The Logic$S of Prior:
Past, Present, and Future

6-7 September 2019

Roskilde University

Using the
Isabelle Proof Assistant
Seligman-Style Tableau for Hybrid Logic

Andreas Halkjeer From, DTU Compute

1/31

I Background

* Masters thesis: Hybrid Logic
* Current plan: Formalize in Isabelle/HOL the paper

- Klaus Frovin Jgrgensen, Patrick Blackburn, Thomas Bolander and
Torben Brauner. Synthetic Completeness Proofs for Seligman-style
Tableau Systems. Advances in Modal Logic 11:302-321 2016.

- [Patrick Blackburn, Thomas Bolander, Torben Bratuner and Klaus
Frovin Jargensen. Completeness and Termination for a Seligman-
style Tableau System. Journal of Logic and Computation 27(1): 81-
107, 2017.]

« Dates: 19/08 2019 - 19/01 2020
* Supervisors:

- Jargen Villadsen
- Alexander Birch Jensen
- Patrick Blackburn 2/31

I Isabelle

* Isabelle is a generic proof assistant.

It allows mathematical formulas to be expressed in a
formal language and provides tools for proving those
formulas in a logical calculus.

 The main application is the formalization of
mathematical proofs and in particular formal
verification, which includes proving the correctness
of computer hardware or software and proving
properties of computer languages and protocols.

http://isabelle.in.tum.de/overview.html

 That is, machine-checked proofs.
3/31

Syntax |

 Encode the syntax as a datatype.

« Automatically generates induction principle,
disjointness lemmas and more.

pu=i|p|op| VY| Op| Q.

datatype ('a, 'b) fm
= Pro 'a

Nom 'b

Neg <('a, 'b) fm> ("= " [40] 40)

Dis <«('a, 'b) fm> <('a, 'b) fm> (infixr "v" 30)

Dia «('a, 'b) fm> ("<& " 10)

Sat 'b «('a, 'b) fm> ("@ " 10)

4 /31

I Syntax Il

* Introduce abbreviations for syntax

abbreviation Box ("O " 10) where
<O p == (© = p)

5/31

Syntax Il

* Introduce abbreviations for syntax

abbreviation Box ("O " 10) where
<O p == (© = p)

* Define substitution. Checked for type safety and
totality.

primrec sub :: <('b = 'c) = ('a, 'b) fm = ('a, 'c) fm> where
<sub (Pro x) = Pro x

<sub ¥ (Nom 1) = Nom (T 1i)>

<sub f (= p) = (= sub T p)>

<sub f (p VvV q) = (sub f p Vv sub f q)>
<sub f (& p) = (& sub T p)>

<sub T (@1 p) = (@ (f 1) (sub T p))>

6/31

I Syntax Il

 We can try out our definitions.

value <sub Suc (@ © (Pro "'p'" V = Nom 3))>

5 ¥
"@ 1 Pro "'p’'" V = Nom 4" it

:: "(char list, nat) fm" ~]
4| b

7/31

I Syntax Il

 We can try out our definitions.

value <sub Suc (@ © (Pro "'p'" V = Nom 3))>

-

3

"@ 1 Pro "'p’'" V = Nom 4"

:: "(char list, nat) fm"

11

value <sub (An ::

nat. n>2) (@0 (Pro '"'p'" V = Nom 3))>

3 3

"@ False Pro ''p'' V = Nom True"

:: "(char list, bool) fm"

1]

FS

8/31

I Semantics |

 "We interpret the language in models based on frames (W, R),
where W is a non-empty set (we call its elements worlds) and R
IS a binary relation on W (the accessibility relation).”

« "A model is a triple (W, R, V) where (W, R) is a frame and V (the
valuation) maps propositional symbols p to arbitrary subsets of
W, and nominals i to singleton subsets of W.”

M, w = a iff a is atomic and w € V' (a)

- iff M w = @
Mwe=pVy it Mwe=yporMwe=y

M, w =< iff for some w', wRw' and M, w' = ¢
M w = Qi iff M w = ¢ and w' € V(3).

=
S
|

9/31

Semantics Il

* 'w is the non-empty type of worlds.

* R is the accessibility relation, V is the valuation on
propositions, g maps nominals to worlds.

datatype ('w, 'a) model =
Model (R: <'w = 'w set>) (V: <'w = 'a = bool>)

primrec semantics
2 <('w, 'a) model = ('b = 'w) = 'w= ('a, 'b) fm = bool»

(", , E " [50, 50, 50] 50) where

<(M, , wgE Prox) =VMw x>

<(, 9, wkE Nom i) = (w=g 1)>

<M, g, wkE =p)=(-M, g, wfE p)

«M, g, wE (pVvag)=(M g, wkp VvIMGgWwEaqg)

<(M, g, wgE ©p)=(3veRMwW. M, g, vE p

<M, 9, E@ip) =M, g, 91ifFp) 10/ 31

I Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

11/31

Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

lemma <irreflexive M — M, g, w F @1 = (¥ Nom 1i)>
proof -
assume <irreflexive M»

12 /31

Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

lemma <irreflexive M — M, g, w F @ - (< Nom 1i)>
proof -
assume <irreflexive M»
then have <g 1 £ R M (g 1)>
by simp

13/31

Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

lemma <irreflexive M — M, g, w F @ - (< Nom 1i)>
proof -
assume <irreflexive M»
then have <g 1 £ R M (g 1)>
by simp
then have <= (v € R M (g 1). g 1 = v)>
by simp

14 /31

Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

lemma <irreflexive M — M, g, w F @ - (< Nom 1i)>
proof -

assume <irreflexive M»

then have <g 1 £ R M (g 1)>

by simp

then have <= (v € R M (g 1). g 1 = v)>
by simp

then have <- M, g, g i < Nom i»
by simp

15/ 31

Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

lemma <irreflexive M — M, g, w F @ - (< Nom 1i)>
proof -
assume <irreflexive M»
then have <g 1 £ R M (g 1)>
by simp
then have <= (v € R M (g 1). g 1 = v)>
by simp
then have <- M, g, g i < Nom i»
by simp
then have <M, g, g1 F = (< Nom 1)>
by simp

16 /31

Example Proof |

abbreviation irreflexive :: <('w, 'b) model = bool> where
<irreflexive M = Vw. w € R M w>

lemma <irreflexive M — M, g, w F @ - (< Nom 1i)>
proof -
assume <irreflexive M»
then have <g 1 £ R M (g 1)>
by simp
then have <= (v € R M (g 1). g 1 = v)>
by simp
then have <- M, g, g i < Nom i»
by simp
then have <M, g, g1 F = (< Nom 1)>
by simp
then show <M, g, w F @ -~ (< Nom 1i)>
by simp

17 /31

I Example Proof II

* |sabelle has powerful proof search.

lemma <irreflexive M = (Vg w. M, g, w F @L - (¢ Nom 1i))>
tryol}

] Proof state Auto update Update |Search: |
Trying "simp", "auto", "blast", "metis", "argo", "linarith",
Found proof: by auto (5 ms)
Found proof: by force (5 ms)

Found proof: by fastforce (5 ms)
Try this: by auto (5 ms)

18 /31

I Counterexample Search

* Goals are checked for counter-examples
automatically or on demand

* E.qg. if we use nonreflexive instead of irreflexive in
the previous example.

olellma <— reflexive M = (vg w. M, g, W = @ - (<& Nom i))>

<
[] Proof state [v] Auto update Search: .
- Auto Quickcheck found a counterexample:
[M = Model (Ax. {ai}) (Ax. UNIV)
3§

i=81

:: Enum.finite 2 *
bound variable =

1] [*]

19/31

I Calculus |

© 00 1O Ot = W N =

—~(Q;5 NQjp — Q;p)
@3] /X @j(p
~@;

Q;j
Qjep

(- —)onl
(- —)onl
(A) on 2
(A) on 2

GoTo

(Q) on 4,6
(Q) on 5,7
(—@) on 3,6

20/ 31

I Calculus Il

* We inductively define the tableau rules.

* Definition over a single branch. Whole tree is implicit.

inductive ST :: <('a, 'b) branch = bool> ("~ " [50] 50) where

21/31

I Calculus Il

* We inductively define the tableau rules.

* Definition over a single branch. Whole tree is implicit.

inductive ST :: <('a, 'b) branch = bool> ("~ " [50] 50) where

* "a branch closes either by having ¢ and —¢ inside a
block, or inside two distinct blocks with the same
opening nominal”

Close:
<bl € opens with 1 branch — br € opens with 1 branch —

p € set bl = (- p) € set br =
 branch>

22 /31

Calculus I

(©)*

1
@iga

DiaP:

<block € opens with (opening current branch) branch —
(¢ p) € set block =
= (@L p) #. (© Nom i) #. branch —
#a. p = Nom a = i ¢ branch nominals branch =

= branch>»
23/ 31

Calculus I

090 « Many modelling choices:

1 - Implicit or explicit opening nominals,
(<) blocks?
: - Sets or lists for explicit blocks?
O) "
@iga

 The simpler the better.

DiaP:

<block € opens with (opening current branch) branch —
(O p) € set block =
= (@l p) #. (© Nom i) #. branch —
#a. p = Nom a = i ¢ branch nominals branch =

= branch>»
24 /31

I Soundness

* Derivation of negation implies validity of original.

theorem <+ Branch [] [~ p] = M, g, Ww p>
using soundness by fastforce

25/ 31

Soundness

* Derivation of negation implies validity of original.

theorem <+ Branch [] [~ p] = M, g, Ww p>
using soundness by fastforce

Now, the contrapositive of soundness follows from the observation that if a tableau T of the
calculus ST has a branch which is block-wise satisfiable, then the tableau obtained by applying a rule
to 7 also has a branch which is block-wise satisfiable. This can be seen simply by inspecting each
rule in ST. |

* Currently around 285 lines of proof code.

* Lots of case-splitting on whether the current block has
an opening nominal.

» Trusting definitions, the tableau is truly sound. 26 /31

Sledgehammer

* |sabelle has powerful proof search search.

* Automatically searches for relevant lemmas, local
facts and method to prove current goal.

case (DisN block branch p q)
then show ?case
proof (induct branch rule: opening current.induct)
case (1 named i nameds 1nit)
then have <Vp € set block. M, g, g i E p>
sledgehammer
3 B
Sledgehammering. .. el
Proof found...
"cved4": Try this: by (metis basic trans rules(31) opening current.simps(1l) o

“vampire": Try this: by (metis DisN.hyps(1l) DisN.prems basic trans rules(31) |
4] li | [¥]

27 /31

I Substitution |

Lemma 3.2 (Substitution lemma)

(i) We can uniformly substitute in a tableau. Suppose ® is a branch
in an STB-tableaw in which the nominals © and j occur, and ® is extended
by applying rule R to input I to obtain output O. Then ®[i/j] can be
extended by applying R to input 1[i/j] to obtain output O|i/j].

(ii) Which nominals are used as fresh nominals is irrelevant. Suppose
O is a branch in a finite tableau T and let i be a nominal which is used
somewhere in © as a fresh nominal. Suppose, furthermore, that j is not
used at all in ©. We can then uniformly substitute j for i in © to obtain
a branch ©lj/i], where rule-applications in ©|j/i] mimic rule-applications
in ©, the only change being that j is used instead of i.

Proof. By induction on the construction of ® and © respectively. O

28 /31

I Substitution Il

« Cumbersome to specify fresh nominals in
formalization.

* Instead, prove a generalized lemma using
simultaneous substitutions.

theorem ST sub:

fixes T :: <'b = 'c>

assumes <infinite (UNIV :: 'c set)>

shows <~ branch = F sub branch f branch»
proof (induct branch arbitrary: f rule: ST.induct)

* Around 150 lines of proof code.

29 /31

I Applications

« Kepler conjecture (Flyspeck project)
* Godel’'s incompleteness theorems

« Completeness of natural deduction, sequent
calculus, resolution for first-order logic

* Algorithms and data structures
* Algebra, analysis, probability theory, graph theory

 Completeness of System K

30/31

I Further Reading

* Archive of Formal Proofs
https://www.isa-afp.org/index.html

* |saFoL (Isabelle Formalization of Logic)
https://bitbucket.org/isafol/

* Formalizing 100 Theorems
http://www.cs.ru.nl/~freek/100/

31/31

https://www.isa-afp.org/index.html
https://bitbucket.org/isafol/
http://www.cs.ru.nl/~freek/100/

	Dias 1
	Dias 2
	Dias 3
	Dias 4
	Dias 5
	Dias 6
	Dias 7
	Dias 8
	Dias 9
	Dias 10
	Dias 11
	Dias 12
	Dias 13
	Dias 14
	Dias 15
	Dias 16
	Dias 17
	Dias 18
	Dias 19
	Dias 20
	Dias 21
	Dias 22
	Dias 23
	Dias 24
	Dias 25
	Dias 26
	Dias 27
	Dias 28
	Dias 29
	Dias 30
	Dias 31

