
Formalizing Henkin-Style Completeness of an
Axiomatic System for Propositional Logic

Asta Halkjær From
Technical University of Denmark

WeSSLLI + ESSLLI Virtual Student Session, 13 July 2020.

Introduction

Hilbert proved the completeness of an axiomatic system for propositional logic in
1917-18 [34], Gödel proved the completeness of first-order logic in 1929 [12] and
Henkin simplified this proof in 1947 [13].

We study the structure of a Henkin-style completeness proof for an axiomatic
Hilbert system for propositional logic by formalizing it in the proof assistant
Isabelle/HOL [21].

- A history of formalized completeness proofs.
- Isabelle primer.
- Propositional logic and axiom system.
- Henkin-style completeness.
- Conclusion.

A History of Formalized Completeness Proofs I

In 1985, Shankar formalizes propositional completeness wrt. an axiomatic proof
system in the Boyer-Moore theorem prover by defining a tautology checker [28].

In 1996, Persson shows constructive completeness for intuitionistic first-order logic
in Martin-Löf type theory using the proof assistant ALF [24].

By early 2000, Margetson formalizes the completeness of first-order logic and the
cut elimination theorem for sequent calculus in Isabelle/HOL [18].

In 2005, Braselmann and Koepke follow in the Mizar system [6].

In 2007, Berghofer formalizes Fitting’s work on natural deduction [8] in Isabelle [3].

A History of Formalized Completeness Proofs II

In 2010, Ilik investigates Henkin-style arguments for both classical and
intuitionistic first-order logic in the proof assistant Coq [15].

In 2017, Michaelis and Nipkow formalize a number of proof systems for
propositional logic in Isabelle/HOL: natural deduction, sequent calculus, an
axiomatic system similar to ours and resolution [19,20].

Blanchette, Popescu and Traytel use codatatypes to model possibly infinite
derivation trees for first-order sequent calculus and tableau systems in Isabelle [5].

Jørgensen et al. adapted the synthetic approach to a tableau system for hybrid
logic [16] with a formalization in Isabelle/HOL due to the present author [10].

Isabelle Primer I

We encode our domain in higher-order logic, e.g. natural numbers:

datatype mynat = Zero | OnePlus mynat

We can then define operations on our objects:

primrec add :: ‹mynat ⇒ mynat ⇒ mynat› where
 ‹add Zero m = m›
 ‹add (OnePlus n) m = OnePlus (add n m)›

And run them!

Isabelle Primer II

The definition becomes simplification rules:

lemma ‹add Zero k = k›
 using add.simps(1) .

We can use induction to prove more interesting things:

Isabelle Primer III

Induction splits the statement ‹add k Zero = k› into the base case:

 case Zero
 then show ?case (* add Zero Zero = Zero *)
 using add.simps(1) .
next

And the induction step:

 case (OnePlus k)
 have ‹add (OnePlus k) Zero = OnePlus (add k Zero)›
 using add.simps(2) .
 also have ‹… = OnePlus k›
 using OnePlus ..
 finally show ?case . (* add (OnePlus k) Zero = OnePlus k *)
qed

Isabelle Primer IV

The Isabelle simplifier can do the proof:

lemma ‹add k Zero = k›
 by (induct k) simp_all

Much ado about nothing?

- Proofs in higher-order logic rather than natural language.
- Machine-checked.
- Unambiguous definitions.
- Responsive to changes.
- Counter-example search:

Propositional Logic

Let us work with something more interesting than natural numbers:

datatype form
 = Falsity (‹⊥›)
 | Pro nat
 | Imp form form (infixr ‹⟶› 25)

abbreviation Neg (‹¬ _› [40] 40) where ‹¬ p ≡ p ⟶ ⊥›

And something more interesting than addition:

primrec semantics :: ‹(nat ⇒ bool) ⇒ form ⇒ bool› (‹_ ⊨ _› [50, 50] 50) where
 ‹(I ⊨ ⊥) = False›
| ‹(I ⊨ Pro n) = I n›
| ‹(I ⊨ (p ⟶ q)) = ((I ⊨ p) ⟶ (I ⊨ q))›

Where I is the interpretation of propositional symbols.

Axiom System

Church’s P1 [7] as an inductive predicate ⊢ with 1 rule and 3 axiom schemas:

inductive Axiomatics :: ‹form ⇒ bool› (‹⊢ _› [50] 50) where
 MP: ‹⊢ p ⟹ ⊢ (p ⟶ q) ⟹ ⊢ q›
| Imp1: ‹⊢ (p ⟶ q ⟶ p)›
| Imp2: ‹⊢ ((p ⟶ q ⟶ r) ⟶ (p ⟶ q) ⟶ p ⟶ r)›
| Neg: ‹⊢ (((p ⟶ ⊥) ⟶ ⊥) ⟶ p)›

The system is sound; if we can derive a formula then it is valid:

theorem soundness: ‹⊢ p ⟹ I ⊨ p›
 by (induct rule: Axiomatics.induct) simp_all

Notice that the induction is over the derivation.

Derivations

We can find small derivations with the sledgehammer tool:

Our judgment ⊢ is one-sided. We use chains of implications to mimic assumptions:

primrec imply :: ‹form list ⇒ form ⇒ form› where
 ‹imply [] q = q›
| ‹imply (p # ps) q = (p ⟶ imply ps q)›

We say that q can be derived from ps when we can derive ‹⊢ imply ps q›

Henkin-Style Completeness in One Slide

Question: Can we derive every valid formula? How do we show this?

1. Assume that a given formula p is valid under assumptions ps.
2. Assume for the sake of contradiction that there is no derivation ‹⊢ imply ps p›

3. Then there can be no derivation ‹⊢ imply ((¬ p) # ps) ⊥›

4. Therefore, ‹(¬ p) # ps› as a set is consistent (it does not entail falsity).
5. If we add every possible formula that preserves consistency we get a maximal

consistent set (MCS).
6. Every MCS is a Hintikka set and formulas in such sets have a model.
7. Thus, we can construct a model for negated p and all of ps.
8. But by the validity assumption, the model satisfies p too.
9. This is a contradiction.

Maximal Consistent Sets I

A set of formulas is consistent if we cannot derive falsity from any subset:

definition consistent :: ‹form set ⇒ bool› where
 ‹consistent S ≡ ∄S'. set S' ⊆ S ∧ ⊢ imply S' ⊥›

A set of formulas is maximal if any proper extension makes it inconsistent:

definition maximal :: ‹form set ⇒ bool› where
 ‹maximal S ≡ ∀p. p ∉ S ⟶ ¬ consistent ({p} ∪ S)›

Given a consistent set S0 and an enumeration of formulas, (ϕn), we construct a
sequence of consistent sets like so:

Maximal Consistent Sets II

In Isabelle/HOL we specify a function that returns a specific element:

primrec extend :: ‹form set ⇒ (nat ⇒ form) ⇒ nat ⇒ form set› where
 ‹extend S f 0 = S›
| ‹extend S f (Suc n) =
 (if consistent ({f n} ∪ extend S f n)
 then {f n} ∪ extend S f n
 else extend S f n)›

We get the maximal consistent set in the limit:

definition Extend :: ‹form set ⇒ (nat ⇒ form) ⇒ form set› where
 ‹Extend S f ≡ ⋃n. extend S f n›

But of course we need to prove that it is maximal and consistent!

Maximal Consistent Sets III

The original set is in the limit:

lemma Extend_subset: ‹S ⊆ Extend S f›
 unfolding Extend_def by (metis Union_upper extend.simps(1) range_eqI)

Each element bounds the previous ones:

lemma extend_bound: ‹(⋃n ≤ m. extend S f n) = extend S f m›
 by (induct m) (simp_all add: atMost_Suc)

Consistency is preserved by definition:

lemma consistent_extend: ‹consistent S ⟹ consistent (extend S f n)›
 by (induct n) simp_all

Consistency in the Limit

lemma consistent_Extend:
 assumes ‹consistent S›
 shows ‹consistent (Extend S f)›
 unfolding Extend_def
proof (rule ccontr)
 assume ‹¬ consistent (⋃n. extend S f n)›
 then obtain S' where ‹⊢ imply S' ⊥› ‹set S' ⊆ (⋃n. extend S f n)›
 unfolding consistent_def by blast
 then obtain m where ‹set S' ⊆ (⋃n ≤ m. extend S f n)›
 using UN_finite_bound by (metis List.finite_set)
 then have ‹set S' ⊆ extend S f m›
 using extend_bound by blast
 moreover have ‹consistent (extend S f m)›
 using assms consistent_extend by blast
 ultimately show False
 unfolding consistent_def using ‹⊢ imply S' ⊥› by blast
qed

Assume that the starting set is consistent.
Show that the limit is too.
(by unfolding its definition)
Proof by classical contradiction.
Assume the limit is inconsistent.
Obtain some list of formulas that we can derive
falsity from.
This list is a subset of some prefix of the
constructed sequence.
So in particular it is a subset of a bounding element.

But such an element is consistent by construction.

So we reach a contradiction.

And the limit must be consistent.

Consistency in the Limit

lemma consistent_Extend:
 assumes ‹consistent S›
 shows ‹consistent (Extend S f)›
 unfolding Extend_def
proof (rule ccontr)
 assume ‹¬ consistent (⋃n. extend S f n)›
 then obtain S' where ‹⊢ imply S' ⊥› ‹set S' ⊆ (⋃n. extend S f n)›
 unfolding consistent_def by blast
 then obtain m where ‹set S' ⊆ (⋃n ≤ m. extend S f n)›
 using UN_finite_bound by (metis List.finite_set)
 then have ‹set S' ⊆ extend S f m›
 using extend_bound by blast
 moreover have ‹consistent (extend S f m)›
 using assms consistent_extend by blast
 ultimately show False
 unfolding consistent_def using ‹⊢ imply S' ⊥› by blast
qed

Assume the starting set is consistent.
Show the limit is too.
(by unfolding its definition)
Proof by classical contradiction.
Assume the limit is inconsistent.
Obtain some list of formulas that we can derive
falsity from.
This list is a subset of some prefix of the
constructed sequence.
So in particular it is a subset of a bounding element.

But such an element is consistent by construction.

So we reach a contradiction.

And the limit must be consistent.

Consistency in the Limit

lemma consistent_Extend:
 assumes ‹consistent S›
 shows ‹consistent (Extend S f)›
 unfolding Extend_def
proof (rule ccontr)
 assume ‹¬ consistent (⋃n. extend S f n)›
 then obtain S' where ‹⊢ imply S' ⊥› ‹set S' ⊆ (⋃n. extend S f n)›
 unfolding consistent_def by blast
 then obtain m where ‹set S' ⊆ (⋃n ≤ m. extend S f n)›
 using UN_finite_bound by (metis List.finite_set)
 then have ‹set S' ⊆ extend S f m›
 using extend_bound by blast
 moreover have ‹consistent (extend S f m)›
 using assms consistent_extend by blast
 ultimately show False
 unfolding consistent_def using ‹⊢ imply S' ⊥› by blast
qed

Assume the starting set is consistent.
Show the limit is too.
(by unfolding its definition)
Proof by classical contradiction.
Assume the limit is inconsistent.
Obtain some list of formulas that we can derive
falsity from.
This list is a subset of some prefix of the
constructed sequence.
So in particular it is a subset of a bounding element.

But such an element is consistent by construction.

So we reach a contradiction.

And the limit must be consistent.

Consistency in the Limit

lemma consistent_Extend:
 assumes ‹consistent S›
 shows ‹consistent (Extend S f)›
 unfolding Extend_def
proof (rule ccontr)
 assume ‹¬ consistent (⋃n. extend S f n)›
 then obtain S' where ‹⊢ imply S' ⊥› ‹set S' ⊆ (⋃n. extend S f n)›
 unfolding consistent_def by blast
 then obtain m where ‹set S' ⊆ (⋃n ≤ m. extend S f n)›
 using UN_finite_bound by (metis List.finite_set)
 then have ‹set S' ⊆ extend S f m›
 using extend_bound by blast
 moreover have ‹consistent (extend S f m)›
 using assms consistent_extend by blast
 ultimately show False
 unfolding consistent_def using ‹⊢ imply S' ⊥› by blast
qed

Assume the starting set is consistent.
Show the limit is too.
(by unfolding its definition)
Proof by classical contradiction.
Assume the limit is inconsistent.
Obtain some list of formulas that we can derive
falsity from.
This list is a subset of some prefix of the
constructed sequence.
So in particular it is a subset of a bounding element.

But such an element is consistent by construction.

So we reach a contradiction.

And the limit must be consistent.

Consistency in the Limit

lemma consistent_Extend:
 assumes ‹consistent S›
 shows ‹consistent (Extend S f)›
 unfolding Extend_def
proof (rule ccontr)
 assume ‹¬ consistent (⋃n. extend S f n)›
 then obtain S' where ‹⊢ imply S' ⊥› ‹set S' ⊆ (⋃n. extend S f n)›
 unfolding consistent_def by blast
 then obtain m where ‹set S' ⊆ (⋃n ≤ m. extend S f n)›
 using UN_finite_bound by (metis List.finite_set)
 then have ‹set S' ⊆ extend S f m›
 using extend_bound by blast
 moreover have ‹consistent (extend S f m)›
 using assms consistent_extend by blast
 ultimately show False
 unfolding consistent_def using ‹⊢ imply S' ⊥› by blast
qed

Assume the starting set is consistent.
Show the limit is too.
(by unfolding its definition)
Proof by classical contradiction.
Assume the limit is inconsistent.
Obtain some list of formulas that we can derive
falsity from.
This list is a subset of some prefix of the
constructed sequence.
So in particular it is a subset of a bounding element.

But such an element is consistent by construction.

So we reach a contradiction.

And the limit must be consistent.

Maximality in the Limit
lemma maximal_Extend:
 assumes ‹surj f›
 shows ‹maximal (Extend S f)›
proof (rule ccontr)
 assume ‹¬ maximal (Extend S f)›
 then obtain p where ‹p ∉ Extend S f› ‹consistent ({p} ∪ Extend S f)›
 unfolding maximal_def using assms consistent_Extend by blast
 obtain k where n: ‹f k = p›
 using ‹surj f› unfolding surj_def by metis
 then have ‹p ∉ extend S f (Suc k)›
 using ‹p ∉ Extend S f› unfolding Extend_def by blast
 then have ‹¬ consistent ({p} ∪ extend S f k)›
 using n by fastforce
 moreover have ‹{p} ∪ extend S f k ⊆ {p} ∪ Extend S f›
 unfolding Extend_def by blast
 ultimately have ‹¬ consistent ({p} ∪ Extend S f)›
 unfolding consistent_def by fastforce
 then show False
 using ‹consistent ({p} ∪ Extend S f)› by blast
qed

Assume the enumeration hits every formula.
Show that the limit is maximal.
By classical contradiction.
If it is not maximal.
then some formula is absent even though it preserves
consistency.
This formula is part of the enumeration.

But it was not added at the corresponding step of the
construction.
So, by definition, adding it breaks consistency.

The extension is a subset of the extended limit.

But then the extended limit has an inconsistent subset.

And this is a contradiction.

So the limit must be maximal.

Hintikka Sets I

Sets that are downwards saturated:

locale Hintikka =
 fixes H :: ‹form set›
 assumes
 NoFalsity: ‹⊥ ∉ H› and
 Pro: ‹Pro n ∈ H ⟹ (¬ Pro n) ∉ H› and
 ImpP: ‹(p ⟶ q) ∈ H ⟹ (¬ p) ∈ H ∨ q ∈ H› and
 ImpN: ‹(¬ (p ⟶ q)) ∈ H ⟹ p ∈ H ∧ (¬ q) ∈ H›

The satisfiability of any complex formula in a Hintikka set is guaranteed by
conditions on its subformulas.

This means that we can build a model based on set membership:

abbreviation (input) ‹model H n ≡ Pro n ∈ H›

Hintikka Sets II

Isabelle is powerful enough to automatically prove the model existence theorem:

lemma Hintikka_model:
 ‹Hintikka H ⟹ (p ∈ H ⟶ model H ⊨ p) ∧ ((¬ p) ∈ H ⟶ ¬ model H ⊨ p)›
 by (induct p) (simp; unfold Hintikka_def, blast)+

But we need to manually prove that maximal consistent sets are Hintikka sets:

lemma Hintikka_Extend:
 assumes ‹maximal S› ‹consistent S›
 shows ‹Hintikka S›
 (proof omitted)

Four cases, one per Hintikka condition, proofs by contradiction.
Close to 80 lines in total.

Completeness I

lemma imply_completeness:
 assumes valid: ‹∀I s. list_all (λq. I ⊨ q) ps ⟶ I ⊨ p›
 shows ‹⊢ imply ps p›
proof (rule ccontr)
 assume ‹¬ ⊢ imply ps p›
 then have *: ‹¬ ⊢ imply ((¬ p) # ps) ⊥›
 using Boole by blast

 let ?S = ‹set ((¬ p) # ps)›
 let ?H = ‹Extend ?S from_nat›

 have ‹consistent ?S›
 unfolding consistent_def using * imply_weaken by blast
 then have ‹consistent ?H› ‹maximal ?H›
 using consistent_Extend maximal_Extend surj_from_nat by blast+
 then have ‹Hintikka ?H›
 using Hintikka_Extend by blast

Strong completeness:
Assume formulas ps imply p.
Show that p can be derived from ps.
Proof by contradiction.
If there is no derivation
then adding negated p is consistent.

Abbreviation for the starting set.
Abbreviation for the constructed Hintikka set.

The starting set is consistent.

So the constructed set is consistent and maximal.

So it is a Hintikka set.

Completeness I

lemma imply_completeness:
 assumes valid: ‹∀I s. list_all (λq. I ⊨ q) ps ⟶ I ⊨ p›
 shows ‹⊢ imply ps p›
proof (rule ccontr)
 assume ‹¬ ⊢ imply ps p›
 then have *: ‹¬ ⊢ imply ((¬ p) # ps) ⊥›
 using Boole by blast

 let ?S = ‹set ((¬ p) # ps)›
 let ?H = ‹Extend ?S from_nat›

 have ‹consistent ?S›
 unfolding consistent_def using * imply_weaken by blast
 then have ‹consistent ?H› ‹maximal ?H›
 using consistent_Extend maximal_Extend surj_from_nat by blast+
 then have ‹Hintikka ?H›
 using Hintikka_Extend by blast

Strong completeness:
Assume formulas ps imply p.
Show that p derives from ps.
Proof by contradiction.
If there is no derivation
then adding negated p is consistent.

Abbreviation for the starting set.
Abbreviation for the constructed Hintikka set.

The starting set is consistent.

So the constructed set is consistent and maximal.

So it is a Hintikka set.

Completeness I

lemma imply_completeness:
 assumes valid: ‹∀I s. list_all (λq. I ⊨ q) ps ⟶ I ⊨ p›
 shows ‹⊢ imply ps p›
proof (rule ccontr)
 assume ‹¬ ⊢ imply ps p›
 then have *: ‹¬ ⊢ imply ((¬ p) # ps) ⊥›
 using Boole by blast

 let ?S = ‹set ((¬ p) # ps)›
 let ?H = ‹Extend ?S from_nat›

 have ‹consistent ?S›
 unfolding consistent_def using * imply_weaken by blast
 then have ‹consistent ?H› ‹maximal ?H›
 using consistent_Extend maximal_Extend surj_from_nat by blast+
 then have ‹Hintikka ?H›
 using Hintikka_Extend by blast

Strong completeness:
Assume formulas ps imply p.
Show that p derives from ps.
Proof by contradiction.
If there is no derivation
then adding negated p is consistent.

Abbreviation for the starting set.
Abbreviation for the constructed Hintikka set.

The starting set is consistent.

So the constructed set is consistent and maximal.

So it is a Hintikka set.

Completeness II

 have ‹model ?H ⊨ p› if ‹p ∈ ?S› for p
 using that Extend_subset Hintikka_model ‹Hintikka ?H› by blast
 then have ‹model ?H ⊨ (¬ p)› ‹list_all (λp. model ?H ⊨ p) ps›
 unfolding list_all_def by fastforce+
 then have ‹model ?H ⊨ p›
 using valid by blast
 then show False
 using ‹model ?H ⊨ (¬ p)› by simp
qed

If we specialize to no assumptions we get the
completeness theorem:

theorem completeness: ‹∀I. I ⊨ p ⟹ ⊢ p›
 using imply_completeness[where ps=‹[]›] by simp

The Hintikka model satisfies any formula in the
starting set.
Which includes negated p and all of ps.

So by the validity assumption, it satisfies p.

But this is a contradiction.

So the derivation must exist.

Possible Extensions

We have extended the formalization with binary conjunction and disjunction
operators and corresponding proof rules and Hintikka conditions.

The result is a strict extension: we only have to add ~130 new lines.

The model existence theorem is still completely automatic.

If we want to move to first-order logic we need to add Henkin witnesses for
existential statements.

The proof assistant tells us which proofs break.

Conclusion

Proof assistants allow us to be extremely precise.

The resulting formalized proofs leave out no details.

We can use them to explicate an approach like Henkin-style completeness.

Such a formalization can serve as reference or as starting point for future work.

The resulting formalization is available at:

https://github.com/logic-tools/axiom

https://github.com/logic-tools/axiom

Abridged Bibliography

3. Berghofer, S.: First-Order Logic According to Fitting. Archive of Formal Proofs (Aug 2007),
http://isa-afp.org/entries/FOL-Fitting.html

5. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by coinductive methods. Journal of
Automated Reasoning 58(1), 149–179 (2017)

6. Braselmann, P., Koepke, P.: Gödel’s completeness theorem. Formalized Mathematics 13(1), 49–53 (2005)

7. Church, A.: Introduction to Mathematical Logic. Princeton Mathematical Series, Princeton University Press (1956)

8. Fitting, M.: First-Order Logic and Automated Theorem Proving, Second Edition. Graduate Texts in Computer Science,
Springer (1996)

10. From, A.H.: Formalizing a Seligman-style tableau system for hybrid logic. Archive of Formal Proofs (Dec 2019),
http://isa-afp.org/entries/Hybrid_Logic.html, Formal proof development

12. Gödel, K.: Über die Vollständigkeit des Logikkalküls. Ph.D. thesis, University of Vienna (1929)

http://isa-afp.org/entries/FOL-Fitting.html
http://isa-afp.org/entries/Hybrid_Logic.html

Abridged Bibliography

13. Henkin, L.: The Completeness of Formal Systems. Ph.D. thesis, Princeton University (1947)

14. Henkin, L.: The Discovery of My Completeness Proofs. Bulletin of Symbolic Logic 2(2), 127–158 (1996)

15. Ilik, D.: Constructive completeness proofs and delimited control. Ph.D. thesis, École polytechnique (2010)

16. Jørgensen, K.F., Blackburn, P., Bolander, T., Braüner, T.: Synthetic completeness proofs for Seligman-style tableau
systems. In: Proceedings of the 11th conference on Advances in Modal Logic. pp. 302–321 (2016)

18. Margetson, J., Ridge, T.: Completeness theorem. Archive of Formal Proofs (Sep 2004),
http://isa-afp.org/entries/Completeness.html, Formal proof development

19. Michaelis, J., Nipkow, T.: Propositional proof systems. Archive of Formal Proofs (Jun 2017),
http://isa-afp.org/entries/Propositional_Proof_Systems.html, Formal proof development

20. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In: Abel, A., Forsberg, F.N., Kaposi, A. (eds.)
23rd Int. Conf. Types for Proofs and Programs (TYPES 2017). LIPIcs, vol. 104, pp. 6:1–6:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2018)

http://isa-afp.org/entries/Completeness.html
http://isa-afp.org/entries/Propositional_Proof_Systems.html

Abridged Bibliography

21. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-Order Logic, Lecture Notes in
Computer Science, vol. 2283. Springer (2002)

24. Persson, H.: Constructive completeness of intuitionistic predicate logic. Licenciate thesis, Chalmers University of
Technology (1996)

28. Shankar, N.: Towards mechanical metamathematics. Journal of Automated Reasoning 1(4), 407–434 (1985)

30. Smullyan, R.M.: First-Order Logic. Springer-Verlag (1968)

34. Zach, R.: Completeness before Post: Bernays, Hilbert, and the development of propositional logic. Bulletin of Symbolic
Logic 5(3), 331–366 (1999)

Note also https://www.isa-afp.org/entries/Epistemic_Logic.html:

This work is a formalization of epistemic logic with countably many agents. It includes proofs of soundness and
completeness for the axiom system K. The completeness proof is based on the textbook "Reasoning About Knowledge" by
Fagin, Halpern, Moses and Vardi (MIT Press 1995).

https://www.isa-afp.org/entries/Epistemic_Logic.html

