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Introduction

M

What foundation should we build a functional language on in 20187
Bidirectional typing seems a promising start: Used by Scala, PureScript.
Known for its easy scalability to advanced features such as rank-n,
higher-kinded and sized types.

Starting point:

Complete and Easy Bidirectional Type Checking for Higher-Rank
Polymorphism by Joshua Dunfield & Neelakantan R. Krishnaswami

We will add sums and products manually, based on a common notion of
rows of types.

Finally we will look briefly at Bob Harper’s Abstract Binding Trees that aid
in the implementation.
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OCaml + Jane Street Core. 3100 lines + tests.

3

OCamllex
Menhir
Elaborator

Type checker:

= Complete and Easy Bidirectional Type Checking for Higher-Rank
Polymorphism by Joshua Dunfield & Neelakantan R. Krishnaswami

= Sums & products

= Strictly-positive recursive types & catamorphisms

= Elaborate to explicit type abstraction/instantiation

prettiest, based on Jean-Philippe Bernardy's A Pretty But Not Greedy Printer
(Functional Pearl). ICFP 2017

Interpreter
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Example Code

alias listF A R = [nil: {} | cons: {head: A, tail: R}]
alias list A = mu R. listF A R

let nil : forall A. list A
= fold (.nil {3})

let cons : forall A. A -> list A -> list A
| head tail = fold (.cons {head, tail})

let my-list : list int
= cons 1 (cons 2 (cons 3 (cons 4 nil)))

let main : int
= cata [ nil -> 0
| cons {tail: n} -> n + 1 ]
my-list
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Lambda Calculus

ex=(|z| . e|ee
oTu=1|c—T1
JudgmentI'Fe: 7
z:7€el
re(:1 | R

Tx:oke:T
I'FAze:o—1

I'Feg:o—7 T'kFeg:o
I'Feley:T
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Bidirectional Typing =
Insight: Context matters. Two judgments!
SynthesisI'Fe= 71 syn : ctx * term -> typ
CheckingI' Fe<=T1 chk : ctx * term % typ -> bool

Well-formedness I' - 7
z:7el
r-()=1 'tax=r

Switching:
I'tr The<=T I'Fe=0 o=1
F'Fe:1m)=r71 F'Fe<=r

We need to know o and 7 (but only once!):

Ie:okFe<=T1
I'FXzeso—T1

I'Fey=0—7 T'hea<o

I'kFejeg=r
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Existential Type Variables |
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Synthesis for A-expressions? Existential variables + ordered output context

T ...|&,B
Synthesis'Fe=714A A might solve more existentials than T'.
CheckingI'Fe<=74A
z:7€el
r-()=14T 'cx=714T
kT ThEe<=7THA Fe=74A
F'F(e:m)=174A l're<=74A

Remember to enforce scope:

Nrz:okbeesrd4A2:0,0

[,6,8,x:aFe<=B-4A,2:4,0
'FXzes=soc—=171A

I'FAze=a—B-4A
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Existential Type Variables Il

Application of an existential type variable? Extra judgment!

ApplicationT'Foee=7 1A

'Feg=040 OF[Bloeey =7HA
I'tereg=717-4A

Context substitution [©]7 substitutes existentials in 7 for solutions from ©.

A
)

TFe=oc-4A F[@g,@l :@1—>OAQM—€<:OQ1—|A
F'o—77ee=7-4A Fla]Faee—=day 1A

The holed context I'[@] is short for T';, &, ;..
[[ag, &1,& = &1 — Gg] plugs the hole with something else.
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Subtyping |
Checking against an existential type variable? Subtyping!
SubtypingT'Ho <: 74 A

The=o0+46 |OF[0)o<: (O] HA]
TheerdA

Common-sense rules (omitted) + instantiation:

Instantiation T - & =7 4 A
TFr=a-A

=
—
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Instantiation |

M

I'kFr
ral'-a=r4T,a=r1" r[a][8] +

jo)

Function arrow is contravariant:

T[d2,41,6 =61 — Qo] F o0 =61 10 OF dg =

ralFa:=c—74A

Ojr 1A

Symmetric rules for right instantiation.
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Universal Quantifiers

Monotypes o, 7 :i=1 | a| & | o — T
Types A,B,C :=7| A — B |Va.A
Existentials only stand in for monotypes.

Checking a polymorphic type:

NakFe<=A4A «a,0
'Fe<=Va.A-4A

No synthesis rule.
Applying a polymorphic type instantiates it:
Iak[a/a]Aee=CHA
I'FVaAee=C-HA
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Subtyping |1

How to answer Va. A <: B?
Can we instantiate quantifier suitably:

Lops,aF [a@/a]A <: BH4A ps,0
I'FVa.A<:B4A

We may solve existential so use a marker, »4.

What about A <: V3.B?
Is A a subtype of B for arbitrary :

I,8FA<:BAA,B,6
TFA<:VBBIA
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Instantiation |1

VB.B = a7
Instantiate quantifier with fresh existential.

Tla], 5 B+ [B/BIB:=a 445,050
T[4 FV8.B:=a-A

& :=V3.B?
Make & a subtype of B for arbitrary S:

T[a],8Fa:=BHA, B0
I[a]Fa:=V3B-HA
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Let

ex=...|letz=eine

'tey=040 O,z:0kea=A4A x:0 A
I'Fletx=e1ineg=A4A

'Fer=040 O,z:0kea<=A-4A x:0 A
IF'Fletz=e;ines<=A-4A

No generalisation to preserve cut-elimination property.
E.g. in let id = Az.x in id (), id will have type () — ().
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Rows
Only monotypes in rows.
Component-wise well-formedness:

. I'n
Fl—#{...,ci:ﬂ‘,...} Trow

Component-wise subtyping:
iabm<iopdA; ¢ =4d; ..
Dob#{...,ciimi,...} <#{...,di:04,...} AT,

Component-wise instantiation:
Tola,...,a=#{ci: a1,...}|F a1 =7 Ty
Fi—l F OAQ Z<: T — Fz
a1 A <
Dola] Fa:=#{...,¢:7,...} A,

Symmetric right instantiation.
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Sum and Product Types

I'Frrow I'F7rrow
'+ [r] r'+A{r}
Subtyping on rows (no fanciness).
FEr<:r4HA FEr<:r"4A

TH[r] < [r]4A
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Sums

Eliminators. Collection of functions:

Fifll_ei<:Ti—>B—|Fi
Cob[..,ei—ei.. <. ¢ m,...] > BT,

Lo, B,41,...,anFe1<=d1 = 84T
Fi71|_6i<:di—>ﬁ—|ri

Fol—[...,Ciﬁei,...]i[...,ci:(3[1',...]—>,3—|Fn

Injection:
'teern 4A

Pbhcep-e=[.. e mg,...] 1A

No synthesis for injection (can build yourself).
Possibilities: Existential row variables, polymorphic variants.
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Products
Records:
Fi,1 + €, <= T; = FZ
Fol—{...,ci: ei,...}¢{...,ci: Ti,...}—|Fn
Fi—l + €; :>A7, = PZ
Fol—{...,ci: €i,...}:>{...,ci: AZ?}_|F'IZ
Projection:

eré{...,ck:Ak,...}#A
Fl—e-ckéAk%A

Have to know type of e (can write own projection function).
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Recursive Types

Inspired by Practical Foundations for Programming Languages by Bob
Harper:

Tu=...|prT

e=...|fold e | unfold e | cata e e

Also: “X marks the spot-mapping”:

ex=...|map{X.7} ee
e.g.
map{X.list X},
map{X.[none: {}|some: X]},
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De Bruijn indices

M

oVl AL

M’colleague Bob Atkey once memorably described the capacity to put
up with De Bruijn indices as a Cylon detector, the kind of reverse Turing
Test that the humans in Battlestar Galactica invent, the better to
recognize one another by their common inadequacies. He had a point.

— Conor McBride, “l am not a number, | am a classy hack”
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Operators

Using ABT library in OCaml (port of CMU’s SML library).

type op =

25

(* Rows =)

| Vec of int

| Tag of Tag.t

(* Types *)

| Basic of basic
| Exi of ExiVar.t
| Arr

| All

| Sum

| Prod

| Mu

(x Terms =)
| Lit of literal
| Ann

I

App

DTU Compute
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| Lam of typed

| Let

(* Explicit polymorphism =*)
| Gen

| Inst

(x Datatypes *)

| Inj of Tag.t * typed

| Proj of Tag.t * typed

| Elim of typed

| Build of typed

| Map of typed

(* Recursive datatypes %)
| Fold of typed

| Unfold

| Cata of typed

Magnolia 15 March
2018



Arities

let arity op

match op with
Vec n -> List.init
~f:(const @) n

26

Tag _ -> [0]

Basic _
Exi

Arr ->
ALl ->
Sum ->
Prod ->
Mu ->

DTU Compute

-> []
-> []
[0; o]
[1]
[o]
[e]
[1]

Lit
Ann
App
Lam
Lam
Let
Gen
Inst

Inj
Inj
Proj
Proj

- ->[1

-> [0; o]

-> [0; 0]
Untyped -> [1]
Typed -> [1; 0]

-> [0; 1]

-> [1]

-> [0; @]

(_, Untyped) ->
(-, Typed) ->
(_, Untyped) ->
(_, Typed) ->

Magnolia
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Build a term (A\z.z):

let x = Syntax.Var.named "x" in

Lam $$ [x **~ (!l x)]
Syntax.out e returns one of:

VarView z
AbsView x.e (where z is fresh and free in e)

AppView op(eq, ..., ep) (corresponding to the arity of op)

$$, out etc. throw errors on arity mismatch.
Also get: subst, aequiv.

Note: We give up on some static help from the compiler.
Also: Not fast.
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Example

rla], w5 B [B/BIB=a 440,050

T[a]FVB.B:=a-A

(* InstRAll =)
| AppView (All, [t]1l) ->
(match Syntax.out t with
| AbsView (b, t) ->
let b’ = fresh_exi () 1in
let ctx = ctx +> Marker b’ +> ExiVar b’

and inst = Syntax.subst (Exi b’ $$ []) b t in
let%bind ctx = instr ctx ~typ:inst ~var:a in

add_inst inst;
return (Ctx.until (Marker b’) ctx)
| _ -> raise Syntax.Malformed)
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