(* Authors: Asta Halkjær From & Jørgen Villadsen, DTU Compute *) chapter ‹The W0 Theory› theory W0 imports System_W begin notation (input) Imp (infixr ‹❙⟶› 25) notation (input) Neg (‹❙¬ _› [40] 40) abbreviation (input) Dis (infixr ‹❙∨› 30) where ‹p ❙∨ q ≡ ❙¬ p ❙⟶ q› abbreviation (input) Con (infixr ‹❙∧› 35) where ‹p ❙∧ q ≡ ❙¬ (p ❙⟶ ❙¬ q)› proposition ‹¬ (I ⊨ ⊥)› ‹(I ⊨ p ❙⟶ q) = ((I ⊨ p) ⟶ (I ⊨ q))› ‹(I ⊨ ❙¬ p) = (¬ (I ⊨ p))› ‹(I ⊨ p ❙∨ q) = ((I ⊨ p) ∨ (I ⊨ q))› ‹(I ⊨ p ❙∧ q) = ((I ⊨ p) ∧ (I ⊨ q))› by simp_all end