#### Hybrid Logic MSc Defense, Asta Halkjær From

Formalizing a Seligman-Style Tableau System

#### Preface

- MSc in Computer Science and Engineering, Technical University of Denmark.
- Thesis period: 19 August 2019 to 19 January 2020 (30 ECTS).
- Defense: 29 January 2020.
- Supervisors:
  - Jørgen Villadsen
  - Alexander Birch Jensen (co-supervisor)
  - Patrick Blackburn (external supervisor, Roskilde University)

# **Overview**

- Isabelle
  - Archive of Formal Proofs
- Hybrid Logic
- Seligman-Style Tableau System
- Restrictions Towards Termination
- Lifting Restrictions
- Admissible Bridge
- Completeness
  - Hintikka definition
- Future Work
- Conclusion

# Isabelle/HOL Proof Assistant

- Generic proof assistant Isabelle
  - Isabelle/HOL is the higher-order logic instance.
- Express mathematical statements and proofs in a formal language
  - Unambiguous definitions.
  - Machine-checked proofs.
  - Proof search (and proof search search).
  - Counterexample search.
- LCF architecture
  - Abstract type of theorems.
  - Trusted kernel.

#### Mood

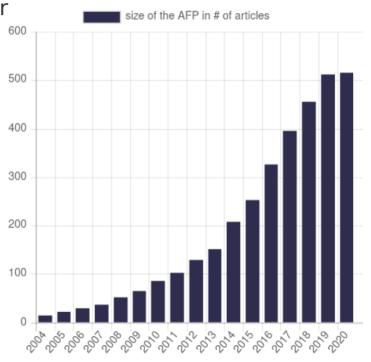


#### Isabelle



# **Archive of Formal Proofs I**

- "[C]ollection of proof libraries, examples, and larger scientific developments, mechanically checked in the theorem prover Isabelle."
- Refereed submissions.
- Formalizations kept up to date with Isabelle.
- Statistics
  - Number of Articles: 516
  - Number of Authors: 340
  - Number of lemmas: ~141,100
  - Lines of Code: ~2,452,800
  - https://www.isa-afp.org/statistics.html



# Archive of Formal Proofs II (index by topic)

#### **Computer Science (293)**

- Automata and Formal Languages (39)
- Algorithms (75)
- Concurrency (19)
- Data Structures (50)
- Functional Programming (21)
- Games (1)
- Hardware (1)
- Networks (6)
- Programming Languages (83)
- Security (39)
- Semantics (7)
- System Description Languages (7)

#### Logic (62)

- Philosophy (7)
- Rewriting (11)

#### Mathematics (199)

- Order (6)
- Algebra (63)
- Analysis (36)
- Probability Theory (12)
- Number Theory (26)
- Economics (10)
- Geometry (17)
- Topology (4)
- Graph Theory (16)
- Combinatorics (18)
- Category Theory (6)
- Physics (1)
- Set Theory (1)
- Misc (3)

Tools (14)

# **Archive of Formal Proofs III**

- New logic entry:
  - Hybrid Logic Formalizing a Seligman-Style Tableau System
  - Based on work by Blackburn, Bolander, Braüner and Jørgensen.
  - https://www.isa-afp.org/entries/Hybrid\_Logic.html
- "[V]ery nice and clean proofs!"
  - Gerwin Klein, AFP editor
- Latest version:
  - 4820 lines of Isar proof code.
  - 100+ pages when rendered in LaTeX.
  - Checked in less than two minutes on my machine.

# **Hybrid Logic**

- Modal logic enriched with names for worlds, nominals (a, b, c, i, j, k).
- Nominals give rise to the satisfaction operator (@).
- Semantics defined over an *assignment (g)*, a mapping from nominals to worlds.

 $\phi, \psi ::= x \mid i \mid \neg \phi \mid \phi \lor \psi \mid \diamondsuit \phi \mid @_i \phi$ 

```
datatype ('w, 'a) model =
   Model (R: \langle w \Rightarrow w \text{ set} \rangle) (V: \langle w \Rightarrow a \Rightarrow \text{bool} \rangle)
                                                                                                                                                                   \mathbf{S}_{2}
                                                                                                                                                                  { y }
                                                                                                                        {x, y`
primrec semantics
   :: \langle (w, a) \mod a \Leftrightarrow (b \Rightarrow w) \Rightarrow w \Rightarrow (a, b) \implies bool \rangle
                                                                                                                                                                     g(j)
   (\langle , , , , \rangle \models \rangle [50, 50, 50] 50) where
   \langle (M, \_, w \models Pro x) = V M w x \rangle
                                                                                                                                              S_3
   \langle (, g, w \models Nom i) = (w = g i) \rangle
   \langle (\overline{M}, g, w \models \neg p) = (\neg M, g, w \models p) \rangle
                                                                                                                                             {x}
   \langle (M, g, w \models (p \lor q)) = ((M, g, w \models p) \lor (M, g, w \models q)) \rangle
                                                                                                                                                    g(i), g(k)
  \langle (M, g, w \models \Diamond p) = (\exists v \in R M w. M, g, v \models p) \rangle
   \langle (M, q, \models @ip) = (M, q, qi \models p) \rangle
```

# Seligman-Style Tableau System I

If  $\varphi$  occurs on an *a*-block, I say that  $\varphi$  occurs *at a*.

•

|   |                                                                                                              | •                           | •                                                    |
|---|--------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------|
| • | Syntactic procedure for proving validities.                                                                  | $\overline{i}$              |                                                      |
| • | A tableau closes if we can apply rules to reach a contradiction on all branches.                             | $\phi_1 \ \phi_2$           | $egin{array}{l} @_i \phi_1 \ @_i \phi_2 \end{array}$ |
| • | Division of each branch into blocks                                                                          | $\vdots$ $\rightsquigarrow$ | ÷                                                    |
|   | <ul> <li>Opening nominal acts as prefix/label.</li> </ul>                                                    | $\overline{j}$              |                                                      |
|   | <ul> <li>Intuition: Formulas on a block are true in the world<br/>denoted by the opening nominal.</li> </ul> | $\psi_1$                    | $@_j\psi_1$<br>:                                     |
|   | <ul> <li>Can be viewed as a macro.</li> </ul>                                                                |                             |                                                      |
| • | Rules operate on arbitrary formulas (within blocks).                                                         | :                           | :                                                    |
|   |                                                                                                              |                             |                                                      |

Figure 3.1: Blocks as macros.

:

:

# Seligman-Style Tableau System II

| $\begin{array}{c} a \\ \phi \lor \psi \\ \hline \\ a \\ \phi \\ \psi \end{array}$ | $egin{aligned} & & \ \neg(\phi \lor \psi) \ \hline & & \ & \ & \ & \ & \ & \ & \ & \ &$        | $\begin{array}{c} a \\ \neg \neg \phi \\ \hline a \\   \\ \phi \end{array}$           | $egin{aligned} & & \ & & \ \hline a & & \ & & \ & & \ a & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & \ & & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ &$ | $egin{array}{ccc} a & a \ \neg \Diamond \phi & \Diamond i \ \hline a & \ & \ & \ & \ & \ & \ & \ & \ & \ &$ |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $(\vee)$                                                                          | $(\neg \lor)$                                                                                  | $(\neg \neg)$                                                                         | $(\diamondsuit)^1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(\neg \diamondsuit)$                                                                                       |
| $rac{ }{i}$                                                                      | $egin{array}{cccc} b & b & a \ i & \phi & i \ \hline a & & \ & & \ & & \ & \phi & \end{array}$ | $\begin{array}{ccc} i & i \\ \phi & \neg \phi \\ \hline a \\   \\ \times \end{array}$ | $\frac{\overset{b}{@_a\phi}}{\overset{a}{\overset{ }{\phi}}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{b}{\neg@_a\phi}\\ \frac{a}{ }\\ \neg\phi$                                                            |
| ${\sf GoTo}^2$                                                                    | Nom                                                                                            | Closing                                                                               | (@)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\neg @)$                                                                                                  |

<sup>1</sup> *i* is fresh,  $\phi$  is not a nominal.

 $^{2}$  *i* is not fresh.

## **Restrictions Towards Termination**

- **R1** The output of a rule must include a formula *new* to the current block type.
  - Reformulated to be explicit about rule applicability, not output.
- **R2** The ( $\diamond$ ) rule can only be applied to input  $\diamond \varphi$  on an *a*-block if  $\diamond \varphi$  is not already *witnessed* at *a*.
  - $\Diamond \varphi$  is *witnessed* at *a* if for some *i* both  $\Diamond i$  and  $@i \varphi$  occur at *a*.
  - Reformulated in terms of branch content, not rule applications.
- **R3** The Name rule is only ever applied as the very first rule in a tableau.
- **R4** The GoTo rule consumes one coin from the bank. (Other rules add one coin.)
  - Reformulated to make rule induction easier.
- R5 (@) and (¬@) can only be applied to premises *i* and @*i* φ (¬@*i* φ) when the current block is an *i*-block.
  - Incorporated structurally. Original versions admissible.

## **Tricky Example for Original Nom**

| 1.  | a                                                  |                         |
|-----|----------------------------------------------------|-------------------------|
| 2.  | $\neg @_i(j \to @_j(i \to @_i(\phi \to @_j\phi)))$ |                         |
| 3.  | i                                                  | GoTo                    |
| 4.  | $\neg (j \to @_j(i \to @_i(\phi \to @_j\phi)))$    | $(\neg @) 2, 3$         |
| 5.  | j                                                  | $(\neg \rightarrow) 4$  |
| 6.  | $\neg @_j(i \to @_i(\phi \to @_j\phi))$            | $(\neg \rightarrow) 4$  |
| 7.  | j                                                  | GoTo                    |
| 8.  | $ eg(i \to @_i(\phi \to @_j\phi))$                 | $(\neg @) 6, 7$         |
| 9.  | i                                                  | $(\neg \rightarrow) 8$  |
| 10. | $\neg @_i(\phi \rightarrow @_j\phi)$               | $(\neg \rightarrow) 8$  |
| 11. | i                                                  | GoTo                    |
| 12. | $\neg(\phi \rightarrow @_j \phi)$                  | $(\neg @) 10, 11$       |
| 13. | $\phi$                                             | $(\neg \rightarrow) 12$ |
| 14. | $ eg @_{j} \phi$                                   | $(\neg \rightarrow)$ 12 |
| 15. | j                                                  | GoTo                    |
| 16. | $ eg \phi$                                         | $(\neg @)$ 14, 15       |
|     |                                                    |                         |

**Figure 3.6:** Getting stuck with R1+R5 and  $(\neg \rightarrow)$ .

| 1.  | a                                                                        |                   |
|-----|--------------------------------------------------------------------------|-------------------|
| 2.  | $\neg @_i (\neg j \lor @_j (\neg i \lor @_i (\neg \phi \lor @_j \phi)))$ |                   |
| 3.  | i                                                                        | GoTo              |
| 4.  | $\neg(\neg j \lor @_j(\neg i \lor @_i(\neg \phi \lor @_j\phi)))$         | $(\neg @) 2, 3$   |
| 5.  | $\neg \neg j$                                                            | $(\neg \lor) 4$   |
| 6.  | $\neg @_{j}(\neg i \lor @_{i}(\neg \phi \lor @_{j}\phi))$                | $(\neg \lor) 4$   |
| 7.  | j                                                                        | GoTo              |
| 8.  | $ eg(\neg i \lor @_i (\neg \phi \lor @_j \phi))$                         | $(\neg @) 6, 7$   |
| 9.  | $\neg \neg i$                                                            | $(\neg \lor) 8$   |
| 10. | $\neg @_i (\neg \phi \lor @_j \phi)$                                     | $(\neg \lor) 8$   |
| 11. | i                                                                        | GoTo              |
| 12. | $ eg( eg \phi \lor @_j \phi)$                                            | $(\neg @) 10, 11$ |
| 13. | $\neg \neg \phi$                                                         | $(\neg \lor)$ 12  |
| 14. | $ eg @_{j} \phi$                                                         | $(\neg \lor)$ 12  |
| 15. | j                                                                        | GoTo              |
| 16. | $\neg \phi$                                                              | $(\neg @) 14, 15$ |
| 17. | i                                                                        | $(\neg \neg) 9$   |
| 18. | $\neg \neg \phi$                                                         | Nom 11, 13, 17    |
|     | ×                                                                        |                   |

Figure 3.7: Being saved from R1 by double negations. 14 / 32

#### **Tableau System in Isabelle**

```
inductive ST :: (nat \Rightarrow ('a, 'b) branch \Rightarrow bool) (( \vdash ) [50, 50] 50) where
  Close:
   \implies (¬ p) at i in branch \implies
   n \vdash branch
 Nea:
                                                                                               SatP:
  \langle (\neg \neg p) at a in (ps, a) # branch \Longrightarrow
                                                                                                \langle (a p) at b in (ps, a) \# branch \Longrightarrow
   new p a ((ps, a) # branch) \implies
                                                                                                 new p a ((ps, a) # branch) \implies
   Suc n \vdash (p \# ps, a) \# branch \Longrightarrow
                                                                                                 Suc n \vdash (p \# ps, a) \# branch \Longrightarrow
   n \vdash (ps, a) \# branch
                                                                                                 n \vdash (ps, a) \# branch
  DisP:
                                                                                               SatN:
  \langle (p \lor q)  at a in (ps, a) # branch \implies
                                                                                                \langle (\neg (@ a p)) at b in (ps, a) # branch \Longrightarrow
   new p a ((ps, a) # branch) \implies new g a ((ps, a) # branch) \implies
                                                                                                 new (\neg p) a ((ps, a) \# branch) \implies
   Suc n \vdash (p \# ps, a) \# branch \implies Suc n \vdash (q \# ps, a) \# branch \implies
                                                                                                 Suc n \vdash ((\neg p) # ps, a) # branch \Longrightarrow
   n \vdash (ps, a) \# branch
                                                                                                 n \vdash (ps. a) \# branch
  DisN:
                                                                                               GoTo:
  \langle (\neg (p \lor q))  at a in (ps, a) # branch \implies
                                                                                                i \in branch nominals branch \Longrightarrow
   new (\neg p) a ((ps, a) \# branch) \lor new <math>(\neg q) a ((ps, a) \# branch) \Longrightarrow
                                                                                                 n \vdash ([], i) # branch \Longrightarrow
   Suc n \vdash ((\neg q) \# (\neg p) \# ps, a) \# branch \implies
                                                                                                 Suc n ⊢ branch>
   n \vdash (ps, a) \# branch
                                                                                               Nom:
  DiaP:
                                                                                                 \implies Nom i at b in (ps, a) # branch \implies
  \langle (\diamond p)  at a in (ps, a) # branch \implies
                                                                                                 Nom i at a in (ps, a) # branch \implies
   i \notin branch nominals ((ps, a) \# branch) \Longrightarrow
                                                                                                 new p a ((ps, a) # branch) \implies
   \nexistsa. p = Nom a \implies \neg witnessed p a ((ps, a) # branch) \implies
                                                                                                 Suc n \vdash (p # ps, a) # branch \Longrightarrow
   Suc n \vdash ((a i p) \# (\diamond Nom i) \# ps, a) \# branch \implies
                                                                                                 n \vdash (ps, a) \# branch
   n \vdash (ps, a) \# branch
  DiaN:
  \langle (\neg (\diamond p))  at a in (ps, a) # branch \implies
   (\diamond Nom i) at a in (ps. a) # branch \Longrightarrow
   new (\neg (@ i p)) a ((ps, a) # branch) \implies
   Suc n \vdash ((\neg (@ i p)) # ps, a) # branch \Longrightarrow
                                                                                                                                                                        15 / 32
   n \vdash (ps, a) # branch >
```

#### Soundness

```
lemma soundness:
  assumes <n ⊢ branch>
  shows <∃block ∈ set branch. ∃p on block. ¬ M, g, w ⊨ p>
```

```
theorem soundness_fresh:
    assumes <n ⊢ [([¬ p], i)]> <i ∉ nominals p>
    shows <M, g, w ⊨ p>
proof -
    from assms(1) have <M, g, g i ⊨ p> for g
    using soundness by fastforce
    then have <M, g(i := w), (g(i := w)) i ⊨ p>
    by blast
    then have <M, g(i := w), w ⊨ p>
    by simp
    then have <M, g(i := g i), w ⊨ p>
    using assms(2) semantics_fresh by metis
    then show ?thesis
    by simp
qed
```

## **No Detours I**

- Originally [**R4** The GoTo rule cannot be applied twice in a row.]
- On the weakened branch, opening the *a*-block was a mistake.
- Pruning detours complicates proofs.
- Instead, assume more coins.
- Show separately that a single initial coin is sufficient.
- Coin system allows for detours but ties GoTo to initial savings or other rule applications, i.e. progress.

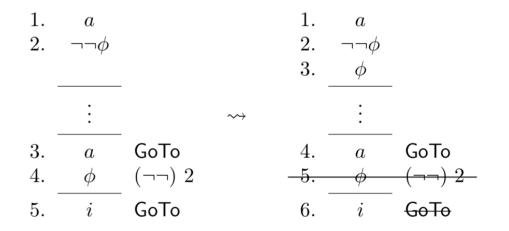


Figure 3.9: Unjustified GoTo after weakening.

# **No Detours II**

**LEMMA 4.3 (FILTERING DETOURS)** If a branch can be closed starting from n coins, then any filtering cut of the branch can be closed from m+1 coins. That is, if  $n \vdash \Theta_l, \Theta_r$  then  $m+1 \vdash \lfloor \Theta_l \rfloor, \Theta_r$ .

**Theorem 4.4 (Positive coins)** If  $n \vdash \Theta$  then  $m + 1 \vdash \Theta$ .

**COROLLARY 4.5 (A SINGLE COIN)** If  $n \vdash \Theta$  then  $1 \vdash \Theta$ .

**THEOREM 4.6 (FREE GOTO)** If  $n + 1 \vdash B$ ,  $\Theta$  where B is an empty block whose opening nominal occurs in  $\Theta$ , then  $n + 1 \vdash \Theta$ .

PROOF. By applying GoTo we have  $n + 2 \vdash \Theta$  and then Theorem 4.4 gives us  $n + 1 \vdash \Theta$  as wanted.

#### As Good as New

÷

| <b>1:</b><br>ing.  |   | occurrence of $\varphi$ at <i>i</i> below the cut. Would require cutting in the middle of block. | Figure 4.2: Indexing. |            |  |
|--------------------|---|--------------------------------------------------------------------------------------------------|-----------------------|------------|--|
|                    | • | Alternatively: Cut branch and remove every                                                       | : $\psi_{m_n}$        | $(n, m_n)$ |  |
| $\frac{\vdots}{i}$ | • | Requires indexing machinery.                                                                     | $\overline{\psi_0}$ . | (n,0)      |  |
| $\phi$             | • | Allows us to lift <b>R1</b> .                                                                    | ÷                     |            |  |
| $\frac{\vdots}{i}$ | • | When a removed occurrence is used as rule input, the lasting one can be used instead.            | $\phi_{m_0}$          | $(0,m_0)$  |  |
|                    | • | Mark one lasting occurrence of $\varphi$ at <i>i</i> and any number of removed occurrences.      | $\phi_0$ :            | (0, 0)     |  |

÷

 $\dagger \phi$ 

 $i \\ \phi$ 

 $\dagger \phi$ 

 $\rightarrow$ 

 $\sim \rightarrow$ 

#### **Too Many Witnesses I**

**THEOREM 4.10 (SUBSTITUTION)** Let  $\theta$  be a substitution function. Assume that for all finite sets A, if there exists a nominal not in A then there exists a nominal not in the image of A under f. If  $\vdash \Theta$  then  $\vdash \Theta \theta$ .

**PROOF.** Shown by rule induction over the construction of  $\Theta$  for an arbitrary  $\theta$ .

**Case** ( $\diamond$ ) By assumption we have  $\diamond \phi$  at a in  $\Theta$ , the nominal i is fresh in  $\Theta$  and by the induction hypothesis  $\vdash (@_i \phi)\theta' -_{\theta'(a)} (\diamond i)\theta' -_{\theta'(a)} \Theta\theta'$  for any  $\theta'$ . The  $\diamond \phi$  is unwitnessed at a in  $\Theta$  but since the substitution may collapse formulas,  $\diamond \phi \theta$  may be witnessed at  $\theta(a)$  in  $\Theta \theta$ . Thus there are two cases:

If  $\diamond \phi \theta$  is witnessed at  $\theta(a)$  in  $\Theta \theta$  then let i' be the witnessing nominal, such that  $@_{i'}(\phi \theta)$  and  $\diamond i'$  both occur at  $\theta(a)$  in  $\Theta \theta$ . Apply the induction hypothesis at  $\theta(i := i')$  to obtain  $\vdash @_{i'}(\phi \theta) -_{\theta(a)} \diamond i' -_{\theta(a)} \Theta \theta$ , where the added assignment has been reduced away in the places where i is fresh. Both formulas in the extension are justified by the Nom rule so we obtain  $\vdash \Theta \theta$  as needed.

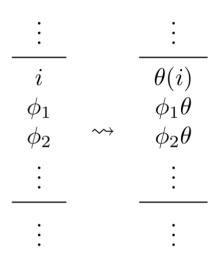


Figure 4.3: Substitution.

#### **Too Many Witnesses II**

Otherwise the formula is unwitnessed. To apply the  $(\diamondsuit)$  rule, we need the witnessing nominal to be fresh in  $\Theta\theta$  but since  $\theta$  is not necessarily injective, this may not be the case for  $\theta(i)$ . But since  $\Theta$  is finite, we have by assumption a nominal j that is fresh to  $\Theta\theta$ . Apply the induction hypothesis at  $\theta(i := j)$  to learn  $\vdash @_j(\phi\theta) -_{\theta(a)} \diamondsuit j -_{\theta(a)} \Theta\theta$  where, again, I have reduced the term using the fact that i is fresh in  $\Theta$ . The  $(\diamondsuit)$  rule now applies:  $\diamondsuit \phi\theta$  is unwitnessed at  $\theta(a)$  in  $\Theta\theta$  and we have ensured that j is fresh. Thus we can conclude  $\vdash \Theta\theta$ .  $\Box$ 

**THEOREM 4.13 (UNRESTRICTED** ( $\diamond$ )) If  $\vdash @_i \phi -_a \diamond i -_a \Theta$ , *i* is fresh in  $\Theta$  and  $\phi$  is not a nominal, then  $\vdash \Theta$ .

# **General Satisfaction I**

|                                                                  |                    |                       |                                                                                                                                                            |        | •                     |                                    |
|------------------------------------------------------------------|--------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|------------------------------------|
| $\frac{B_1}{P}$                                                  |                    | $\frac{B_1'}{P_1'}$   | <ul> <li>Rearranged branch may have mismatched<br/>current block.</li> </ul>                                                                               | 1.     | a:                    |                                    |
| $\frac{B_2}{\vdots}$                                             | $\rightsquigarrow$ | $\frac{B_2'}{\vdots}$ | <ul> <li>Apply induction hypothesis at the branch<br/>extended by the original current block.</li> </ul>                                                   | 2.     | $\phi_1$ :            |                                    |
| $B_n$                                                            |                    | $B'_m$                | Then drop it again.                                                                                                                                        | 3.     | $\phi_2$              |                                    |
|                                                                  |                    |                       | <ul> <li>Custom induction principle for dropping.</li> </ul>                                                                                               |        | :                     |                                    |
| Figure 4.4:<br>Rearranging.                                      |                    |                       | <ul> <li>Need substitution for (◊) case.</li> </ul>                                                                                                        | 4.5.6. | $a \ \phi_1 \ \phi_2$ | GoTo<br>Nom 1, 2, 4<br>Nom 1, 3, 4 |
| $\{B_1, B_2, \dots, B_n\} \subseteq \{B'_1, B'_2, \dots, B'_m\}$ |                    |                       | <pre>lemma list_down_induct [consumes 1, case_names Start Cons]:    assumes &lt;∀y ∈ set ys. Q y&gt; <p (ys="" @="" xs)="">         </p></pre> <pre></pre> |        | :                     | :                                  |
|                                                                  |                    | $, D_m \}$            | <pre>shows <p xs=""> using assms by (induct ys) auto</p></pre>                                                                                             | D      | 0                     | <b>ire 4.5:</b><br>ing a block.    |

:

#### **General Satisfaction II**

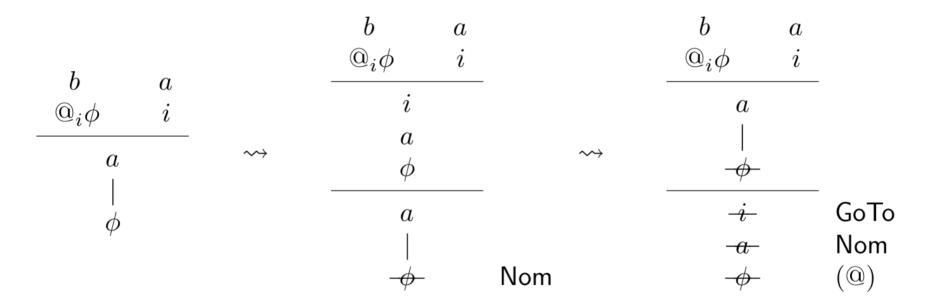


Figure 4.6: Deriving the unrestricted (@) rule.

# Bridge I

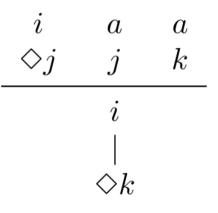
- Replace  $\Diamond k$  by  $\Diamond j$  and apply Nom.
- Need to update any output of rules with  $\Diamond k$  as input.
- Lemma 4.2 by Jørgensen et al. but with a descendant set.
  - Defined by branch content, not rule applications.
  - Lemma 4.1 (shape of descendants) comes for free.

Definition 5.1 (Descendant set)

**Initial** If  $\Theta(v)$  is an *i*-block and  $\Theta(v, v') = \Diamond k$ , then  $\{(v, v')\}$  is  $D_{\Theta,i,k}$ .

**Derived** If 
$$\Delta$$
 is  $D_{\Theta,i,k}$ ,  $(w, w') \in \Delta$ ,  $\Theta(w)$  is an *a*-block,  $\Theta(w, w') = \Diamond k$ ,  $\Theta(v)$  is an *a*-block and  $\Theta(v, v') = \neg @_k \phi$  for some  $\phi$  then  $\{(v, v')\} \cup \Delta$  is  $D_{\Theta,i,k}$ .

**Copied** If  $\Delta$  is  $D_{\Theta,i,k}$ ,  $(w,w') \in \Delta$ ,  $\Theta(w)$  is a b-block,  $\Theta(w,w') = \phi$ , there is a nominal j that occurs both at a and b in  $\Theta$ ,  $\Theta(v)$  is an a-block and  $\Theta(v,v') = \phi$  then  $\{(v,v')\} \cup \Delta$  is  $D_{\Theta,i,k}$ .



# **Bridge II**

**Case**  $(\neg \diamondsuit)$  We have both  $\neg \diamondsuit \phi$  and  $\diamondsuit i'$  at a in  $\Theta$ , the current block is an a-block and we know that  $\Delta$  is  $D_{\Theta,i,k}$ . Let (w, w') be the index of the given  $\diamondsuit i'$ . There are two cases.

If  $(w, w') \notin \Delta$  then  $\Diamond i'$  is also at a in  $\Theta^{\Delta}$  and the case follows similarly to  $(\neg \neg)$ : The rule input is unchanged so we do not have to replace the output.

Otherwise,  $(w, w') \in \Delta$  so by Lemma 5.2 on page 40, i' = k and  $(\Diamond i')^j = \Diamond j$ . To account for this, we need to extend  $\Delta$  to include the index of the output,  $\neg @_k \phi$ , to make sure it becomes  $\neg @_j \phi$  such that the  $(\neg \diamondsuit)$  rule justifies it. Let (v, v') be the index of the output. By Lemma 5.3 on the previous page,  $\Delta$  is  $D_{\neg @_k \phi - a \Theta, i, k}$  and by the **Derived** case, so is  $\{(v, v')\} \cup \Delta$ .  $egin{array}{cccc} i & a & a & a & \ & \diamond j & j & k & \ \hline & i & & \ & & | & & \ & & \diamond k & \end{array}$ 

Thus we apply the induction hypothesis at the extended index set,  $\{(v, v')\} \cup \Delta$ , and learn  $\vdash (\neg @_k \phi)^j -_a \Theta^{j_{\{(v,v')\}} \cup \Delta}$ . By Remark 5.4 on the preceding page we have  $\vdash \neg @_j \phi -_a \Theta^{\Delta}$ . We can now apply the  $(\neg \diamondsuit)$  rule and conclude the case.

# **Bridge III**

theorem Bridge: fixes i :: 'b assumes inf: <infinite (UNIV :: 'b set)> and  $\leftarrow$  (( $\diamondsuit$  Nom k) # ps, a) # branch> **shows**  $\leftarrow$  (ps. a) # branch  $\rightarrow$ proof let ?xs = <{(length branch, length ps)}> **have**  $\langle$  descendants k a ((( $\Diamond$  Nom k) # ps, a) # branch) ?xs $\rangle$ using Initial by force moreover have <Nom j at c in ((\$\lambda Nom k) # ps, a) # branch> <Nom k at c in ((\$ Nom k) # ps, a) # branch> using assms(5-6) by auto ultimately have <hr/>
<hr/> using ST bridge inf assms(7) by fast **then have**  $\overline{\langle \vdash}$  (( $\Diamond$  Nom j) # mapi (bridge k j ?xs (length branch)) ps, a) # mapi branch (bridge k i ?xs) branch> unfolding mapi branch def by simp **moreover have**  $(mapi branch (bridge k i {(length branch, length ps)}) branch =$ mapi branch (bridge k j {}) branch> using mapi branch add oob[where xs=<{}>] by fastforce moreover have <mapi (bridge k j ?xs (length branch)) ps =</pre> mapi (bridge k j {} (length branch)) ps> using mapi block add oob[where xs=<{}> and ps=ps] by simp **ultimately have** <⊢ ((◇ Nom j) # ps, a) # branch> using mapi block id[where ps=ps] mapi branch id[where branch=branch] by simp then show ?thesis using assms(2-5) by (meson Nom' set subset Cons subsetD)

THEOREM 5.7

If  $\diamond j$  is at i in  $\Theta$ , j and k are both at a in  $\Theta$ , the current block is an *i*-block and  $\vdash \Diamond k - \Theta$ , then  $\vdash \Theta$ .

**PROOF.** Let (v, v') be the index of the final  $\Diamond k$  and let  $\Delta$  be the set containing just that index. By the Initial case,  $\Delta$  is  $D_{\Diamond k-i\Theta,i,k}$ . Thus  $\vdash (\diamondsuit k)^j -_i \Theta^{\Delta}$  by Lemma 5.6 on page 41. Then  $\vdash \Diamond j -_i \Theta$  by Lemma 5.4 on page 41 and finally, due to the Nom rule,  $\vdash \Theta$ .

#### Completeness

```
lemma hintikka model:
  assumes <hintikka H>
  shows
    \implies Model (reach H) (val H), assign H, assign H i \models p>
    \langle (\neg p) \text{ at i in' } H \implies \neg \text{ Model (reach H) (val H), assign H, assign H i \models p \rangle}
primrec extend ::
  <('a, 'b) block set \Rightarrow (nat \Rightarrow ('a, 'b) block) \Rightarrow nat \Rightarrow ('a, 'b) block set \Rightarrow where
  \langle extend S f 0 = S \rangle
  \langle extend S f (Suc n) =
     (if \neg consistent ({f n} \cup extend S f n)
      then extend S f n
      else
       let used = ([block \in {f n} \cup extend S f n. block nominals block)
       in {f n, witness (f n) used} \cup extend S f n)>
                                                                theorem completeness:
lemma hintikka Extend:
                                                                  fixes p :: <('a :: countable, 'b :: countable) fm>
   fixes S :: <('a, 'b) block set>
                                                                  assumes
   assumes inf: <infinite (UNIV :: 'b set) > and
                                                                    inf: <infinite (UNIV :: 'b set) > and
     <maximal S> <consistent S> <saturated S>
                                                                    valid: \langle \forall (M :: ('b set, 'a) model) g w. M, g, w \models p \rangle
   shows <hintikka S>
                                                                  shows \langle 1 \vdash [([\neg p], i)] \rangle
```

#### Hintikka

- Small error in the Hintikka definition by Jørgensen et al.
- Worlds of the named model are sets of equivalent nominals, |i|.
- But their base case does not account for this.
- (i) If there is an i-block in H with an atomic formula a on it, then there is no i-block in H with ¬a on it.
  - The world |i| (|j|) supposedly models both x and its negation:

$$\{([i, x], j), ([j, \neg x], i)\}$$

(i') If there is an *i*-block in H with j on it and a j-block in H with a propositional symbol x on it, then there is no *i*-block in H with  $\neg x$  on it.

#### **Hintikka Definition**

```
definition hintikka :: \langle (a, b) \ block \ set \Rightarrow bool \rangle where
   \langle hintikka | H \equiv
                                                                                                              Λ
     (\forall x \ i \ j. \ Nom \ j \ at \ i \ in' \ H \longrightarrow Pro \ x \ at \ j \ in' \ H \longrightarrow
        \neg (\neg Pro x) at i in' H)
                                                                                                              Λ
Λ
     (\forall a i. Nom a at i in' H \longrightarrow \neg (\neg Nom a) at i in' H)
\wedge
     (\forall i j. (\diamond Nom j) at i in' H \longrightarrow \neg (\neg (\diamond Nom j)) at i in' H)
                                                                                                              \wedge
Λ
     (\forall p \ i. \ i \in nominals \ p \longrightarrow (\exists block \in H. \ p \ on \ block) \longrightarrow
                                                                                                              Λ
        (\exists ps. (ps, i) \in H))
\wedge
     (\forall i j. Nom j at i in' H \longrightarrow Nom i at j in' H)
                                                                                                              \wedge
\wedge
     (\forall i j k. Nom j at i in' H \longrightarrow Nom k at j in' H \longrightarrow
        Nom k at i in' H)
                                                                                                              \wedge
\wedge
     (\forall i j k. (\diamond Nom j) at i in' H \longrightarrow Nom k at j in' H \longrightarrow
        (\diamondsuit Nom k) at i in' H
                                                                                                              \wedge
\wedge
     (\forall i j k. (\diamond Nom j) at i in' H \longrightarrow Nom k at i in' H \longrightarrow
        (\diamondsuit Nom i) at k in' H)
```

```
(\forall p \ q \ i. \ (p \lor q) \ at \ i \ in' \ H \longrightarrow
  p at i in' H \lor q at i in' H
(\forall p \ q \ i. \ (\neg \ (p \lor q)) \ at \ i \ in' \ H \longrightarrow
  (\neg p) at i in' H \land (\neg q) at i in' H)
(\forall p \ i. \ (\neg \neg p) \ at \ i \ in' \ H \longrightarrow
  p at i in' H
(\forall p \ i \ a. (@ \ i \ p) \ at \ a \ in' \ H \longrightarrow
  p at i in' H
(\forall p \ i \ a. \ (\neg (@ \ i \ p)) \ at \ a \ in' \ H \longrightarrow
  (\neg p) at i in' H)
(\forall p \ i. (\nexists a. p = Nom \ a) \longrightarrow (\diamondsuit p) \ at \ i \ in' \ H \longrightarrow
  (\exists j. (\diamond Nom j) at i in' H \land (@ j p) at i in' H))
(\forall p \ i \ j. \ (\neg \ (\diamond \ p)) \ at \ i \ in' \ H \longrightarrow (\diamond \ Nom \ j) \ at \ i \ in' \ H \longrightarrow
  (\neg (@ j p)) at i in' H)
                                                                                                 29/32
```

## **Future Work**

- Restricting Nom for termination
  - The thesis sketches an idea based on tags that encode the notion of one nominal being *generated* by another, forcing a direction on Nom.
- Proving and formalizing termination directly by a decreasing length argument instead of by translation.
- Verifying an algorithm, a decision procedure, based on the calculus.
  - And using Isabelle to generate executable code based on it.
- Extending the formalization to prove more results about hybrid logic, e.g. interpolation
- Giving an internalized restriction on GoTo instead of the coin system.

# Conclusion

- I have formalized the soundness and completeness of a tableau system for basic hybrid logic in Isabelle/HOL.
- I have reformulated existing termination restrictions to ease formalization.
- I have shown how to lift the restrictions by working within the system.
  - This simplifies the application of an existing synthetic completeness proof.
- I have shown that the full Bridge rule is admissible.
- The work has been accepted into the Archive of Formal Proofs.

## References

- Patrick Blackburn, Thomas Bolander, Torben Braüner, and Klaus Frovin Jørgensen. Completeness and Termination for a Seligman-style Tableau System. Journal of Logic and Computation, 27(1):81–107, 2017.
- Klaus Frovin Jørgensen, Patrick Blackburn, Thomas Bolander, and Torben Braüner. Synthetic Completeness Proofs for Seligman-style Tableau Systems. In Advances in Modal Logic 11, pages 302–321, 2016.
- Torben Braüner. Hybrid Logic. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Metaphysics Research Lab, Stanford University, summer 2017 edition, 2017.
- Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. *Isabelle/HOL A Proof Assistant for Higher-Order Logic*, volume 2283 of *Lecture Notes in Computer Science*. Springer, 2002.

See the thesis for the rest.