Hybrid Logic

MSc Defense, Asta Halkjcer From

Formalizing a Seligman-Style Tableau System

1/32

l Preface

« MSc in Computer Science and Engineering, Technical University of Denmark.
* Thesis period: 19 August 2019 to 19 January 2020 (30 ECTS).
 Defense: 29 January 2020.
e Supervisors:
- Jergen Villadsen
- Alexander Birch Jensen (co-supervisor)
- Patrick Blackburn (external supervisor, Roskilde University)

2/32

l Overview

* Isabelle

- Archive of Formal Proofs
« Hybrid Logic
* Seligman-Style Tableau System
» Restrictions Towards Termination
« Lifting Restrictions
 Admissible Bridge
« Completeness

- Hintikka definition
* Future Work

e Conclusion
3/32

l Isabelle/HOL Proof Assistant

* Generic proof assistant Isabelle
- Isabelle/HOL is the higher-order logic instance.
* Express mathematical statements and proofs in a formal language
- Unambiguous definitions.
- Machine-checked proofs.
- Proof search (and proof search search).
- Counterexample search.
 LCF architecture
- Abstract type of theorems.
- Trusted kernel.

4/ 32

You don't need proof
when you have instinct.

5/32

But it's na‘about what we believe,
it's about what we can prove.

6/32

l Archive of Formal Proofs |

. "[(.:]oll.e_ction of proof libraries, examples, and Ia.rger B ¢ of the AFP in # of artcies
scientific developments, mechanically checked in 6o
the theorem prover Isabelle.”

« Refereed submissions. o
* Formalizations kept up to date with Isabelle. 400 |
« Statistics -
- Number of Articles: 516
- Number of Authors: 340 1
- Number of lemmas: ~141,100 100
- Lines of Code: ~2,452,800 e 1 | III
- https://www.isa-afp.org/statistics.html S S S S ST S s

https://www.isa-afp.org/statistics.html

Computer Science (293)
Automata and Formal Languages
(39)

Algorithms (75)

Concurrency (19)

Data Structures (50)

Functional Programming (21)
Games (1)

Hardware (1)

Networks (6)

Programming Languages (83)
Security (39)

Semantics (7)

System Description Languages (7)

Logic (62)
Philosophy (7)
Rewriting (11)

Mathematics (199)
Order (6)

Algebra (63)
Analysis (36)
Probability Theory (12)
Number Theory (26)
Economics (10)
Geometry (17)
Topology (4)

Graph Theory (16)
Combinatorics (18)
Category Theory (6)
Physics (1)

Set Theory (1)

Misc (3)

Tools (14)

l Archive of Formal Proofs Il (index by topic)

8 /32

l Archive of Formal Proofs lil

 New logic entry:
- Hybrid Logic - Formalizing a Seligman-Style Tableau System
- Based on work by Blackburn, Bolander, Brauner and Jgrgensen.
- https://www.isa-afp.org/entries/Hybrid_Logic.html
* “[V]ery nice and clean proofs!”
- Gerwin Klein, AFP editor
* Latest version:
- 4820 lines of Isar proof code.
- 100+ pages when rendered in LaTeX.
- Checked in less than two minutes on my machine.

9/32

https://www.isa-afp.org/entries/Hybrid_Logic.html

Hybrid Logic

* Modal logic enriched with names for worlds, nominals (a, b, ¢, i, j, k).
 Nominals give rise to the satisfaction operator (@).
 Semantics defined over an assignment (g), a mapping from nominals to worlds.

o=z li| =gl oV | Op| Qg

datatype ('w, 'a) model =
Model (R: <'w = 'w set>) (V: <'w = 'a = bool>»)

primrec semantics
<('w, 'a) model = ('b = 'w) = 'w= ('a, 'b) fm = bool>»
, , FE > [50, 50, 50] 50) where

(<
<(M, , wEProx) =VMw x>
| <(, g, wE Nomi) = (w=g i)>
| <M, g, wfE =p)=(M g, wiEp)
| <M, g9, wE (pVvVa))=(Mg,wEP VIMJgI wikaq
| <M, g, wE ©p)=(IveRMw. M g, v Fp)
| <M, g, _EFE@ip)=(M, g, gif p)

10/ 32

l Seligman-Style Tableau System |

« Syntactic procedure for proving validities.

A tableau closes if we can apply rules to reach a contradiction
on all branches.

* Division of each branch into blocks
- Opening nominal acts as prefix/label.

- Intuition: Formulas on a block are true in the world
denoted by the opening nominal.

- Can be viewed as a macro.
» Rules operate on arbitrary formulas (within blocks).
 |If ¢ occurs on an a-block, | say that ¢ occurs at a.

¢1 Q; ¢y

P2 Q; 02
J

U1 Qj1hy
Figure 3.1:

Blocks as macros.

11/32

bV (6 V¥)
1
¢ |
/ \
—¢
] Y)
(V) (=V)
b b a
i ¢ i
o a
‘ |
¢
GoTo? Nom

1 i is fresh, ¢ is not a nominal.
2 i is not fresh.

l Seligman-Style Tablea

a
—|—|(’b

a
|
¢
(=)
i
¢ P

a

|
X

Closing

u System I

a

o)

a

a
—~0¢ 01

a

|
~@;6

(—0)

-@Q, ¢

a
|
—¢

(-@)

12 /32

l Restrictions Towards Termination

 R1 The output of a rule must include a formula new to the current block type.
- Reformulated to be explicit about rule applicability, not output.

« R2 The (¢) rule can only be applied to input &G on an a-block if G is not
already witnessed at a.

- O is witnessed at a if for some i both &i and @i ¢ occur at a.
- Reformulated in terms of branch content, not rule applications.

. R3TheN e | led | 2 e N |

* R4 The GoTo rule consumes one coin from the bank. (Other rules add one coin.)
- Reformulated to make rule induction easier.

« R5 (@) and (—@) can only be applied to premises i and @i ¢ (—@i ¢) when the
current block is an i-block.

- Incorporated structurally. Original versions admissible. 13 /32

Tricky Example for Original Nom

1. a 1 a
3.) GoTo 3. i GoTo
4. (7 — Q;(i = @;(¢ — Q;9))) (—@) 2, 3 4. (g VQ;(—i VQ; (g VQ;9))) (—@) 2, 3
5. J (- —)4 5. == (=Vv) 4
6. ~@; (i = @;(¢p — Q;9)) (~—) 4 6. =@ (=i V@ (mp v Q;0)) (—Vv) 4
. J GoTo 7. J GoTo
8. (i = Q¢ — Q;0)) (—@) 6, 7 8. (=i V@ (—g V@;¢)) (—@) 6, 7
9.) (m—) 8 9. - (-V) 8
10. ~@ (¢ — @) () 8 10. ~@;(~¢ V @,) (-V) 8
11. 1 GoTo 11. 7 GoTo
12. (¢ = @;¢) (~@) 10, 11 12. ~(~$V @;¢) (~@) 10, 11
13. 10) (- —) 12 13. ¢ (=V) 12
14. ~Q; ¢ (- —) 12 14. —@Q;¢ (=V) 12
15. J GoTo 15. J GoTo
16. —¢ (—@) 14, 15 16. —0 (—@) 14, 15
17. i (=) 9
Figure 3.6: Getting stuck with R14+R5 and (- —). 18. -0 Nom 11, 13, 17
X

Figure 3.7: Being saved from R1 by double negations. 14 / 32

l Tableau System in Isabelle

inductive ST :: <nat = ('a, 'b) branch = bool: (< +~ > [50, 50] 50) where
Close:
<p at i in branch = (= p) at 1 in branch —
n =~ branch»

| Neg: | SatP:
<(= - p) at a in (ps, a) # branch — <(@ a p) at b in (ps, a) # branch =
new p a ((ps, a) # branch) — new p a ((ps, a) # branch) —
Suc n + (p # ps, a) # branch = Suc n k- (p # ps, a) # branch —
n+ (ps, a) # branch> nk (ps, a) # branch»
| DisP: | SatN:
<«(p vV q) at a in (ps, a) # branch — <«(~ (@ ap)) at b in (ps, a) # branch —
new p a ((ps, a) # branch) =— new q a ((ps, a) # branch) — new (- p) a ((ps, a) # branch) —
Suc nt (p # ps, a) # branch = Suc n - (q # ps, a) # branch = Suc n - ((= p) # ps, a) # branch —

n = (ps, a) # branch> n + (ps, a) # branch»
| DisN: ,) | GoTo:

«(=(pVvq))at ain (ps, a) # branch = <1 € branch _nominals branch —
new (-~ p) a ((ps, a) # branch) v new (- g) a ((ps, a) # branch) — hE ([], 1) # branch —
Sucnk ((-q) # (- p) # ps, a) # branch = Suc n F’branch>
n - (ps, a) # branch> | Nom:

| DiaP: <p at b in (ps, a) # branch — Nom i at b in (ps, a) # branch —

<(¢& p) at a in (ps, a) # branch — .
i ¢ branch nominals ((ps, a) # branch) — Nom i at a in (ps, a) # branch =
— new p a ((ps, a) # branch) —

#a. p = Nom a = — witnessed p a ((ps, a) # branch) —
Sucntk ((@1ip)# (& Nom i) # ps, a) # branch = Suc n = (p # ps, a) # branch —
n - (ps, a) # branch> nt (ps, a) # branch>
| DiaN:
<(= (© p)) at a in (ps, a) # branch —
(¢ Nom i) at a in (ps, a) # branch =
new (- (@i p)) a ((ps, a) # branch) —
Sucntk ((= (@1 p)) # ps, a) # branch — 15/32
n+ (ps, a) # branch>

Soundness

lemma soundness:
assumes <n F branch»
shows <dblock € set branch. dp on block. = M, g, w F p>

theorem soundness fresh:
assumes <n - [([- p], 1)]> <i ¢ nominals p>
shows <M, g, w | p»
proof -
from assms(1l) have <M, g, g 1 = p> for g
using soundness by fastforce
then have <M, g(i :=w), (g(i :=w)) 1 E p>
by blast
then have <M, g(i :
by simp
then have <M, g(i :=g 1), w F p»
using assms(2) semantics fresh by metis
then show ?thesis
by simp

w), wE p»

fed 16 /32

l No Detours |

* Originally [R4 The GoTo rule cannot be applied twice in a row.]

« On the weakened branch, opening L. a l. a
the a-block was a mistake. 2. - 2. ¢
3.
* Pruning detours complicates proofs. — .
« Instead, assume more coins. ; ~ ;
« Show separately that a single initial 3. a GoTo 4. a GoTo
coin is sufficient. 4. ¢ (-)2 5 =—=}2
« Coin system allows for detours 5. 1 GoTo 6. 1 Gote

but ties GoTo to initial savings or

other rule applications, i.e. progress. Figure 3.9: Unjustified GoTo after weakening.

17 /32

l No Detours Il

LEMMA 4.3 (FILTERING DETOURS) If a branch can be closed starting from
n coins, then any filtering cut of the branch can be closed from m—+1 coins. That

is, if n = 0,0, thenm +1F [©;],0,.

THEOREM 4.4 (POSITIVE COINS) Ifnt © then m+ 1F ©.

COROLLARY 4.5 (A SINGLE COIN) Ifnt © then 1+ ©.

THEOREM 4.6 (FREE GOTO)

If n+1F B,O where B is an empty block whose opening nominal occurs in ©,

thenn+1F 0O,

PRrOOF. By applying GoTo we have n + 2 F © and then Theorem
n+ 1+ © as wanted.

4.4

gives us

]

18 /32

l As Good

P
L
i
- ¢

i
L

Figure 4.1:
Strengthening.

as New

Mark one lasting occurrence of ¢ at i and b (0,0)
any number of removed occurrences.

When a removed occurrence is used as rule
input, the lasting one can be used instead.

Allows us to lift R1.
Requires indexing machinery.

quo. (0, mg)

¢0 (ﬂ,? 0)

n,m
Alternatively: Cut branch and remove every Y (1,110

occurrence of ¢ at i below the cut. Would

require cutting in the middle of block. Figure 4.2: Indexing.

19/ 32

l Too Many Witnhesses |

THEOREM 4.10 (SUBSTITUTION) Let 6 be a substitution function. Assume
that for all finite sets A, if there exists a nominal not in A then there exists a
nominal not in the image of A under f. If = © then - ©6. i 9(7,)

¢1 010
G2 7 ob

PROOF. Shown by rule induction over the construction of © for an arbitrary 6.

Case (¢) By assumption we have ¢¢ at a in ©, the nominal ¢ is fresh in © and
by the induction hypothesis - (Q;$)0" —g/ (o) (49)8 —g/ (o) ©F" for any 6. The
g is unwitnessed at a in © but since the substitution may collapse formulas,
O may be witnessed at @(a) in ©0. Thus there are two cases:

If G0 is witnessed at O(a) in ©0 then let i’ be the witnessing nominal, such that Figure 4.3:
Q@ (pf) and i’ both occur at #(a) in ©0. Apply the induction hypothesis at S

(i := ") to obtain F Qy (pf) —g(a) Oi’ —p(a) OF, where the added assignment has Substitution.
been reduced away in the places where 7 is fresh. Both formulas in the extension
are justified by the Nom rule so we obtain - ©f as needed. 20/ 32

l Too Many Witnesses Il

Otherwise the formula is unwitnessed. To apply the (&) rule, we need the
witnessing nominal to be fresh in ©6 but since € is not necessarily injective, this
may not be the case for 6(i). But since © is finite, we have by assumption a
nominal j that is fresh to ©6. Apply the induction hypothesis at 6(i := j) to
learn = @;(00) —g(a) CJ —0(a) OO where, again, I have reduced the term using
the fact that i is fresh in ©. The (<) rule now applies: C¢f is unwitnessed at
f(a) in ©F and we have ensured that j is fresh. Thus we can conclude - ©6. [J

THEOREM 4.13 (UNRESTRICTED (<)) If- Q¢ —, Oi —, O, i is fresh in
© and ¢ is not a nominal, then - ©.

21 /32

General Satisfaction |

B, / « Rearranged branch may have mismatched L. a
current block. :
— * Apply induction hypothesis at the branch 2. ¢
: extended by the original current block. :
B B - Then drop it again. 3. ‘?2
* Custom induction principle for dropping. :
Figure 4.4: N 4 a GoTo
Rearranging. Need substitution for () case. 5. & Nom L 2 4
6. ¢o Nom 1,3, 4
lemma list down induct [consumes 1, case names Start Cons]: . .
{BlaB% '?Bn} C assumes <vVy € set ys. Q y> <P (ys @ Xxs)> ;
/ ! / <Ay xs. Q y = P (y # xs) =— P xs>
{B1, By, B} shows <P xs> Figure 4.5:

using assms by (induct ys) auto Dropping a block.

22 /32

l General Satisfaction Il

(

a

¢

a

|
—6>— Nom

Figure 4.6: Deriving the unrestricted (@) rule.

GoTo
Nom
(@)

23/ 32

l Bridge |

« Replace ¢k by ¢&j and apply Nom.
* Need to update any output of rules with ¢k as input.

.) a a
- Lemma 4.2 by Jagrgensen et al. but with a descendant set. i . o
- Defined by branch content, not rule applications. J J
- Lemma 4.1 (shape of descendants) comes for free. ()
DEFINITION 5.1 (DESCENDANT SET) ‘
Initial If O(v) is an i-block and O(v,v') = Ok, then {(v,v")} is De ; k. Ok

Derived If A is Dg i, (w,w') € A, ©(w) is an a-block, O(w,w') = Ok, O(v)
is an a-block and O(v,v") = Q¢ for some ¢ then {(v,v")} UA is Do ; k.

Copied If A is Do, (w,w') € A, ©(w) is a b-block, O(w,w") = ¢, there
is a nominal j that occurs both at a and b in ©, O(v) is an a-block and

O(v,v") = ¢ then {(v,v")} UA is Dg ; 1. 24 /32

l Bridge i

Case (-<) We have both =<C¢ and <’ at a in O, the current block is an
a-block and we know that A is Dg ; ;. Let (w,w’) be the index of the given <7,
There are two cases.

?
If (w,w') ¢ A then 4’ is also at a in © and the case follows similarly to (——):

The rule input is unchanged so we do not have to replace the output. <>,]

. 2
oy

Otherwise, (w,w’) € A so by Lemma |5.2 on page 40| i = k and (i) = <.
To account for this, we need to extend A to include the index of the output,
—@p ¢, to make sure it becomes —@;¢ such that the (=<) rule justifies it. Let
(v,v") be the index of the output. By Lemma|5.3 on the previous pagel A is
D @, ¢—,0.ir and by the Derived case, so is {(v,v")} UA.

Thus we apply the induction hypothesis at the extended index set, {(v,v’)} U A,

and learn - (@) —, ©’tw.v)1ua | By Remark|5.4 on the preceding page|we
have - -Q;¢ —, O2. We can now apply the (=<) rule and conclude the case.

~.

25/ 32

Bridge il

theorem Bridge:

fixes i :: 'b
assumes inf: <infinite (UNIV :: 'b set)> and
«Nom i at b in branch> <(<& Nom j) at b in branch: <Nom i at a in branch»
<«Nom j at c in branch> <Nom k at c in branch: THEOREM 5°7
<+ ((<© Nom k) # ps, a) # branch» . - . . -
shows <+ (ps, a) # branch> If &5 1s at v in O, 5 and k are both
proof - . .
let ?xs = <{(length branch, length ps)}> &t a in @; the C’LL’I‘T‘Bnt blOCk 15 an
have <descendants k a (((< Nom k) # ps, a) # branch) ?xs: ’i'bZOCk and |_ <>k) 9; then }_ @
using Initial by force p
moreover have 1
<Nom j at c in ((< Nom k) # ps, a) # branch» PROOF. Let (U’U) be the index
<Nom k at ¢ in (O Nom k) # ps, a) # branch> of the final ¢k and let A be the
using assms(5-6) by auto
ultimately have 1M1]]
< mapi_branch (bridge k j ?xs) (((<& Nom k) # ps, a) # branch)» Set Contalnlng JU'St that lndeX' By
using ST bridge inf assms(7) by fast 1113] .
then have <« ((< Nom j) # mapi (bridge k j ?xs (length branch)) ps, a) # the Inltla]‘ (?a’seﬂ A 18 DOk—i@J,k'
mapi branch (bridge k j ?xs) branch» J A
unfolding mapi branch def by simp ThUS }_ (Ok) 1 @ by Lemma 56
moreover have <mapi branch (bridge k j {(length branch, length ps)}) branch = .
mapi branch (bridge k j {}) branch> Ol page 41| Then |_ <>] 1 @ by
using mapi branch_add oob[where xs=<{}>] by fastforce
moreover have <mapi (bridge k j ?xs (length branch)) ps = Lemma|54 on page 41| and ﬁnally,
mapi (bridge k j {} (length branch)) ps>
using mapi_block add oob[where xs=<{}> and ps=ps] by simp due to the Nom rule, F ©O.]

ultimately have <~ ((< Nom j) # ps, a) # branch»

using mapi block id[where ps=ps] mapi_branch_id[where branch=branch] by simp
then show ?thesis

using assms(2-5) by (meson Nom' set subset Cons subsetD)

qed 26/ 32

Completeness

lemma hintikka model:
assumes <hintikka H»
shows
<p at 1 in' H = Model (reach H) (val H), assign H, assign H i | p>»
<(- p) at 1 in' H = - Model (reach H) (val H), assign H, assign H i | p>

primrec extend ::
<('a, 'b) block set = (nat = ('a, 'b) block) = nat = ('a, 'b) block set> where
<extend S f 0 = S>
| <extend S f (Suc n) =
(i1f — consistent ({f n} U extend S f n)
then extend S f n
else
let used = ([Ublock € {f n} U extend S f n. block nominals block)
in {f n, witness (f n) used} U extend S f n)>»

lemma hintikka Extend: theorem completeness:
fixes S :: <('a, 'b) block set» fixes p :: <('a :: countable, 'b :: countable) fm>
assumes inf: <infinite (UNIV :: 'b set)> and assumes
<maximal S»> <consistent S»> <saturated S»> inf: <infinite (UNIV :: 'b set)-> and
shows <hintikka S» valid: «<v(M :: ('b set, 'a) model) gw. M, g, w | p>

shows <1 - [([- p], 1)]>
27] 32

Hintikka

 Small error in the Hintikka definition by Jargensen et al.
« Worlds of the named model are sets of equivalent nominals, |i|.
* But their base case does not account for this.

(i) If there is an i-block in H with an atomic formula a on it, then there is no
t-block in H with —a on it.

+ The world |i| (|j|) supposedly models both x and its negation:

{([7’3 LE],]), ([]: _':E]: ?’)}

(i’) If there is an i-block in H with j on it and a j-block in H with a propositional
symbol x on it, then there is no ¢-block in H with —x on it.

28/ 32

l Hintikka Definition

definition hintikka :: ('a, 'b) block set = bool> where

thintikka H = A
(Vzij. Nomjatiin' H— Proxatjin' H — Vpqgi.(pVq)atiin'H—
= (= Prox) at 1 in p at i in Vg at tin
P in' H " H "H
A A
(Vai. Nom a at iin" H — — (= Nom a) at i in' H) Vpqgi.(=(pV q)atiin' H—
A (mp)atiin’ HA (- q)atiim' H)
(Vij. (O Nom j) atiin’ H— = (= (O Nom 7)) atiin’ H) A
A (Vpi.(~—p)atiim'H—
(Vpi. i € nominals p — (I block € H. p on block) — patiin’ H)
(Ips. (ps, i) € H)) A
A (Vpia. (@Qip)atain'’ H—
(Vij. Nomjatiin'"H — Nom i atjin' H) patiin’ H)
A A
(Vijk. Nomjatiin' H — Nomkatjin' H— (Vpia. (_‘(@;zp)) at ain' H —
Nom k at i in" H) (—p)atiim’ H)
A A
. s f
(Vijk. (O Nom j) atiin’ H — Nom k at jin' H —> (Vpi. (fa. p= Noma) — (O p)atiin'H —
(& Nom k) at i in’ H) (7. (O Nomj)atiim"HA(Qjp)atim' H))
A
N

Vpij. (= (O p)) atiin' H— (& Nom j) atiin’ H —

(Vijk. (© Nomj) atiin' H — Nomkatiin' H— (= (@] p)) atiin' H)

& Nom j) at kin' H
(/) : 29 /32

l Future Work

Restricting Nom for termination

- The thesis sketches an idea based on tags that encode the notion of one
nominal being generated by another, forcing a direction on Nom.

* Proving and formalizing termination directly by a decreasing length argument
instead of by translation.

* Verifying an algorithm, a decision procedure, based on the calculus.
- And using Isabelle to generate executable code based on it.

« Extending the formalization to prove more results about hybrid logic, e.q.
interpolation

« Giving an internalized restriction on GoTo instead of the coin system.

30/ 32

l Conclusion

* | have formalized the soundness and completeness of a tableau system for
basic hybrid logic in Isabelle/HOL.

* | have reformulated existing termination restrictions to ease formalization.
* | have shown how to lift the restrictions by working within the system.
- This simplifies the application of an existing synthetic completeness proof.
* | have shown that the full Bridge rule is admissible.
« The work has been accepted into the Archive of Formal Proofs.

31/ 32

l References

Patrick Blackburn, Thomas Bolander, Torben Brauner, and Klaus Frovin
Jargensen. Completeness and Termination for a Seligman-style Tableau System.
Journal of Logic and Computation, 27(1):81-107, 2017.

« Klaus Frovin Jgrgensen, Patrick Blackburn, Thomas Bolander, and Torben
Brauner. Synthetic Completeness Proofs for Seligman-style Tableau Systems. In
Advances in Modal Logic 11, pages 302-321, 2016.

« Torben Brauner. Hybrid Logic. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
summer 2017 edition, 2017.

» Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof
Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

See the thesis for the rest.
32 /32

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

