(=]
=
=

M

Magnolia

Implementing System F with Anonymous Sums and Products

Andreas Halkjaer From

b

f(x+Ax):§ (?TX%;“)(x) 8
i=0 "
DTU Compute

Department of Applied Mathematics and Computer Science

]
=

Introduction

M

What foundation should we build a functional language on in 20187
Bidirectional typing seems a promising start: Used by Scala, PureScript.
Known for its easy scalability to advanced features such as rank-n,
higher-kinded and sized types.

Starting point:

Complete and Easy Bidirectional Type Checking for Higher-Rank
Polymorphism by Joshua Dunfield & Neelakantan R. Krishnaswami

We will add sums and products manually, based on a common notion of
rows of types.

Finally we will look briefly at Bob Harper’s Abstract Binding Trees that aid
in the implementation.

2 DTU Compute Magnolia 15 March
2018

Magnolia

=
—
=

M

OCaml + Jane Street Core. 3100 lines + tests.

3

OCamllex
Menhir
Elaborator

Type checker:

= Complete and Easy Bidirectional Type Checking for Higher-Rank
Polymorphism by Joshua Dunfield & Neelakantan R. Krishnaswami

= Sums & products

= Strictly-positive recursive types & catamorphisms

= Elaborate to explicit type abstraction/instantiation

prettiest, based on Jean-Philippe Bernardy's A Pretty But Not Greedy Printer
(Functional Pearl). ICFP 2017

Interpreter

DTU Compute Magnolia 15 March
2018

]
=

M

Example Code

alias listF A R = [nil: {} | cons: {head: A, tail: R}]
alias list A = mu R. listF A R

let nil : forall A. list A
= fold (.nil {3})

let cons : forall A. A -> list A -> list A
| head tail = fold (.cons {head, tail})

let my-list : list int
= cons 1 (cons 2 (cons 3 (cons 4 nil)))

let main : int
= cata [nil -> 0
| cons {tail: n} -> n + 1]
my-list

4 DTU Compute Magnolia 15 March
2018

Contents

Part 1:

e Complete and Easy
e Existential Type Variables
o Universal Quantifiers

Part 2:
e Data Types

e Rows
e Types
e Terms
e Recursive Types (briefly)

Part 3:

e Abstract Binding Trees
e Operators
e Arities
e Matching

e Example

5 DTU Compute

Magnolia

)
o |
=

M

15 March
2018

6 DTU Compute

Part |

Complete and Easy

Magnolia

]
o |
=

M

15 March
2018

Lambda Calculus

ex=(|z| . e|ee
oTu=1|c—T1
JudgmentI'Fe: 7
z:7€el
re(:1 | R

Tx:oke:T
I'FAze:o—1

I'Feg:o—7 T'kFeg:o
I'Feley:T

7 DTU Compute Magnolia

=
—
=

M

15 March
2018

=
—
=

Bidirectional Typing =
Insight: Context matters. Two judgments!
SynthesisI'Fe= 71 syn : ctx * term -> typ
CheckingI' Fe<=T1 chk : ctx * term % typ -> bool

Well-formedness I' - 7
z:7el
r-()=1 'tax=r

Switching:
I'tr The<=T I'Fe=0 o=1
F'Fe:1m)=r71 F'Fe<=r

We need to know o and 7 (but only once!):

Ie:okFe<=T1
I'FXzeso—T1

I'Fey=0—7 T'hea<o

I'kFejeg=r
8 DTU Compute Magnolia

15 March
2018

Existential Type Variables |

]
=

Synthesis for A-expressions? Existential variables + ordered output context

T ...|&,B
Synthesis'Fe=714A A might solve more existentials than T'.
CheckingI'Fe<=74A
z:7€el
r-()=14T 'cx=714T
kT ThEe<=7THA Fe=74A
F'F(e:m)=174A l're<=74A

Remember to enforce scope:

Nrz:okbeesrd4A2:0,0

[,6,8,x:aFe<=B-4A,2:4,0
'FXzes=soc—=171A

I'FAze=a—B-4A

9 DTU Compute

Magnolia 15 March
2018

M

]
=

M

Existential Type Variables Il

Application of an existential type variable? Extra judgment!

ApplicationT'Foee=7 1A

'Feg=040 OF[Bloeey =7HA
I'tereg=717-4A

Context substitution [©]7 substitutes existentials in 7 for solutions from ©.

A
)

TFe=oc-4A F[@g,@l :@1—>OAQM—€<:OQ1—|A
F'o—77ee=7-4A Fla]Faee—=day 1A

The holed context I'[@] is short for T';, &, ;..
[[ag, &1,& = &1 — Gg] plugs the hole with something else.

10 DTU Compute Magnolia 15 March
2018

Subtyping |
Checking against an existential type variable? Subtyping!
SubtypingT'Ho <: 74 A

The=o0+46 |OF[0)o<: (O] HA]
TheerdA

Common-sense rules (omitted) + instantiation:

Instantiation T - & =7 4 A
TFr=a-A

=
—
=

M

11 DTU Compute

Magnolia

15 March
2018

=
—
=

Instantiation |

M

I'kFr
ral'-a=r4T,a=r1" r[a][8] +

jo)

Function arrow is contravariant:

T[d2,41,6 =61 — Qo] F o0 =61 10 OF dg =

ralFa:=c—74A

Ojr 1A

Symmetric rules for right instantiation.

12 DTU Compute Magnolia 15 March
2018

Universal Quantifiers

Monotypes o, 7 :i=1 | a| & | o — T
Types A,B,C :=7| A — B |Va.A
Existentials only stand in for monotypes.

Checking a polymorphic type:

NakFe<=A4A «a,0
'Fe<=Va.A-4A

No synthesis rule.
Applying a polymorphic type instantiates it:
Iak[a/a]Aee=CHA
I'FVaAee=C-HA

13 DTU Compute Magnolia

=
—
=

M

15 March
2018

Subtyping |1

How to answer Va. A <: B?
Can we instantiate quantifier suitably:

Lops,aF [a@/a]A <: BH4A ps,0
I'FVa.A<:B4A

We may solve existential so use a marker, »4.

What about A <: V3.B?
Is A a subtype of B for arbitrary :

I,8FA<:BAA,B,6
TFA<:VBBIA

14 DTU Compute Magnolia

=
—
=

M

15 March
2018

Instantiation |1

VB.B = a7
Instantiate quantifier with fresh existential.

Tla], 5 B+ [B/BIB:=a 445,050
T[4 FV8.B:=a-A

& :=V3.B?
Make & a subtype of B for arbitrary S:

T[a],8Fa:=BHA, B0
I[a]Fa:=V3B-HA

15 DTU Compute Magnolia

=
—
=

M

15 March
2018

Let

ex=...|letz=eine

'tey=040 O,z:0kea=A4A x:0 A
I'Fletx=e1ineg=A4A

'Fer=040 O,z:0kea<=A-4A x:0 A
IF'Fletz=e;ines<=A-4A

No generalisation to preserve cut-elimination property.
E.g. in let id = Az.x in id (), id will have type () — ().

16 DTU Compute Magnolia

=
—
=

M

15 March
2018

17 DTU Compute

Part |l

Data Types

Magnolia

]
o |
=

M

15 March
2018

Rows
Only monotypes in rows.
Component-wise well-formedness:

. I'n
Fl—#{...,ci:ﬂ‘,...} Trow

Component-wise subtyping:
iabm<iopdA; ¢ =4d; ..
Dob#{...,ciimi,...} <#{...,di:04,...} AT,

Component-wise instantiation:
Tola,...,a=#{ci: a1,...}|F a1 =7 Ty
Fi—l F OAQ Z<: T — Fz
a1 A <
Dola] Fa:=#{...,¢:7,...} A,

Symmetric right instantiation.
18 DTU Compute Magnolia

=
—
=

M

15 March
2018

Sum and Product Types

I'Frrow I'F7rrow
'+ [r] r'+A{r}
Subtyping on rows (no fanciness).
FEr<:r4HA FEr<:r"4A

TH[r] < [r]4A

19 DTU Compute

FE{r}<{r}4A

Magnolia

=
—
=

M

15 March
2018

Sums

Eliminators. Collection of functions:

Fifll_ei<:Ti—>B—|Fi
Cob[..,ei—ei.. <. ¢ m,...] > BT,

Lo, B,41,...,anFe1<=d1 = 84T
Fi71|_6i<:di—>ﬁ—|ri

Fol—[...,Ciﬁei,...]i[...,ci:(3[1',...]—>,3—|Fn

Injection:
'teern 4A

Pbhcep-e=[.. e mg,...] 1A

No synthesis for injection (can build yourself).
Possibilities: Existential row variables, polymorphic variants.

20 DTU Compute Magnolia

=
—
=

M

15 March
2018

Products
Records:
Fi,1 + €, <= T; = FZ
Fol—{...,ci: ei,...}¢{...,ci: Ti,...}—|Fn
Fi—l + €; :>A7, = PZ
Fol—{...,ci: €i,...}:>{...,ci: AZ?}_|F'IZ
Projection:

eré{...,ck:Ak,...}#A
Fl—e-ckéAk%A

Have to know type of e (can write own projection function).

21 DTU Compute Magnolia

=
—
=

M

15 March
2018

Recursive Types

Inspired by Practical Foundations for Programming Languages by Bob
Harper:

Tu=...|prT

e=...|fold e | unfold e | cata e e

Also: “X marks the spot-mapping”:

ex=...|map{X.7} ee
e.g.
map{X.list X},
map{X.[none: {}|some: X]},
22 DTU Compute Magnolia

=
—
=

M

15 March
2018

23 DTU Compute

Part Il

Abstract Binding Trees

Magnolia

S
e
=

M

15 March
2018

=
—
=

De Bruijn indices

M

oVl AL

M’colleague Bob Atkey once memorably described the capacity to put
up with De Bruijn indices as a Cylon detector, the kind of reverse Turing
Test that the humans in Battlestar Galactica invent, the better to
recognize one another by their common inadequacies. He had a point.

— Conor McBride, “l am not a number, | am a classy hack”

24 DTU Compute Magnolia 15 March
2018

Operators

Using ABT library in OCaml (port of CMU’s SML library).

type op =

25

(* Rows =)

| Vec of int

| Tag of Tag.t

(* Types *)

| Basic of basic
| Exi of ExiVar.t
| Arr

| All

| Sum

| Prod

| Mu

(x Terms =)
| Lit of literal
| Ann

I

App

DTU Compute

]
=

M

| Lam of typed

| Let

(* Explicit polymorphism =*)
| Gen

| Inst

(x Datatypes *)

| Inj of Tag.t * typed

| Proj of Tag.t * typed

| Elim of typed

| Build of typed

| Map of typed

(* Recursive datatypes %)
| Fold of typed

| Unfold

| Cata of typed

Magnolia 15 March
2018

Arities

let arity op

match op with
Vec n -> List.init
~f:(const @) n

26

Tag _ -> [0]

Basic _
Exi

Arr ->
ALl ->
Sum ->
Prod ->
Mu ->

DTU Compute

-> []
-> []
[0; o]
[1]
[o]
[e]
[1]

Lit
Ann
App
Lam
Lam
Let
Gen
Inst

Inj
Inj
Proj
Proj

- ->[1

-> [0; o]

-> [0; 0]
Untyped -> [1]
Typed -> [1; 0]

-> [0; 1]

-> [1]

-> [0; @]

(_, Untyped) ->
(-, Typed) ->
(_, Untyped) ->
(_, Typed) ->

Magnolia

=
—
=

M

[o]
[0; o]
[o]
[0; @]

15 March
2018

=
—
=

Out

M

Build a term (A\z.z):

let x = Syntax.Var.named "x" in

Lam $$ [x **~ (!l x)]
Syntax.out e returns one of:

VarView z
AbsView x.e (where z is fresh and free in e)

AppView op(eq, ..., ep) (corresponding to the arity of op)

$$, out etc. throw errors on arity mismatch.
Also get: subst, aequiv.

Note: We give up on some static help from the compiler.
Also: Not fast.

27 DTU Compute Magnolia 15 March
2018

Example

rla], w5 B [B/BIB=a 440,050

T[a]FVB.B:=a-A

(* InstRAll =)
| AppView (All, [t]1l) ->
(match Syntax.out t with
| AbsView (b, t) ->
let b’ = fresh_exi () 1in
let ctx = ctx +> Marker b’ +> ExiVar b’

and inst = Syntax.subst (Exi b’ $$ []) b t in
let%bind ctx = instr ctx ~typ:inst ~var:a in

add_inst inst;
return (Ctx.until (Marker b’) ctx)
| _ -> raise Syntax.Malformed)

28 DTU Compute

=
—
=

M

15 March
2018

	Complete and Easy
	Complete and Easy
	Existential Type Variables
	Universal Quantifiers

	Data Types
	Data Types
	Rows
	Types
	Terms
	Recursive Types (briefly)

	Abstract Binding Trees
	Abstract Binding Trees
	Operators
	Arities
	Matching
	Example

