First, it is clear that the result W is a completion of A because the
submatricesWγiγi , initialized as Aγiγi , are not modified during the algo-
rithm. It is therefore sufficient to show that W is positive semidefinite.
In the first cycle of the algorithm j is the root of T s. For this supernode,
αj and ηj are empty and βj = νj = γj , so step (10.13) is vacuous and
Wβjβj = Aγjγj � 0 holds by the assumption that A ∈ ΠE(Sn+). Next
suppose that Wβiβi � 0 for all i ∈ V s with i > j. The matrix Wβjβj is
equal to  Wνjνj W T

αjνj W T
ηjνj

Wαjνj Wαjαj W T
αjηj

Wηjνj Wηjαj Wηjηj

 (10.14)

up to a symmetric reordering (because elements in αj do not necessarily
precede those in ηj). We need to find a value for Wηjνj that makes this
matrix positive semidefinite. The two 2× 2 submatrices[

Wνjνj W T
αjνj

Wαjνj Wαjαj

]
,

[
Wαjαj W T

αjηj

Wηjαj Wηjηj

]
are positive semidefinite. The first matrix is equal to Aγjγj and is pos-
itive semidefinite if A ∈ ΠE(Sn+). The second matrix is a reordering
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of Wβkβk , where k is the smallest element in V s greater than j, and is
positive semidefinite by the induction hypothesis. Equivalently, using
Schur complements, we see that the blocks in these two matrices satisfy

Wαjαj � 0,
[
W T
αjνj

Wηjαj

]
=
[
W T
αjνj

Wηjαj

]
WαjαjW

+
αjαj

and
S1 = Wνjνj −W T

αjνjW
+
αjαjWαjνj � 0,

S2 = Wηjηj −WηjαjW
+
αjαjW

T
ηjαj � 0.

From these conditions, one can show that the matrix Wηjνj =
WηjαjW

+
αjαjWαjνj computed in (10.13) makes (10.14) positive semidef-

inite. This can be seen by verifying the correctness of the factorization Wνjνj W T
αjνj W T

ηjνj

Wαjνj Wαjαj W T
ηjνj

Wηjνj Wηjαj Wηjηj

 =

 I W T
αjνj 0

0 Wαjαj 0
0 Wηjαj I


 S1 0 0

0 W+
αjαj 0

0 0 S2


 I W T

αjνj 0
0 Wαjαj 0
0 Wηjαj I


T

.

Hence Wβjβj � 0. Continuing the enumeration of V s in descending
order, we establish that W is positive semidefinite.

Most algorithms for positive semidefinite completion are based on a
similar reduction to a sequence of 3×3 block completion problems with
unknown 3, 1 and 1, 3 blocks; see, for example, [108, 85, 206]. Frakt,
Lev-Ari, and Willsky [85, 234] also present an algorithm for a gener-
alization of the maximum entropy completion problem, in which the
projection ΠE′(W ) of the optimal completionW in (10.3) is computed,
where E′ is a chordal extension of the chordal pattern E. They refer
to the solution as a maximum entropy extension of A.

In some applications, it is of particular importance to find a positive
semidefinite completion with the lowest possible rank. The rank of such
a minimum rank positive semidefinite completion is upper bounded by
the so-called Gram dimension of its sparsity graph which is the smallest
integer k such that

ΠE(Sn+) ⊆ {ΠE(BBT ) | B ∈ Rn×k}.
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Laurent and Varvitsiotis [145] have shown that the Gram dimension of a
graph is upper bounded by its treewidth plus one. A direct consequence
of this is that if G = (V,E) is chordal, then every matrix in ΠE(Sn+)
has a positive semidefinite completion of rank at most ω(G), the clique
number of G.

10.4 Logarithmic barrier

The Legendre transform or conjugate of the logarithmic barrier φ(S) =
− log detS for the cone Sn+ ∩ SnE is a logarithmic barrier for its dual
cone ΠE(Sn+) [175, section 2.4]. We define the dual barrier as

φ∗(X) = sup
S∈domφ

(− tr(XS)− φ(S))

= sup
S∈Sn++∩SnE

(− tr(XS) + log detS). (10.15)

(φ∗(X) is the conjugate of φ evaluated at −X.) The optimization prob-
lem in the definition of φ∗ is a dual maximum determinant positive
definite completion problem (10.4), with A = X. Therefore the maxi-
mizer Ŝ of the problem in the definition of φ∗(X) is the inverse of the
maximum determinant positive definite completion of X. It is also the
unique positive definite solution of the nonlinear equation

ΠE(S−1) = X

with variable S ∈ SnE .
From this it follows that for chordal sparsity patterns E, the value,

gradient, and Hessian of the dual barrier φ∗(X) can be evaluated by
the algorithms we have discussed earlier. To evaluate φ∗(X), we apply
Algorithm 10.1 to find a factorization Ŝ = LDLT of the optimal Ŝ.
The value of the barrier function,

φ∗(X) = log det Ŝ − n

is readily evaluated from D (we have log det Ŝ =
∑
i logDii for a

standard Cholesky factorization and log det Ŝ =
∑
i log detDνiνi for a

supernodal factorization). The gradient and Hessian of φ∗ follow from
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properties that relate the derivatives of convex functions and their con-
jugates [175, section 2.4]:

∇φ∗(X) = −Ŝ, ∇2φ∗(X) = ∇2φ(Ŝ)−1.

The algorithmic aspects of the dual barrier computations are discussed
in more detail in [61, 9].

10.5 Sparse Bregman projection

Let h be a strictly convex and differentiable function. The generalized
distance, or D-function, or Bregman divergence associated with h is
defined as

d(u, v) = h(u)− h(v)− 〈∇h(v), u− v〉
with dom d = domh × domh. The function h is called the kernel
function for d [50, chapter 2]. Two properties follow immediately from
convexity of the kernel function. First, d(u, v) is convex in u for fixed v.
Second, d(u, v) is nonnegative for all u, v, and zero only if u = v.
However, in general, d(u, v) 6= d(v, u). For this reason, d is sometimes
called a directed distance.

A well-known example is the generalized distance for the log-det
kernel h(X) = − log detX with domh = Sn++:

dkl(U, V ) = − log detU + log detV + tr(V −1(U − V ))
= − log det(V −1U) + tr(V −1U)− n, (10.16)

defined for positive definite U , V . In information theory, dkl(U, V )/2
is known as the Kullback-Leibler (KL) divergence or relative entropy
between zero-mean normal distributions with covariance matrices U
and V [137, page 189]. Although dkl is not symmetric, one can note
that dkl(U, V ) = dkl(V −1, U−1).

In §10.2 we discussed the maximum determinant positive definite
completion of a matrix A ∈ ΠE(Sn++). The corresponding dual prob-
lem (10.4) can be written in terms of the KL divergence as

minimize dkl(Y,C−1) = dkl(C, Y −1) (10.17)

with variable Y ∈ SnE , where C is any positive definite matrix that
satisfies ΠE(C) = A. The solution Y of this problem is the inverse of
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the maximum determinant positive definite completion of ΠE(C). The
first expression for the objective of (10.17) shows that the solution Y
is the sparse positive definite matrix ‘closest’ to C−1 in the generalized
distance. This is an example of a matrix nearness problem based on
Bregman projection [71]: the solution Y is called the Bregman projec-
tion of C−1 on the set SnE . Bregman projections with KL divergence
are useful when positive definite approximations with certain proper-
ties (in our case, sparsity) are needed. The second expression for the
objective in (10.17) shows that the maximum determinant positive def-
inite completion Y −1 of ΠE(C) can be thought of as an approximation
of C, in the sense that it minimizes dkl(C, Y −1).

If the sparsity pattern E is chordal, the optimal Y (more precisely, a
Cholesky factorization of Y ) can be found via Algorithm 10.1, roughly
at the same cost as a sparse Cholesky factorization of a positive definite
matrix with the same sparsity pattern. Moreover, the algorithm only
requires knowledge of ΠE(C), not the entire matrix C or C−1.

Bregman projection on sets of chordal sparse matrices is useful in
numerical linear algebra and nonlinear optimization, since it provides
an inexpensive method for approximating the inverse C−1 of a dense
positive definite matrix C by a sparse positive definite matrix Y . An ap-
plication to band patterns is discussed in [170]. In [12] the idea was used
in a fast approximate interior-point solver for large quadratic programs
with dense Hessian matrices, with applications in machine learning.

The sparse Bregman projection has an interesting tie to matrix
approximation via partial Cholesky factorization. Suppose we compute
the first k columns of the Cholesky factorization of a positive definite
matrix C of order n, i.e., we factor C as

C =
[
C11 CT21
C21 C22

]
=
[
L1 0
L2 I

] [
D1 0
0 S

] [
LT1 LT2
0 I

]
(10.18)

where C11, L1, and D1 are k × k with L1 unit lower triangular and D
positive diagonal, and

S = C22 − L2DL
T
2 = C22 − C21C

−1
11 C

T
21

is the Schur complement of C11 in C. Then, if we define D2 as the diag-
onal matrix with the diagonal entries of S (i.e., D2 = diag(diag(S))),
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we obtain an approximation of C by substituting D2 for S in (10.18):

X =
[
X11 XT

21
X21 X22

]

=
[
L1 0
L2 I

] [
D1 0
0 D2

] [
LT1 LT2
0 I

]

=
[
C11 CT21
C21 D2 + L2D1L

T
2

]
.

The approximation X clearly satisfies ΠE(X) = ΠE(C) if we define
E to be the block-arrow sparsity pattern (see §8) with dense 11-, 12-,
and 21-blocks, and diagonal 22-block, i.e., cliques {1, . . . , k, k + i} for
i = 1, . . . , n− k. In other words, X satisfies

X11 = C11, X21 = C21, diag(X22) = diag(C22).

In fact, X is the maximum determinant positive definite completion of
ΠE(C). This follows from the optimality conditions (10.5) by noting
that the inverse of X, given by

Y = X−1 =
[
L−T1 (D−1

1 + LT2 D
−1
2 L2)L−1

1 −L−T1 LT2 D
−1
2

−D−1
2 L2L

−1
1 D−1

2

]
,

is sparse with sparsity pattern E. Matrix approximation by means of
partial Cholesky factorization can therefore be viewed as a special case
of sparse matrix approximation via KL divergence minimization.

The partial Cholesky factorization technique can be combined with
symmetric pivoting to adaptively choose which columns of the matrix C
to use for the approximation. One such approach is to greedily select the
next column to include in the partial factorization based on the largest
diagonal element of diag(S). This approach has been used to compute
preconditioners for large, dense positive definite systems of equations
[102, 23]. It has also been used in the context of nonlinear support
vector machine training to compute an approximate factorization of a
large, dense kernel matrix [81].
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10.6 Sparse quasi-Newton updates

Variable metric methods for unconstrained minimization of smooth
functions f take the form

xk+1 = xk − tk(Bk)−1∇f(xk) (10.19)

where tk > 0 is a step size and Bk is a positive definite approximation
of the Hessian ∇2f(xk). Quasi-Newton methods are variable metric
methods that update Bk or its inverse Hk at each iteration, based on
changes in the gradient, by imposing the secant condition

Bk+1sk = yk,

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk) [70][177, chap-
ter 6]. The most widely used quasi-Newton method uses the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) update

B+ = B + 1
yT s

yyT − 1
sTBs

BssTB (10.20)

H+ = (I − 1
sT y

syT )H(I − 1
sT y

ysT ) + 1
sT y

ssT , (10.21)

where we omit the superscripts in Bk, Hk, yk, sk, and write B+ =
Bk+1, H+ = Hk+1. Switching y and s, and B and H in these formulas
gives the Davidon-Fletcher-Powell (DFP) quasi-Newton update

B+ = (I − 1
sT y

ysT )B(I − 1
sT y

syT ) + 1
sT y

yyT (10.22)

H+ = H + 1
yT s

ssT − 1
yTHy

HyyTH. (10.23)

Fletcher [83] has observed that the BFGS update (10.20) is the solution
of the optimization problem

minimize dkl(X,B)
subject to Xs = y

(10.24)

with variable X ∈ Sn, i.e., the Bregman projection on the affine set de-
fined by the secant equation. Similarly, the DFP update H+ in (10.23)
is the Bregman projection of H on the affine set {X ∈ Sn | Xy = s}.
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Several authors have proposed modified quasi-Newton updates that
incorporate sparsity constraints on Bk with the goal, for example, to
impose the sparsity pattern of the true Hessian ∇2f(x) on the approx-
imate Hessian. Early references on this subject include [200, 219, 202].
Fletcher’s variational characterization of the BFGS update suggests
two approaches based on Bregman projections. A first approach, pro-
posed in [84], is to start with a sparse positive definite matrix B0 and,
at each iteration, define B+ = Bk+1 as the projection of B = Bk on the
set {X ∈ SnE | Xs = y}, the matrices that satisfy the secant condition
and have the desired sparsity pattern. This corresponds to restricting
the optimization variable in (10.24) to the set SnE , and requires solving
the convex optimization problem

minimize tr(B−1X)− log detX
subject to Xs = y

(10.25)

with variable X ∈ SnE (and the implicit constraint X � 0). Unfortu-
nately, there is no simple formula for the sparse BFGS update, analo-
gous to the dense BFGS update formula (10.20), and problem (10.25)
must be solved via numerical optimization. A second difficulty is that
feasibility of the sparse problem is more difficult to guarantee than
in the dense problem (where it is sufficient that sT y > 0, a condi-
tion that is automatically satisfied when f is strictly convex). A dual
method for (10.25) that can exploit the chordal matrix techniques of
§10.2 would work as follows. The Lagrange dual function of (10.25) is

g(ν) = −yT ν + inf
X∈Sn++∩SnE

(tr(B−1X)− log detX + νTXs)

= −yT ν − φ∗
(

ΠE(B−1) + 1
2ΠE(νsT + sνT )

)
,

where φ∗ is the logarithmic barrier function for the cone ΠE(Sn+) de-
fined in (10.15). The variable ν is the multiplier for the equality con-
straint in (10.25). The dual problem is to maximize g(ν):

maximize − yT ν − φ∗
(

ΠE(B−1) + 1
2ΠE(νsT + sνT )

)
. (10.26)

This is an unconstrained differentiable problem that can be solved by
a first-order algorithm. As we saw in §10.4, evaluating φ∗ and its gradi-
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ent involves a maximum determinant matrix completion problem. The
relevant expressions are

g(ν) = −yT ν − log det X̂ + n, ∇g(ν) = −y + X̂s

where X̂ is the inverse of the maximum determinant positive definite
completion of the matrix

ΠE(B−1) + 1
2ΠE(sνT + νsT ). (10.27)

The matrix ΠE(B−1) is the projection of the inverse of a sparse pos-
itive definite matrix. If the sparsity pattern E is chordal, the matrix
ΠE(B−1) can be computed by Algorithm 9.3. A factorization of the in-
verse X̂ of the maximum determinant completion of the matrix (10.27)
can be computed by Algorithm 10.1, and from this one readily obtains
g(ν) and ∇g(ν). Hence, the complexity of one iteration of a first-order
method for the dual problem (10.26) is roughly equal to the cost of
a sparse Cholesky factorization of a matrix with sparsity pattern E.
When evaluated at the dual optimal ν, the matrix X̂ gives the solution
of (10.25).

A more recent Bregman projection method that overcomes some
of the limitations of the first method is the matrix completion quasi-
Newton method of Yamashita [239, 62]. Here the update B+ is com-
puted by Bregman projection of the standard dense BFGS update
of B, given by the right-hand side of (10.20), on SnE . In other words,
B+ = Bk+1 is the solution of

minimize tr(B̄−1X)− log detX (10.28)

with variable X ∈ SnE , where

B̄−1 = (I − 1
sT y

syT )B−1(I − 1
sT y

ysT ) + 1
sT y

ssT

= B−1 − 1
sT y

(syTB−1 +B−1ysT ) + 1
sT y

(1 + yT y

sT y
)ssT (10.29)

and B = Bk. Problem (10.28) can be solved by Algorithm 10.1, which
returns a sparse Cholesky factorization of the solution X. The algo-
rithm takes ΠE(B̄−1) as input. From (10.29) we see that this requires
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ΠE(B−1), which can be computed from the Cholesky factors of B via
Algorithm 9.3, and the projection of three rank-one matrices. Note
that B−1y is also easily computed using the Cholesky factorization
of B. Kanamori and Ohara [123, 124] have used a similar approach
to generalize BFGS and DFP quasi-Newton updates by allowing other
Bregman divergences than the KL-divergence.



11
Correlation and Euclidean Distance Matrices

11.1 Correlation matrices

A correlation matrix is a positive semidefinite matrix with diagonal
entries equal to one. As the name suggests, correlation matrices arise
in statistics. If x is a random vector variable with mean a = Ex and
covariance Σ = E(x− a)(x− a)T , then the matrix of correlation coef-
ficients

Aij = Σij√
ΣiiΣjj

is positive semidefinite with unit diagonal. Correlation matrices can
also be interpreted geometrically, as Gram matrices of sets of unit-
norm vectors yi, i = 1, . . . , n. The component-wise cosine of A gives
the matrix of pairwise angles cosAij = ∠(yi, yj) between the vectors.
Conversely, if A is a correlation matrix then a factorization A = Y TY

provides a set of unit-norm vectors with Aij = yTi yj . Correlation ma-
trices are also important in combinatorial optimization [98, 143] and
much is known about their geometry [109, 144].

In a correlation matrix completion problem one is given a sparse
matrix with unit diagonal A and is asked to find a correlation matrix
X with ΠE(X) = A. Geometrically, we are given a set of angles θij ,
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{i, j} ∈ E, and are asked to find a set of n vectors with ∠(yi, yj) =
θij for {i, j} ∈ E. This is a special case of the positive semidefinite
completion problem studied in section 10. (Recall that in the positive
semidefinite completion problem, the diagonal entries are among the
specified entries, i.e., the constraint ΠE(X) = A always includes Xii =
Aii; see definition (9.13).) In particular, if E is a chordal pattern, then
a matrix A ∈ SnE has a correlation matrix completion if and only if for
every clique β in the sparsity graph the submatrix Aββ is a correlation
matrix.

11.2 Euclidean distance matrices

A Euclidean distance matrix (EDM) is a symmetric matrix whose en-
tries can be expressed as squared pairwise Euclidean distances of a set
of points: A ∈ Sn is an EDM if there exist vectors y1, . . . , yn such that

Aij = ‖yi − yj‖22, i, j = 1, . . . , n. (11.1)

The dimension of the vectors yi is arbitrary. We refer to the set of
points {y1, . . . , yn} as a realization of the Euclidean distance matrix.
Euclidean distance matrices arise in several important applications and
have been studied extensively; see [136] for a recent survey.

Expanding the square in (11.1) we see that A is an EDM if and
only if its coefficients can be expressed as

Aij = yTi yi + yTj yj − 2yTi yj ,

for a set of points y1, . . . , yn. The right-hand side only involves the
inner products yTi yj and is a linear function of these inner products. In
matrix notation, A is an EDM if and only if

A = diag(Y )1T + 1 diag(Y )T − 2Y (11.2)

for some positive semidefinite Y , i.e., the Gram matrix

Y =
[
y1 y2 · · · yn

]T [
y1 y2 · · · yn

]
.

This shows that the set of Euclidean distance matrices is the image
of a convex cone under a linear transformation, and therefore itself a
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convex cone. We will refer to a positive semidefinite matrix Y that
satisfies (11.2) as a Gram matrix for A.

From the definition (11.1) it is clear that realizations and Gram
matrices are not unique. In particular, an EDM is invariant with respect
to translations of the points yi, so the origin in the realization space
can be chosen arbitrarily. Without loss of generality, we can therefore
impose the condition that the origin is at a given affine combination
of the points in the realization, i.e.,

∑
i µiyi = 0 (hence, Y µ = 0) for

some given µ with 1Tµ = 1. Given any realization ỹ1, . . . , ỹn, we find a
realization y1, . . . , yn with

∑
i µiyi = 0, by taking yi = ỹi −

∑n
j=1 µj ỹj

for i = 1, . . . , n. The Gram matrix Y of the points yi is related to the
Gram matrix Ỹ for ỹi via

Y = (I − 1µT )Ỹ (I − µ1).

With the extra condition Y µ = 0, the Gram matrix is uniquely deter-
mined from (11.2): if Y satisfies (11.2), and Y µ = 0, 1Tµ = 1, then

Y = (I − 1µT )Y (I − µ1T )

= −1
2(I − 1µT )

(
diag(Y )1T + 1 diag(Y )T − 2Y

)
(I − µ1T )

= −1
2(I − 1µT )A(I − µ1T ).

Several classical characterizations of Euclidean distance matrices
are due to Schoenberg [197, 198].

Theorem 11.1. A symmetric matrix A of order n is a Euclidean dis-
tance matrix if and only if

diag(A) = 0, QTAQ � 0 (11.3)

where Q is a matrix whose columns span the orthogonal complement
of 1 (i.e., Q satisfies 1TQ = 0 and rank(Q) = n− 1).

Proof. Suppose A is an EDM and let Y be a Gram matrix for A, i.e., a
positive semidefinite matrix that satisfies (11.2). Clearly, diag(A) = 0.
Suppose Q satisfies 1TQ = 0. Then

QTAQ = QT
(
diag(Y )1T + 1 diag(Y )T − 2Y

)
Q

= −2QTY Q.
� 0.
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To show that the conditions (11.3) are sufficient we make a spe-
cific choice Q = I − µ1T , where µ is a vector that satisfies 1Tµ = 1.
(Any other matrix Q with the same column space as I − µ1T gives
an equivalent condition QTAQ � 0. The inequality QTAQ � 0 means
that A is negative semidefinite on the complement of 1, i.e., xTAx ≤ 0
if 1Tx = 0.) Suppose A is a symmetric matrix with diag(A) = 0 and

(I − 1µT )A(I − µ1) � 0.

We show that the positive semidefinite matrix

Y = −1
2(I − 1µT )A(I − µ1T )

= −1
2
(
A− 1µTA−Aµ1T + (µTAµ)11T

)
satisfies (11.2) and therefore is a Gram matrix for A:

diag(Y )1T + 1 diag(Y )T − 2Y

= (Aµ− µTAµ

2 1)1T + 1(Aµ− µTAµ

2 1)T +A

− 1µTA−Aµ1T + (µTAµ)11T

= A.

�

The condition (I − 1µT )A(I − µ1T ) � 0 with µ = e1 appears in
[197]. Choosing µ = (1/n)1 gives the criterion in [198].

11.3 Euclidean distance matrix completion

There is a well-studied Euclidean distance matrix completion problem,
analogous to the positive semidefinite completion problem [141, 3]. In
the EDM completion problem we express a sparse matrix as the pro-
jection of a Euclidean distance matrix on the sparsity pattern: given
A ∈ SnE , the problem is to find a Euclidean distance matrix X such
that

ΠE(X) = A.

The following fundamental result was proved by Bakonyi and Johnson
[18, theorem 3.3].
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Theorem 11.2. Let E be a chordal sparsity pattern of order n. A
matrix A ∈ SnE has an EDM completion if and only if for every clique
β of the sparsity graph, the matrix Aββ is a Euclidean distance matrix.

We show the result by adapting Algorithm 10.2 to compute an EDM
completion for a matrix A that satisfies the condition in Theorem 11.2.
We make the assumptions and use the notation of §8.2.

Algorithm 11.1 (Euclidean distance matrix completion).

Input. An EDM-completable matrix A ∈ SnE , where G = (V,E) is
a chordal sparsity pattern with perfect elimination ordering σ =
(1, 2, . . . , n), and a postordered supernodal elimination tree for Gσ.

Output. A Euclidean distance matrix completion X.
Algorithm. Initialize X as X := A. Enumerate the vertices j ∈ V s in

descending order. For each non-root j we compute Xηjνj by the fol-
lowing two steps (ηj is empty at the root vertex j, so there is nothing
to compute).

1. Define µ = ea(j) where a(j) is the first ancestor of supernode j
(the first element of αj). Compute the submatrices Yαjνj , Yαjαj ,
Yηjαj of the matrix on the left-hand side of the equation
× × × ×
× Yνjνj Yνjαj ×
× Yαjνj Yαjαj Yαjηj
× × Yηjαj Yηjηj

 =

−1
2(I − 1µT )


× × × ×
× Xνjνj Xνjαj ×
× Xαjνj Xαjαj Xαjηj

× × Xηjαj Xηjηj

 (I − µ1T ), (11.4)

as well as the diagonals of the matrices Yνjνj , Yηjηj . (The ‘×’ en-
tries on the right-hand side indicate blocks that have not yet been
computed at this point; the × entries on the left are irrelevant.)

2. Complete the ηj × νj block of X by taking

Xηjνj = −2YηjαjY +
αjαjYαjνj

+ 1 diag(Yνjνj )T + diag(Yηjηj )1T . (11.5)

Note that after the initialization the algorithm does not modify the
submatrices Xγjγj , so ΠE(X) = A holds on exit and it is sufficient to
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show that the result X is an EDM if the matrix A is EDM-completable,
i.e., if Aγjγj is an EDM for all j ∈ V s. We verify by induction that after
processing the supernode represented by j ∈ V s, the matrixXβjβj , with
βj = {j, j+1, . . . , n}, is an EDM. This property holds trivially if j is the
root of the elimination tree, since then βj = νj = γj and Xβjβj = Aγjγj .

Suppose Xβiβi is an EDM for all i ∈ V s with i > j. Since a(j) is the
first element of αj , we have from (11.4) and the results of the previous
section that[

Yαjαj Yαjηj
Yηjαj Yηjηj

]
= −1

2(I − 1eT1 )
[
Xαjαj Xαjηj

Xηjαj Xηjηj

]
(I − e11T )

� 0. (11.6)

Similarly, if k = |νj |+ 1,[
Yνjνj Yνjαj
Yαjνj Yαjαj

]
= −1

2(I − 1eTk )
[
Xνjνj Xνjαj

Xαjνj Xαjαj

]
(I − ek1T )

= −1
2(I − 1eTk )

[
Aνjνj Aνjαj
Aαjνj Aαjαj

]
(I − ek1T )

� 0. (11.7)

As we have seen in §10.3, the inequalities (11.6) and (11.7) guarantee
that the matrix

W =

 Yνjνj Yνjαj Yνjηj
Yαjνj Yαjαj Yαjηj
Yηjνj Yηjαj Yηjηj


is positive semidefinite if we define Yηjνj = YηjαjY

+
αjαjYαjνj . The EDM

for which W is a Gram matrix is given by the formula Xνjνj Xνjαj Xνjηj

Xαjνj Xαjαj Xαjηj

Xηjνj Xηjαj Xηjηj

 =

−2W + 1 diag(W )T + diag(W )1T . (11.8)

The Xηjνj block of this equation gives the formula (11.5) in step 2 of
the algorithm. (The other blocks are the same as at the start of cycle j.)
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Up to a symmetric reordering, the matrix (11.8) is equal to Xβjβj . This
completes the proof that Xβjβj is an EDM.

If E is not chordal, the condition in Theorem 11.2 is necessary
but not sufficient. A counterexample can be constructed as for posi-
tive semidefinite completions in §10.1; see [18, page 651]. Suppose the
sparsity graph has a chordless cycle (1, 2, . . . , k, 1) with k > 3. Take
A ∈ SnE to have zero diagonal,

Ai,i+1 = Ai+1,i = 0, i = 1, . . . , k − 1, A1k = Ak1 = 1, (11.9)

Aij = Aji = 1 for all edges {i, j} ∈ E with i ≤ k and j > k, and
Aij = Aji = 0 for edges {i, j} with i, j > k. This matrix A does not
have an EDM completion, because (11.9) would impose the conditions

‖y1 − y2‖2 = ‖y2 − y3‖22 = · · · = ‖yk−1 − yk‖2 = 0, ‖y1 − yk‖22 = 1

on any realization of an EDM completion. However, one can verify that
Aββ is an EDM for every clique β. Every clique β contains at most one
edge of the chordless cycle (1, 2, . . . , k, 1) because a second edge would
create a chord. Therefore the matrix Aββ is either zero (if β contains
no vertices from {1, 2 . . . , k}), or it has one of the following three forms,
which are all EDMs:

Aββ =
[

0 1T
1 0

]
, Aββ =

 0 0 1T
0 0 1T
1 1 0

 , Aββ =

 0 1 1T
1 0 1T
1 1 0

 .
The first case occurs when β contains one vertex from {1, . . . , k}, the
second case when β contains two vertices i, i+1, with i ∈ {1, . . . , k−1},
and the third case when β contains the vertices 1 and k.



12
Partial Separability in Convex Optimization

12.1 Partial separability

Griewank and Toint, in work on structured quasi-Newton algorithms,
considered functions that can be decomposed as sums of elementary
functions, where each elementary function only depends on a small
subset of the variables; see [104, 105, 106] and the more recent discus-
sion in [127]. They defined a function f : Rn → R as partially separable
if it can be expressed as

f(x) =
l∑

k=1
fk(Akx) (12.1)

where each matrix Ak has a high-dimensional nullspace. A special case
is the class of functions of the form

f(x) =
l∑

k=1
fk(Pβkx) (12.2)

where the sets βk are (small) index sets in {1, 2, . . . , n}. We will use the
term partial separability in this second, more restricted, sense. Recall
that Pβkx = (xβk(1), . . . , xβk(rk)) if βk = (βk(1), . . . , βk(rk)), so the kth
term in (12.2) depends on a subset of |βk| of the variables.

380
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In Chapter 7 we have already discussed partially separable functions
of discrete variables. Here we describe some applications in continuous
optimization that have a connection to chordal graphs and graph elimi-
nation. As in Chapter 7 we associate with the partially separable struc-
ture an undirected interaction graph G = (V,E) with V = {1, 2, . . . , n}
and edge set E = {{i, j} | {i, j} ∈ βk for some βk}. The vertices in this
graph represent the variables of f ; two vertices i and j are adjacent if
the variables xi and xj appear as arguments in the same elementary
function fk. Absence of an edge {i, j} therefore indicates that the func-
tion f is separable in the variables xi and xj , if the other variables are
held fixed. More precisely, if i and j are not adjacent, then the equality

f(x+ sei + tej) = f(x+ sei) + f(x+ tej)− f(x) (12.3)

holds for all x ∈ Rn, s, t ∈ R for which x, x + sei, x + tej ∈ dom f ,
where ei and ej are the ith and jth unit vectors in Rn. To see this, we
expand f using (12.2):

f(x+ sei + tej) =
∑
i∈βk

fk(x+ sei) +
∑
j∈βk

fk(x+ tej) +
∑
i,j 6∈βk

fk(x)

=
∑
i∈βk

fk(x+ sei) +
∑
j∈βk

fk(x) +
∑
i,j 6∈βk

fk(x)

+
∑
i∈βk

fk(x) +
∑
j∈βk

fk(x+ tej) +
∑
i,j 6∈βk

fk(x)

−
∑
i∈βk

fk(x)−
∑
j∈βk

fk(x)−
∑
i,j 6∈βk

fk(x)

and this is equal to (12.3). On the first line we partition the index sets
in three groups, using the fact that no βk contains i and j.

Note that the interaction graph G does not capture the complete
partially separable structure (12.2). For example, if n = 3, the interac-
tion graph for n = 3, l = 3, β1 = (1, 2), β2 = (2, 3), β3 = (1, 3), is the
complete graph with three vertices, and is identical to the interaction
graph for l = 1, β1 = (1, 2, 3). More generally, a function can have a
complete interaction graph and be partially separable with elementary
functions that only depend on pairs of variables. A quadratic function
with a dense Hessian is an example. When analyzing partial separabil-
ity via the interaction graph, one can therefore assume that the sets βk
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are cliques of the interaction graph, since any finer partial separability
structure is ignored in a graphical analysis.

If the elementary functions fk in (12.2) are convex and twice differ-
entiable, then the Hessian of f has the form

∇2f(x) =
l∑

k=1
P TβkHkPβk , (12.4)

where Hk = ∇2fk(Pβkx), so ∇2f(x) is positive semidefinite with spar-
sity pattern G. The decomposition theorem for positive semidefinite
matrices (Theorem 9.2) shows that for chordal sparsity patterns the
converse holds: if ∇2f(x) is positive semidefinite with a chordal spar-
sity graphG, then it can be decomposed in the form (12.4) with positive
semidefinite matrices Hk, where the sets βk are the cliques of G. This
was the motivation that led to the theorem in [106]. The construction
of the counterexample on page 342 shows the importance of chordality.
Consider, for example, the quadratic function

f(x1, x2, x3, x4) = λ(x2
1 +x2

2 +x2
3 +x2

4) + 2(x1x2 +x2x3 +x3x4−x1x4).

The function is partially separable with index sets β1 = (1, 2), β2 =
(2, 3), β3 = (3, 4), β4 = (1, 4) and its interaction graph is a chordless
cycle of length 4. The general form of a decomposition of f as a partially
separable sum with quadratic elementary functions is

f(x) =
[
x1
x2

]T [
u1 1
1 λ− u2

] [
x1
x2

]

+
[
x2
x3

]T [
u2 1
1 λ− u3

] [
x2
x3

]

+
[
x3
x4

]T [
u3 1
1 λ− u4

] [
x3
x4

]

+
[
x1
x4

]T [
λ− u1 −1
−1 u4

] [
x1
x4

]
,

where the parameters u1, u2, u3, u4 can be chosen arbitrarily. As shown
in §9.2, if

√
2 ≤ λ < 2, then the function f is convex but there exist no
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values of u1, u2, u3, u4 that make all four terms in the decomposition
convex.

The convex conjugate of a partially separable function possesses an
interesting type of dual partial separability structure. It can be shown
that if the functions fk in (12.2) are convex and there exists an element
x̄ with Pβk x̄ in the relative interior of dom fk for k = 1, . . . , l, then the
conjugate of f is

f∗(s) = inf{
l∑

k=1
f∗k (s̃k) |

l∑
k=1

P Tβk s̃k = s}.

Moreover, for each s the minimum in the expression for f∗(s) is attained
if it is finite [192, theorem 16.3].

Partial separability, and an extension called group partial separa-
bility, are exploited in nonlinear optimization modeling software [56],
quasi-Newton and trust-region algorithms [104, 105], [177, section 7.4]
[57, page 360], and automatic differentiation algorithms [107, section
11.2]. It also plays an important role in sparse semidefinite relaxations
of polynomial optimization problems [131, 128, 228, 140, 229, 125]. The
authors of [228, 229, 125] consider polynomial optimization problems

minimize
m∑
k=1

fk(Pβkx)

subject to fk(Pβkx) ≤ 0, k = m+ 1, . . . , l,

where f1, . . . , fm are monomials and fm+1, . . . , fl are polynomials.
They refer to the interaction graph defined by the index sets β1, . . . ,
βl as the correlative sparsity graph. They use a chordal extension of
the correlative sparsity graph to define a sparse semidefinite relaxation
that involves sums of squares of polynomials, where each polynomial
depends only on the variables indexed by the vertices in a clique of the
chordal extension.

12.2 Partially separable matrix cones

The definition of partial separability can be extended to sets, by defin-
ing a partially separable set as a set with a partially separable indi-
cator function. Hence, a set C in Rn is partially separable if it can be
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Figure 12.1: Left. A chordal sparsity pattern G′ = (V ′, E′) of order 6. Center.
Clique tree with the four cliques γ1, . . . , γ4 of G′. Right. Clique tree for the inter-
action graph G = (V,E) where V are the positions of the lower-triangular nonzeros
in the sparsity pattern (denoted by their row and column indices). Two elements
(i1, j1) and (i2, j2) of V are adjacent in G if i1, j1, i2, j2 ∈ γk for some k.

expressed as

C = {x ∈ Rn | Pβkx ∈ Ck, k = 1, . . . , l}, (12.5)

where each Ck is a set in R|βk|. The indicator function of C is the
partially separable function

δC(x) =
l∑

k=1
δCk(Pβkx).

(We use the notation δS(x) for the 0-∞ indicator function of a set S,
i.e., the function with domain S and value δS(x) = 0 for x ∈ S.)

In §10.1 and §11.3 we have encountered two important exam-
ples of partially separable convex cones. Theorem 10.1 states that a
sparse symmetric matrix with a chordal sparsity pattern has a positive
semidefinite completion if and only if all its dense principal subma-
trices are positive semidefinite. Theorem 11.2 gives a similar decom-
position result for sparse matrices with a Euclidean distance matrix
completion. Figure 12.1 illustrates how this defines a partially separa-
ble structure with chordal interaction graph. It shows a sparsity pattern
G′ = (V ′, E′) of order 6. The graph G′ is chordal and the numerical
ordering σ = (1, 2, 3, 4, 5, 6) is a perfect elimination ordering. There are
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four cliques γ1 = (1, 3, 4), γ2 = (2, 4), γ3 = (3, 4, 5), γ4 = (5, 6). Each
of these cliques defines a maximal ‘dense’ principal submatrix in the
sparsity pattern. The tree in the center of the figure is a clique tree
with the induced subtree property. We can associate with the spar-
sity pattern G′ a second graph G = (V,E), that has as its vertices
the positions of the 13 lower-triangular nonzero entries as its vertices.
Two vertices (i1, j1) and (i2, j2) are adjacent in G if there is a clique
γk of G′ that contains all of the indices i1, j1, i2, j2. In other words,
{(i1, j1), (i2, j2)} ∈ E if (i1, j1) and (i2, j2) are nonzero positions in
some dense principal submatrix of the sparsity pattern. The cliques in
G are the sets {(i, j) ∈ γk × γk | i ≥ j} for k = 1, . . . , l. The kth clique
of G contains the lower-triangular positions in the maximal dense prin-
cipal submatrix indexed by γk × γk. The graph G is chordal and there
is a direct correspondence between clique trees for G and G′.

To be more specific about how the two matrix cones are special
cases of (12.5), we introduce some vector notation for sparse symmetric
matrices. For A ∈ SpE′ , we define vecE′(A) as the vector of length n =
|E′|+p containing the diagonal entries and the lower-triangular entries
Aij for {i, j} ∈ E, in some arbitrary but fixed ordering, and with the off-
diagonal elements scaled by

√
2, so that tr(AB) = vecE′(A)TvecE′(B)

for all A,B ∈ SpE . A similar notation vec(A) (without subscript) is used
for a dense symmetric matrix A ∈ Sr to denote the r(r + 1)/2-vector
with the lower-triangular elements Aij in some ordering, and with the
off-diagonal elements scaled by

√
2.

Now consider the cone ΠE′(Sp+) of sparse matrices that have a pos-
itive semidefinite completion, where E′ is a chordal sparsity pattern.
Suppose the sparsity graph G′ = ({1, 2, . . . , p}, E′) has l cliques. Let
γk, k = 1, . . . , l, be an index set in {1, 2, . . . , p} with the elements of the
kth clique, ordered numerically. For each clique γk we define an index
set βk in {1, 2, . . . , n} with the indices in the n-vector vecE′(A) of the
entries of the corresponding principal submatrix Aγkγk . In other words,
βk is defined by requiring that the identity

PβkvecE′(A) = vec(Aγkγk), (12.6)

holds for all A ∈ SpE′ . With this vector notation, we can express the
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decomposition result of Theorem 9.2 as (12.5) with

C = {vecE′(X) | X ∈ ΠE′(Sp+)}, Ck = {vec(A) | A ∈ S|γk|+ }.

Here C is the sparse matrix cone ΠE′(Sp+) in vector form; the cones
Ck are dense positive semidefinite cones in vector form. The cone of
EDM-completable matrices in SpE′ can be represented in a similar way,
with

C = {vecE′(X) | X ∈ ΠE(Spd)}, Ck = {vec(A) | A ∈ S|γk|d }.

where Srd denotes the set of Euclidean distance matrices of order r.
Since we start from a chordal sparsity graph G′, the interaction graph
G defined by the index sets βk in (12.6) is also chordal, with cliques βk.

12.3 Decomposition

In this section we discuss some applications of partial separability in
decomposition and splitting algorithms for convex optimization. We
use the same notation as in the previous sections and define P as the
stacked matrix

P =


Pβ1

Pβ2
...
Pβl

 . (12.7)

Note that the matrix P TP is diagonal with diagonal elements

(P TP )ii = |{k | i ∈ βk}|, (12.8)

the number of index sets βk that contain the index i. We assume that
each variable index appears in at least one index set, so rank(P ) = n.

We consider the problem of minimizing the partially separable func-
tion f given in (12.2), with convex elementary functions fk. If the index
sets βk are disjoint, the problem is separable and reduces to l indepen-
dent minimization problems that can be solved in parallel. To achieve
a similar decomposition for the general problem one starts with the
reformulation

minimize
l∑

k=1
fk(x̃k)

subject to x̃ = Px
(12.9)
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where x̃ = (x̃1, x̃2, . . . , x̃l) ∈ R|β1| × R|β2| × · · · × R|βl| is a new vari-
able. A variety of primal, dual, and primal-dual splitting algorithms can
be used to exploit the separability of the objective function in (12.9).
We discuss a primal application of the Douglas-Rachford splitting al-
gorithm [151, 77] [21, section 25.2]. Problem (12.9) can be viewed as a
minimization of the sum of two convex functions:

minimize f̃(x̃) + δV(x̃) (12.10)

where f̃(x̃) =
∑l
k=1 fk(x̃k) and δV is the indicator function of the

subspace V = range(P ). The Douglas-Rachford algorithm applied
to this problem is also known as the method of partial inverses
[207, 208, 77, 182]. It alternates between two steps: the evaluation of
the proximal mapping of the separable objective function f̃ and the
Euclidean projection on the subspace V. The proximal mapping of f̃ is
the direct product of the proximal mappings of the l functions fk and
is defined as

proxtf̃ (x̃1, x̃2, . . . , x̃l) =(
proxtf1(x̃1), proxtf2(x̃2), . . . , proxtfl(x̃l)

)
, (12.11)

where t > 0 and

proxtfk(x̃k) = argmin
u

(
fk(u) + 1

2t‖u− x̃k‖
2
2

)
, k = 1, . . . , l.

If fk is closed and convex, then the minimizer in the definition can
be shown to exist and be unique for all values of x̃k [167]. For rela-
tively simple functions fk, the proximal mappings can be evaluated via
closed-form expressions; see [55, 54, 181] for surveys. For more com-
plicated functions, they can be computed by numerical optimization
algorithms. In either case, it is important that the calculation of proxtf̃
in (12.11) involves l independent proximal operator evaluations that
can be computed in parallel. The second step in each iteration of the
Douglas-Rachford algorithm requires the Euclidean projection

ΠV(x̃) = P (P TP )−1P T x̃ (12.12)

of a vector x̃ on V. The projection is a composition of two steps: the
evaluation of the n-vector y = (P TP )−1P T x̃, followed by the matrix-
vector product Py. The first step is a straightforward componentwise
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averaging. The ith component of y can be expressed as

yi = 1
|Ni|

∑
k∈Ni

(x̃k)jk

where Ni = {k | i ∈ βk} and for each k ∈ Ni we define jk = β−1
k (i) (in

other words, jk is the index that satisfies βk(jk) = i). If we interpret the
vectors x̃k as inaccurate copies of subvectors Pβkx of a vector x, then y
is the estimate of x obtained by taking the average of all available copies
of xi. From the average vector y, we compute (12.12) as ΠV(x̃) = Py =
(Pβ1y, Pβ2y, . . . , Pβly). This simply extracts the l subvectors yβk of y.
For more details on the Douglas-Rachford method for solving (12.9) we
refer the reader to [212], where the method was used in a decomposition
algorithm for conic optimization with partially separable constraints.

An alternative to the primal Douglas-Rachford method is the alter-
nating direction method of multipliers (ADMM) [96, 90, 77, 44]. This
method is known to be equivalent to the Douglas-Rachford method
applied to the dual of (12.10) [89]. The dual can be written as

maximize −
l∑

k=1
f∗k (s̃k)

subject to P T s̃ = 0,
(12.13)

where f∗k is the convex conjugate of fk and s̃ = (s̃1, s̃2, . . . , s̃l) with s̃k ∈
R|βk|. In the dual problem we maximize a separable concave function
over V⊥. The main computations in the ADMM algorithm are similar
to the primal Douglas-Rachford algorithm, so we omit the details.

With additional assumptions on the functions fk, several other
types of first-order splitting algorithms can be applied to exploit the
separability of the objective function in (12.9), including the dual prox-
imal gradient method [220, 221] and the dual block coordinate ascent
method [222]. Applications to symmetric sparse matrix nearness prob-
lems are discussed in [213].

So far we have not made any assumptions of chordal structure in our
discussion of problem (12.9). Chordal structure in the interaction graph
is useful because it makes it easy to derive a compact representation
of the subspaces V = range(P ) and V⊥ = nullspace(P T ). We will use
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Figure 12.2: Left and center. Interaction graph for 7 variables and index sets
β1 = (2, 3, 5), β2 = (1, 3, 5, 6), β3 = (4, 6, 7), β4 = (5, 6, 7). Right. Clique tree.

the example in Figure 12.2 to explain the idea. The figure shows an
interaction graph with 7 variables and index sets

β1 = (2, 3, 5), β2 = (1, 3, 5, 6), β3 = (4, 6, 7), β4 = (5, 6, 7).

The interaction graph is chordal with cliques β1, β2, β3, β4. The figure
also shows a clique tree with the induced subtree property. The matrix
P is given by

P T =
[
P Tβ1

P Tβ2
P Tβ3

P Tβ4

]

=



0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1


.

First consider the constraint (x̃1, . . . , x̃l) ∈ V = range(P ). This is sat-
isfied if there exists an x such that x̃k = Pβkx, k = 1, . . . , l, i.e., the l
vectors x̃k are copies of different subvectors of one n-vector x. By the
induced subtree property, the cliques βk that contain a given index i
form a subtree of the clique tree. To enforce the constraint that the
different copies of x1, . . . , xn are all equal it is sufficient to enforce
the equality between corresponding elements of vectors x̃k associated
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with adjacent cliques βk in the induced subtree. For the example of
Figure 12.2 this gives a set of 6 linear equations:

0 1 0 0 −1 0 0 0 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 0 1 0 0 −1




x̃1
x̃2
x̃3
x̃4

 = 0.

The general expression for these equations is

Pαj (P Tβk x̃k − P
T
βj x̃j) = 0 ∀j ∈ ch(k), k = 1, . . . , l, (12.14)

where j ∈ ch(k) means βj is a child of βk in the clique tree and αj is
defined as αj = βj ∩ βk for j ∈ ch(k), i.e., the intersection of βj and
its parent clique in the clique tree. Each of the constraints in (12.14)
is associated with an edge in the clique tree and involves only the two
variables x̃j and x̃k associated with the adjacent cliques.

By transposition, one obtains a representation for V⊥. We have
s̃ = (s̃1, . . . , s̃l) ∈ V⊥ if and only if

s̃k = Pβk(P Tαkuk −
∑

j∈ch(k)
P Tαjuj) (12.15)

for some uj ∈ R|αj |, j = 1, . . . , l. Each parameter ui can be associated
with the edge in the clique tree that connects clique βi to its parent.
The equation (12.15) expresses s̃k as a combination of the parameters
ui associated with the edges that are incident to clique βk. For the
example of the figure, (s̃1, s̃2, s̃3, s̃4) ∈ V⊥ if and only if there exist
u1, u2, u3 ∈ R2 such that

s̃1 =

 0 0
1 0
0 1

u1, s̃2 =


0 0
0 0
1 0
0 1

u2 −


0 0
1 0
0 1
0 0

u1,

and

s̃3 =

 0 0
1 0
0 1

u3, s̃4 = −

 1 0
0 1
0 0

u2 −

 0 0
1 0
0 1

u3.



13
Conic Optimization

In this chapter we discuss some applications of chordal sparse matrix
techniques to conic linear optimization. Chapter 14 will deal with ques-
tions that are specific to semidefinite optimization. We use the notation

minimize cTx

subject to Ax = b

x ∈ C
(13.1)

and
maximize bT y

subject to AT y + s = c

s ∈ C∗
(13.2)

for a general primal–dual pair of conic linear programs (conic LPs or
cone LPs). The cone C ⊂ Rn is a proper convex cone (closed, pointed,
and with nonempty interior) and C∗ is the dual cone

C∗ = {z ∈ Rn | xT z ≥ 0 ∀x ∈ C}.

The optimization variables in (13.1) and (13.2) are x, s ∈ Rn and
y ∈ Rm. Standard linear programming is a special case with C = Rn

+.
Conic linear optimization with non-polyhedral cones has been pop-

ular in convex optimization since Nesterov and Nemirovski used it as

391
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a framework to extend interior-point methods for linear programming
to nonlinear convex optimization [175]. Much of the research since the
early 1990s has focused on cones that can be expressed as direct prod-
ucts of lower-dimensional cones, i.e.,

C = C1 × C2 × · · · × Cl, C∗ = C∗1 × C∗2 × · · · × C∗l , (13.3)

where each Ck belongs to a small set of basic cone types. The most
intensely studied cones are the nonnegative orthant, the second-order
or quadratic cone

Qr = {(x, y) ∈ Rr ×R | ‖x‖2 ≤ y},

and the positive semidefinite cone,

Sr = {vec(X) | X ∈ Sr+}. (13.4)

(Recall that vec(X) denotes the r(r + 1)/2-vector containing the ele-
ments of the symmetric matrix X in a format that preserves the stan-
dard inner products of vectors and matrices: vec(X)Tvec(Y ) = tr(XY )
for all X,Y ∈ Sr.) These three cones are self-dual, but also symmet-
ric and this property can be used to develop interior-point methods
with primal-dual symmetry [79, 176, 80, 211, 196]. Conic LPs with
the three symmetric cones are surprisingly general and most convex
optimization problems that arise in practice can be represented in this
form. This observation forms the basis of the convex modeling packages
CVX [60, 103], YALMIP [156], and CVXPY [72].

In addition to the vast research on the three symmetric cones, there
has been a more limited amount of work on conic optimization with
nonsymmetric cones. Efforts in this direction have mainly been con-
cerned with the exponential cone, the power cone with irrational pow-
ers, and `p-norm cones with irrational p [95, 51, 173, 205]. These cones
do not have exact representations by second-order cones or semidefi-
nite cones, and are the most notable exceptions in modeling systems
based on the second-order and semidefinite cones. Nonsymmetric conic
formulations have also been proposed as an approach to avoid the high
complexity of semidefinite formulations, which often require the intro-
duction of a large number of auxiliary variables and constraints. An
example of this will be discussed in §14.4.
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While the algorithms of (standard) linear programming and conic
linear optimization have much in common, they differ greatly when
it comes to exploiting sparsity. For standard linear programming, the
question of exploiting sparsity in the coefficient matrix A can be ad-
dressed with well-developed methods from numerical linear algebra (for
example, in interior-point methods, the sparse Cholesky factorization
of matrices ADAT , where D is a positive diagonal matrix). For non-
polyhedral conic linear optimization, exploiting sparsity is more diffi-
cult. Different types of sparse and non-sparse structure can be distin-
guished and a variety of techniques has been proposed. The following
short overview will be limited to methods that involve chordal graphs
and sparse Cholesky factorization.

13.1 Schur complement sparsity

Consider the primal conic LP with the product cone (13.3):

minimize
l∑

k=1
cTk xk

subject to
l∑

k=1
Ajkxk = bj , j = 1, . . . ,m

xk ∈ Ck, k = 1, . . . , l.

(13.5)

We partitioned the vectors x, c as

x = (x1, x2, . . . , xl), c = (c1, c2, . . . , cl),

with xk, ck ∈ Rnk , assuming Ck ⊂ Rnk . The coefficient Ajk is a row
vector of length nk. Interior-point methods for solving the conic LP
require at each iteration the solution of a linear equation of the form[

D−1 AT

A 0

] [
∆x
∆y

]
=
[
r1
r2

]
, (13.6)

where D is block diagonal with positive definite diagonal blocks Dk ∈
Snk , k = 1, . . . , l. For example, in a primal barrier method Dk is the
inverse Hessian of the barrier function of Ck at the current iterate xk. In
a dual barrier method Dk is the Hessian of the barrier function for the
dual cone C∗k at the kth block sk of the dual variable s = (s1, s2, . . . , sl).
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The equation (13.6) is usually solved by eliminating ∆x and solving an
equation H∆y = ADr1 − r2 with coefficient matrix

H = ADAT (13.7)

The matrix H is referred to as the Schur complement matrix.
The factorization of the Schur complement matrix is often the most

expensive step in the interior-point algorithm. To describe its sparsity
pattern we define index sets

βk = {j ∈ {1, 2, . . . ,m} | Ajk 6= 0}, k = 1, . . . , l.

The set βk contains the indices of the nonzero rows in the kth block
column of A, i.e., the indices of the equality constraints in which the
variable xk appears. The sparsity pattern of ADAT is the graph G =
(V,E) with vertex set V = {1, 2, . . . ,m} and edge set E

E = {{i, j} | {i, j} ∈ βk for some βk}.

An edge {i, j} ∈ E indicates that at least one variable xk appears in
equalities i and j of the constraints of (13.5). Sparsity in the Schur
complement system can also be interpreted as partial separability in
the dual of problem (13.5),

maximize
m∑
j=1

bjyj

subject to
m∑
j=1

ATjkyj + sk = ck, k = 1, . . . , l

sk ∈ C∗k , k = 1, . . . , l.

The dual can be written as as an unconstrained problem

maximize
m∑
j=1

bjyj +
n∑
k=1

δC∗
k
(ck −

m∑
j=1

ATjkyj), (13.8)

where δC∗
k

is the indicator function of C∗k . The objective function
in (13.8) is a partially separable function, since the kth term in the
second sum only depends on the variables yj for j ∈ βk. The term cor-
relative sparsity is sometimes used to describe the sparsity pattern of
the Schur complement matrix in a conic LP [130, 126].
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If the dimensions of the cones Ck are large, the Schur complement
matrix ADAT is often much denser than AAT . This is an important
limitation in interior-point methods and other types of second-order
methods (such as penalty and augmented Lagrangian methods) [134].
For large problems it may be necessary to solve the Schur comple-
ment equations or the 2 × 2-block system (13.6) via iterative algo-
rithms [135, 218, 225], or to solve the conic LP by a first-order method.
Several first-order algorithms for convex optimization are well suited
to handle general sparse structure in A. These methods typically re-
quire projections on the primal or dual cones, and either use the ma-
trix A only in matrix-vector products with A or AT , or in the solu-
tion of linear equations with coefficients of the form I + tAAT ; see
[120, 232, 233, 139, 178, 182, 178] for examples.

13.2 Conversion and decomposition

Sparsity in the coefficient matrix A is more likely to lead to a sparse
Schur complement matrix (13.7) if the conic LP has many low-
dimensional cones Ck, i.e., when the dimensions of the dense diago-
nal blocks Dk are small. Certain types of conic LPs with dense Schur
complement equations can be reformulated to enhance the sparsity of
the equations and speed up the solution by interior-point methods.
Examples of this idea are the conversion methods for semidefinite op-
timization proposed in [87, 169, 126]. The reformulations can be in-
terpreted as techniques for exploiting partial separability and are also
useful in combination with decomposition and first-order algorithms,
as described in §12.3.

Although the most important application of a partially separable
cone is the cone of symmetric matrices with a positive semidefinite
completion (to be discussed in Chapter 14), it is useful to discuss the
implications of partial separability for a general conic LP

minimize cTx

subject to Ax = b

x ∈ C.
(13.9)

This simplifies the notation but also shows that partial separability is
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more generally applicable. Suppose the cone C in (13.9) is a partially
separable cone (12.5), so the problem can be written as

minimize cTx

subject to Ax = b

Pβkx ∈ Ck, k = 1, . . . , l.
(13.10)

We make the following assumptions about the cones Ck and index
sets βk. The first assumption is that the union of the index sets βk is
equal to {1, 2, . . . , n}. This implies that the stacked matrix P in (12.7)
has rank n. The second assumption is that the l cones Ck are proper
convex cones. Third, we assume that there exists an element x̄ with
Pβk x̄ ∈ int Ck, k = 1, . . . , l. These assumptions imply that C is a proper
cone, with dual cone

C∗ = {
l∑

k=1
P Tβk s̃k | s̃k ∈ C

∗
k , k = 1, . . . , l},

see [212, 213].
The conic LP (13.1) with the partially separable cone (12.5) can be

reformulated as
minimize c̃T x̃

subject to Ãx̃ = b

x̃ ∈ C̃
x̃ ∈ range(P )

(13.11)

where C̃ is the direct product cone C̃ = C1×C2×· · ·×Cl and the variable
is

x̃ = (x̃1, x̃2, . . . , x̃l) ∈ R|β1| ×R|β2| × · · · ×R|βl|.

To make the two problems (13.11) and (13.9) equivalent, the matrix Ã
and vector c̃ must satisfy ÃP = A and c̃TP = cT . We can choose any
matrix and vector of the form

Ã = AP+ +Q, c̃T = cTP+ + qT

where P+ = (P TP )−1P T is the pseudoinverse of P , and QP = 0,
qT p = 0. Although the number of variables and equality constraints
in (13.11) is larger than in the original conic LP (13.9), we replaced
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the n-dimensional cone C with a product cone C̃ composed of several
lower-dimensional cones.

The components of x̃ can be interpreted as copies of the vector
x̃k = Pβkx, and the range constraint in (13.11) guarantees that there
exists such an x. If we write the range constraint as a sparse matrix
equation Bx̃ = 0 (for example, the equations (12.14) if the interaction
graph is chordal), the problem and its dual can be written as

minimize c̃T x̃

subject to Ãx̃ = b

Bx̃ = 0
x̃ ∈ C̃.

(13.12)

and
maximize bT y

subject to ÃT y +BTu+ s̃ = c

s̃ ∈ C̃∗.
(13.13)

If we now use an interior-point method to solve (13.12) and (13.13) the
key step in each iteration is the solution of a linear equation with the
Schur complement coefficient matrix[

Ã

B

]
D̃

[
Ã

B

]T
, (13.14)

where D̃ is block-diagonal with l diagonal blocks of size |βk|, k =
1, . . . , l. The Schur complement system of the reformulated conic LPs
can be much larger than the Schur complement system ADAT for the
original problem (13.9), but it may be easier to solve when ADAT is
dense. The matrix D̃ is a block-diagonal matrix with small diagonal
blocks and if Ã is very sparse, the matrix (13.14) may have a use-
ful sparsity pattern. When applied to semidefinite optimization this
technique is known as the clique-tree conversion method [87, 169, 126];
see §14.2.

Applications of the reformulation (13.11) are not limited to interior-
point methods. Suppose for example that for each row i in the con-
straint matrix A of (13.10) there exists an index set βk that contains
the column indices of all the nonzero coefficients Aij in the row. Then
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the equality constraints Ax = b can be written as

ÃkPβkx = b̃k, k = 1, . . . , l,

and the matrix Ã in (13.11) can be chosen to be block-diagonal with
diagonal blocks Ãk. The reformulated problem (13.11) is therefore sep-
arable except for the coupling constraint x̃ ∈ range(P ). The Douglas-
Rachford algorithm, ADMM, or other decomposition methods can
be applied to exploit this structure, as we have seen in §12.3. Ex-
amples of applications to semidefinite optimization can be found in
[161, 138, 63, 243, 212].



14
Sparse Semidefinite Optimization

In the final chapter we review applications of chordal graph techniques
to semidefinite optimization and, more generally, conic LPs (13.5)
that include one or more positive semidefinite cones (13.4) among the
cones Ck. In §13.1 we discussed how the sparsity pattern of A and the
dimensions of the cones Ck determine the sparsity of the Schur com-
plement system (13.7). The kth conic constraint contributes a term
AikDkA

T
jk to the i, j element of the Schur complement matrix, and this

term is nonzero if Aik 6= 0 and Ajk 6= 0. If Ck is a high-dimensional
positive semidefinite cone (Ck = Snk with nk large), then computing
AikDkA

T
jk can be expensive. In this section we discuss how joint spar-

sity in the vectors ck, A1k, . . . , Amk can be exploited to speed up the
calculation of the contributions AikDkA

T
jk of the kth constraint to the

Schur complement matrix. To simplify the notation, we assume there
is a single positive semidefinite conic inequality (l = 1, C1 = Sn). If we
use matrix notation for the variable x, the problem can be expressed
as a semidefinite program (SDP) in standard form notation

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X � 0,
(14.1)

399
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with optimization variable X ∈ Sn. The dual SDP is
maximize bT y

subject to
m∑
i=1

yiAi + S = C

S � 0

(14.2)

and has variables y ∈ Rm and S ∈ Sn.
We discuss the implications of a joint sparsity pattern of the coeffi-

cients C, A1, . . . , Am. This is sometimes called aggregate sparsity. We
say the SDP has the aggregate sparsity pattern E if

C,A1, . . . , Am ∈ SnE .

A simple but important example is block-diagonal structure. If the
aggregate pattern is block-diagonal, the variables X and S can be re-
stricted to be block-diagonal, and the problem is equivalent to an SDP
with multiple smaller matrix inequality constraints. In this chapter, we
will assume that the aggregate pattern is not block-diagonal and, as a
consequence, the Schur complement matrix of the SDP is dense.

As in the previous chapter, we limit the discussion to algorithms in
which chordal sparse matrix results are prominent. This excludes sev-
eral important semidefinite optimization algorithms, for example, the
spectral bundle method [115], Burer and Monteiro’s low-rank factor-
ization method [48], and augmented Lagrangian algorithms [134, 242].

14.1 Aggregate sparsity

Although aggregate sparsity is not always present in large sparse SDPs,
it appears naturally in applications with underlying graph structure.
Examples are semidefinite relaxations of combinatorial graph optimiza-
tion problems [158, 98, 4, 97] and eigenvalue optimization problems for
symmetric matrices associated with graphs [236, 42]. Semidefinite op-
timization has been used extensively for Euclidean distance geometry
problems with network structure, with applications to network node
localization [34, 35, 36, 129, 73] and machine learning [230, 231, 237].
The graph structure in these applications is often inherited by the
SDP. This is also the case for recently developed semidefinite re-
laxations of the optimal power flow problem in electricity networks
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[17, 119, 165, 11, 148, 159, 160]. General-purpose convex modeling sys-
tems are another important source of SDPs with aggregate sparsity
[60, 103, 156, 72]. These systems rely on semidefinite representations of
convex optimization problems that often involve large numbers of aux-
iliary variables and sparse constraints [175, 24]. For example, SDP for-
mulations of problems involving matrix norms or robust quadratic op-
timization typically have a ‘block-arrow’ aggregate sparsity pattern [7].

When the aggregate sparsity pattern is dense or almost dense, it is
sometimes possible to introduce or improve sparsity in the aggregate
pattern by means of a variable transformation [87, section 6]. Fukuda
et al. [87] give the example of the graph equipartition problem, which
has sparse coefficient matrices in the objective and constraints, ex-
cept for one dense equality constraint 1TX1 = 0. A similar example
is the SDP formulation of the maximum variance unfolding problem
in [230]. To see how a variable transformation can be used to introduce
aggregate sparsity, consider the primal SDP (14.1) with Am = 11T
and bm = 0. The aggregate sparsity pattern of this SDP is completely
dense. However, if X � 0 and 1TX1 = 0, then X can be expressed
as X = V Y V T where Y � 0 and V is any n × (n − 1)-matrix with
columns that span the orthogonal complement of 1. An example of a
sparse basis matrix is

V =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · −1 1
0 0 0 · · · 0 −1


.

This observation allows us to eliminate the equality constraint 1TX1 =
0 and reformulate the problem as

minimize tr((V TCV )Y )
subject to tr((V TAiV )Y ) = bi, i = 1, . . . ,m− 1

Y � 0.

If the basis matrix V is sparse, then the aggregate pattern of this SDP
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is not much denser than the aggregate pattern of C, A1, . . . , Am−1 in
the original problem.

More generally, suppose the coefficient matrices C and Ai contain
dense terms that can be expressed as low rank matrices with a common
range:

C = Cs +WB0W
T , Ai = As,i +WBiW

T , i = 1, . . . ,m

where Cs and As,i are sparse, andW is an n×k matrix with orthonormal
columns. Define U = [V W ] where V is a n × (n − k) matrix with
columns that span the nullspace of W T . Then a change of variables
X = UY UT transforms the SDP into the equivalent problem

minimize tr(C̃Y )
subject to tr(ÃiY ) = bi, i = 1, . . . ,m

Y � 0

with
C̃ = UTCU =

[
V TCsV V TCsW

W TCsV W TCsW +B0

]
and

Ãi = UTAiU =
[
V TAs,iV V TAs,iW

W TAs,iV W TAs,iW +Bi

]
, i = 1, . . . ,m.

If V is a sparse basis matrix for the nullspace of W T and k � n, then
the matrices C̃, Ãi may be sufficiently sparse to have a useful sparse
aggregate pattern. The problem of finding a sparse nullspace basis has
been studied in many contexts, including nonlinear optimization where
a sparse nullspace basis is of interest when eliminating linear equality
constraints [187, 31, 52, 53, 93].

Aggregate sparsity implies that all dual feasible variables S in (14.2)
have sparsity pattern E. We can therefore restrict the dual variable to
the subspace SnE and write the dual problem as

maximize bT y

subject to
m∑
i=1

yiAi + S = C

S ∈ Sn+ ∩ SnE .

(14.3)
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The matrix variable X in the primal problem (14.1), on the other hand,
is not necessarily sparse, and usually dense at the optimum. However,
the cost function and equality constraints in (14.1) only involve the
entries Xij on the diagonal and for {i, j} ∈ E. The other entries are
important only to ensure the matrix is positive semidefinite. The prob-
lem can therefore be viewed as a problem with a sparse matrix ΠE(X)
as variable, constrained to have a positive semidefinite completion:

minimize tr(CX)
subject to tr(AiX) = bi, i = 1, . . . ,m

X ∈ ΠE(Sn+).
(14.4)

The problems (14.4) and (14.3) form a pair of primal and dual conic
LPs, since the cones ΠE(Sn+) and Sn+ ∩ SnE are dual cones (see §10.1).
We also note that, without loss of generality, the sparsity pattern E

can be assumed to be chordal, since replacing a non-chordal pattern
with any chordal extension of it gives an equivalent problem.

Interior-point methods that exploit aggregate sparsity can be
roughly divided in two approaches. One can take an interior-point
method for the general semidefinite program (14.1) and exploit ag-
gregate sparsity as much as possible in the implementation of the algo-
rithm. Or one can view the equivalent problem (14.4) as a conic LP with
respect to the matrix cone ΠE(Sn+), and solve it with an interior-point
method for nonsymmetric conic optimization. These two approaches
are discussed in §14.3 and §14.4, respectively. In the next section we
first discuss how the partially separable structure of the cone ΠE(Sn+)
can be used to reformulate the problem as an equivalent SDP that
may be easier to solve by general-purpose interior-point solvers than
the original SDP (14.1).

14.2 Conversion methods

The use of chordal graph techniques in interior-point methods for
semidefinite optimization was introduced in [87, 169]. One of the key
contributions in these papers is the formulation of conversion methods
or clique decomposition methods to replace an SDP with large matrix
inequality constraints by an equivalent problem that may be easier to
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solve by interior-point methods. The idea is an example of the method
described in §13.2 for converting a conic LP with a partially separa-
ble cone into an equivalent problem with several smaller-dimensional
cones. If we use the vector notation for the matrix cone ΠE(Sn+) de-
scribed in §12.2, the reformulated problem can be written as (13.12).
It can also be written directly in matrix form as follows. Suppose the
aggregate pattern E is chordal with cliques γ1, . . . , γl. To reformu-
late (14.4), we introduce a separate variable X̃k for each submatrix
Xγkγk , and write the problem as

minimize
l∑

k=1
tr(C̃kX̃k)

subject to
l∑

k=1
tr(ÃikX̃k) = bi, i = 1, . . . ,m

Pηj (P TγkX̃kPγk − P TγjX̃jPγj )P Tηj = 0,
∀j ∈ ch(k), k = 1, . . . , l

X̃k � 0, k = 1, . . . , l.

(14.5)

Here ch(k) denotes the set of children of clique γk in a clique tree with
the induced subtree property, and ηj is the intersection of clique γj
and its parent clique in the clique tree. The coefficients C̃k and Ãik are
matrices that satisfy

l∑
k=1

tr(C̃kXγkγk) = tr(CX)

and
l∑

k=1
tr(ÃikXγkγk) = tr(AiX), i = 1, . . . ,m,

for all X ∈ SnE . The second set of equality constraints in (14.5) forces
the variables X̃k to be consistent with the interpretation that they
are overlapping submatrices Xγkγk of a matrix X. The reformulated
problem (14.5) has more variables and constraints than the original
SDP, but the single matrix inequality X � 0 has been replaced by l
smaller ones. If the Schur complement system for (14.5) is sparse the
problem may be easier to solve than the original SDP.
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As an example, suppose E is the pattern in Figure 12.1. The cliques
are γ1 = (1, 3, 4), γ2 = (2, 4), γ3 = (3, 4, 5), and γ4 = (5, 6), so

Xγ1γ1 =

 X11 X13 X14
X31 X33 X34
X41 X43 X44

 , Xγ2γ2 =
[
X22 X24
X42 X44

]
,

and

Xγ3γ3 =

 X33 X34 X35
X43 X44 X45
X53 X54 X55

 , Xγ4γ4 =
[
X55 X56
X65 X66

]
.

If we use the clique tree in the center of the figure, then η1 = (3, 4),
η2 = 4, η3 = 5. In the conversion method we introduce four variables
X̃1, X̃2, X̃3, X̃4 for the four submatrices submatrices and impose the
constraints [

X̃1,22 X̃1,23
X̃1,32 X̃1,33

]
=

[
X̃3,11 X̃3,12
X̃3,21 X̃3,22

]
,

X̃2,22 = X̃3,22,

X̃3,33 = X̃4,11

to ensure that they can be interpreted as X̃k = Xγkγk , k = 1, 2, 3, 4.
The MATLAB package SparseCoLO [86] provides an implementa-

tion of four variants of the conversion method, described in [126]. The
conversion method is also supported by the Python library Chompack
[14]. An interesting feature of the conversion method is that it can be
used in combination with any semidefinite optimization algorithm. The
principal drawback is the large number of equality constraints that are
added to the m equality constraints in the original problem. If the re-
formulated problem is solved by an interior-point method, the Schur
complement system in each iteration of the algorithm can be much
larger than for the original problem, and this can easily offset the ben-
efit of the increased sparsity.

In some applications one has the option of using an inexact con-
version and omit some of the additional consistency constraints in the
converted problem (14.5). When the SDP is a relaxation of a non-
convex optimization problem, omitting some of the constraints gives a
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weaker, but less expensive, relaxation. In [11] this idea was applied to
semidefinite relaxations of an optimal power flow problem.

The clique decomposition results that underlie the conversion
method are also important for first-order algorithms and splitting meth-
ods for semidefinite optimization [161, 138, 63, 243, 212].

14.3 Interior-point methods

In this section we discuss techniques for exploiting aggregate sparsity
in interior-point methods for semidefinite optimization. The main com-
putation in each iteration of an interior-point method for solving (14.1)
and (14.2) is the calculation of primal and dual search directions ∆X,
∆y, ∆S by solving a set of linear equations of the form

tr(Ai∆X) = ri, i = 1, . . . ,m, (14.6)
m∑
j=1

∆yjAj + ∆S = Rd, (14.7)

∆X +D(∆S) = Rc. (14.8)

The right-hand sides r, Rd, Rc are residuals that depend on the values
of the current iterates X̂, ŷ, Ŝ in the algorithm. The mapping D is a
positive definite linear mapping computed from the current value of X̂
and/or Ŝ, and is defined differently for different methods. The iterates
X̂ and Ŝ are strictly positive definite throughout the algorithm, but
not necessarily feasible for the primal and dual SDPs.

A common way to solve (14.6)–(14.7) is to first eliminate ∆X and
∆S and form the Schur complement equations H∆y = g, where H is
the positive definite matrix with entries

Hij = tr (AiD(Aj)) , i, j = 1, . . . ,m,

and gi = ri − tr (Ai(Rc −D(Rd))), i = 1, . . . ,m. The various defini-
tions of D all have in common that D(U) is a dense matrix when U is
nonzero (unless the aggregate sparsity pattern is block-diagonal). As
a consequence, the Schur complement matrix H is dense. The cost of
forming and solving the Schur complement system dominates the per-
iteration complexity of the interior-point method. We now review some
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the most common choices of D and comment on the effect of aggregate
sparsity. For background on these definitions, we refer the reader to the
surveys [216, 217, 171].

The earliest interior-point methods for semidefinite optimization
used primal or dual scaling. In a primal scaling method, D(U) =
X̂UX̂. This is the inverse Hessian of the logarithmic barrier function
− log detX at X̂. Hence, in a primal scaling method,

Hij = tr
(
AiX̂AjX̂

)
. (14.9)

In a dual scaling method, D(U) = Ŝ−1UŜ−1, the Hessian of the barrier
− log detS at the current dual iterate Ŝ. With this choice,

Hij = tr
(
AiŜ

−1AjŜ
−1
)
. (14.10)

More recent algorithms and most general-purpose semidefinite opti-
mization solvers use search directions defined by a primal-dual scal-
ing, in which D depends on X̂ and Ŝ [41, 210, 224, 238, 10, 168].
Examples are the AHO direction [5], the HRVW/KSH/M direction
[116, 132, 166], and the NT direction [176]. These directions were later
unified as special cases of the Monteiro-Zhang family of search direc-
tions [166, 241]. Of these directions the NT and HRVW/KSH/M direc-
tions are the most popular ones. The NT direction is defined by using
D(U) = WUW where W is the unique positive definite matrix that
satisfies WŜW = X̂. Hence, in methods based on the NT direction,

Hij = tr (AiWAjW ) . (14.11)

The HRVW/KSH/M direction uses

D(U) = 1
2(X̂UŜ−1 + Ŝ−1UX̂),

which gives
Hij = tr

(
AiX̂AjŜ

−1
)
. (14.12)

We now turn to the question of exploiting aggregate sparsity. In a
problem with aggregate sparsity pattern E, the coefficients Ai all have
sparsity pattern E. In many applications they are actually much sparser
and each coefficient matrix may only have a few nonzero entries. On the
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other hand, the matrices X̂, Ŝ−1, W in the various definitions of Hij

are completely dense. Evaluating these expressions therefore requires
matrix-matrix products with dense matrices.

If we start the iteration with a dual feasible Ŝ, then the dual iterate
Ŝ will remain dual feasible throughout the iteration, and be positive
definite and sparse with sparsity pattern E. It can therefore be fac-
tored with zero-fill, and the sparse Cholesky factorization can be used
to compute the products with Ŝ−1. For example, if Ŝ = LLT , then
the elements of Hij in a dual scaling method (14.10) are inner prod-
ucts of scaled matrices L−TAjL−1, which can be computed by forward
and backward substitutions with the sparse Cholesky factors. This im-
portant advantage of dual scaling methods over the primal or primal-
dual scaling methods was pointed out in [26] and applied in the DSDP
solver [25]. The cost of computing the Schur complement matrix (14.10)
can be further reduced if the coefficients Ai are low rank. This is quite
common in sparse problems where each matrix has only a few nonzero
entries [26].

In the formula (14.12) for the HRVW/KSH/M method the multi-
plication with Ŝ−1 can be performed using a sparse factorization of Ŝ,
but X̂ is a dense matrix with a dense inverse. A variation of the method
that avoids multiplications with X̂ is the completion-based primal–dual
interior-point method of Fukuda et al. [87]. In the completion-based
method the primal iterate X̂ in (14.12) is replaced with the maximum
determinant positive definite completion of ΠE(X̂). As explained in
Chapter 10 the maximum determinant completion has an inverse with
sparsity pattern E. Moreover, if E is chordal, the inverse factorization
of the maximum determinant completion can be computed efficiently.
When X̂ in (14.12) is replaced with the maximum determinant com-
pletion, the sparse inverse factorization can be used to evaluate Hij as
in the dual scaling method. The method has been implemented in the
SDPA-C solver [169].

Deng, Gu, and Overton [69] describe efficient implementations of
the AHO and HRVW/KSH/M primal-dual methods for SDPs with
band aggregate sparsity, by applying sequentially semiseparable repre-
sentations of band matrices.
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14.4 Nonsymmetric formulation

As an alternative to the approaches of the previous section, one can
view a pair of primal and dual SDPs with aggregate sparsity pattern
as a pair of conic linear optimization problems (14.4) and (14.3). The
primal and dual variables X, S in these problems are sparse matrices
in SnE . The inequality in the primal problem is with respect to the
cone ΠE(Sn+) of sparse matrices with a positive semidefinite comple-
tion. The inequality in the dual problem is with respect to the sparse
positive semidefinite matrix cone Sn+ ∩SnE . The cones are not self-dual
so there are no methods with complete primal-dual symmetry, but the
problems can still be solved by primal, dual, or nonsymmetric primal-
dual interior-point methods [174, 173, 51, 205].

We can assume, without loss of generality, that the sparsity pattern
E is chordal. This implies that the barrier functions φ : SnE → R and
φ∗ : SnE → R,

φ(S) = − log detS, φ∗(X) = sup
S�0

(− tr(XS)− φ(S)) , (14.13)

and their first and second derivatives, can be evaluated by the multi-
frontal algorithms described in §9.6 and §10.4 [9]. The functions (14.13)
are normal barriers so a host of path-following and potential reduc-
tion methods with a well-developed convergence analysis based on self-
concordance theory can be applied [175, 172, 190, 174]. These methods
follow the central path for the pair of conic LPs, which is defined as the
set of X ∈ ΠE(Sn+), y ∈ Rm, S ∈ Sn+ ∩ SnE that satisfy the equations

tr(AiX) = bi, i = 1, . . . ,m, (14.14)
m∑
j=1

yjAj + S = C, (14.15)

X + µ∇φ(S) = 0. (14.16)

The parameter µ > 0 parameterizes the central path. Equivalently,

tr(AiX) = bi, i = 1, . . . ,m, (14.17)
m∑
j=1

yjAj + S = C, (14.18)

µ∇φ∗(X) + S = 0. (14.19)
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Burer [47] has developed a primal-dual interior-point method for
the nonsymmetric pair of problems (14.4)-(14.3). The search direc-
tions in his method are computed by linearizing the central path equa-
tions (14.17)–(14.19) after first rewriting the third condition:

tr(AiX) = bi, i = 1, . . . ,m,
m∑
j=1

yjAj + S = C,

−√µF2(X) + F1(S) = 0.

Here the operator F1 maps a matrix S ∈ Sn++ ∩ SnE to its sparse
Cholesky factor; the operator F2 maps a matrix X ∈ ΠE(Sn++) to the
Cholesky factor of −∇φ∗(X) (i.e., the inverse of the maximum deter-
minant positive definite completion of X). The linearized central path
equations are of the form (14.6)–(14.8) with D = −F ′2(X̂)−1 ◦ F ′1(Ŝ),
where F ′1 and F ′2 denote the derivatives. It is shown that D is (non-
symmetric) positive definite in a neighborhood of the central path.
Eliminating ∆X and ∆S yields a nonsymmetric Schur complement
system. To avoid forming the Schur complement equations explicitly,
Burer proposes to solve the equations iteratively using BiCGSTAB.

Srijuntongsiri and Vavasis [209] propose potential reduction meth-
ods based on the barrier functions (14.13), using automatic differen-
tiation to evaluate the gradients and Hessians of the primal and dual
barrier functions. Their method also avoids forming the Schur comple-
ment matrix, and solves the system by a conjugate gradient method.

Andersen et al. [8] describe implementations of primal and dual
path-following methods that use the multifrontal algorithms described
in §9.6 and §10.4 to evaluate the derivatives of the barrier func-
tions (14.13). The Newton equations, or linearized central path equa-
tions, have the same form (14.6)–(14.8) as for SDP algorithms, with
the crucial difference that both ∆S and ∆X are matrices in SnE . The
mapping D is either D = ∇2φ(Ŝ) in a dual scaling method (based
on linearizing (14.19)) or D = ∇2φ∗(X̂)−1 in a primal scaling method
(based on linearizing (14.16)). Variants of this approach use a factor-
ization ∇2φ(Ŝ) = R∗

Ŝ
◦RŜ of the Hessian of φ at Ŝ, whereRŜ is a linear

mapping from SnE to SnE and R∗
Ŝ
is the adjoint of RŜ (see §9.6). Using
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this factorization, the Schur complement matrix H for D = ∇2φ(Ŝ)
can be expressed as

Hij = tr(AiD(Aj)) = tr(RŜ(Ai)RŜ(Aj)), i, j = 1, . . . ,m.

A factorization H can be computed from a QR factorization of the
matrix[

vecE(RŜ(A1)) vecE(RŜ(A2)) · · · vecE(RŜ(Am)
]
.

This approach is interesting from a numerical point of view because it
factors H without explicitly forming it. A similar expression applies to
a primal scaling method, when D = ∇2φ∗(X̂)−1. Here we use the fact
that ∇2φ∗(X̂)−1 = ∇2φ(S̃), where S̃ is the inverse of the maximum
determinant completion of X̂ (see §10.4), to factor D as D = R∗

S̃
◦R

S̃
.

Burer’s method can be viewed as based on the nonsymmetric scaling
D = R∗

S̃
◦ RŜ . An implementation of the primal and dual methods

described in [8] is available in the Python package SMCP [14].
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Notation

Graphs

G = (V,E) Undirected graph (p. 245).
G(W ) Subgraph induced by a subset W ⊆ V (p. 246).
Gσ = (V,E, σ) Ordered undirected graph (p. 247).
adj(v) Neighborhood of vertex v (p. 247).
deg(v) Degree of vertex v (p. 247).
adj+(v) Higher neighborhood of vertex v (p. 247).
adj−(v) Lower neighborhood of vertex v (p. 247).
col(v) Closed higher neighborhood of vertex v (p. 248).
row(v) Closed lower neighborhood of vertex v (p. 248).
deg+(v) Higher degree of vertex v (p. 247).
deg−(v) Lower degree of vertex v (p. 247).
ch(v) Set of children of vertex v (p. 250).
lev(v) Depth of vertex v (p. 250).
fdesc(v) First descendant of vertex v (p. 251).
lca(v, w) Least common ancestor v and w (p. 251).

Chordal graphs

pc(W ) Parent of clique W in rooted clique tree (p. 268).
sep(W ), res(W ) Clique separator, clique residual (p. 268).
p(v) Parent of vertex v in elimination tree (p. 278).
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V c Set of clique representative vertices (p. 283).
snd(v) Supernode with representative v (pp. 283, 288).
a(v) First ancestor of v (pp. 284, 290).
q(v) Parent in supernodal elimination tree (p. 284).

Graph elimination

G∗σ = (V,E∗σ, σ) Elimination graph of Gσ = (V,E, σ) (p. 300).
adj+∗ (v) Higher neighborhood in G∗σ (p. 303).
adj−∗ (v) Lower neighborhood in G∗σ (p. 303).
col∗(v) Closed higher neighborhood in G∗σ (p. 303).
row∗(v) Closed lower neighborhood in G∗σ (p. 303).
deg+
∗ (v), deg−∗ (v) Higher, lower degree in G∗σ (p. 303).

Sparse symmetric matrices

tr(A) Trace of A.
A+ Pseudoinverse of A.
Sn Set of symmetric matrices of order n (p. 330).
SnE Matrices in Sn with sparsity pattern E (p. 330).
vec(A), vecE(A) Vectorized matrix A ∈ Sn, A ∈ SnE (p. 385)
ΠE Projection on SnE (p. 350).
Pβ Selection matrix defined by index set β (p. 331).
γi Lower-triangular nonzeros in column i (p. 332).
ηi Lower-triangular zeros in column i (p. 332).
νi Index set with elements of snd(i) (p. 332).
αi Index set with elements of col(i) \ snd(i) (p. 332).

Positive semidefinite matrices

Sn+ Positive semidefinite n× n matrices (p. 340).
Sn++ Positive definite n× n matrices (p. 340).
A � 0, A � 0 A is positive semidefinite, A is positive definite.
Sn Vectorized positive semidefinite matrices (p. 392).
φ(S) Logarithmic barrier for Sn+ ∩ SnE (p. 353).
φ∗(X) Logarithmic barrier for ΠE(Sn+) (p. 365).
dkl(U, V ) Kullback-Leibler divergence (p. 366).
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[118] P. L. Hammer (Ivǎnescu) and S. Rudeanu. Boolean Methods in Oper-
ations Research and Related Areas. Springer-Verlag New York, 1968.
With a preface by Richard Bellman.

[119] R. A. Jabr. Exploiting sparsity in SDP relaxations of the OPF problem.
IEEE Transactions on Power Systems, 27(2):1138–1139, 2012.

[120] F. Jarre and F. Rendl. An augmented primal-dual method for linear
conic programs. SIAM Journal on Optimization, 19(2):808–823, 2008.

[121] C. R. Johnson. Matrix completion problems: A survey. In C. R. John-
son, editor, Matrix Theory and Applications, volume 40 of Proceedings
of Symposia in Applied Mathematics, pages 171–189. American Mathe-
matical Society, 1990.

[122] N. Kakimura. A direct proof for the matrix decomposition of chordal-
structured positive semidefinite matrices. Linear Algebra and Its Appli-
cations, 433:819–823, 2010.

[123] T. Kanamori and A. Ohara. A Bregman extension of quasi-Newton
updates I: an information geometrical framework. Optimization Methods
and Software, 28(1):96–123, 2013.



References 425

[124] T. Kanamori and A. Ohara. A Bregman extension of quasi-Newton
updates II: analysis of robustness properties. Journal of Computational
and Applied Mathematics, 253:104–122, 2013.

[125] S. Kim and M. Kojima. Exploiting sparsity in SDP relaxation of polyno-
mial optimization problems. In M. F. Anjos and J. B. Lasserre, editors,
Handbook on Semidefinite, Conic and Polynomial Optimization, volume
166 of International Series in Operations Research & Management Sci-
ence, chapter 18, pages 499–531. Springer, 2012.

[126] S. Kim, M. Kojima, M. Mevissen, and M. Yamashita. Exploiting spar-
sity in linear and nonlinear matrix inequalities via positive semidefinite
matrix completion. Mathematical Programming, 129:33–68, 2011.

[127] S. Kim, M. Kojima, and P. Toint. Recognizing underlying sparsity in
optimization. Mathematical Programming, 119:273–303, 2009.

[128] S. Kim, M. Kojima, and H. Waki. Generalized Lagrangian duals and
sums of squares relaxations of sparse polynomial optimization problems.
SIAM Journal on Optimization, 15(3):697–719, 2005.

[129] S. Kim, M. Kojima, and H. Waki. Exploiting sparsity in SDP relax-
ations for sensor network localization. SIAM Journal on Optimization,
20(1):192–215, 2009.

[130] K. Kobayashi, S. Kim, and M. Kojima. Correlative sparsity in primal-
dual interior-point methods for LP, SDP, and SOCP. Applied Mathe-
matics and Optimization, 58(1):69–88, 2008.

[131] M. Kojima, S. Kim, and H. Waki. Sparsity in sums of squares of poly-
nomials. Mathematical Programming, 103:45–62, 2005.

[132] M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for
the monotone linear complementarity problem in symmetric matrices.
SIAM J. on Optimization, 7:86–125, February 1997.

[133] D. Koller and N. Friedman. Probabilistic Graphical Models. Principles
and Techniques. MIT Press, 2009.

[134] M. Kočvara and M. Stingl. PENNON: a code for convex nonlinear
and semidefinite programming. Optimization Methods and Software,
18(3):317–333, 2003.

[135] M. Kočvara and M. Stingl. On the solution of large-scale SDP problems
by the modified barrier method using iterative solvers. Mathematical
Programming, Series B, 109(2-3):413–444, 2007.



426 References

[136] N. Krislock and H. Wolkowicz. Euclidean distance matrices and ap-
plications. In M. F. Anjos and J. B. Lasserre, editors, Handbook on
Semidefinite, Conic and Polynomial Optimization, chapter 30, pages
879–914. Springer, 2012.

[137] S. Kullback. Information Theory and Statistics. Dover Publications,
1997. Originally published by John Wiley & Sons, 1959.

[138] A. Y. S. Lam, B. Zhang, and D. Tse. Distributed algorithms for optimal
power flow problem, 2011. arxiv.org/abs/1109.5229.

[139] G. Lan, Z. Lu, and R. D. C. Monteiro. Primal-dual first-order methods
with o(1/ε) iteration-complexity for cone programming. Mathematical
Programming, 126(1):1–29, 2011.

[140] J. B. Lasserre. Convergent SDP-relaxations in polynomial optimization
with sparsity. SIAM J. on Optimization, 17(3):822–843, 2006.

[141] M. Laurent. A tour d’horizon on positive semidefinite and Euclidean dis-
tance matrix completion problems. In P. M. Pardalos and H. Wolkowicz,
editors, Topics in Semidefinite and Interior-Point Methods, volume 18
of Fields Institute Communications, pages 51–76. The American Math-
ematical Society, 1998.

[142] M. Laurent. Matrix completion problems. In C. A. Floudas and P. M.
Pardalos, editors, Encyclopedia of Optimization, volume III, pages 221–
229. Kluwer, 2001.

[143] M. Laurent and S. Poljak. On a positive semidefinite relaxation of the
cut polytope. Linear Algebra and Its Applications, 223:439–461, 1995.

[144] M. Laurent and S. Poljak. On the facial structure of the set of corre-
lation matrices. SIAM Journal on Matrix Analysis and Applications,
17(3):530–547, 1996.

[145] M. Laurent and A. Varvitsiotis. A new graph parameter related to
bounded rank positive semidefinite matrix completions. Mathematical
Programming, 145(1-2):291–325, 2014.

[146] S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford,
1996.

[147] S. L. Lauritzen and F. V. Jensen. Local computation with valuations
from a commutative semigroup. Annals of Mathematics and Artificial
Intelligence, 21:51–69, 1997.

[148] J. Lavaei and S. H. Low. Zero duality gap in optimal power flow prob-
lem. IEEE Trans. Power Systems, 27(1):92–107, February 2012.



References 427

[149] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by
a set of intervals on the real line. Fundamenta Mathematicae, 51:45–64,
1962.

[150] J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for re-
ordering sparse matrices for parallel factorization. SIAM Journal on
Scientific and Statistical Computing, 10(6):1146–1173, 1989.

[151] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two
nonlinear operators. SIAM Journal on Numerical Analysis, 16(6):964–
979, 1979.

[152] J. W. H. Liu. A compact row storage scheme for Cholesky factors
using elimination trees. ACM Transactions on Mathematical Software,
12:127–148, 1986.

[153] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM
Journal on Matrix Analysis and Applications, 11:134–172, 1990.

[154] J. W. H. Liu. The multifrontal method for sparse matrix solution: theory
and practice. SIAM Review, 34:82–109, 1992.

[155] J. W. H. Liu, E. G. Ng, and B. W. Peyton. On finding supernodes
for sparse matrix computations. SIAM Journal on Matrix Analysis and
Applications, 14(1):242–252, 1993.

[156] J. Löfberg. YALMIP : A Toolbox for Modeling and Optimization in
MATLAB, 2004.

[157] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Dis-
crete Mathematics, 2:253–267, 1972.

[158] L. Lovász. On the Shannon capacity of a graph. IEEE Transactions on
Information Theory, 25:1–7, 1979.

[159] S. H. Low. Convex relaxation of optimal power flow—part I: Formula-
tions and equivalence. IEEE Transactions on Control of Network Sys-
tems, 1(1):15–27, March 2014.

[160] S. H. Low. Convex relaxation of optimal power flow—part II: Exactness.
IEEE Transactions on Control of Network Systems, 1(2):177–189, June
2014.

[161] Z. Lu, A. Nemirovski, and R. D.C. Monteiro. Large-scale semidefinite
programming via a saddle point mirror-prox algorithm. Mathematical
Programming, 109(2-3):211–237, 2007.

[162] D. J. C. MacKay. Information Theory, Inference, and Learning Algo-
rithms. Cambridge University Press, 2003.



428 References

[163] N. V. R. Mahadev and U. N. Peled. Threshold Graphs and Related
Topics. North-Holland, 1995.

[164] M. Mézard and A. Montanari. Information, Physics, and Computation.
Oxford University Press, 2009.

[165] D. K. Mohlzahn, J. T. Holzer, B. C. Lesieutre, and C. L. DeMarco.
Implementation of a large-scale optimal power flow solver based on
semidefinite programming. IEEE Transactions on Power Systems,
28(4):3987–3998, 2013.

[166] R. D. C. Monteiro. Primal-dual path-following algorithms for semidefi-
nite programming. SIAM Journal on Optimization, 7:663–678, 1997.

[167] J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bull.
Math. Soc. France, 93:273–299, 1965.

[168] MOSEK ApS. The MOSEK Optimization Tools Manual. Version 6.0.,
2010. Available from www.mosek.com.

[169] K. Nakata, K. Fujitsawa, M. Fukuda, M. Kojima, and K. Murota. Ex-
ploiting sparsity in semidefinite programming via matrix completion
II: implementation and numerical details. Mathematical Programming
Series B, 95:303–327, 2003.

[170] H. Nelis, E. Deprettere, and P. Dewilde. Approximate inversion of pos-
itive definite matrices, specified on a multiple band. In Proceedings
SPIE, volume 975, pages 48–58, 1988.

[171] A. S. Nemirovski and M. J. Todd. Interior-point methods for optimiza-
tion. Acta Numerica, 17:191–234, 5 2008.

[172] Y. Nesterov. Squared functional systems and optimization problems. In
J. Frenk, C. Roos, T. Terlaky, and S. Zhang, editors, High Performance
Optimization Techniques, pages 405–440. Kluwer Academic Publishers,
2000.

[173] Y. Nesterov. Towards non-symmetric conic optimization. Optimization
Methods and Software, 27(4-5):893–917, 2012.

[174] Yu. Nesterov. Nonsymmetric potential-reduction methods for general
cones. Technical Report 2006/34, CORE Discussion Paper, Université
catholique de Louvain, 2006.

[175] Yu. Nesterov and A. Nemirovskii. Interior-point polynomial methods
in convex programming, volume 13 of Studies in Applied Mathematics.
SIAM, Philadelphia, PA, 1994.



References 429

[176] Yu. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point
methods for convex programming. Mathematics of Operations Research,
22(1):1–42, 1997.

[177] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2nd
edition, 2006.

[178] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Operater split-
ting for conic optimization via homogeneous self-dual embedding, 2013.
arxiv.org/abs/1312.3039.

[179] T. Ohtsuki. A fast algorithm for finding an optimal ordering for vertex
elimination on a graph. SIAM Journal on Computing, 5(1):133–145,
1976.

[180] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation
of a graph and optimal pivoting order in a sparse matrix. Journal of
Mathematical Analysis and Applications, 54:622–633, 1976.

[181] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends
in Optimization, 1(3):123–231, 2013.

[182] N. Parikh and S. Boyd. Block splitting for distributed optimization.
Mathematical Programming Computation, 6(1):77–102, 2014.

[183] S. Parter. The use of linear graphs in Gauss elimination. SIAM Review,
3(2):119–130, 1961.

[184] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

[185] F. M. Q. Pereira and J. Palsberg. Register allocation via coloring of
chordal graphs. In K. Yi, editor, Programming Languages and Systems,
pages 315–329. Springer, 2005.

[186] B. W. Peyton. Minimal orderings revisited. SIAM Journal on Matrix
Analysis and Applications, 23(1):271–294, 2001.

[187] A. Pothen. Sparse Null Bases and Marriage Theorems. PhD thesis,
Cornell University, 1984.

[188] A. Pothen and C. Sun. Compact clique tree data structures in sparse
matrix factorizations. In T. F. Coleman and Y. Li, editors, Large-Scale
Numerical Optimization, pages 180–204. SIAM, 1990.

[189] J. L. Ramírez Alfonsín and B. A. Reed, editors. Perfect Graphs. Wiley,
2001.

[190] J. Renegar. A Mathematical View of Interior-Point Methods in Convex
Optimization. SIAM, 2001.



430 References

[191] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects
of tree-width. Journal of Algorithms, 7:309–322, 1986.

[192] R. T. Rockafellar. Convex Analysis. Princeton University Press, second
edition, 1970.

[193] D. J. Rose. Triangulated graphs and the elimination process. Journal
of Mathematical Analysis and Applications, 32:597–609, 1970.

[194] D. J. Rose. On simple characterizations of k-trees. Discrete Mathemat-
ics, 7:317–322, 1974.

[195] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–
283, 1976.

[196] S. H. Schmieta and F. Alizadeh. Extension of primal-dual interior point
algorithms to symmetric cones. Mathematical Programming, 96:409–
438, 2003.

[197] I. J. Schoenberg. Remarks to Maurice Fréchet’s article “Sur la défi-
nition axiomatique d’une classe d’espaces vectoriels distanciés applica-
bles vectoriellement sur l’espace de Hilbert”. Annals of Mathematics,
36(3):724–732, 1935.

[198] I. J. Schoenberg. Metric spaces and positive definite functions. Trans-
actions of the American Mathematical Society, 44(3):522–536, 1938.

[199] A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency.
Springer, 2003.

[200] L. K. Schubert. Modification of a quasi-Newton method for nonlinear
equations with a sparse Jacobian. Mathematics of Computation, 24:27–
30, 1970.

[201] G. Shafer and P. P. Shenoy. Local computation in hypertrees. Technical
report, School of Business, University of Kansas, 1988.

[202] D. F. Shanno. On variable-metric methods for sparse Hessians. Math-
ematics of Computation, 34(150):499–514, 1980.

[203] C. E. Shannon. The zero error capacity of a noisy channel. IEEE
Transactions on Information Theory, 2(3):8–19, 1956.

[204] D. R. Shier. Some aspects of perfect elimination orderings in chordal
graphs. Discrete Applied Mathematics, 7:325–331, 1984.

[205] A. Skajaa and Y. Ye. A homogeneous interior-point algorithm for
nonsymmetric convex conic optimization. Mathematical Programming,
pages 1–32, 2014.



References 431

[206] R. L. Smith. The positive definite completion problem revisited. Linear
Algebra and Its Applications, 429:1442–1452, 2008.

[207] J. E. Spingarn. Partial inverse of a monotone operator. Applied Math-
ematics and Optimization, 10:247–265, 1983.

[208] J. E. Spingarn. Applications of the method of partial inverses to convex
programming: decomposition. Mathematical Programming, 32:199–223,
1985.

[209] G. Srijuntongsiri and S. Vavasis. A fully sparse implementation of a
primal-dual interior-point potential reduction method for semidefinite
programming. 2004. arXiv:cs/0412009.

[210] J. F. Sturm. Using SEDUMI 1.02, a Matlab toolbox for optimization
over symmetric cones. Optimization Methods and Software, 11-12:625–
653, 1999.

[211] J. F. Sturm. Similarity and other spectral relations for symmetric cones.
Linear Algebra and Its Applications, 312:135–154, 2000.

[212] Y. Sun, M. S. Andersen, and L. Vandenberghe. Decomposition in conic
optimization with partially separable structure. SIAM Journal on Op-
timization, 24:873–897, 2014.

[213] Y. Sun and L. Vandenberghe. Decomposition methods for sparse matrix
nearness problems. 2015.

[214] R. E. Tarjan. Applications of path compression on balanced trees. Jour-
nal of the Association for Computing Machinery, 26(4):690–715, 1979.

[215] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–
579, 1984.

[216] M. J. Todd. A study of search directions in primal-dual interior-point
methods for semidefinite programming. Optimization Methods and Soft-
ware, 11(1-4):1–46, 1999.

[217] M. J. Todd. Semidefinite optimization. Acta Numerica, 10:515–560,
2001.

[218] K.-C. Toh. Solving large scale semidefinite programs via an iterative
solver on the augmented systems. SIAM Journal on Optimization,
14(3):670–698, 2003.

[219] P. L. Toint. On sparse and symmetric matrix updating subject to a
linear equation. Mathematics of Computation, 31(140):954–961, 1977.



432 References

[220] P. Tseng. Further applications of a splitting algorithm to decomposi-
tion in variational inequalities and convex programming. Mathematical
Programming, 48:249–263, 1990.

[221] P. Tseng. Applications of a splitting algorithm to decomposition in
convex programming and variational inequalities. SIAM Journal on
Control and Optimization, 29(1):119–138, 1991.

[222] P. Tseng. Dual coordinate ascent methods for non-strictly convex min-
imization. Mathematical Programming, 59:231–247, 1993.

[223] L. Tunçel. Polyhedral and Semidefinite Programming Methods in Com-
binatorial Optimization. The American Mathematical Society, 2010.

[224] R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-
quadratic-linear programs using SDPT3. Mathematical Programming
Series B, 95:189–217, 2003.

[225] L. Vandenberghe and S. Boyd. A primal-dual potential reduction
method for problems involving matrix inequalities. Mathematical Pro-
gramming, 69(1):205–236, July 1995.

[226] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Re-
view, 38(1):49–95, 1996.

[227] M. J. Wainwright and M. I. Jordan. Graphical models, exponential fam-
ilies, and variational inferencing. Foundations and Trends in Machine
Learning, 1(1-2):1–305, 2008.

[228] H. Waki, S. Kim, M. Kojima, and M. Muramatsu. Sums of squares and
semidefinite program relaxations for polynomial optimization problems
with structured sparsity. SIAM Journal on Optimization, 17(1):218–
241, 2006.

[229] H. Waki, S. Kim, M. Kojima, M. Muramatsu, and H. Sugimoto. Algo-
ritm 883: SparsePOP—a sparse semidefinite programming relaxation of
polynomial optimization problems. ACM Transactions on Mathematical
Software, 35(2):15:1–15:13, 2008.

[230] K. Q. Weinberger and L. K. Saul. Unsupervised learning of image man-
ifolds by semidefinite programming. International Journal of Computer
Vision, 70:77–90, 2006.

[231] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul. Graph Laplacian
regularization for large-scale semidefinite programming. In B. Schölkopf,
J. C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 1489–1496, Cambridge, MA, 2007. MIT
Press.



References 433

[232] Z. Wen. First-Order Methods for Semidefinite Programming. PhD the-
sis, Columbia University, 2009.

[233] Z. Wen, D. Goldfarb, and W. Yin. Alternating direction augmented
Lagrangian methods for semidefinite programming. Mathematical Pro-
gramming Computation, 2(3-4):203–230, 2010.

[234] A. S. Willsky. Multiresolution Markov models for signal and image
processing. Proceedings of the IEEE, 90(8):1396–1458, 2002.

[235] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of
Semidefinite Programming, volume 27 of International Series in Opera-
tions Research and Management Science. Kluwer Academic Publishers,
Boston, MA, 2000.

[236] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.
Systems & Control Letters, 53(1):65–78, 2004.

[237] L. Xiao, J. Sun, and S. Boyd. A duality view of spectral methods
for dimensionality reduction. In Proceedings of the 23rd International
Conference on Machine Learning (ICML 2006), 2006.

[238] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and eval-
uation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0). Opti-
mization Methods and Software, 18(4):491–505, 2003.

[239] N. Yamashita. Sparse quasi-Newton updates with positive definite ma-
trix completion. Mathematical Programming, Series A, 115(1):1–30,
2008.

[240] M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM
Journal on Algebraic and Discrete Methods, 2(1):77–79, 1981.

[241] Y. Zhang. On extending some primal-dual interior-point algorithms
from linear programming to semidefinite programming. SIAM Journal
on Optimization, 8:365–386, 1998.

[242] X. Zhao, D. Sun, and K.-C. Toh. A Newton-CG augmented Lagrangian
method for semidefinite programming. SIAM Journal on Optimization,
20(4):1737–1765, 2010.

[243] H. Zhu and G. B. Giannakis. Power system nonlinear state estimation
using distributed semidefinite programming. IEEE Journal of Selected
Topics in Signal Processing, 8(6):1039–1050, 2014.


	Introduction
	Graphs
	Undirected graphs
	Ordered undirected graphs
	Trees
	Path decomposition

	Chordal Graphs
	Chordal graph
	Examples
	Minimal vertex separator
	Simplicial vertex
	Clique tree
	Rooted clique tree
	Tree intersection graph
	Junction tree

	Perfect Elimination Ordering
	Filled graph
	Perfect elimination ordering
	Elimination tree
	Clique tree from elimination tree
	Supernodal elimination tree
	Topological reordering
	Testing chordality

	Combinatorial Optimization
	Minimum clique cover
	Minimum vertex coloring
	Perfect graphs

	Graph Elimination
	Elimination graph
	Elimination tree
	Postordering
	Monotone degrees, cliques, and supernodes
	Filled graph
	Triangulation

	Discrete Applications of Graph Elimination
	Dynamic programming
	Probabilistic networks
	Generalized marginalization

	Sparse Matrices
	Symmetric sparsity pattern
	Chordal sparsity pattern
	Chordal extension

	Positive Semidefinite Matrices
	Cholesky factorization
	Positive semidefinite matrix cone
	Multifrontal factorization
	Supernodal factorization
	Projected inverse
	Logarithmic barrier

	Positive Semidefinite Matrix Completion
	Positive semidefinite completable matrix cone
	Maximum determinant completion
	Positive semidefinite completion
	Logarithmic barrier
	Sparse Bregman projection
	Sparse quasi-Newton updates

	Correlation and Euclidean Distance Matrices
	Correlation matrices
	Euclidean distance matrices
	Euclidean distance matrix completion

	Partial Separability in Convex Optimization
	Partial separability
	Partially separable matrix cones
	Decomposition

	Conic Optimization
	Schur complement sparsity
	Conversion and decomposition

	Sparse Semidefinite Optimization
	Aggregate sparsity
	Conversion methods
	Interior-point methods
	Nonsymmetric formulation

	Acknowledgments
	Notation
	References

