
  1 / 32

Hybrid Logic
MSc Defense, Asta Halkjær From

Formalizing a Seligman-Style Tableau System



  2 / 32

Preface

● MSc in Computer Science and Engineering, Technical University of Denmark.
● Thesis period: 19 August 2019 to 19 January 2020 (30 ECTS).
● Defense: 29 January 2020.
● Supervisors:

– Jørgen Villadsen

– Alexander Birch Jensen (co-supervisor)

– Patrick Blackburn (external supervisor, Roskilde University)



  3 / 32

Overview

● Isabelle

– Archive of Formal Proofs
● Hybrid Logic
● Seligman-Style Tableau System
● Restrictions Towards Termination
● Lifting Restrictions
● Admissible Bridge
● Completeness

– Hintikka definition
● Future Work
● Conclusion
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Isabelle/HOL Proof Assistant

● Generic proof assistant Isabelle

– Isabelle/HOL is the higher-order logic instance.
● Express mathematical statements and proofs in a formal language

– Unambiguous definitions.

– Machine-checked proofs.

– Proof search (and proof search search).

– Counterexample search.
● LCF architecture

– Abstract type of theorems.

– Trusted kernel.
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Mood
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Isabelle
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Archive of Formal Proofs I

● “[C]ollection of proof libraries, examples, and larger 
scientific developments, mechanically checked in 
the theorem prover Isabelle.”

● Refereed submissions.
● Formalizations kept up to date with Isabelle.
● Statistics

– Number of Articles: 516

– Number of Authors: 340

– Number of lemmas: ~141,100

– Lines of Code: ~2,452,800

– https://www.isa-afp.org/statistics.html

https://www.isa-afp.org/statistics.html
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Archive of Formal Proofs II (index by topic)

Computer Science (293)
● Automata and Formal Languages 

(39)
● Algorithms (75)
● Concurrency (19)
● Data Structures (50)
● Functional Programming (21)
● Games (1)
● Hardware (1)
● Networks (6)
● Programming Languages (83)
● Security (39)
● Semantics (7)
● System Description Languages (7)

Logic (62)
● Philosophy (7)
● Rewriting (11)

Mathematics (199)
● Order (6)
● Algebra (63)
● Analysis (36)
● Probability Theory (12)
● Number Theory (26)
● Economics (10)
● Geometry (17)
● Topology (4)
● Graph Theory (16)
● Combinatorics (18)
● Category Theory (6)
● Physics (1)
● Set Theory (1)
● Misc (3)

Tools (14)
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Archive of Formal Proofs III

● New logic entry:

– Hybrid Logic – Formalizing a Seligman-Style Tableau System

– Based on work by Blackburn, Bolander, Braüner and Jørgensen.

– https://www.isa-afp.org/entries/Hybrid_Logic.html
● “[V]ery nice and clean proofs!”

– Gerwin Klein, AFP editor
● Latest version:

– 4820 lines of Isar proof code.

– 100+ pages when rendered in LaTeX.

– Checked in less than two minutes on my machine.

https://www.isa-afp.org/entries/Hybrid_Logic.html
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Hybrid Logic
● Modal logic enriched with names for worlds, nominals (a, b, c, i, j, k).
● Nominals give rise to the satisfaction operator (@).
● Semantics defined over an assignment (g), a mapping from nominals to worlds.

x, y

x

y

g(i), g(k)

g(j)
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Seligman-Style Tableau System I

● Syntactic procedure for proving validities.
● A tableau closes if we can apply rules to reach a contradiction 

on all branches.
● Division of each branch into blocks

– Opening nominal acts as prefix/label.

– Intuition: Formulas on a block are true in the world 
denoted by the opening nominal.

– Can be viewed as a macro.
● Rules operate on arbitrary formulas (within blocks).
● If φ occurs on an a-block, I say that φ occurs at a.
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Seligman-Style Tableau System II
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Restrictions Towards Termination

● R1 The output of a rule must include a formula new to the current block type.

– Reformulated to be explicit about rule applicability, not output.
● R2 The (◇) rule can only be applied to input ◇φ on an a-block if ◇φ is not 

already witnessed at a.

– ◇φ is witnessed at a if for some i both ◇i and @i φ occur at a.

– Reformulated in terms of branch content, not rule applications.
● R3 The Name rule is only ever applied as the very first rule in a tableau.
● R4 The GoTo rule consumes one coin from the bank. (Other rules add one coin.)

– Reformulated to make rule induction easier.
● R5 (@) and (¬@) can only be applied to premises i and @i φ (¬@i φ) when the 

current block is an i-block.

– Incorporated structurally. Original versions admissible.
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Tricky Example for Original Nom
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Tableau System in Isabelle
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Soundness
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No Detours I

● Originally [R4 The GoTo rule cannot be applied twice in a row.]

● On the weakened branch, opening
the a-block was a mistake.

● Pruning detours complicates proofs.
● Instead, assume more coins.
● Show separately that a single initial

coin is sufficient.
● Coin system allows for detours

but ties GoTo to initial savings or
other rule applications, i.e. progress.
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No Detours II
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As Good as New

● Mark one lasting occurrence of φ at i and 
any number of removed occurrences.

● When a removed occurrence is used as rule 
input, the lasting one can be used instead.

● Allows us to lift R1.
● Requires indexing machinery.

● Alternatively: Cut branch and remove every 
occurrence of φ at i below the cut. Would 
require cutting in the middle of block.
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Too Many Witnesses I
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Too Many Witnesses II
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General Satisfaction I

● Rearranged branch may have mismatched 
current block.

● Apply induction hypothesis at the branch 
extended by the original current block.

● Then drop it again.
● Custom induction principle for dropping.
● Need substitution for (◇) case.
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General Satisfaction II
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Bridge I

● Replace ◇k by ◇j and apply Nom.
● Need to update any output of rules with ◇k as input.
● Lemma 4.2 by Jørgensen et al. but with a descendant set.

– Defined by branch content, not rule applications.

– Lemma 4.1 (shape of descendants) comes for free.
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Bridge II
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Bridge III
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Completeness
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Hintikka

● Small error in the Hintikka definition by Jørgensen et al.
● Worlds of the named model are sets of equivalent nominals, |i|.
● But their base case does not account for this.

● The world |i| (|j|) supposedly models both x and its negation:



  29 / 32

Hintikka Definition
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Future Work

● Restricting Nom for termination

– The thesis sketches an idea based on tags that encode the notion of one 
nominal being generated by another, forcing a direction on Nom.

● Proving and formalizing termination directly by a decreasing length argument 
instead of by translation.

● Verifying an algorithm, a decision procedure, based on the calculus.

– And using Isabelle to generate executable code based on it.
● Extending the formalization to prove more results about hybrid logic, e.g. 

interpolation
● Giving an internalized restriction on GoTo instead of the coin system.
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Conclusion

● I have formalized the soundness and completeness of a tableau system for 
basic hybrid logic in Isabelle/HOL.

● I have reformulated existing termination restrictions to ease formalization.
● I have shown how to lift the restrictions by working within the system.

– This simplifies the application of an existing synthetic completeness proof.
● I have shown that the full Bridge rule is admissible.
● The work has been accepted into the Archive of Formal Proofs.
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