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Introduction

Hilbert proved the completeness of an axiomatic system for propositional logic in 
1917-18 [34], Gödel proved the completeness of first-order logic in 1929 [12] and 
Henkin simplified this proof in 1947 [13].

We study the structure of a Henkin-style completeness proof for an axiomatic 
Hilbert system for propositional logic by formalizing it in the proof assistant 
Isabelle/HOL [21].

- A history of formalized completeness proofs.
- Isabelle primer.
- Propositional logic and axiom system.
- Henkin-style completeness.
- Conclusion.



A History of Formalized Completeness Proofs I

In 1985, Shankar formalizes propositional completeness wrt. an axiomatic proof 
system in the Boyer-Moore theorem prover by defining a tautology checker [28].

In 1996, Persson shows constructive completeness for intuitionistic first-order logic 
in Martin-Löf type theory using the proof assistant ALF [24].

By early 2000, Margetson formalizes the completeness of first-order logic and the 
cut elimination theorem for sequent calculus in Isabelle/HOL [18].

In 2005, Braselmann and Koepke follow in the Mizar system [6].

In 2007, Berghofer formalizes Fitting’s work on natural deduction [8] in Isabelle [3].



A History of Formalized Completeness Proofs II

In 2010, Ilik investigates Henkin-style arguments for both classical and 
intuitionistic first-order logic in the proof assistant Coq [15].

In 2017, Michaelis and Nipkow formalize a number of proof systems for 
propositional logic in Isabelle/HOL: natural deduction, sequent calculus, an 
axiomatic system similar to ours and resolution [19,20].

Blanchette, Popescu and Traytel use codatatypes to model possibly infinite 
derivation trees for first-order sequent calculus and tableau systems in Isabelle [5].

Jørgensen et al. adapted the synthetic approach to a tableau system for hybrid 
logic [16] with a formalization in Isabelle/HOL due to the present author [10].



Isabelle Primer I

We encode our domain in higher-order logic, e.g. natural numbers:

datatype mynat = Zero | OnePlus mynat

We can then define operations on our objects: 

primrec add :: ‹mynat ⇒ mynat ⇒ mynat› where
  ‹add Zero m = m›
  ‹add (OnePlus n) m = OnePlus (add n m)›

And run them!



Isabelle Primer II

The definition becomes simplification rules:

lemma ‹add Zero k = k›
  using add.simps(1) .

We can use induction to prove more interesting things:



Isabelle Primer III

Induction splits the statement ‹add k Zero = k› into the base case:

  case Zero
  then show ?case (* add Zero Zero = Zero *)
    using add.simps(1) .
next

And the induction step:

  case (OnePlus k)
  have ‹add (OnePlus k) Zero = OnePlus (add k Zero)›
    using add.simps(2) .
  also have ‹… = OnePlus k›
    using OnePlus ..
  finally show ?case . (* add (OnePlus k) Zero = OnePlus k *)
qed
  



Isabelle Primer IV

The Isabelle simplifier can do the proof:

lemma ‹add k Zero = k›
  by (induct k) simp_all

Much ado about nothing?

- Proofs in higher-order logic rather than natural language.
- Machine-checked.
- Unambiguous definitions.
- Responsive to changes.
- Counter-example search:



Propositional Logic

Let us work with something more interesting than natural numbers:

datatype form
  = Falsity (‹⊥›)
  | Pro nat
  | Imp form form (infixr ‹⟶› 25)

abbreviation Neg (‹¬ _› [40] 40) where ‹¬ p ≡ p ⟶ ⊥›

And something more interesting than addition:

primrec semantics :: ‹(nat ⇒ bool) ⇒ form ⇒ bool› (‹_ ⊨ _› [50, 50] 50) where
  ‹(I ⊨ ⊥) = False›
| ‹(I ⊨ Pro n) = I n›
| ‹(I ⊨ (p ⟶ q)) = ((I ⊨ p) ⟶ (I ⊨ q))›

Where I is the interpretation of propositional symbols.



Axiom System

Church’s P1 [7] as an inductive predicate ⊢ with 1 rule and 3 axiom schemas:

inductive Axiomatics :: ‹form ⇒ bool› (‹⊢ _› [50] 50) where
  MP: ‹⊢ p ⟹ ⊢ (p ⟶ q) ⟹ ⊢ q›
| Imp1: ‹⊢ (p ⟶ q ⟶ p)›
| Imp2: ‹⊢ ((p ⟶ q ⟶ r) ⟶ (p ⟶ q) ⟶ p ⟶ r)›
| Neg: ‹⊢ (((p ⟶ ⊥) ⟶ ⊥) ⟶ p)›

The system is sound; if we can derive a formula then it is valid:

theorem soundness: ‹⊢ p ⟹ I ⊨ p›
  by (induct rule: Axiomatics.induct) simp_all

Notice that the induction is over the derivation.



Derivations

We can find small derivations with the sledgehammer tool:

Our judgment ⊢ is one-sided. We use chains of implications to mimic assumptions:

primrec imply :: ‹form list ⇒ form ⇒ form› where
  ‹imply [] q = q›
| ‹imply (p # ps) q = (p ⟶ imply ps q)›

We say that q can be derived from ps when we can derive ‹⊢ imply ps q›



Henkin-Style Completeness in One Slide

Question: Can we derive every valid formula? How do we show this?

1. Assume that a given formula p is valid under assumptions ps.
2. Assume for the sake of contradiction that there is no derivation ‹⊢ imply ps p›

3. Then there can be no derivation ‹⊢ imply ((¬ p) # ps) ⊥›

4. Therefore, ‹(¬ p) # ps› as a set is consistent (it does not entail falsity).
5. If we add every possible formula that preserves consistency we get a maximal 

consistent set (MCS).
6. Every MCS is a Hintikka set and formulas in such sets have a model.
7. Thus, we can construct a model for negated p and all of ps.
8. But by the validity assumption, the model satisfies p too.
9. This is a contradiction.



Maximal Consistent Sets I

A set of formulas is consistent if we cannot derive falsity from any subset:

definition consistent :: ‹form set ⇒ bool› where
  ‹consistent S ≡ ∄S'. set S' ⊆ S ∧ ⊢ imply S' ⊥›

A set of formulas is maximal if any proper extension makes it inconsistent:

definition maximal :: ‹form set ⇒ bool› where
  ‹maximal S ≡ ∀p. p ∉ S ⟶ ¬ consistent ({p} ∪ S)›

Given a consistent set S0 and an enumeration of formulas, (ϕn), we construct a 
sequence of consistent sets like so:



Maximal Consistent Sets II

In Isabelle/HOL we specify a function that returns a specific element:

primrec extend :: ‹form set ⇒ (nat ⇒ form) ⇒ nat ⇒ form set› where
  ‹extend S f 0 = S›
| ‹extend S f (Suc n) =
    (if consistent ({f n} ∪ extend S f n)
     then {f n} ∪ extend S f n
     else extend S f n)›

We get the maximal consistent set in the limit:

definition Extend :: ‹form set ⇒ (nat ⇒ form) ⇒ form set› where
  ‹Extend S f ≡ ⋃n. extend S f n›

But of course we need to prove that it is maximal and consistent!



Maximal Consistent Sets III

The original set is in the limit:

lemma Extend_subset: ‹S ⊆ Extend S f›
  unfolding Extend_def by (metis Union_upper extend.simps(1) range_eqI)

Each element bounds the previous ones:

lemma extend_bound: ‹(⋃n ≤ m. extend S f n) = extend S f m›
  by (induct m) (simp_all add: atMost_Suc)

Consistency is preserved by definition:

lemma consistent_extend: ‹consistent S ⟹ consistent (extend S f n)›
  by (induct n) simp_all



Consistency in the Limit

lemma consistent_Extend:
  assumes ‹consistent S›
  shows ‹consistent (Extend S f)›
  unfolding Extend_def
proof (rule ccontr)
  assume ‹¬ consistent (⋃n. extend S f n)›
  then obtain S' where ‹⊢ imply S' ⊥› ‹set S' ⊆ (⋃n. extend S f n)›
    unfolding consistent_def by blast
  then obtain m where ‹set S' ⊆ (⋃n ≤ m. extend S f n)›
    using UN_finite_bound by (metis List.finite_set)
  then have ‹set S' ⊆ extend S f m›
    using extend_bound by blast
  moreover have ‹consistent (extend S f m)›
    using assms consistent_extend by blast
  ultimately show False
    unfolding consistent_def using ‹⊢ imply S' ⊥› by blast
qed

Assume that the starting set is consistent.
Show that the limit is too.
(by unfolding its definition)
Proof by classical contradiction.
Assume the limit is inconsistent.
Obtain some list of formulas that we can derive 
falsity from.
This list is a subset of some prefix of the 
constructed sequence.
So in particular it is a subset of a bounding element.

But such an element is consistent by construction.

So we reach a contradiction.

And the limit must be consistent.



Consistency in the Limit
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Consistency in the Limit
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Consistency in the Limit
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Maximality in the Limit
lemma maximal_Extend:
  assumes ‹surj f›
  shows ‹maximal (Extend S f)›
proof (rule ccontr)
  assume ‹¬ maximal (Extend S f)›
  then obtain p where ‹p ∉ Extend S f› ‹consistent ({p} ∪ Extend S f)›
    unfolding maximal_def using assms consistent_Extend by blast
  obtain k where n: ‹f k = p›
    using ‹surj f› unfolding surj_def by metis
  then have ‹p ∉ extend S f (Suc k)›
    using ‹p ∉ Extend S f› unfolding Extend_def by blast
  then have ‹¬ consistent ({p} ∪ extend S f k)›
    using n by fastforce
  moreover have ‹{p} ∪ extend S f k ⊆ {p} ∪ Extend S f›
    unfolding Extend_def by blast
  ultimately have ‹¬ consistent ({p} ∪ Extend S f)›
    unfolding consistent_def by fastforce
  then show False
    using ‹consistent ({p} ∪ Extend S f)› by blast
qed

Assume the enumeration hits every formula.
Show that the limit is maximal.
By classical contradiction.
If it is not maximal.
then some formula is absent even though it preserves 
consistency.
This formula is part of the enumeration.

But it was not added at the corresponding step of the 
construction.
So, by definition, adding it breaks consistency.

The extension is a subset of the extended limit.

But then the extended limit has an inconsistent subset.

And this is a contradiction.

So the limit must be maximal.



Hintikka Sets I

Sets that are downwards saturated:

locale Hintikka =
  fixes H :: ‹form set›
  assumes
    NoFalsity: ‹⊥ ∉ H› and
    Pro: ‹Pro n ∈ H ⟹ (¬ Pro n) ∉ H› and
    ImpP: ‹(p ⟶ q) ∈ H ⟹ (¬ p) ∈ H ∨ q ∈ H› and
    ImpN: ‹(¬ (p ⟶ q)) ∈ H ⟹ p ∈ H ∧ (¬ q) ∈ H›

The satisfiability of any complex formula in a Hintikka set is guaranteed by 
conditions on its subformulas.

This means that we can build a model based on set membership:

abbreviation (input) ‹model H n ≡ Pro n ∈ H›



Hintikka Sets II

Isabelle is powerful enough to automatically prove the model existence theorem:

lemma Hintikka_model:
  ‹Hintikka H ⟹ (p ∈ H ⟶ model H ⊨ p) ∧ ((¬ p) ∈ H ⟶ ¬ model H ⊨ p)›
  by (induct p) (simp; unfold Hintikka_def, blast)+

But we need to manually prove that maximal consistent sets are Hintikka sets:

lemma Hintikka_Extend:
  assumes ‹maximal S› ‹consistent S›
  shows ‹Hintikka S›
  (proof omitted)

Four cases, one per Hintikka condition, proofs by contradiction.
Close to 80 lines in total.



Completeness I

lemma imply_completeness:
  assumes valid: ‹∀I s. list_all (λq. I ⊨ q) ps ⟶ I ⊨ p›
  shows ‹⊢ imply ps p›
proof (rule ccontr)
  assume ‹¬ ⊢ imply ps p›
  then have *: ‹¬ ⊢ imply ((¬ p) # ps) ⊥›
    using Boole by blast

  let ?S = ‹set ((¬ p) # ps)›
  let ?H = ‹Extend ?S from_nat›

  have ‹consistent ?S›
    unfolding consistent_def using * imply_weaken by blast
  then have ‹consistent ?H› ‹maximal ?H›
    using consistent_Extend maximal_Extend surj_from_nat by blast+
  then have ‹Hintikka ?H›
    using Hintikka_Extend by blast

Strong completeness:
Assume formulas ps imply p.
Show that p can be derived from ps.
Proof by contradiction.
If there is no derivation
then adding negated p is consistent.

Abbreviation for the starting set.
Abbreviation for the constructed Hintikka set.

The starting set is consistent.

So the constructed set is consistent and maximal.

So it is a Hintikka set.
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Completeness I
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Completeness II

  have ‹model ?H ⊨ p› if ‹p ∈ ?S› for p
    using that Extend_subset Hintikka_model ‹Hintikka ?H› by blast
  then have ‹model ?H ⊨ (¬ p)› ‹list_all (λp. model ?H ⊨ p) ps›
    unfolding list_all_def by fastforce+
  then have ‹model ?H ⊨ p›
    using valid by blast
  then show False
    using ‹model ?H ⊨ (¬ p)› by simp
qed

If we specialize to no assumptions we get the 
completeness theorem:

theorem completeness: ‹∀I. I ⊨ p ⟹ ⊢ p›
  using imply_completeness[where ps=‹[]›] by simp

The Hintikka model satisfies any formula in the 
starting set.
Which includes negated p and all of ps.

So by the validity assumption, it satisfies p.

But this is a contradiction.

So the derivation must exist.



Possible Extensions

We have extended the formalization with binary conjunction and disjunction 
operators and corresponding proof rules and Hintikka conditions.

The result is a strict extension: we only have to add ~130 new lines.

The model existence theorem is still completely automatic.

If we want to move to first-order logic we need to add Henkin witnesses for 
existential statements.

The proof assistant tells us which proofs break.



Conclusion

Proof assistants allow us to be extremely precise.

The resulting formalized proofs leave out no details.

We can use them to explicate an approach like Henkin-style completeness.

Such a formalization can serve as reference or as starting point for future work.

The resulting formalization is available at:

https://github.com/logic-tools/axiom

https://github.com/logic-tools/axiom
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