Formalized Soundness and Completeness of Epistemic Logic

Asta Halkjær From Technical University of Denmark

WoLLIC 2021-10-06

Outline

- Possible worlds
- Syntax and semantics
- Normal modal logics
- Soundness
- Completeness-via-canonicity
- Systems K, T, KB, K4, S4, S5
- Takeaways
- References

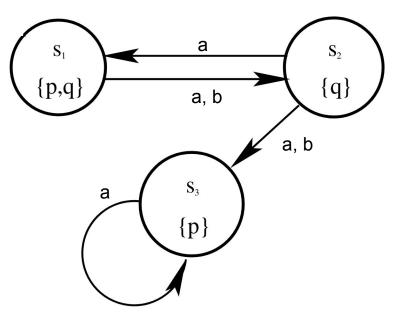
Possible Worlds

Worlds model situations *Relations* model uncertainty

Agent *i* **knows** ϕ (K_i ϕ) at a world if ϕ holds at all *i*-related worlds

At S_2 we have

- $K_a p and K_b p$
- Not K_a q
- K_b K_a p
- Not $\ddot{K}_a K_b p$



Syntax and Semantics

I use *x* for propositional symbols and *i* for agent labels:

$$\phi, \psi ::= \bot \mid x \mid \phi \lor \psi \mid \phi \land \psi \mid \phi \to \psi \mid K_i \phi$$

The language is interpreted on Kripke models $M = ((W, R_1, R_2, ...), V)$:

Formalized Syntax

Deep embedding in Isabelle/HOL

Model syntax as an object in the higher-order logic:

```
datatype 'i fm
= FF ("⊥")
| Pro id
| Dis <'i fm> <'i fm> (infixr "∨" 30)
| Con <'i fm> <'i fm> (infixr "∧" 35)
| Imp <'i fm> <'i fm> (infixr "→" 25)
| K 'i <'i fm>
```

Define abbreviations as usual ("considers possible"):

```
abbreviation (L i p \equiv \neg K i (\neg p))
```

Formalized Semantics

Kripke models as another datatype (n.b. explicit set of worlds):

datatype ('i, 'w) kripke = Kripke (\mathcal{W} : <'w set>) (π : <'w \Rightarrow id \Rightarrow bool>) (\mathcal{K} : <'i \Rightarrow 'w \Rightarrow 'w set>)

Formalized Semantics

Kripke models as another datatype (n.b. explicit set of worlds):

datatype ('i, 'w) kripke = Kripke (\mathcal{W} : <'w set>) (π : <'w \Rightarrow id \Rightarrow bool>) (\mathcal{K} : <'i \Rightarrow 'w \Rightarrow 'w set>)

Interpret syntax into the higher-order logic:

```
primrec semantics :: <('i, 'w) kripke \Rightarrow 'w \Rightarrow 'i fm \Rightarrow bool>
    (", _ = " [50, 50] 50) where
    <(M, w = L) = False>
    (M, w = Pro x) = \pi M w x>
    ((M, w = Pro x) = (M, w = p) \lor (M, w = q))>
    <(M, w = (p \lambda q)) = ((M, w = p) \lambda (M, w = q))>
    <(M, w = (p \lambda q)) = ((M, w = p) \lambda (M, w = q))>
    <(M, w = (p \rightarrow q)) = ((M, w = p) \lambda (M, w = q))>
    <(M, w = K i p) = (\forall v \in W M \cap K M i w. M, v = p)>
```

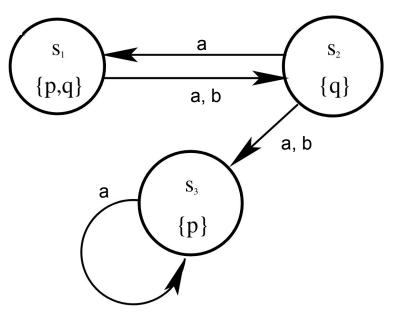
Epistemic Principles

At S_3 we have K_b q vacuously

We may want only *true knowledge* Reflexive relations K_i p implies p

We may want *positive introspection* Transitive relations K_i p implies K_i K_i p

And so on



Normal Modal Logics

Consider a *family* of proof systems for epistemic reasoning:

```
inductive AK :: <('i fm \Rightarrow bool) \Rightarrow 'i fm \Rightarrow bool> ("_ \vdash _" [50, 50] 50)
for A :: <'i fm \Rightarrow bool> where
A1: <tautology p \Rightarrow A \vdash p>
| A2: <A \vdash (K i p \land K i (p \rightarrow q) \rightarrow K i q)>
| Ax: <A p \Rightarrow A \vdash p>
| R1: <A \vdash p \Rightarrow A \vdash (p \rightarrow q) \Rightarrow A \vdash q>
| R2: <A \vdash p \Rightarrow A \vdash K i p>
```

A1: all propositional tautologiesR1: modus ponensA2: distribution axiomR2: necessitationAx: any epistemic principles we want (as admitted by A)

Soundness

Generalized soundness result for any normal modal logic

If all extra axioms are sound on models admitted by *P*, then the resulting logic is sound on *P*-models:

```
theorem soundness:

fixes M :: <('i, 'w) kripke>

assumes <\land(M :: ('i, 'w) kripke) w p. A p \Longrightarrow P M \Longrightarrow w \in W M \Longrightarrow M, w \models p>

shows <A \vdash p \Longrightarrow P M \Longrightarrow w \in W M \Longrightarrow M, w \models p>
```

Completeness-via-Canonicity I

Following proofs by Fagin et al. and Blackburn et al.

- Assume ϕ has no derivation
- Then {¬ φ} is consistent
- Extend to a maximal consistent set V
- Canonical model satisfies $\neg \phi$ at V
- So φ could not have been valid

For completeness over a class of frames: show that the canonical model belongs to that class

(no finite subset implies ⊥)(Lindenbaum's lemma)(truth lemma)

Completeness-via-Canonicity II

Fagin et al. prove completeness for K and write for T:

"A proof identical to that of Theorem 3.1.3 can now be used."

I do not want to *copy/paste* my efforts for each logic.

Blackburn et al. write (emphasis mine):

"The canonical frame of any normal logic containing T is reflexive, the canonical frame of any normal logic containing B is symmetric, and the canonical frame of any normal logic containing D is right unbounded. *This allows us to 'add together' our results.*"

Let's aim for such *compositionality*!

Maximal Consistent Sets wrt. A (A-MCSs)

A set of formulas is *A-consistent* if no finite subset implies \perp (using A-axioms)

definition consistent :: <('i fm \Rightarrow bool) \Rightarrow 'i fm set \Rightarrow bool> where

 consistent A S $\equiv \nexists$ S'. set S' \subseteq S \land A \vdash imply S' \bot >

Maximal Consistent Sets wrt. A (A-MCSs)

A set of formulas is *A-consistent* if no finite subset implies \perp (using A-axioms)

definition consistent :: <('i fm \Rightarrow bool) \Rightarrow 'i fm set \Rightarrow bool> where

 consistent A S $\equiv \nexists$ S'. set S' \subseteq S \land A \vdash imply S' \bot >

And A-maximal if any proper extension destroys A-consistency:

definition maximal :: <('i fm \Rightarrow bool) \Rightarrow 'i fm set \Rightarrow bool> where <maximal A S $\equiv \forall p. p \notin S \longrightarrow \neg$ consistent A ({p} \cup S)>

Maximal Consistent Sets wrt. A (A-MCSs)

A set of formulas is *A-consistent* if no finite subset implies \perp (using A-axioms)

definition consistent :: <('i fm \Rightarrow bool) \Rightarrow 'i fm set \Rightarrow bool> where

 consistent A S $\equiv \nexists$ S'. set S' \subseteq S \land A \vdash imply S' \bot >

And A-maximal if any proper extension destroys A-consistency:

definition maximal :: <('i fm \Rightarrow bool) \Rightarrow 'i fm set \Rightarrow bool> where <maximal A S $\equiv \forall p. p \notin S \longrightarrow \neg$ consistent A ({p} \cup S)>

The usual properties hold:

```
\begin{array}{rll} \text{shows} & \mathsf{< A} \vdash p \implies p \in \mathsf{V} \mathsf{>} \\ \text{and} & \mathsf{< p} \in \mathsf{V} \longleftrightarrow (\neg p) \notin \mathsf{V} \mathsf{>} \\ \text{and} & \mathsf{< p} \in \mathsf{V} \implies (p \longrightarrow q) \in \mathsf{V} \implies q \in \mathsf{V} \mathsf{>} \end{array}
```

Lindenbaum's Lemma

Assume an enumeration of formulas. Given S_n construct:

$$S_{n+1} = \begin{cases} S_n & \text{if } \{\phi_n\} \cup S_n \text{ is not } A\text{-consistent} \\ \{\phi_n\} \cup S_n & \text{otherwise} \end{cases}$$

Lindenbaum's Lemma

Assume an enumeration of formulas. Given S_n construct:

$$S_{n+1} = \begin{cases} S_n & \text{if } \{\phi_n\} \cup S_n \text{ is not } A\text{-consistent} \\ \{\phi_n\} \cup S_n & \text{otherwise} \end{cases}$$

Extend A S f is the infinite union of every such S_n (starting from S). We have:

```
lemma consistent_Extend:
  assumes <consistent A S>
  shows <consistent A (Extend A S f)>
```

```
lemma maximal_Extend:
   assumes <surj f>
   shows <maximal A (Extend A S f)>
```

Canonical Model

Abbreviations for the worlds (mcss), valuation (pi) and accessibility relation (reach)

```
abbreviation mcss :: <('i fm \Rightarrow bool) \Rightarrow 'i fm set set> where
<mcss A \equiv {W. consistent A W \land maximal A W}>
```

abbreviation pi :: <'i fm set \Rightarrow id \Rightarrow bool> where <pi V x \equiv Pro x \in V>

abbreviation known :: <'i fm set \Rightarrow 'i \Rightarrow 'i fm set> where <known V i \equiv {p. K i p \in V}>

abbreviation reach :: <('i fm \Rightarrow bool) \Rightarrow 'i \Rightarrow 'i fm set \Rightarrow 'i fm set set> where <reach A i V \equiv {W. known V i \subseteq W}>

Truth Lemma

Following Fagin et al. (822 lines of Isabelle up to and including this result):

```
lemma truth_lemma:
fixes A and p :: <('i :: countable) fm>
defines <M = Kripke (mcss A) pi (reach A)>
assumes <consistent A V> and <maximal A V>
shows <(p ∈ V ↔ M, V ⊨ p) ∧ ((¬ p) ∈ V ↔ M, V ⊨ ¬ p)>
```

Truth Lemma

Following Fagin et al. (822 lines of Isabelle up to and including this result):

```
lemma truth_lemma:
  fixes A and p :: <('i :: countable) fm>
  defines <M = Kripke (mcss A) pi (reach A)>
  assumes <consistent A V> and <maximal A V>
  shows <(p ∈ V ↔ M, V ⊨ p) ∧ ((¬ p) ∈ V ↔ M, V ⊨ ¬ p)>
```

Useful abstraction:

```
lemma canonical_model:
  assumes <consistent A S> and 
  defines <V ≡ Extend A S from_nat> and <M ≡ Kripke (mcss A) pi (reach A)>
  shows <M, V ⊨ p> and <consistent A V> and <maximal A V>
```

Completeness Template

If p is valid under potentially infinite assumptions G, it can be derived from a finite subset qs

```
lemma imply_completeness:
  assumes valid: \langle \forall (M :: ('i :: countable, 'i fm set) kripke). \forall w \in W M.
  (\forall q \in G. M, w \models q) \longrightarrow M, w \models p>
  shows <math>\langle \exists qs. set qs \subseteq G \land (A \vdash imply qs p) \rangle
```

Proof uses previous machinery

```
let ?S = <{¬ p} ∪ G>
let ?V = <Extend A ?S from_nat>
let ?M = <Kripke (mcss A) pi (reach A)>
```

System K

No extra axioms (A admits nothing):

abbreviation SystemK :: <'i fm \Rightarrow bool> (" \vdash_{K} _" [50] 50) where < \vdash_{K} p \equiv (λ_{-} . False) \vdash p>

Abbreviation for validity in this class of frames:

abbreviation (valid_K $p \equiv \forall (M :: (nat, nat fm set) kripke). \forall w \in W M. M, w \models p$)

theorem main_K: <valid_K $p \leftrightarrow \vdash_K p$ >

Extra Axioms I

Axiom	Formula	Frame condition	Principle
Т	$K_i \varphi \to \varphi$	Reflexive	True knowledge
В	$\varphi \to K_i L_i \varphi$	Symmetric	Knowledge of consistency of truths ^a
4	$K_i \varphi \to K_i K_i \varphi$	Transitive	Positive introspection
5	$\neg K_i \varphi \to K_i \neg K_i \varphi$	$\operatorname{Euclidean}^{b}$	Negative introspection

inductive AxT :: <'i fm \Rightarrow bool> where (AxT (K i p \longrightarrow p)>

lemma mcs_T_reflexive: assumes <∀p. AxT p → A p> shows <reflexive (Kripke (mcss A) pi (reach A))>

Extra Axioms II

Follow the completeness template

```
lemma imply_completeness_T:
   assumes valid: <\forall(M :: ('i :: countable, 'i fm set) kripke). \forall w \in \mathcal{W} M.
   reflexive M \longrightarrow (\forall q \in G. M, w \models q) \longrightarrow M, w \models p>
   shows <\exists qs. set qs \subseteq G \land (AxT \vdash imply qs p)>
```

Countermodel based on the corresponding AxT-MCS:

```
let ?S = <{¬ p} ∪ G>
let ?V = <Extend AxT ?S from_nat>
let ?M = <Kripke (mcss AxT) pi (reach AxT)>
```

It is reflexive as per the previous slide

Compositionality

System	Axioms	Class
Κ		All frames
\mathbf{T}	Т	Reflexive frames
KB	В	Symmetric frames
K4	4	Transitive frames
S4	T, 4	Reflexive and transitive frames
S5	T, B 4 or T, 5	Frames with equivalence relations

abbreviation SystemS4 :: <'i fm \Rightarrow bool> (" \vdash_{S4} _" [50] 50) where < \vdash_{S4} p \equiv AxT \oplus Ax4 \vdash p>

theorem main_{S4}: <valid_{S4} $p \leftrightarrow \vdash_{S4} p$ >

Takeaways

- Epistemic logic models the knowledge of agents
- Different epistemic principles give rise to different logics
- Using Isabelle/HOL I have given a disciplined treatment of
 - Normal modal logics ranging from K to S5
 - Completeness-via-canonicity arguments
 - The compositional nature of this method
- Beneficial to model worlds as an explicit set (thanks reviewer #3!)
- Soundness and completeness for 7 systems in just over 1400 lines
 - A clear recipe for adding more

References

Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. MIT Press (1995).

Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001).

From, A.H.: Epistemic logic: Completeness of modal logics. Archive of Formal Proofs (2018), <u>https://devel.isa-afp.org/entries/Epistemic_Logic.html</u>, Formal proof development

See also four formalizations by Bentzen, Li, Neeley and Wu & Gore in Lean and one by Hagemeier in Coq.