
Formalization of
Resolution Calculus

in Isabelle

Anders Schlichtkrull

Kongens Lyngby 2015

Semantic gardener cutting a semantic tree.
Drawing by Inger Schlichtkrull

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Richard Petersens Plads, building 324,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3031
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

The goal of this thesis is to formalize the resolution calculus for first-order logic
and prove it sound and complete in the Isabelle proof assistant. The resolution
calculus is a successful proof system, i.e. a system that can prove properties
about mathematics, computer science, and much more. Two desirable prop-
erties for proof systems are soundness and completeness, because they express
that every proof in the system is correct and that the system can prove all valid
formulas of the given logic. Isabelle is a proof assistant i.e. a computer program
that can help its user in conducting proofs, and which can check their correct-
ness. By proving these properties in Isabelle we will gain confidence in their
validity.

The thesis formalizes the resolution calculus and its soundness in Isabelle. The
soundness proof is thorough and makes explicit the interplay of syntax and
semantics. Likewise, the thesis formalizes two major steps of proving the reso-
lution calculus complete, namely König’s lemma, and Herbrand’s theorem. The
the next two major steps of proving completeness are the lifting lemma and
completeness itself. The thesis discusses flaws in informal proofs of the lifting
lemma from the literature, which make its formalization difficult. With these
flaws in mind, the thesis discusses two possibilities for a formalization of the
lemma. The thesis also describes thoroughly, albeit informally, how to finish
the completeness proof. Finally, the thesis suggests possibilities for future work
on the formalization of proof systems.

ii

Summary (Danish)

Målet for denne afhandling er at formalisere resolutionskalkulen for førsteor-
denslogik samt at bevise at den er sund og fuldstændig i bevisassistenten Isa-
belle. Resolutionskalkulen er et succesfuldt bevissystem, dvs. et system der kan
bevise egenskaber om matematik, informatik og meget mere. To ønskværdige
egenskaber for bevissystemer er sundhed og fuldstændighed, fordi de udtrykker
at ethvert bevis, som systemet laver, er korrekt, og at systemet kan bevise alle
gyldige formler i den givne logik. Isabelle er en bevisassistent, dvs. et computer
program der kan hjælpe sin bruger med at føre beviser, og som kan kontrollere
deres korrekthed. Ved at bevise sundhed og fuldstændighed vil vi øge vores tiltro
til dem.

Afhandlingen formaliserer resolutionskalkulen og dens sundhed i Isabelle. Sund-
hedsbeviset er grundigt og gør samspillet mellem syntaks og semantik helt ty-
delig. Ligeledes formaliserer afhandlingen to store skridt mod et bevis af fuld-
stændighed, nemlig Königs hjælpesætning og Herbrands sætning. De næste to
store skridt er løftehjælpesætningen og selve fuldstændigheden. Afhandlingen
diskuterer mangler i uformelle beviser fra litteraturen, som gør det svært at
formalisere dem. Med disse mangler for øje diskuterer afhandlingen to mulighe-
der for at formalisere hjælpesætningen. Afhandlingen beskriver også grundigt,
omend uformelt, hvordan beviset for resolutionskalkulens fuldstændighed kan
gøres færdigt. Slutteligt foreslår specialet muligheder for fremtidigt arbejde på
formaliseringer af bevissystemer.

iv

Preface

This thesis was prepared at DTU Compute in fulfillment of the requirements for
acquiring an M.Sc. in Engineering. The thesis deals with the formalization of
the resolution calculus in the Isabelle proof assistant. The thesis is for 30 ECTS
and was written in the period from 31 March 2015 to 31 August 2015. Jørgen
Villadsen served as supervisor on the thesis, and Jasmin Christian Blanchette
served as co-supervisor.

The prerequisites for understanding the thesis are knowledge of set theory as
well as mathematical proving and reasoning. It is also advantageous to have
knowledge of functional programming, and first-order logic. Knowledge of for-
malization work and proof assistants is not required.

Lyngby, 31 August 2015

Anders Schlichtkrull

vi

Acknowledgements

I would like to thank my thesis supervisors Jørgen Villadsen and Jasmin Chris-
tian Blanchette for their guidance and feedback during the process. Jørgen was
my personal tutor on the Honors Program, and introduced me to the world of
Isabelle. I was very fortunate to get Jasmin as supervisor for my thesis. His
insight in formalizations of proof systems was exceedingly valuable, and so was
his thorough comments on my work.

Additionally, I would like to give special thanks to Dmitriy Traytel, who also
provided me with much guidance and feedback. For all practical purposes he
served as a third supervisor on the thesis, and his input was remarkably helpful.

I would also like to thank Tobias Nipkow, Peter Lammich, and Johannes Hölzl,
for their teaching in the excellent course “Semantics” at TUM (Technische Uni-
versität München). I was so lucky to attend the course during my semester
abroad at the university. The course made me appreciate formal semantics, and
taught me the craft of formal theorem proving.

Furthermore, I would like to thank Melvin Fitting for his textbook on logic
and automated theorem proving. This book together with Stefan Berghofer’s
formalization of its completeness proof helped spark my interest in completeness.
For this, I would also like to thank Stefan Berghofer. His enumeration of terms
is also used in my thesis, and I took much inspiration from his work.

Writing a thesis during the summer holidays can for many reasons be a chal-
lenge. I would therefore like to thank my fellow student Andreas Viktor Hess
for company, while we were writing our theses.

viii

I would also like to thank my parents Peter and Inger Schlichtkrull for their
support. Likewise, I would like to thank my family, my friends, and my fellow
residents of the Professor Ostenfeld Dormitory. Finally, I would like to thank
my mother Inger Schlichtkrull for the title and colophon page drawings.

ix

x Contents

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1

2 Preliminaries and Theory Background 5
2.1 First-order Logic . 5
2.2 Syntax . 9
2.3 Semantics . 10

2.3.1 Interpretations . 11
2.3.2 Terms . 11
2.3.3 Formulas . 12

2.4 Proof Systems . 14
2.5 Soundness and Completeness . 16
2.6 Prenex Conjunctive Normal Form 16
2.7 Clausal Forms . 17
2.8 Substitutions . 18
2.9 Resolution . 19
2.10 Isabelle . 22
2.11 HOL . 23

3 Analysis of the Problem 25
3.1 Resolution Calculus in the Literature 25

3.1.1 Binary Resolution with Factoring 25

xii CONTENTS

3.1.2 General Resolution . 26
3.1.3 Resolution Suited for Hand Calculation 27
3.1.4 Other Variants of the Resolution Calculus 27

3.2 Soundness and Completeness Proofs 27
3.2.1 Semantic Trees . 28
3.2.2 Consistency Properties . 33
3.2.3 Unified Completeness . 34

3.3 Other Considerations . 36
3.4 Other Presentations . 37
3.5 The Approach of This Project . 37

4 Formalization: Logical Background 39
4.1 Terms . 39
4.2 Literals . 40
4.3 Clauses . 44
4.4 Collecting Variables . 45
4.5 Ground . 46
4.6 Semantics . 47
4.7 Substitutions . 51

4.7.1 Composition . 53
4.7.2 Unifiers . 55

5 Formalization: Resolution Calculus and Soundness 57
5.1 The Resolution Calculus . 57
5.2 Soundness of the Resolution Rule 59

5.2.1 Soundness of Substitution 59
5.2.2 Soundness of Simple Resolution 61
5.2.3 Combining the Rules . 62
5.2.4 Applicability . 63

5.3 Soundness of Resolution Derivations 64

6 Formalization: Completeness 65
6.1 Herbrand Terms . 65
6.2 Enumerations . 67
6.3 Semantic Trees and Partial Interpretations 68
6.4 König’s Lemma . 70
6.5 Semantics of Partial Predicate Denotations 73
6.6 Herbrand’s Theorem . 75

6.6.1 Building a Model . 75
6.6.2 Proving Herbrand’s Theorem 77

6.7 Lifting Lemma . 79
6.8 Completeness . 79

7 Examples 83

CONTENTS xiii

8 Discussion 87
8.1 Proving the Lifting Lemma . 87

8.1.1 A Proof From the Literature 88
8.1.2 Another Resolution Calculus 91
8.1.3 The Unification Algorithm 92
8.1.4 Recommended Approach 92

8.2 Formalizing a Logical System in a Logical System 92
8.3 Automatic Theorem Proving . 93
8.4 Societal Perspective . 94
8.5 Lessons Learned . 94
8.6 Reflections on the Thesis . 95

9 Conclusions 97
9.1 Results . 97
9.2 Contribution . 98
9.3 Future Work . 98

A Formalization Code: TermsAndLiterals.thy 101
A.1 BSD Software License . 101
A.2 Terms and Literals . 102

A.2.1 Enumerating datatypes 103

B Formalization Code: Tree.thy 109
B.1 Paths . 109
B.2 Branches . 110
B.3 Internal Nodes . 112
B.4 Deleting Nodes . 114
B.5 Possibly Infinite Trees . 117
B.6 Infinite Paths . 117
B.7 König’s Lemma . 118

C Formalization Code: Resolution.thy 121
C.1 Terms and literals . 121
C.2 Clauses . 122
C.3 Semantics . 123

C.3.1 Semantics of Ground Terms 123
C.4 Substitutions . 124

C.4.1 The Empty Substitution 125
C.4.2 Substitutions and Ground Terms 125
C.4.3 Composition . 126

C.5 Unifiers . 128
C.5.1 Most General Unifiers . 129

C.6 Resolution . 130
C.7 Soundness . 131

xiv CONTENTS

C.8 Enumerations . 134
C.9 Herbrand Interpretations . 134
C.10 Partial Interpretations . 135

C.10.1 Semantic Trees . 138
C.11 Herbrand’s Theorem . 139
C.12 Lifting Lemma . 144
C.13 Completeness . 144

D Formalization Code: Examples.thy 147

E Chang and Lee’s Lifting Lemma 155

Bibliography 159

Chapter 1

Introduction

Logic is the study of reasoning. Given some knowledge, we want to study what
new knowledge we can derive from it. This has many different applications.
For instance, it can be used to reason about a computer program for alerting
the crew of an airplane if it is diverging from its expected flight path during a
landing. For instance, using logic, one can derive useful properties e.g. that an
alert is issued before a collision.

In our everyday life, different people can have different ideas of what they find
logical and what they do not, but in mathematics and computer science this is
mostly not the case. Most mathematicians, computer scientists, and engineers
can agree on which general logical derivations are correct to make. If we take out
a set of these and only use these in combination to construct other derivations
then we have a proof system. The chosen set is called the rules of the proof
system.

Proof systems can be implemented as computer programs called automated the-
orem provers. The approach of automatic theorem provers is to take sentences
as input, and prove them completely automatically. Another approach is proof
assistants in which the user guides the computer program towards the proof.
We can therefore get a computer to prove properties about an airplane alert-
ing computer program [CM00]. In this way, we increase our confidence in the
program.

2 Introduction

The resolution calculus is one of the most successful proof systems implemented
as an automatic theorem prover. The resolution calculus and an extension called
superposition are for instance used in the computer programs E [Sch13], SPASS
[WDF+09], and Vampire [RV99]. These provers have participated in CASC,
which is the world championship of automated theorem provers. E, SPASS and
Vampire have each won in several categories of the competition over the years
[SS15, Sut14].

Experience has shown that humans, and even mathematicians, make mistakes
when reasoning. A good example of this is the purported proof of the four color
conjecture from by Kempe in 1879. The proof convinced many mathematicians,
but turned out to be fatally flawed, and relied on an assumption that had
counter-examples [Hea80].

In proof systems, larger derivations are build up from the few small rules that
we agree on, and so the proof system ensures that the derivation is correct.
Therefore, a proof system would not have accepted Kempe’s proof. Since the
proof was found to have errors, work has been going on to make new and correct
proofs of the conjecture. A thorough proof was made in 2006 in the proof system
and proof assistant of Coq [Gon08].

However, if we are to trust a proof system, it is important that its rules are
actually correct and sound. It is also important that our proof system is suf-
ficiently strong so that it can prove the properties we want to establish. The
strongest proof systems are called complete.

The classical approach to show that a system is sound and complete is to make
a mathematical proof of this in a natural language such as English. A recent
development is the approach of complementing this with the use of proof as-
sistants. Proof assistants can help their users in conducting proofs, and they
check the correctness of proofs. The process of specifying some mathematical
objects or systems in a proof assistant and proving properties about them is
called formalization.

The purpose of this project is to investigate how one can formalize the proof
system called the resolution calculus for first-order logic as well as prove its
soundness and completeness in the Isabelle proof assistant.

• Chapter 2 introduces the first-order logic, the resolution calculus, the Isa-
belle proof assistant, and its underlying logic called higher-order logic.

• Chapter 3 analyzes a number of different approaches to formalizing proof
systems, as well as proving their soundness and completeness.

3

• Chapters 4 to 6 present my approach to formalizing the resolution calcu-
lus. They describe the definitions and the proofs as well as how they are
formalized. Moreover, they explain the choices I had to make and suggests
alternatives.

– Chapter 4 formalizes background theory.

– Chapter 5 formalizes the resolution calculus and its soundness.

– Chapter 6 formalizes König’s lemma and Herbrand’s Theorem. It
then explains how these results can be used to prove completeness.

• Chapter 7 shows a number of examples of derivations in the resolution
calculus. These examples are also formalized.

• Chapter 8 discusses the strengths and weaknesses of my approach to the
formalization. It also discusses different possibilities for future work on
the formalization.

• Chapter 9 concludes on my findings and suggests further work.

4 Introduction

Chapter 2

Preliminaries and Theory
Background

This chapter explains the theory of first order logic and the Isabelle proof as-
sistant that is necessary to understand this thesis. It explains first-order logic,
the resolution calculus, the Isabelle proof assistant, and the higher order logic
of Isabelle.

2.1 First-order Logic

Logic is the study of reasoning. Given some knowledge, we want to consider
what new knowledge we can derive from it. An example is the following:

We know that

• The pyramids were built by Egyptians or the pyramids were built by aliens.

• The pyramids were not built by aliens.

and it follows that

6 Preliminaries and Theory Background

• The pyramids were built by Egyptians.

This example shows that we can reason logically about sentences in English.
However, instead of considering logic about sentences English we now look at
another language called propositional logic. Sentences in this language are called
formulas. Propositional logic has several advantages over English. The most im-
portant is that has a simpler syntax and semantics, but is still quite expressive.
The language consists of propositions and logical connectives. An example of a
proposition is “The pyramids were built by Egyptians”. In propositional logic
we represent propositions with letters, so instead of “The pyramids were built by
Egyptians” we could just write E. Likewise we could chose that “the pyramids
were built by aliens” is denoted by A. Making such a choice is called an inter-
pretation. Logical connectives then bind the propositions together. For instance
“The pyramids were built by Egyptians or the pyramids were built by aliens” can
be written E∨A where ∨ is the connective that means “or”. Another connective
is ¬, which gives the negation of a proposition, so “The pyramids were not built
by aliens” is written ¬A. Let us write the example above in the language of
propositional logic.

We know that

• E ∨A

• ¬A

and thus it follows that

• E

By looking at this example we can realize that in this case, it does actually
not matter what E and A means. We can choose another interpretation where
their meaning is something completely different, but if E ∨A is true and ¬A is
true then we can conclude that E is also true. Therefore, we say that E follows
logically from E ∨A and ¬A. This is written as E ∨A,¬A |= E.

This is an important point in propositional logic. Propositional symbols such as
E and A have no preconceived meaning. If we want to give them a meaning, we
need to provide an interpretation that says for each propositional symbol what
its meaning is.

Let us look at another example:

2.1 First-order Logic 7

We know that

• If it is raining on the priest then it is dripping on the perish clerk.

• It is raining on the priest.

and can thus it follows that

• It is dripping on the perish clerk.

We now let P denote “It is raining on the priest” and C denote “It is dripping on
the perish clerk”. We can now use the → connective to express “If it is raining
on the priest then it is dripping on the perish clerk” as P → C. Therefore, the
example is as follows:

We know that

• P → C

• P

and thus it follows that

• C

This derivation is again independent of our interpretation, and therefore we
again say that C is a logical consequence of P → C and P , i.e. P → C,P |= C.

A last example of logical consequence is the following:

We know that

• All men are mortal.

• Socrates is a man.

and thus it follows that:

• Socrates is mortal.

8 Preliminaries and Theory Background

We could try express it as A,B |= C, but this is wrong since we can let A denote
2+2 = 4 and B denote 2 · 2 = 4 and C denote 2− 2 = 4. Even though it is true
that 2 + 2 = 4 and 2 · 2 = 4 it is not true that 2 − 2 = 4. We need a language
that can capture the inner meaning of a proposition like “All men are mortal”,
namely what it tells us about some individuals.

Therefore, we introduce the language of first-order logic (FOL). In this language
we can express many thing such as for example a mathematical inequality “x >
y”. We write it as g(x, y). Here, g is called a predicate and it says something
about the variables x and y. We can also represent expressions like “x+ π > x
for any x” as ∀x. g(p(x, π), x). Here ∀ is called the universal quantifier and
expresses “for all x”. We can let p denote the function that gives the sum of its
arguments, and π denote 3.14159.... Thus, we have predicates, functions and
constants in the language of first-order logic. Additionally we can use the logical
connectives from the propositional logic. The variables, functions and constants
can symbolize anything - not just numbers. This is enough to express the above
example:

We know that

• ∀x. m(x)→ d(x)

• m(s)

and thus it follows that:

• d(s)

Here m(x) denotes “x is a man” and d(x) denotes “x is mortal” and s denotes
“Socrates”. We expressed “All men are mortal” as “For any individual, if it is
a man it is mortal” which is ∀x. m(x) → d(x) in first-order logic. “Socrates is
a man” is m(s) and likewise “Socrates is mortal” is d(s). Like in the previous
example, we can realize that it actually does not matter what the meaning of
m, d and s are. As long as ∀x. m(x)→ d(x) and m(s) hold we can still conclude
that d(s). So we know that d(s) follows logically from ∀x. m(x) → d(x) and
m(s), which is written ∀x. m(x)→ d(x),m(s) |= d(s).

Like in propositional logic, it is again an important point that the predicate
symbols, constant symbols and function symbols have no preconceived meaning.
To give them meaning we must provide a denotation of the predicate symbols
that tells us what it means. Likewise, we need a denotation of constant symbols
and a denotation of function symbols. These denotations together are called

2.2 Syntax 9

an interpretation because they interpret the different symbol to give us their
meaning.

2.2 Syntax

The above section gives the intuition about what we can express in first-order
logic, and what the meaning of a formula in the language is. We have for
instance seen that ∨ corresponds to “or” in English and → corresponds to “if”
and “then” in English. However, even simple words like “or” and “if” can mean
slightly different things in different contexts. For instance, if I tell my father
that I want a bicycle or a Gameboy for my birthday, then I actually wish for
both of them. At the other hand, if I tell a bartender that I would like a beer
or a cider then I only want one of them, and not both.

To remedy this we now express in a mathematically precise way the syntax and
the semantics of first-order logic. The syntax defines what we can write in the
language, and the semantics defines the meaning of those things we can write.

Firstly, first-order logic consists of terms. We have already seen some terms
such as x, y, s, π and more interestingly p(x, y). In fact, a term could be much
more complicated such as f(g(x, y), h(i(x), z)).

Definition 2.1 A term is either

• A variable, x (or y, z, etc.), where x is a variable symbols.

• A function, e.g. f (or g, h, etc.) applied to a list of terms t1, ..., tn that
is: f(t1, ..., tn) where f is a function symbol. In this thesis we represent
symbols by letters or strings of letters. A constant is a function applied to
the empty list of terms f() and is often written without the parentheses.

Secondly, first-order logic contains formulas. We have seen several formulas such
as ∀x. m(x)→ d(x) as well as m(s) and d(s). The formulas can contain logical
connectives such as ∧. There are a few more than we have seen to far. They
can be summarized in a table:

10 Preliminaries and Theory Background

Connective Short name Full name Subformulas
∧ “and” conjunction conjuncts
→ “if ... then ...” “only if” implication
∨ “or” disjunction disjuncts
↔ “if and only if” “iff” biimplication
¬ “not” negation
⊥ falsity
> truth

We are now ready to define formulas.

Definition 2.2 A formula is either

• A predicate p applied to a list of terms t1, ..., tn that is: p(t1, ..., tn) where
p is a predicate symbol. This is called an atomic formula.

• The universal quantification of a formula F : ∀x. F where x is a variable.
Any occurrence of x in F is said to be bound by the quantifier, unless it is
bound by another quantifier inside of F .

• The existential quantification of a formula F : ∃x. F where x is a variable.
Existential quantifiers bind occurrences of variables just like universal quan-
tifiers.

• The negation of a formula F : ¬F .

• The conjunction of two formulas F1 and F2: F1 ∧ F2.

• The disjunction of two formulas F1 and F2: F1 ∨ F2.

• The implication from a formula F1 to a formula F2: F1 → F2.

• The biimplication between a formula F1 and a formula F2: F1 ↔ F2.

• Falsum: ⊥.

• Truth: >.

2.3 Semantics

Now that we have defined what we can write in FOL, that is, the syntax of
FOL, we are ready to define precisely what the meaning terms and formulas is,
that is, the semantics of FOL.

2.3 Semantics 11

2.3.1 Interpretations

The meaning of a term is some object or element from the universe u of elements
about which we wish to express something. u is a set of elements and could for
instance be the set of natural numbers, the set of all C programs or the set of
streets in Copenhagen. As said, the function symbols do not have any particular
meaning. Therefore, we need to specify a denotation of the function symbols.
A denotation of function symbols is a map that takes a function symbol and a
list of elements of the universe and then returns an element of the universe.

Definition 2.3 A function denotation is a map of type function symbol ⇒
u list⇒ u.

Likewise, we need a variable denotation.

Definition 2.4 A variable denotation is a map from variable symbols to ele-
ments of the universe: variable symbol⇒ u.

Lastly, we introduce predicate denotations to describe the meaning of predicates.
They are maps from predicate symbols and lists of elements of the universe into
the type bool consisting of true and false. The idea is that this map defines for
which lists of elements the predicate is true, and for which it is false.

Definition 2.5 A predicate denotation is a map of type predicate symbol ⇒
u list⇒ u.

As said, a predicate denotation together with a variable denotation is called an
interpretation.

2.3.2 Terms

Now we are ready to give meaning to terms by specifying a semantics. We do
this by introducing the semantic brackets, J and K, which recursively calculate
the meaning of the enclosed term. In other words, they evaluate the term.

Definition 2.6 Given a variable denotation E and a function denotation F ,
we can evaluate terms as follows:

• JxKEF = E(x) if x is a variable symbol.

12 Preliminaries and Theory Background

• Jf(t1, ..., tn)KEF = F (f, [Jt1KEF , ..., JtnKEF])

Consider for instance the function denotation Fnat which maps the symbol zero
to the natural number 0, one to the natural number 1, the symbol s to the
function that adds 1 to a number, add to addition and mul to multiplication.

Consider also the variable denotation Enat that maps x to 26 and y to five.

We evaluate add(mul(y, y), one())):

Jadd(mul(y, y), one()))KEnat

Fnat

= Fnat add J(mul(y, y))KEnat

Fnat
Jone()KEnat

Fnat

= Jmul(y, y)KEnat

Fnat
+ Jone()KEnat

Fnat

= Fnat mul (JyKEnat

Fnat
, JyKEnat

Fnat
) + Fnat one ()

= (JyKEnat

Fnat
· JyKEnat

Fnat
) + 1

= (Enat y · Enat y) + 1

= (5 · 5) + 1

= 26

2.3.3 Formulas

Likewise, we can define the semantics for formulas. We extends the semantic
brackets to cover also formulas. A formula expresses some claim that is either
true or false. Thus, when we evaluate a formula we get a value of type bool.

Firstly, we need to have a definition of what the logical connectives mean. This
is always fixed and can be described by the following tables:

A B J∧K(A,B)
true true true
true false false
false true false
false false false

A B J→K(A,B)
true true true
true false false
false true true
false false true

2.3 Semantics 13

A B J∨K(A,B)
true true true
true false true
false true true
false false false

A B J↔K(A,B)
true true true
true false false
false true false
false false true

A J¬K(A)
true false
false true

J⊥K
false

J>K
true

So if we want to know the value of J∧K(A,B) when A is true and B is false, we
can read it in the second row of the first table. It is false.

Sometimes we want to change a variable denotation E. We do this by writing
E[x ← e], which gives the same value as E for any variable symbol except for
x, which gives e.

Definition 2.7 Given a variable denotation E, a function denotation F , and a
predicate denotation G, we can evaluate the truth value of a formula as follows:

• Jp(t1, ..., tn)KE(F,G) = P (p, [Jt1KEF , ..., JtnKEF])

• J¬P KE(F,G) = J¬K(JP KE(F,G))

• J⊥KE(F,G) = J⊥K

• J>KE(F,G) = J>K

• JP ∧ QKE(F,G) = J∧K(JP KE(F,G), JQKE(F,G)) where ∧ is any one of the binary
logical connectives defined in the tables.

• J∀x. P KE(F,G) =

{
true if for all e ∈ u : JP KE[x←u]

(F,G) evaluates to true
false otherwise

• J∃x. P KE(F,G) =

{
true if for some e ∈ u : JP KE[x←u]

(F,G) evaluates to true
false otherwise

We can now define what it means for a function and predicate denotation to
satisfy or falsify a formula:

Definition 2.8 An interpretation (F,G) is said to satisfy a formula A if for any
variable denotation E we have that JP KE(F,G) evaluates to true. The satisfying
interpretation is called a model. Conversely, if it evaluates to false then it is
said to falsify the formula.

14 Preliminaries and Theory Background

We can also make it more clear what we mean when we talk of logical conse-
quence and validity:

Definition 2.9 If any model of B1, ..., Bn is also a model of A then we say that
A is a logical consequence of B1, ..., Bn.

It is written B1, ..., Bn |= A

Definition 2.10 A formula A is said to be valid if any interpretation is a model
for A.

It is written |= A

Likewise, we define equality and equisatisfiability which are concepts that come
in handy when we want to rewrite formulas.

Definition 2.11 A formula A and a formula B are said to be equivalent if any
model for A is also a model for B, and vice-versa.

It is written A ≡ B

Definition 2.12 A formula A and a formula B are said to be equisatisfiable if
they have the property that:

A is satisfiable if and only if B is satisfiable.

2.4 Proof Systems

A proof system is a formal and mechanical system for deriving formulas. Proof
systems can consists of rules. A rule consists of a list of formulas called premises
and a formula called the conclusion. The idea of the rule is that if we derive or
assume the premises of a rule, then we can also derive its conclusion. A good
example of a proof system is the natural deduction system. Here are some of
its rules:

AndE1 AndE2 AndI OrI1 OrI2

A ∧B
A

A ∧B
B

A B
A ∧B

A
A ∨B

B
A ∨B

2.4 Proof Systems 15

To prove a formula we can combine these rules to build a proof tree. We see the
premises above the line and the conclusion below the line. We can for instance
prove that (P (c) ∨Q(d)) ∧ (Q(d) ∨ P (c)) follows from P (c) ∧Q(d).

We see that P (c) ∧ Q(d) matches with the premise of AndE1 if we replace A
with P (c) and B with Q(c). Therefore, this is the beginning of our proof:

P (c) ∧Q(d)

P (c)

We can now continue from P (c) using OrI1. Here we replace A with Q(d) and
B with P (c).

P (c) ∧Q(d)

P (c)

P (c) ∨Q(d)

We have now a proof from P (c)∧Q(d) of P (c)∨Q(d). Likewise we can construct
a proof from P (c) ∧Q(d) of Q(d) ∨ P (c):

P (c) ∧Q(d)

P (c)

Q(d) ∨ P (c)

Using AndI we can finish our proof:

P (c) ∧Q(d)

P (c)

P (c) ∨Q(d)

P (c) ∧Q(d)

P (c)

Q(d) ∨ P (c)
(P (c) ∨Q(d)) ∧ (Q(d) ∨ P (c))

That we can prove (P (c)∨Q(d))∧ (Q(d)∨P (c)) from P (c)∧Q(d) in our proof
system is written P (c) ∨ Q(d) ` (P (c) ∨ Q(d)) ∧ (Q(d) ∨ P (c)). In general, if
we can prove B from assumptions A1, ..., An in our proof system, then we write
A1, ..., An ` B. If we can prove B without any assumptions, we write ` B.

Over the years, many different proof systems have been developed each with
their own advantages. Some are easy to use, others are easy to understand,
others are easy to reason about, and so on. The resolution calculus is a proof
system that has been successfully implemented as automated theorem provers.

16 Preliminaries and Theory Background

2.5 Soundness and Completeness

When we have a proof system, we want to ensure that the proofs it constructs
are actually correct. More formally we want to ensure that if we can prove B
from A1, ..., An then B also follows logically from A1, ..., An. In other words, we
want the proof system to be sound:

Definition 2.13 A proof system is sound when for any formulas A1, ..., An and
B we have that

if A1, ..., An ` B then also A1, ..., An |= B

Furthermore, we want the proof system to be strong, such that it can perform
proofs of many formulas. The best we can hope for is that we can prove any
valid formula. A system that can do that is called complete.

Definition 2.14 A proof system is complete when for any formulas A1, ..., An

and B we have that

if A1, ..., An |= B then also A1, ..., An ` B

2.6 Prenex Conjunctive Normal Form

First-order logic consists of several logical connectives and quantifiers that can
be nested however we like. Therefore, it easy for us to express ourselves in
the language. On the other hand, when we want to reason about the logic all
the connectives and the nested structure means that there are many cases to
consider. Therefore, we restrict the first-order language to formulas in Prenex
Conjunctive Normal Form (PCNF). Formulas in this form use only a few connec-
tives and do not have deep nestings. Any first-order formula can be rewritten to
an equivalent PCNF formula. Formulas in PCNF consist of literals and clauses.

Definition 2.15 A literal is an atomic formula or the negation of an atomic
formula. An atomic formula is called a positive literal, and the negation a
negative literal.

Thus p(x, f(c)) is a positive literal and ¬q(x) is a negative literal.

Definition 2.16 The complement literal of the atomic formula p(t1, ..., tn) is
¬p(t1, ..., tn) and vice versa. Together the two formulas are called a complemen-
tary pair. If l is a literal, its complement can be written lc.

2.7 Clausal Forms 17

Therefore, p(x, f(c)) is the complement of ¬p(x, f(c)), and vice versa

Definition 2.17 A formula is said to be in Conjunctive Normal Form if it is
a conjunction of disjunctions of literals.

Thus, the following is a CNF:

(p(f(x, y), c)) ∨ q(g(c))) ∧ ¬q(f(y))

Definition 2.18 A formula is said to be in Prenex Conjunctive Normal Form,
if it has the form

Q1 x1. . . . Qn xn. M

where Q1 . . . Qn each are either ∀ or ∃ and M is in Conjunctive Normal Form.

The resolution calculus additionally requires that Q1 ... Qn all are ∀. Any
formula in first-order logic can be rewritten to an equisatisfiable formula in
PCNF where Q1 ... Qn all are ∀.

For instance, the formula

((∀x. p(x)→ q(x)) ∧ (∀y. p(y)))→ ∀z. q(z)

has the equivalent PNCF formula

∃x. ∃y. ∀z. (p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

and the equisatisfiable PCNF formula

∀z. (p(a) ∨ ¬p(b) ∨ q(z)) ∧ (¬q(a) ∨ ¬p(b) ∨ q(z))

with only universal quantifiers.

2.7 Clausal Forms

To make it simpler for us to manipulate the formulas, we prefer to represent
them as sets. To do this we take a formula ∀x1. ... ∀xn. M where M is in CNF
and let each of the disjunctions in F be represented by the set of literals of
which it consists.

Definition 2.19 A clause is a set of literals. It represents the disjunction of
these literals.

18 Preliminaries and Theory Background

Since a clause represents a disjunction, it is satisfied by an interpretation if for
any variable denotation some literal in the clause is satisfied. A special case is
the empty clause {}. By this definition it is always false, i.e., it is unsatisfiable,
and so represents a contradiction.

We can then collect all the clauses of M in a set of clauses.

Definition 2.20 A clausal form is a disjunction of clauses. It represents the
conjunction of those clauses.

For instance (p(f(x, y), c))∨ q(g(c)))∧¬q(f(Y)) becomes {p(f(x, y), c), q(g(c))}
and {q(g(c))}, and so the corresponding set of clauses turns out to be the set
{{p(f(x, y), c), q(g(c))}, {q(g(c))}}. It is implicit that all the clauses are univer-
sally quantified.

2.8 Substitutions

Another important notion in resolution is substitution.

Definition 2.21 A substitution σ is a map from variables to terms.

To apply a substitution σ to a term t, we simultaneously replace each occurrence
of any variable x with σ(x). The result is written t{σ}. This notation is a
bit different from the literature, which does not use the curly brackets and just
writes tσ. We choose this alternative notation because it looks somewhat similar
and can be formalized in Isabelle. Another alternative would be to use · or some
other infix operator.

For instance if σ = {x 7→ f(c), y 7→ g(x, y)} and t = f(x, y) then t{σ} =
f(f(c), f(x, y)).

Definition 2.22 t is an instance of t′ if there exists some substitution σ such
that t = t′σ.

For example f(f(c), f(x, y)) is an instance of f(x, y).

Applying substitutions to literals, clauses and sets of clauses is completely anal-
ogously defined. We can also define substitution for formulas, but then we only
replace variables that are not bound.

2.9 Resolution 19

Substitutions can also be composed.

Definition 2.23 The composition σ·θ of one substitution σ and another θ is the
substitution that first applies σ to a variable and then applies θ to the resulting
term: (θ · σ)(x) = (σ(x)){θ}

Unifiers are a central concept of resolution:

Definition 2.24 A unifier for a set of terms is a substitution that makes all
the terms equal to each other.

The definition for literals, clauses and sets of clauses is completely analogous.

Most general unifiers is another central concept:

Definition 2.25 A most general unifier (mgu) σ for a set ts of terms is a
unifier from which we can construct any other unifier for ts, by composition
with some other substitution.

In other words, let us say σ is an mgu of the set ts. Then for any unifier θ of
ts there exists a substitution s such that σ · s = θ.

The definition for literals, clauses and sets of clauses is completely analogous.

2.9 Resolution

We are now ready to explain the resolution calculus. There are many variants
of this proof system, but they are all based on the following simple rule:

C1 ∨ l C2 ∨ ¬l
C1 ∨ C2

The idea of the rule is that we know that l is either true or false. In the first
case we can from C2 ∨¬l conclude C2 and thus also C1 ∨C2. In the second case
we can from C1 ∨ l conclude that C1 and thus also C1 ∨ C2. So in either case
we can conclude C1 ∨ C2.

We now switch from writing the rule with logical formulas to writing it in the
set notation of clauses that we saw in the previous section. While the notation is

20 Preliminaries and Theory Background

not as easily readable as that of formulas, it gives us the freedom to manipulate
the clauses with the mathematical set operators. The simple resolution rule can
now be written

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})

l1 ∈ C1

l2 ∈ C2

l1 = lc2

In first-order logic, we also need rules that take into consideration the variables
and terms. A simple rule that does this is the binary resolution rule.

C1 C2

(C1{σ} − {l1{σ}}) ∪ (C2{σ} − {l2{σ}})

C1 and C2 share no variables,
l1 ∈ C1, l2 ∈ C2,
σ is an mgu for {l1, lc2}

The rule mirrors the simple resolution rule. The main difference is that l1 and
lc2 are unified with the mgu σ which is also applied to the clauses C1 and C2

when the unified literal is removed.

We need to take three steps to get from this rule to a complete proof system for
first-order logic. The first step is to remedy the problem that the rule requires
that the two clauses have no variables in common. We fix this by allowing the
calculus to rename the variables of clauses such that they have no variables
in common. This is called standardizing apart. The second step is to remedy
the problem that we can only do unification of a complementary pair with one
literal in each clause. It turns out that it is sometimes necessary to unify whole
sets of literals. In chapter 3, we analyze two ways of doing this. The third step
is to use the resolution calculus as a refutation proof system. This means that
we prove the validity of a formula by proving that its negation is unsatisfiable.
Since the negation is false under all interpretations, the formula must be true
under all interpretations, i.e. valid. The procedure to prove a formula F valid
is:

1. Negate F to get ¬F .

2. Rewrite ¬F to the equisatisfiable set of clauses cs.

3. Use the rules of a sound resolution calculus to prove the empty clause {}
from cs.

2.9 Resolution 21

{} is unsatisfiable. Since the resolution calculus is sound, we get from 3. that
also cs must be unsatisfiable. Since cs and ¬F are both equisatisfiable, also ¬F
must be unsatisfiable. Then F must be valid.

Let us try to prove (¬P (c) ∧ ¬Q(d)) ∨Q(d) ∨ (P (c) ∧ ¬Q(d))

As described above we negate the formula: ¬((¬P (c)∧¬Q(d))∨Q(d)∨ (P (c)∧
¬Q(d))), and then we turn it into an equisatisfiable set of clauses, so that we can
use the resolution procedure. The set is: {{P (c), Q(d)}, {¬Q(d)}, {¬P (c), Q(d)}}.
We can now construct a proof tree:

{P (c), Q(d)} {¬Q(d)}
{P (c)}

{¬P (c), Q(d)} {¬Q(d)}
{¬P (c)}

{}

In this example, the mgu we used was the empty substitution.

Another way of writing a resolution proof is to write it as a derivation. A
derivation is a sequence cs1, ..., csn of clausal forms where the step from one
clausal csi form to the next csi+1 in the sequence is performed by adding the
resolvent of two clauses of csi. We can write such a derivation as a number of
lines. The first cs1 lines consist of the clauses of the initial clausal form. The
next lines are then the clauses that were added by performing the steps. The
proof tree we saw before is presented as a derivation here:

1. {¬P (c), Q(d)}

2. {¬Q(d)}

3. {P (c), Q(d)}

4. {¬P (c)}

5. {P (c)}

6. {}

Since we are using the resolution calculus as a refutation proof system, we are
now actually proving sets of clauses unsatisfiable. Therefore, we can define a
suitable notation of completeness.

Definition 2.26 (Refutational Completeness)
If the set of clauses cs is unsatisfiable then we can prove the empty clause from
cs, i.e. cs ` {}

22 Preliminaries and Theory Background

2.10 Isabelle

Isabelle is a proof assistant. A proof assistant is a computer program that
can help its user in conducting proofs of theorems in mathematics, logic and
computer science. For instance, Isabelle has been used to prove Pythagoras’
theorem [Cha15], to prove Gödel’s incompleteness theorems [Pau13], to verify
an operating system kernel [KEH+09] and to prove Dijkstra’s algorithm correct
[NL12].

To write a proof in Isabelle the user writes it in a language called Isar. Isar is
similar to English and is thus readable by human beings, but it is also readable
by Isabelle. Therefore, Isabelle can help its user in several ways. Most impor-
tantly, it checks that the proof is correct, and can even conduct parts of the
proof automatically. Isabelle checks the correctness by using a logic. The most
popular logic for Isabelle is called higher-order logic (HOL).

Figure 2.1: Isabelle/jEdit in action.

2.11 HOL 23

2.11 HOL

Higher-order logic is the logic used by several proof assistants, including Isabelle.
HOL can be seen as a combination of functional programming and logic, because
it contains concepts from both worlds.

From functional programming, HOL gets its recursive functions, lambda func-
tions, higher-order functions, pattern matching, and more. HOL also has a type
system similar to those known from typed functional languages such as F#,
Haskell, and Standard ML. From now on, we use the word function instead of
map, following the terminology of functional programming instead of that of
mathematics. In HOL, a predicate is simply a function with return type bool.

From logic, HOL gets its logical connectives, terms, variables, quantifiers etc.
They are similar to those we have seen for first-order logic. A key difference
between HOL and FOL is that in HOL we can also quantify over functions,
predicates and sets of individuals instead of just over individuals as in FOL.

24 Preliminaries and Theory Background

Chapter 3

Analysis of the Problem

There are several variants of the resolution calculus, and several different ap-
proaches to proving its soundness and completeness.

This chapter analyzes several different variants of the resolution calculus from
the literature. It looks at some different completeness proofs, and analyzes how
well suited they are for a formalization. It concludes on which ideas I will base
my formalization.

3.1 Resolution Calculus in the Literature

The variation between different resolution calculi is not only in the notation
used to write the system, but also in which rules are in the system. Fitting
presents three different resolution calculi that we will consider here [Fit96].

3.1.1 Binary Resolution with Factoring

We have already seen the binary resolution rule. This rule is usually used to-
gether with another rule, called the factoring rule, to form binary resolution with

26 Analysis of the Problem

factoring. We repeat the definition of the binary resolution rule, and introduce
the factoring rule.

Definition 3.1 (Binary Resolution Rule)

C1 C2

(C1{σ} − {l1{σ}}) ∪ (C2{σ} − {l2{σ}})

C1 and C2 share no variables,
l1 ∈ C1, l2 ∈ C2,
σ is an mgu for {l1, lc2}

Definition 3.2 (Factoring Rule)

C
C{σ}

σ is an mgu for L ⊆ C

In some presentations the two rules can be used together in any order to con-
struct proofs. Another way to define resolution is to let the resolvent be the
binary resolvent of the factors of two clauses.

An advantage of this system is that there are two rules, each of which serve
their own purpose. The factoring rule lets us unify any subset of a clause, and
the resolution rule lets us resolve clauses, such that we can eventually derive
the empty clause. Splitting these functions in to two rules arguably makes the
presentation simpler.

3.1.2 General Resolution

General resolution is another resolution calculus1.

Definition 3.3 (General Resolution Rule)

C1 C2

(C1{σ} − L1{σ}) ∪ (C2{σ} − L2{σ})

C1 and C2 have no variables in common,
L1 ⊆ C1, L2 ⊆ C2,
σ mgu for L1 ∪ Lc

2

This rule looks very similar to the binary resolution rule, but notice that L1

and L2 are no longer literals, but subsets of literals in C1 and C2 respectively.
Therefore, we can see the general resolution rule as a combination of factoring
and binary resolution. The difference is that the factoring rule allowed us to do
unification of any subset of literals, while the binary resolution rule only allows
unification of the literals that we remove.

1Fitting actually calls it the General Literal Resolution Rule.

3.2 Soundness and Completeness Proofs 27

This resolution calculus is appealing because it consists only of one rule. This
means that one is never in doubt about which rule to use when doing resolution
proof, one only has to worry about choosing the right instantiation.

3.1.3 Resolution Suited for Hand Calculation

Fitting introduces a resolution that is suited for hand calculation.2 The reso-
lution is quite different from the others. Instead of having a preprocessing step
where formulas are rewritten to clauses, the system works directly on formulas,
but contains rules that, when applied break the formulas down to clauses. Fur-
thermore, this system does not use most general unifiers. Instead, it requires
us to guess with which terms the variables must be substituted. Therefore, the
system is not well suited as the basis of an automatic theorem prover. For this
reason, Fitting shows how it can be modified to be the general resolution or
binary resolution.

3.1.4 Other Variants of the Resolution Calculus

We have now seen three variants of the resolution calculus. However, one can
even find variants of these variants. For instance, some resolution systems apply
the mgu after the literals have been removed.

There are also variants that change or restrict the rules considerably such as
ordered resolution. The idea is to make the search space smaller by restricting
when the resolution rule can be applied [GLJ13]. Furthermore, superposition is
an extension of the resolution calculus, that also restricts the search space, and
does equational reasoning [KNV+13].

3.2 Soundness and Completeness Proofs

We can prove soundness by showing that if the premises of any rule in the system
are satisfied by an interpretation then so is the conclusion. Then the rules all
preserve satisfiability and therefore the whole system must do the same. This
can be proven by induction. As such, the overall strategy of a soundness proof

2In the book this is just called first-order resolution, but that name describes all the
presented resolution calculi.

28 Analysis of the Problem

is simple and clear, and therefore the challenge lies in the details of the proof
and its formalization.

It is more complicated to prove completeness because here the overall strategy
is less clear. For any unsatisfiable clausal form we need to combine rule appli-
cations in some way to get a derivation of the empty clause. There are several
approaches to this. This section explains three different approaches. It does not
go in to all details, but explains the overall ideas thoroughly.

3.2.1 Semantic Trees

The approach used in among others Ben-Ari [BA12] and Chang and Lee [CL73]
is semantic trees. We introduce an enumeration A0, A1, A2, . . . of atomic ground
formulas i.e. an infinite sequence that contains all atomic formulas that do not
contain variables. The enumeration could for instance be a(), b(), a(a()),
For a given clausal form, the enumeration is restricted to the atoms that can be
built from the function and predicate symbols that occur in the clausal form.

a()

b()

a(a())

... ...

¬a(a())

... ...

¬b()

a(a())

... ...

¬a(a())

... ...

¬a()

b()

a(a())

... ...

¬a(a())

... ...

¬b()

a(a())

... ...

¬a(a())

... ...

Figure 3.1: A semantic tree.

3.2.1.1 Definition

A semantic tree is a possibly infinite binary tree in which all nodes are labeled
with a literal. Each level corresponds to an atomic formula. More precisely, on

3.2 Soundness and Completeness Proofs 29

the i’th level, all literals are either Ai or its negation. When we go left in a
branching of the tree we come to an atom, and when we go right, we come to
the negation of an atom. More precisely all left children are positive literals and
all right children are negative literals. To sum up, the left children on level i of
the tree are labeled with atomic formula Ai and the right children on level i are
labeled with its negation ¬Ai. Figure 3.1 shows a semantic tree.

3.2.1.2 Partial interpretations

We can see paths in semantic trees as interpretations. In these interpretations
the universe consists of the ground terms. This means that the semantic uni-
verse consists of syntactical elements, namely the ground terms. We define a
denotation of functions such that ground terms evaluate to themselves. This is
called the Herbrand function denotation. To define our predicate denotation,
we collect all the labels of the nodes on the path into a set L. The predicate
denotation G then interprets a predicate symbol and a list of elements by seeing
if the corresponding atom or its negation is on the branch. More precisely:

G p [t1, ..., tn] =

{
true if p(t1, ..., tn) ∈ L
false if ¬p(t1, ..., tn) ∈ L

This is called a partial interpretation because it is only defined for the atoms on
the path. For instance, the path in fig. 3.2 corresponds to the set {a(),¬b()},
and thus to the partial interpretation {a() 7→ True, b() 7→ False}.

a()

b()

a(a())

... ...

¬a(a())

... ...

¬b()

a(a())

... ...

¬a(a())

... ...

¬a()

b()

a(a())

... ...

¬a(a())

... ...

¬b()

a(a())

... ...

¬a(a())

... ...

Figure 3.2: A path in a semantic tree corresponds to a partial interpretation.

30 Analysis of the Problem

3.2.1.3 Herbrand’s Lemma and Closed Semantic Trees

Herbrand’s lemma is a famous result. It says that if a clausal form Cs is un-
satisfiable, then there exists a finite semantic tree with the following property:
The branches and only the branches each falsify some instance of a clause in
Cs. Such a tree is called a finite closed semantic tree for Cs.

Consider the clausal form Cs = {{¬b(),¬a()}, {a(x)}, {a()}, {¬a(), b(),¬a(a())},
{¬a(), b()}, {¬a()}}. It has the closed semantic tree presented in fig. 3.3.

a()

b() ¬b()

a(a()) ¬a(a())

¬a()

Figure 3.3: A closed semantic tree.

3.2.1.4 The Lifting Lemma

The lifting lemma can take a resolution step from ground clauses and lift it to
a resolution step of first-order clauses with variables. That is, if C ′1 and C ′2 are
instances of C1 and C2, and if C ′1 and C ′2 have resolvent C ′, then C1 and C2

have a resolvent C of which C ′ is an instance. This is illustrated in fig. 3.4.

For example, C1 = {a(x)} has instance C ′1 = {a(a())}, and C2 = {¬a(), b(),¬a(a())}
has instance C ′2 = {¬a(), b(),¬a(a())}, and these instances have the resolvent
C ′ = {¬a(), b()}. We find that C ′ is an instance of C = {¬a(), b()}, which is
a resolvent of C1 and C2. This example was very simple, and there are much
more complicated ones, with multiple occurrences of different variables.

3.2 Soundness and Completeness Proofs 31

resolution

instance

ground

C2C1

C ′1 C ′2

C ′

C

Figure 3.4: The lifting lemma.

3.2.1.5 Completeness

We now have the tools needed to prove completeness. Therefore, we consider an
unsatisfiable clausal form Cs. We use Herbrand’s lemma to construct a finite
closed semantic tree. Next, we find a node N in the tree whose children are two
branch nodes and call their labels A and ¬A respectively. We let their paths
to the root be B, B1 = B ∪ {A}, and B2 = B ∪ {¬A}, respectively. Since B is
not a branch of the closed semantic tree, it does not falsify a clause. But since
B ∪ {A} is a branch, it must falsify some instance C ′1 of a clause C1 in Cs. It
must have been making the union of {A} and B that made all the literals in
C ′1 false, and thus C ′1 must contain ¬A, and all its other literals were already
falsified by B. The same is true for B2 and a corresponding C ′2 and C2. If we
look at the resolvent C ′ = (C ′1 − {¬A}) ∪ (C ′2 − {A}) of C ′1 and C ′2, then we
see that it contains literals that are all falsified by B, because we removed the
two that were not. Using the lifting lemma, can resolve C1 and C2 to get a
resolvent C which has instance C ′. If we remove N1 and N2 from the tree, but
add C to Cs, then the modified tree is a closed semantic tree for the modified
Cs, because B falsifies C ′ which is an instance of C, and all other branches are
already closed.

We can keep doing this until the tree is cut down completely. It turns out that
in this last step, the empty clause is derived. Thus, we have shown that for the
unsatisfiable set of clauses indeed we can derive the empty clause.

We perform this process for our example in fig. 3.5.

32 Analysis of the Problem

Cs = {{¬b(),¬a()}, {a(x)}, {a()}, {¬a(), b(),¬a(a())}}

a()

b() ¬b()

a(a()) ¬a(a())

¬a()

N1 = a(a()) N2 = ¬a(a())
B1 = {a(),¬b(), a(a())} B2 = {a(),¬b(),¬a(a())}
C′1 = {¬a(), b(),¬a(a())} C′2 = {a(a())}
C1 = {¬a(), b(),¬a(a())} C2 = {a(x)}

C = {¬a(), b()}
Cs = {{¬b(),¬a()}, {a(x)}, {a()}, {¬a(), b(),¬a(a())}, {¬a(), b()}}

a()

b() ¬b()

¬a()

N1 = b() N2 = ¬b()
B1 = {a(), b()} B2 = {a(),¬b()}
C′2 = {¬b(),¬a()} C′2 = {¬a(), b()}
C1 = {¬b(),¬a()} C2 = {¬a(), b()}

C = {¬a()}
Cs = {{¬b(),¬a()}, {a(x)}, {a()}, {¬a(), b(),¬a(a())}, {¬a(), b()}, {¬a()}}

a() ¬a()

N1 = a() N2 = ¬a()
B1 = {a()} B2 = {¬a()}
C′1 = {¬a()} C′2 = {a()}
C1 = {¬a()} C2 = {a()}

C = {}
Cs = {{¬b(),¬a()}, {a(x)}, {a()}, {¬a(), b(),¬a(a())}, {¬a(), b()}, {¬a()}{}}

Figure 3.5: Cutting down a semantic tree to derive the empty clause following
our proof.

3.2 Soundness and Completeness Proofs 33

3.2.1.6 Thoughts on the proof

This proof is in many ways very intuitive, because it uses trees, which are known
from many different areas of informatics. Furthermore, the trees give us a very
simple and graphical way to think about the interpretations, and we can apply
results from graph theory. Completeness is a statement about interpretations,
and they are represented directly in the semantic tree. Lastly, the presentation
of semantic trees by Chang and Lee [CL73] is quite thorough, and goes in to
many details, which can help make the formalization process go smoothly.

3.2.2 Consistency Properties

As said, Fitting [Fit96] introduces a resolution suited for hand calculation. To
prove its completeness, he uses the following reformulation of completeness:

Property 1 If ⊥ cannot be proven from a set of formulas S, then S has a
model.

Therefore, he considers any set of formulas S from which ⊥ cannot be derived.
He then proves that S is a member of what he calls a consistency property. The
famous “Model Existence Theorem” tells us that any member of a consistency
property is satisfiable.

That is proven by showing that S can be expanded to a Hintikka set H. We
show its definition:

Definition 3.4 We first introduce the α and β formulas and their corresponding
subformulas α1, α2, β1, and β2:

α α1 α2

X ∧ Y X Y
¬(X ∨ Y) ¬X ¬Y
¬(X → Y) X ¬Y
X ↔ Y X ← Y Y ← Y

β β1 β2
¬(X ∧ Y) X Y
X ∨ Y X Y

(X → Y) ¬X Y
¬(X ↔ Y) ¬(X ← Y) ¬(Y ← Y)

γ γ(t)
∀x.F F {x← t}
¬∃x.F ¬F {x← t}

δ δ(t)
¬∀x.F ¬F {x← t}
∃x.F F {x← t}

Definition 3.5 A Hintikka set is a set with the following properties:

34 Analysis of the Problem

1. H does not contain both an atomic formula A and its negation ¬A.

2a. H does not contain ⊥.

2b. H does not contain ¬>.

3. If H contains a double negation ¬¬Z of a formula then H also contains
Z.

4. If H contains an alpha formula α then H also contains α1 and α2.

5. If H contains a beta formula β then H also contain β1 or β2.

6. If H contains a gamma formula γ then H contains γ(t) for every closed
term t of the language.

7. If H contains a delta formula δ then H contains γ(t) for some closed term
of the language.

Then it is shown that any Hintikka set has a model. The model uses the Her-
brand function denotation and the predicate denotation G is then defined:

G P [t1, ..., tn] =

{
true if P (t1, ..., tn) ∈ H
false otherwise

It is then easy to show that this interpretation satisfies H, and thus also the
subset S. The proof is by induction. Fitting also shows how to lift the proof to
general resolution and binary resolution with factoring using a lifting lemma.

The main appeal of this approach is that a lot of the formalization work has
been done beforehand. Berghofer’s formalization in Isabelle of a natural de-
duction proof system [Ber07] uses the framework of consistency properties to
prove soundness and completeness. Therefore, one could formalize the resolu-
tion system from Fittings book and prove it complete by applying the lemmas
formalized by Berghofer. The challenging part would be to extend the proof to
work for also general resolution or binary resolution with factoring.

3.2.3 Unified Completeness

A third approach is presented in Blanchette, Popescu, and Traytel’s complete-
ness proof for a Genzen proof system [BPT14b].

3.2 Soundness and Completeness Proofs 35

The idea here is that we first prove that our proof system is persistent, meaning
that if at one step of our derivation, we can apply a rule, then we are able to do
the same in all the following steps. If we can prove this, then it has been shown
that our proof system also has the following abstract completeness property :

Property 2 (Abstract Completeness)
For any set of clauses, either there is a proof of the empty clause or it has an
infinite model path.

A model path is defined as a derivation on which any rule that is ever enabled
is eventually used. The idea is that the model path tries every single possibility
of applying rules to derive the empty clause, but still goes on forever.

The next step is to prove that a model path corresponds to a model for the
given clauses, because then we can lift the abstract completeness property to:

Property 3 For any set of clauses, either there is a proof of the empty clause
or the set of clauses have a model.

This is equivalent to refutational completeness.

To obtain the completeness result we thus have to prove the system persistent,
and to prove the correspondence between model paths and models. The reso-
lution calculus is persistent, since it keeps adding clauses to a set without ever
removing them. Thus, a rule that could be applied in any step can also be ap-
plied in the following steps. However, it is not easy to prove the correspondence
between model paths and models.

An opportunity to do so is presented by Bachmair and Ganzinger [BG01] in
a setup that is similar to the unified completeness. It is done by introducing
the notion of partial interpretations below clauses and candidate models. The
idea of these is that they are attempts at constructing models. To define them
an ordering � on ground terms, literals, and clauses is introduced. Then the
partial interpretation IC below a clause is introduced. IC is an interpretation
that satisfies all the clauses that are below C in the ordering � of clauses. Its
definition is not so intuitive, so it is not be presented here.

We also define IC , the partial interpretation at C, which satisfies the same
clauses as IC as well as C itself. Lastly, we define the candidate model ICs for a
set of clauses Cs. It is constructed using the partial interpretations of its clauses.
The idea of a candidate model is that if a set of clauses is satisfiable, then the
candidate model is a model, i.e. a witness of the satisfiablity. We therefore let
Cs be the set of the clauses on our model path, and then ICs is candidate model

36 Analysis of the Problem

for Cs. We now define a counter-example to be a clause in Cs that is falsified
by ICs . It is proven that if Cs were to contain a counter-example, then it would
also contain the empty clause. The argument is that then the empty clause
could be derived using the counter-example, and since the model path takes
every opportunity to derive things, it would indeed be derived. However, the
model path does by definition not contain the empty clause (since then it would
not be infinite), and thus it cannot contain a counter-example. Therefore, ICs

satisfies all clauses and is thus a model.

Bachmair and Ganzinger shows this result for a proof system called ground res-
olution, but also indicate how this result can be lifted to the resolution calculus
for first-order logic using a lemma called the lifting lemma.

The unified completeness comes with a formalization in Isabelle [BPT14a].
Therefore, like the consistency properties, this approach is appealing, because
some of the work is already done. Furthermore, it is quite elegant that we take
the infinite derivation and from that build a model more or less directly. As
said, it should be easy to prove resolution persistent. However, we still need
to make a formalization of the candidate models. This could prove to be dif-
ficult, because the ordering on formulas is not very intuitive. Additionally, we
have to find out how to lift the result from ground resolution to a resolution for
first-order logic.

3.3 Other Considerations

For a resolution prover to be useful, we need to implement an algorithm to
translate formulas of the first-order logic to clauses. This is useful because then
we are be able to prove formulas correct. Most, if not all, resolution based
automatic theorem provers include such machinery, and it is a challenge in itself
to write an efficient rewriting algorithm.

To make an automatic theorem prover, we need to find a way to make the proof
system executable. It is possible to extract Standard ML code from an Isabelle
theory, to get an executable program. This approach has been used to make
a verified automatic theorem prover [Rid04]. It does, however, require quite
some work to go from an abstract definition of a proof system to one that is
executable.

3.4 Other Presentations 37

3.4 Other Presentations

There are several other interesting presentations of the resolution calculus than
those discussed above. One is by Robinson, the original inventor of the res-
olution calculus [Rob79]. Another is a book by Leitsch dedicated entirely to
resolution [Lei97]. Furthermore, Bachmair and Ganzinger have written an ad-
vanced chapter on resolution [BG01].

3.5 The Approach of This Project

In this project, I have chosen to formalize general resolution. My motivation is
that it is well suited for automation because of its use of most general unifiers.
This mean that my formalization eventually could serve as the basis of an au-
tomatic theorem prover. Furthermore, a proof of the completeness of this rule
can easily be adapted to a proof of the completeness of binary resolution with
factoring [Fit96].

I have chosen to make a formalization of the completeness using the semantic
tree approach. My assessment is that this approach is most likely to be suc-
cessful. Semantic trees can be drawn as graphs on a paper, which often helps
with intuition. This choice also gives me a better understanding of the process
of formalizing completeness, since I cannot cut corners by using the already de-
veloped frameworks for consistency properties [Ber07] and unified completeness
[BPT14b]. Furthermore, it also makes the project more interesting seen from a
research perspective, because in this way my project contributes a formalization
of not only resolution but also semantic trees. I mostly base my formalization
of semantic trees on the presentations of Ben-Ari [BA12] and of Chang and Lee
[CL73].

Instead of looking at how to rewrite general formulas to clauses and at mak-
ing the system into an automatic theorem prover, the focus is on formalizing
resolution, soundness and completeness. This in itself is both interesting and
challenging.

38 Analysis of the Problem

Chapter 4

Formalization: Logical
Background

This chapter formalizes most of the logical background from chapter 2 up to
and including substitution. The chapter shows formalized definitions, lemmas,
and theorems of the logical background. The chapter introduces concepts from
Isabelle, Isar, and HOL as they are used in the formalization process.

4.1 Terms

We wish to formalize terms. Therefore, we first need to formalize variable sym-
bols, function symbols, and predicate symbols. We represent them by strings,
introducing the types var-sym, fun-sym, and pred-sym as synonyms for the string
type.

type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string

40 Formalization: Logical Background

A more abstract approach is to represent them by type variables, which can
then later be instantiated by a concrete type. On paper, strings are, however,
almost always used, and a concrete type makes later definitions simpler since
we do not have to carry the type variables around. Another advantage is that
the type of strings is countably infinite which means that the strings can be
enumerated. Both concrete types [Rid04] and type variables [Ber07] have been
used in other formalizations.

We now formalize the terms of first-order logic as a type fterm. For this pur-
pose we use datatypes, which is a well-known concept from typed functional
programming.

datatype fterm =
Fun fun-sym fterm list
| Var var-sym

This mirrors our definition from chapter 2, which stated that a term is either a
variable or a function symbol applied to a list of terms.

Here are some examples of terms:

value Var ′′x ′′

value Fun ′′one ′′ []
value Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]
value Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]

In the syntax of chapter 2 they respectively correspond to x, one(),mul(y, y),
and add(mul(y, y), one()).

Since that chapter described syntax, it was clear that a variable x was different
from a function application f(c(), d()) and therefore we did not state it explicitly.
Fortunately, datatypes have the same property. Terms made with different
constructors are by definition also different.

4.2 Literals

We can likewise define literals as a datatype with one constructor Pos for positive
literals and another Neg for negative literals:

4.2 Literals 41

datatype ′t literal =
Pos pred-sym ′t list
| Neg pred-sym ′t list

The datatype is parametrized with a type variable ’t. We can instantiate it with
fterm to get the type fterm literal, and then the symmetry to chapter 2 is clear:
A literal consists of a predicate symbol and a list of terms, and it is positive
or negative. The reason we use the type variable is that we in chapter 6 define
Herbrand terms as a type hterm, and then Herbrand literals are simply hterm
literals. It is also convenient to have selector functions get-pred, which given a
literal gives us its predicate symbol, and get-terms, which gives us the list of
terms. Furthermore, it is convenient to have a predicate is-pos, which tells us if
a literal is positive. We can get Isabelle to create these functions as follows:

datatype ′t literal =
is-pos: Pos (get-pred : pred-sym) (get-terms: ′t list)
| Neg (get-pred : pred-sym) (get-terms: ′t list)

An alternative would have to formalize a datatype that covers all the logical
formulas. However, in chapter 3 we chose not to formalize the rewriting from
formulas to clauses, and thus we only need a representation of literals. There are
however formalizations the formulas of first-order logic available [Ber07, Rid04,
MR04].

Here are some examples of literals:

value Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]
value Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′equals ′′

[Fun ′′add ′′[Fun ′′mul ′′[Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′[]],Var ′′x ′′]

The literals correspond in our syntax from 2 to greater(x, y), ¬less(x, y), less(x, y),
and equals(add(mul(x, x), one()), y).

It is easy to define a function that gives us the complement of a literal. Isabelle
function definitions look similar to those of typed functional programming.

fun complement :: ′t literal ⇒ ′t literal where
complement (Pos P ts) = Neg P ts
| complement (Neg P ts) = Pos P ts

42 Formalization: Logical Background

We can use a notation similar to that of chapter 2 to make lemmas and theorems
easier to read. Luckily, Isabelle allows us to do that with its mixfix notation.
We therefore instead define the complement as:

fun complement :: ′t literal ⇒ ′t literal (-c [300] 300) where
(Pos P ts)c = Neg P ts
| (Neg P ts)c = Pos P ts

This allows us to write lc instead of complement l.

If we take the double complement (lc)c of a literal, we obviously get the literal
l. We prove this small lemma in Isabelle:

lemma cancel-comp1 : (lc)c = l by (cases l) auto

Here, we named the lemma cancel-comp1 and stated it as (lc)c = l. We have
made Isabelle prove it by writing by (cases l) auto. Here (cases l) auto tells
Isabelle how it should conduct the proof. Writing cases l splits the lemma in
to two cases - one where l is a positive literal and one where it is negative.
Then it leaves it up to us to prove the cases separately. We use auto to prove
them automatically. Writing auto invokes a proof method that does primarily
simplifications, but also some other forms of reasoning. This concludes the proof
in Isabelle.

There are many other proof methods including simp, blast, and metis. They
each have their strengths and weaknesses. It is not necessary to know in details
how they work, but it is an advantage to have an intuition about when to
use the different methods. Here is a short explanation of my intuition for the
different proof methods. The pure simplification component of auto is simp.
It knows about the Isabelle library from a large number of simplification rules.
Sometimes the reasoning of auto means that it works itself into a corner, where
simp instead would have been able to succeed by using only simplification rules.
On the other hand, simp sometimes gives up because it does not do the reasoning
that auto does. The proof method blast is efficient at solving problems that
are, in nature, first-order problems. Furthermore, it often chooses the right
instantiations of the lemmas with which we provide it. The proof method metis
is a resolution prover, and is sometimes able to do the proofs where the other
methods give up. Furthermore, Isabelle has a built-in tool called Sledgehammer
that applies automatic theorem provers such as E, SPASS, and Vampire as well
as satisfiability-modulo-theories such as CVC4 and Z3 to prove theorems or
statements automatically [Bla15]. The tool often suggests that we use metis
together with an appropriate set of lemmas.

4.2 Literals 43

We do another proof of a simple property of literals:

lemma cancel-comp2 :
assumes asm: l1c = l2c

shows l1 = l2
proof −
from asm have (l1c)c = (l2c)c by auto
then have l1 = (l2c)c using cancel-comp1 [of l1] by auto
then show ?thesis using cancel-comp1 [of l2] by auto

qed

This lemma states that assuming l1 c = l2
c we have the thesis l1 = l2 . Therefore,

we are proving that if the complements of two literals are the same, then so
are the literals. By writing proof, we tell Isabelle that we want to prove this
ourselves using however many steps we want or we have to. The "−" tells Isabelle
that we want to make a direct proof. Our proof starts from the assumption and
shows from it that (l1

c)c = (l2
c)c using the auto proof method. From this we

show l1 = (l2
c)c by canceling out the two applications of complement on the

left hand side. Writing using cancel-comp1 [of l1] by auto means that we use
auto to show this proof line and that it can use the lemma cancel-comp1 [of
l1]. The lemma cancel-comp1 [of l1] is the same as cancel-comp1, except that l
is instantiated with l1 . Then we show our thesis using cancel-comp2 [of l2] to
cancel out the applications of complement on the right hand side. In Isabelle
the thesis automatically gets the short name ?thesis. Writing qed indicates that
the proof is done.

This style of writing a proof is similar to how one could write a proof in a
natural language. Words like from, have, then, using, and show mean (at
least almost) the same as they do in English. In longer Isabelle proofs, the
similarity to natural language is even clearer.

Another easy proof is that of the existence of a complement

lemma comp-exi1 : ∃ l ′. l ′ = lc by (cases l) auto

Note that ∃ is not the existential quantifier for the first-order logic we consider
in the thesis. It is instead the existential quantifier of the HOL of Isabelle. In
English we could express the lemma as “any literal has a complement”, but since
we are writing in the HOL of Isabelle we must use its existential quantifier. The
same is the case when we see the ∀ quantifier, and the connectives ¬,−→,←→,∨,
and ∧. A connective we did not see in first-order logic was =⇒. In Isabelle, this

44 Formalization: Logical Background

arrow separates an assumption from a conclusion. The statements A =⇒ B and
A −→ B are logically equivalent. It is often more appropriate to write A =⇒ B,
but A −→ B can be nested inside any logical construction. We will not dwell
more on the difference, which can be studied elsewhere [NK14].

It takes a bit more effort to show the following similar lemma:

lemma comp-exi2 : ∃ l . l ′ = lc

proof
show l ′ = (l ′c)c using cancel-comp1 [of l ′] by auto

qed

Again, we tell Isabelle that we want to prove the theorem in some steps, but this
time we do not use the−. This means that Isabelle choses an appropriate rule for
us to prove the lemma. Since the lemma is an existential quantification, Isabelle
chooses the rule P x =⇒ ∃x. P x. The rule says that we can prove ∃x. P x by
proving P x for some x. In the proof of comp-exi2 the P x corresponds to
(l′ = xc). The x for which we prove it, is l′c.

We also prove

lemma comp-swap: l1c = l2 ←→ l1 = l2c

proof −
have l1c = l2 =⇒ l1 = l2c using cancel-comp1 [of l1] by auto
moreover
have l1 = l2c =⇒ l1c = l2 using cancel-comp1 by auto
ultimately
show ?thesis by auto

qed

Here we see a new concept, namely the “... moreover ... ultimately” construc-
tion. In this construction the last statement before “moreover” and the last
statement before “ultimately” are collected and provided to the application of
auto on the statement following “ultimately”. If we wanted to collect more
statements, we could have used additional “moreover” commands.

4.3 Clauses

We now formalize clauses. Sets are already defined in Isabelle, and so it is easy
to define clauses as a synonym for sets of literals:

4.4 Collecting Variables 45

type-synonym ′t clause = ′t literal set

The clauses we consider are always finite, but a set can actually be infinite.
Therefore, another possibility would have been to use the type fset of finite sets.
Furthermore, some presentations of the resolution calculus use multisets. We use
sets because their notation in Isabelle is similar to the well-known mathematical
notation. The only major difference from mathematical notation is that Isabelle
uses a dot instead of the bar when writing for instance the set of all elements with
a certain property {x. P (x)}. The proof methods of Isabelle reason efficiently
about sets.

We extend the concept of complement to sets of literals, i.e. clauses.

abbreviation complementls :: ′t literal set ⇒ ′t literal set (-C [300] 300) where
LC ≡ complement ‘ L

The superscript C used here is capital. We use abbreviation to define comple-
mentls. This seems similar to fun, and is used in much the same way. However,
contrary to fun, it does not introduce a function in the logic. Instead Isabelle
introduces complementls L as a syntactical shorthand for complement ‘ L.

The operator ‘ is a higher-order map function. It applies complement to every
literal in L. In other words, LC is the image of L under the function complement.

4.4 Collecting Variables

In chapter 2 we looked at occurrences of variables and we saw that the general
resolution rule required that its clauses did not share any variables. We therefore
create functions that collect the variables that occur in terms, lists of terms,
literals, and sets of literals. On terms we define it recursively:

fun varst :: fterm ⇒ var-sym set
and varsts :: fterm list ⇒ var-sym set where
varst (Var x) = {x}
| varst (Fun f ts) = varsts ts
| varsts [] = {}
| varsts (t # ts) = (varst t) ∪ (varsts ts)

46 Formalization: Logical Background

The # is the cons operator with takes element t and puts it at the beginning
of list ts. Note that Isabelle functions are required to be be terminating. For
many functions Isabelle can automatically check that this is the case [NK14].

On literals we just look in the term:

definition varsl :: fterm literal ⇒ var-sym set where
varsl l = varsts (get-terms l)

Here we used definition instead of fun to define a non-recursive function. In
contrary to fun, definition does not add simplification rules to the proof methods
of Isabelle. Therefore, we have to unfold the definition manually when necessary.
We can use definition when we want to reason about a function by using its
properties instead of having Isabelle unfold its definition automatically.

On sets of literals we take the union over the literals in the clause to collect
their variables:

definition varsls :: fterm literal set ⇒ var-sym set where
varsls L ≡

⋃
l∈L. varsl l

4.5 Ground

A ground term is a term in which no variables occur. As we noted in the analysis,
the semantic trees are labeled with ground literals, so this concept must also be
formalized. We can easily make a recursive predicate that checks if a term does
not contains variables:

fun ground :: fterm ⇒ bool where
ground (Var x) ←→ False
| ground (Fun f ts) ←→ (∀ t ∈ set ts. ground t)

abbreviation grounds :: fterm list ⇒ bool where
grounds ts ≡ (∀ t ∈ set ts. ground t)

Since ground and grounds return booleans, we use ←→ in the definition instead
of =. We then extend the definition to literals and sets of literals. For terms,
we simply check the list of terms:

4.6 Semantics 47

abbreviation groundl :: fterm literal ⇒ bool where
groundl l ≡ grounds (get-terms l)

And for sets of literals, we check all the contained literals:

abbreviation groundls :: fterm clause ⇒ bool where
groundls L ≡ ∀ l ∈ L. groundl l

4.6 Semantics

We are ready to introduce the semantics of terms, literals, and clauses. Firstly,
we need to define function denotations, predicate denotations, and variable de-
notations:

type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u
type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool
type-synonym ′u var-denot = var-sym ⇒ ′u

Here, we have let the universe be represented by a type variable ′u. This mean
that we are able to use our logic to reason about elements of any type by
instantiating ′u with the desired type.

If we for instance want to reason about the natural numbers, we can instantiate
′u with the type nat, and reason about functions and predicates on natural
numbers. We can do that by defining a nat fun-denot, a nat pred-denot, and a
nat var-denot.

fun Fnat :: nat fun-denot where
Fnat f [n,m] =
(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0)

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0)

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x ,y] =

48 Formalization: Logical Background

(if p = ′′less ′′ ∧ x < y then True else
if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0)

Alternatively, we could have fixed a specific type, or we could have defined an
abstract type for the purpose of representing the universe. There are examples
of using a type variable [Ber07] and of using an abstract type [MR04, Rid04] in
formalizations. We choose to use a type variable, because it allows our logic to
reason about anything that can be formalized as a type.

We now formalize the semantics of terms:

fun evalt :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x) = E x
| evalt E F (Fun f ts) = F f (map (evalt E F) ts)

We use the higher order function map to apply the function evalt E F to ts, i.e.
map (eval E F) [t1, . . . , tn] = [eval E F t1, . . . , eval E F tn].

As an example we can try to evaluate the terms, function denotations and
variable denotations we used as examples.

lemma evalt Enat Fnat (Var ′′x ′′) = 26
by auto

lemma evalt Enat Fnat (Fun ′′one ′′ []) = 1
by auto

lemma evalt Enat Fnat (Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]) = 25
by auto

lemma
evalt Enat Fnat (Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]) = 26
by auto

We often need to apply the evaluation of terms to lists of terms:

abbreviation evalts :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm list ⇒ ′u list where
evalts E F ts ≡ map (evalt E F) ts

4.6 Semantics 49

The next step is to evaluate literals. This is done by evaluating the list of terms,
and using the predicate denotation to get the meaning of the predicate symbol:

fun evall :: ′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool
where
evall E F G (Pos p ts) ←→ (G p (evalts E F ts))
| evall E F G (Neg p ts) ←→ ¬(G p (evalts E F ts))

We present some examples:

lemma evall Enat Fnat Gnat (Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma evall Enat Fnat Gnat (Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma evall Enat Fnat Gnat (Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = False
by auto

lemma evall Enat Fnat Gnat

(Pos ′′equals ′′

[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]
,Var ′′x ′′]

) = True
by auto

In chapter 2 we noticed that a clause is satisfied by an interpretation (F,G), if,
for any variable denotation, some literal in the clause is satisfied by (F,G). We
use this to define the semantics of clauses.

definition evalc :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where
evalc F G C ←→ (∀E . ∃ l ∈ C . evall E F G l)

Clausal forms represent conjunctions, c.f. chapter 2. Therefore, a clausal form
Cs is satisfied by an interpretation if it satisfies all the clauses in Cs.

definition evalcs :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where
evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C)

Since ground terms do not contain variables their evaluation is independent
of the variable denotation. Therefore, given an interpretation, a ground term
evaluates to the same even under two different variable denotations.

50 Formalization: Logical Background

lemma ground-var-denott : ground t =⇒ (evalt E F t = evalt E ′ F t)

We prove this using structural induction.

Proof. First we have the case where t is a variable Var x. In this case we assume
ground (Var x) and then have to show evalt E F (Var x) = evalt E′ F (Var x).
This is easy, because ground (Var x) is a contradiction since variables are not
ground, and thus we can conclude anything, in particular evalt E F t = evalt
E’ F t .

Next, we have the case where t is a function application Fun f ts. Our induction
hypothesis is that the lemma holds for any subterm of Fun t ts, i.e.,

t ∈ set ts =⇒ ground t =⇒ (evalt E F t = evalt E’ F t)

We now assume ground (Fun t ts) and have to show evalt E F (Fun t ts) =
evalt E’ F (Fun t ts). Consider any subterm t of ts. Since Fun f ts is ground,
so must the subterm t be. We then use the induction hypothesis, and conclude
evalt E F t = evalt E’ F t . Since any subterm of ts evaluates to the same under
both E and E′, we conclude that so does ts: evalts E F ts = evalts E’ F ts.
By the definition of evalt we conclude that also Fun t ts evaluates to the same
under both variable denotations: evalt E F (Fun t ts) = evalt E’ F (Fun t ts)

q. e. d.

We prove this formally in Isabelle:

lemma ground-var-denott : ground t =⇒ (evalt E F t = evalt E ′ F t)
proof (induction t)
case (Var x)
then have False by auto
then show ?case by auto

next
case (Fun f ts)
then have ∀ t ∈ set ts. ground t by auto
then have ∀ t ∈ set ts. evalt E F t = evalt E ′ F t using Fun by auto
then have evalts E F ts = evalts E ′ F ts by auto
then have F f (map (evalt E F) ts) = F f (map (evalt E ′ F) ts) by metis
then show ?case by simp

qed

4.7 Substitutions 51

The proof is very similar to the informal proof that we just finished. Firstly,
we state proof (induction t) which means that the proof is by induction on
t. We start by proving the first case for variables by stating case (Var x).
The expression case (Var x) refers to the assumption that Var x is ground.
Therefore, we can use it to prove False, a contradiction. From the contradiction
we prove ?case, which refers to the desired conclusion for the current case, i.e.
evalt E F (Var x) = evalt E’ F (Var x).

We continue with the next case by writing next and stating case (Fun f ts).
Here, case (Fun f ts) contains the induction hypothesis and the assumption
ground (Fun t ts). We use the assumption to prove that any subterm is ground.
Then we apply the induction hypothesis by writing using Fun which refers to
case (Fun f ts). Hereafter, we take additional steps following the informal proof
and finally derive the desired conclusion ?case for this case which is evalt E F
(Fun f ts) = evalt E’ F (Fun f ts).

4.7 Substitutions

Substitutions are maps from variables to terms, and thus we define them as
such.

type-synonym substitution = var-sym ⇒ fterm

In chapter 2 we described substitution as the simultaneous replacement of vari-
ables occurring in a term. In our formalization we define this much more pre-
cisely by writing a recursive function that performs the substitution.

fun sub :: fterm ⇒ substitution ⇒ fterm (-{-}t [300 ,0] 300) where
(Var x){σ}t = σ x
| (Fun f ts){σ}t = Fun f (map (λt . t {σ}t) ts)

For variables, we apply the substitution directly. For function applications we
map the lambda-function λt. t{σ}t on to ts. The lambda-function does sub-
stitution with σ on any term to which it is applied. Our notation is the same
as the one introduces in chapter 2, except that it uses a subscript t to indicate
that this is substitution on a term.

We also define substitution for lists of terms, literals, and lists of literals. For
lists we map the substitution on to the list:

52 Formalization: Logical Background

abbreviation subs :: fterm list ⇒ substitution ⇒ fterm list (-{-}ts [300 ,0] 300)
where
ts{σ}ts ≡ (map (λt . t {σ}t) ts)

For literals we apply the substitution to the list of terms:

fun subl :: fterm literal ⇒ substitution ⇒ fterm literal (-{-}l [300 ,0] 300) where
(Pos p ts){σ}l = Pos p (ts{σ}ts)
| (Neg p ts){σ}l = Neg p (ts{σ}ts)

For sets of literals we use the ‘ function again:

abbreviation subls :: fterm literal set ⇒ substitution ⇒ fterm literal set (-{-}ls
[300 ,0] 300) where
L {σ}ls ≡ (λl . l {σ}l) ‘ L

Furthermore, we define instances. We use the existential quantifier of HOL:

definition instance-oft :: fterm ⇒ fterm ⇒ bool where
instance-oft t1 t2 ←→ (∃σ. t1 = t2{σ}t)

definition instance-ofts :: fterm list ⇒ fterm list ⇒ bool where
instance-ofts ts1 ts2 ←→ (∃σ. ts1 = ts2{σ}ts)

definition instance-ofl :: fterm literal ⇒ fterm literal ⇒ bool where
instance-ofl l1 l2 ←→ (∃σ. l1 = l2{σ}l)

We also define a special kind of substitution called variable renaming. Such
substitutions can be used for standardizing clauses apart. A variable renaming
simply renames the variables as the name implies.

definition var-renaming :: substitution ⇒ bool where
var-renaming σ ←→ (∀ x . ∃ y . σ x = Var y)

It is formalized as a substitution in which any variable symbol x is mapped to
some variable Var y. A more restrictive way of defining it would be to require

4.7 Substitutions 53

that this mapping should also be a bijection. Then one could not make a
renaming that renames two different variables to the same name. We, however,
choose the simpler definition.

A special substitution is the empty substitution ε which maps any variable sym-
bol to the corresponding variable term. This is the same as what the constructor
Var does, and so we just use that:

abbreviation ε :: substitution where
ε ≡ Var

4.7.1 Composition

We formalize the composition of substitutions:

definition composition :: substitution ⇒ substitution ⇒ substitution (infixl · 55)
where
(σ1 · σ2) x = (σ1 x){σ2}t

It is defined as an infix operator which means that we can write σ · θ instead of
composition σ θ.

The definition follows that from chapter 2, which said that the composition of
one substitution σ and another θ corresponds to first applying σ to a variable
and then applying θ to the resulting term.

We can prove that this holds not only for a variable, but also for terms. This
can be proven automatically in Isabelle using structural induction on the term:

lemma composition-conseq2t : t{σ1}t{σ2}t = t{σ1 · σ2}t
proof (induction t)
case (Var x)
have (Var x){σ1}t{σ2}t = (σ1 x){σ2}t by simp
also have ... = (σ1 · σ2) x unfolding composition-def by simp
finally show ?case by auto

next
case (Fun t ts)
then show ?case unfolding composition-def by auto

qed

54 Formalization: Logical Background

In the variable case we use the “also ... finally” construction to make a proof
of (Var x){σ1}t{σ2}t = (σ1 · σ2) x from left to right. The idea is that ... refers
to the right hand side of the line above. We can have as many lines of “also”
as we want. Furthermore, unfolding composition-def instructs Isabelle to find
any occurrences of composition and replace them with their definition before
the following proof method, simp, is applied.

Furthermore, composition is associative:

lemma composition-assoc: σ1 · (σ2 · σ3) = (σ1 · σ2) · σ3

proof
fix x
show (σ1 · (σ2 · σ3)) x = ((σ1 · σ2) · σ3) x unfolding composition-def using

composition-conseq2t by simp
qed

Since we wrote proof, and not proof −, Isabelle choses an appropriate rule for
us to make the proof. The rule is (

∧
x. f x = g x) =⇒ f = g . Therefore, we fix

an arbitrary x and show that (σ1 · (σ2 · σ3))x = ((σ1 · σ2) · σ3)x.

The instance-oft relation is transitive, i.e., if t1 is an instance of t2 which is an
instance of t3 then t1 is an instance of t3.

Proof. Since t1 is an instance of t2 we can obtain a substitution σ12 such that
ts1 = ts2{σ12}ts. Likewise, since t2 is an instance of t3 we can obtain a sub-
stitution σ23 such that ts2 = ts3{σ23}ts. By combining these equations we get
ts1 = (ts3{σ23}ts){σ12}ts and thus also ts1 = ts3{σ23 ·σ12}ts using composition-
conseq2ts. Therefore, ts1 is an instance of ts3. Here is the formalization of the
proof:

lemma instance-ofts-trans :
assumes ts12: instance-ofts ts1 ts2
assumes ts23: instance-ofts ts2 ts3
shows instance-ofts ts1 ts3

proof −
from ts12 obtain σ12 where ts1 = ts2 {σ12}ts
unfolding instance-ofts-def by auto

moreover
from ts23 obtain σ23 where ts2 = ts3 {σ23}ts
unfolding instance-ofts-def by auto

ultimately
have ts1 = ts3 {σ23}ts {σ12}ts by auto
then have ts1 = ts3 {σ23 · σ12}ts using composition-conseq2ts by simp

4.7 Substitutions 55

then show ?thesis unfolding instance-ofts-def by auto
qed

It clearly mirrors the natural language proof using also the terminology obtain
to give names to the substitutions that come from the existential claims of the
definition of instance-of.

4.7.2 Unifiers

We now turn to unifiers. Recall that a unifier for a set of terms is a substitution
that makes all the terms equal to each other.

definition unifiert :: substitution ⇒ fterm set ⇒ bool where
unifiert σ ts ←→ (∃ t ′. ∀ t ∈ ts. t{σ}t = t ′)

We have formalized this by saying that if σ is a unifier for ts then there is some
literal t′ which all literals in t{σ}t are equal to.

A set of literals can also have a unifier:

definition unifierls :: substitution ⇒ fterm literal set ⇒ bool where
unifierls σ L ←→ (∃ l ′. ∀ l ∈ L. l{σ}l = l ′)

An alternative definition for unifiers of non-empty set is that when we apply
the unifier to a set, the set becomes a singleton. We prove that this works as a
definition by proving its equivalence to unifierls. First, we prove

lemma unif-sub:
assumes unif : unifierls σ L
assumes nonempty : L 6= {}
shows ∃ l . subls L σ = {subl l σ}

proof −
from nonempty obtain l where l ∈ L by auto
from unif this have L {σ}ls = {l {σ}l} unfolding unifierls-def by auto
then show ?thesis by auto

qed

Then we prove the equivalence:

56 Formalization: Logical Background

lemma unifierls-def2 :
assumes L-elem: L 6= {}
shows unifierls σ L ←→ (∃ l . L {σ}ls ={l})

proof
assume unif : unifierls σ L
from L-elem obtain l where l ∈ L by auto
then have L {σ}ls = {l {σ}l} using unif unfolding unifierls-def by auto
then show ∃ l . L{σ}ls = {l} by auto

next
assume ∃ l . L {σ}ls ={l}
then obtain l where L {σ}ls = {l} by auto
then have ∀ l ′ ∈ L. l ′{σ}l = l by auto
then show unifierls σ L unfolding unifierls-def by auto

qed

Isabelle again chooses an appropriate rule when we write proof. To prove
A←→ B we must first prove A =⇒ B and then B =⇒ A.

Since a unifier makes all literals in a set into the same literal, it does the same
for a subset, and is thus also a unifier for the subset:

lemma unifier-sub1 : unifierls σ L =⇒ L ′ ⊆ L =⇒ unifierls σ L ′

unfolding unifierls-def by auto

Lastly, we define most general unifiers:

definition mgut :: substitution ⇒ fterm set ⇒ bool where
mgut σ fs ←→ unifiert σ fs ∧ (∀ u. unifiert u fs −→ (∃ i . u = σ · i))

definition mguls :: substitution ⇒ fterm literal set ⇒ bool where
mguls σ L ←→ unifierls σ L ∧ (∀ u. unifierls u L −→ (∃ i . u = σ · i))

The definition states that σ should be a unifier, and that any other unifier u
can be made from it using composition with some other substitution i.

Chapter 5

Formalization: Resolution
Calculus and Soundness

In this chapter we formalize the resolution calculus and prove its soundness.
The chapter explains the Isabelle proofs but does not show them since they are
more complicated than those of chapter 4. For the proof code in Isabelle, we
refer to appendix C.

5.1 The Resolution Calculus

We recall the general resolution rule.

C1 C2

(C1{σ}ls − L1{σ}ls) ∪ (C2{σ}ls − L2{σ}ls)

C1 and C2 share no variables,
L1 ⊆ C1, L2 ⊆ C2,
σ mgu for L1 ∪ L2

c

We first formalize its side condition as a predicate applicable that takes two
clauses, two subsets of those clauses, and a substitution, and checks whether
the side conditions hold:

58 Formalization: Resolution Calculus and Soundness

definition applicable :: fterm clause ⇒ fterm clause
⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ bool where

applicable C 1 C 2 L1 L2 σ ←→
C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C 1 ∩ varsls C 2 = {}
∧ L1 ⊆ C 1 ∧ L2 ⊆ C 2

∧ mguls σ (L1 ∪ L2
C)

Note that we added the extra condition that L1, L2, C1, and C2 should be non-
empty, because if C1 or C2 is empty, then we have already derived the empty
clause, and if L1 or L2 is empty, then we will not remove literals from both
clauses.

We formalize the resolution rule as a function that takes C1, C2, L1, L2, and σ
and gives us the corresponding resolvent.

definition resolution :: fterm clause ⇒ fterm clause
⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ fterm clause where

resolution C 1 C 2 L1 L2 σ = (C 1 {σ}ls − L1 {σ}ls) ∪ (C 2 {σ}ls − L2 {σ}ls)

We also define the steps that we use to form derivations. It is defined as a pred-
icate resolution-step. Here, resolution-step cs cs’ means that we can perform a
step from cs to cs ′:

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:
C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ =⇒

resolution-step Cs (Cs ∪ {resolution C 1 C 2 L1 L2 σ})
| standardize-apart :

C ∈ Cs =⇒ var-renaming σ =⇒ resolution-step Cs (Cs ∪ {C {σ}ls})

It is defined as an inductive definition that consists of two rules. The word
inductive means that the only resolution steps are the ones constructed with
these rules [NK14]. The first rule states that if we can apply resolution to two
clauses then we can add one of their resolvents in a step. The second rule states
that we may add a renamed clause in a step. We can use this to standardize
clauses apart.

Now that we have defined the individual steps, we can define resolution deriva-
tions as the predicate resolution-deriv.

5.2 Soundness of the Resolution Rule 59

definition resolution-deriv :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-deriv = star resolution-step

We use the star predicate from the Isabelle distribution, which extends a predi-
cate to its reflexive transitive closure, i.e. allows us to apply resolution-step zero
or more times to construct a derivation.

5.2 Soundness of the Resolution Rule

Now that we have defined our resolution calculus, we are ready to prove it sound.
We will prove soundness by showing that if the premises of the resolution rule
are satisfied in an interpretation, when so is its conclusion. Then the soundness
of the resolution calculus follows by induction.

To prove the resolution rule sound, we first prove that it is sound to apply a
most general unifier to a clause. Next we prove that a very simple version of
resolution is sound. We combine these results to prove that the resolution rule
is sound.

5.2.1 Soundness of Substitution

Instead of proving directly that it is sound to apply a most general unifier, we
prove the more general result, that it is sound to apply a substitution. We state
this lemma:

lemma subst-sound :
assumes asm: evalc F G C
shows evalc F G (C {σ}ls)

The lemma states that if C is satisfied by the interpretation (F,G), then so is
C{σ}ls. Let us think about why this is reasonable. The variables in a clause
C are universally quantified. Therefore, we can substitute them with any term,
and the result is still satisfied.

However, the above explanation is not formal enough. The problem is that we
mix up the syntactic terms with the semantic elements. That the variables in C
are universally quantified means that no matter which elements of the universe

60 Formalization: Resolution Calculus and Soundness

u′ they point to in a variable denotation E, the clause C still evaluates to true.
This does not say anything about substitutions.

Therefore it is tempting to discard the above argument, but fortunately, there
is a correspondence between variable denotations and substitutions. In a way,
they both specify the meaning of variables. The variable denotations do it on
the semantic level by assigning elements to variables, while the substitutions do
it on the syntactic level by assigning terms to variables.

We illustrate this correspondence by showing that we can transform a substitu-
tion to a variable denotation. Let us look at a substitution σ = {x1 7→ t1, x2 7→
t2, ..., }. If we already know a variable denotation E and a function denotation F ,
then we can evaluate t1, t2, ... , i.e. we already know their meaning. This trans-
forms σ to an environment E′ = {x1 7→ evalt E F t1, x2 7→ evalt E F t2, ...}.
We call this transformation the evaluation of a substitution and define it in Isa-
belle.

fun evalsub :: ′u fun-denot ⇒ ′u var-denot ⇒ substitution ⇒ ′u var-denot where
evalsub F E σ = (evalt E F) ◦ σ

The definition uses the well-known function composition operator ◦ which con-
struct the function that first applies σ and then eval E F .

When we want the meaning of t{σ}t under an environment E, we first apply
the substitution. At each former occurrence of a variable xi in t, there is now a
term ti, which will be evaluated under E. However, for all such terms, we could
also also have evaluated them beforehand, by evaluating the substitution. We
formalize this in the following lemma:

lemma substitutiont : evalt E F (t {σ}t) = evalt (evalsub F E σ) F t

The lemma is known in the literature as the substitution lemma [EFT96]. We
also prove the lemma for lists of terms and for literals:

lemma substitutionts: evalts E F (ts {σ}ts) = evalts (evalsub F E σ) F ts

lemma substitutionl : evall E F G (l {σ}l) ←→ evall (evalsub F E σ) F G l

Evaluation of substitutions was the concept that was missing for us to prove
substitution sound.

5.2 Soundness of the Resolution Rule 61

Proof. We assume that C is satisfied by interpretation (F,G). We have
to prove that C{σ}ls is satisfied by the same interpretation, i.e. that under
any variable denotation E, we can find a literal in C{σ}ls that is satisfied.
Therefore, we choose an arbitrary variable denotation E and fix it. From our
assumption we know that C is true in (F,G) under any variable denotation.
In particular, it is true under the variable denotation evalsub F E σ that we
get by evaluating σ. Therefore, there is some literal l, in C that is true under
(F,G) and evalsub F E σ. But then, using the substitution lemma, we know
that l{σ}l must be true under (F,G) and our initial environment E. Thus there
is a literal l{σ}l in C{σ}ls, that is true under (F,G) and E, which means that
C{σ}ls itself is true under (F,G) and E. Since E was chosen arbitrarily, C{σ}ls
is true under any interpretation, i.e. C{σ}ls is satisfied by (F,G). Thus, we have
proven instantiation sound. q. e. d.

The Isabelle proof is a straightforward formalization of these arguments.

5.2.2 Soundness of Simple Resolution

We now, as promised, turn to proving the simple resolution rule from chapter 2
sound. We recall the rule:

Definition 5.1 (Simple Resolution)

C1 C2

(C1 − {l1}) ∪ (C2 − {l2})

l1 ∈ C1

l2 ∈ C2

l1 = l2
c

And state its soundness:

lemma simple-resolution-sound :
assumes C 1sat : evalc F G C 1

assumes C 2sat : evalc F G C 2

assumes l1inc1: l1 ∈ C 1

assumes l2inc2: l2 ∈ C 2

assumes Comp: l1c = l2
shows evalc F G ((C 1 − {l1}) ∪ (C 2 − {l2}))

The two first assumptions are the assumptions of the soundness property, and
the three next are the side conditions of the rule. In chapter 2 we had an
explanation of the rule, and our soundness proof is similar to this explanation.

62 Formalization: Resolution Calculus and Soundness

Proof. We assume that C1 and C2 are satisfied by interpretation (F,G). Since
l1 and l2 are a complementary pair, either l1 or l2 is satisfied by (F,G). Assume
that l1 is the one that is satisfied. Since l2 is its complement, it is not satisfied.
But since l2 ∈ C2 and C2 is satisfied, there must be some other literal l′2 in C2

that is satisfied. This literal is also in (C1−{l1})∪ (C2−{l2}), and so it is also
satisfied.

If we instead assume that l2 was satisfied by (F,G), the argument would be
entirely analogous, and so, in any case (C1 − {l1}) ∪ (C2 − {l2}) is satisfied.
q. e. d.

The formalization of this proof is also straightforward.

5.2.3 Combining the Rules

We now prove resolution sound by combining the simple resolution rule and
substitution. The soundness lemma is formalized as

lemma resolution-sound :
assumes sat1: evalc F G C 1

assumes sat2: evalc F G C 2

assumes appl : applicable C 1 C 2 L1 L2 σ
shows evalc F G (resolution C 1 C 2 L1 L2 σ)

We recall the definition of applicable that occurs in the third assumption.

definition applicable where
applicable C 1 C 2 L1 L2 σ ←→

C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C 1 ∩ varsls C 2 = {}
∧ L1 ⊆ C 1 ∧ L2 ⊆ C 2

∧ mguls σ (L1 ∪ (L2
C))

Proof. We consider some literal l1 ∈ L1. Since σ is an mgu for L1 ∪ L2
c ,

it is also a unifier for L1. This means that all the literals in L1{σ} are the
same i.e. they are l1{σ}. In other words, L1{σ}ls = {l1{σ}l}. Symmetrically
we can consider some literal l2 ∈ L2 and conclude that L2{σ}ls = {l2{σ}l}.
Since l1 ∈ L1 ⊆ C1, we conclude that l1{σ}l ∈ C1{σ}ls and we can likewise

5.2 Soundness of the Resolution Rule 63

conclude that l2{σ}l ∈ C2{σ}ls. Since l1 ∈ L1 ∪ L2
c and l2

c ∈ L1 ∪ L2
c also

l1{σ}l ∈ (L1∪L2
c){σ}ls and l2c{σ}l ∈ (L1∪L2

c){σ}ls. Since σ unifies (L1∪L2
c)

it must also have unified l1 and l2c. Thus, l1{σ}l = l2
c{σ}l.

We now construct the resolution rule from the simple resolution rule and sub-
stitution:

C1

C1{σ}ls
C2

C2{σ}ls
(C1{σ}ls − {l1{σ}l}) ∪ (C2{σ}ls − {l2{σ}l})

l1{σ}l ∈ C1{σ}ls
l2{σ}l ∈ C2{σ}ls
l1{σ}l = (l2{σ}l)c

(C1{σ}ls − L1{σ}ls) ∪ (C2{σ}ls − L2{σ}ls)

We constructed the proof using substitutions first, to get from C1 to C1{σ}ls
and from C2 to C2{σ}ls. Then we used the simple resolution rule to derive
(C1{σ}ls − {l1{σ}l}) ∪ (C2{σ}ls − {l2{σ}l}) as we had already proven the side
conditions for this instance of the rule. In the last derivation step we used the
equations L1{σ}ls = {l1{σ}l} and L2{σ}ls = {l2{σ}l}. Since we could build the
resolution rule from two sound rules, it must be sound by construction. q. e. d.

In the formalization of the proof, we also use the applicability to prove the side
conditions of the simple resolution rule. However, we do not have an explicit
construction of the resolution rule, from the two other rules, but rather use
inst-sound and resolution-sound directly and follow the same steps as used in
the construction.

5.2.4 Applicability

By inspecting the soundness proof, we notice that we did not use all the side
conditions. We did not use that C1 and C2 have no variables in common. Also,
we did not use the fact that σ is a most general unifier for L1∪L2

c, only that it
is a unifier. Therefore, one can wonder why the side conditions are there at all.
After all, they could only make it more difficult to prove completeness, since
they exclude possibly fruitful rule applications. However, by excluding these
applications, we can make our search for the empty clause more directed. If we
can still prove completeness we have not really lost anything.

64 Formalization: Resolution Calculus and Soundness

5.3 Soundness of Resolution Derivations

We now show that a step in a resolution derivation is sound. There are two
cases to consider, namely the one where we apply the resolution rule, and the
one where we rename variables to standardize clauses apart. We have already
proven the resolution rule sound so this case follows easily. When we standardize
apart we apply a substitution, and since we proved substitution sound this case
also follows easily.

lemma sound-step: resolution-step Cs Cs ′ =⇒ evalcs F G Cs =⇒ evalcs F G Cs ′

We can extend the result to a whole derivation. The proof is by induction.
Isabelle provides an induction rule called star.induct for the star function that
we used to define derivations.

lemma sound-derivation:
resolution-deriv Cs Cs ′ =⇒ evalcs F G Cs =⇒ evalcs F G Cs ′

Chapter 6

Formalization:
Completeness

This chapter formalizes the completeness of the resolution calculus. The chap-
ter uses the semantic tree approach from chapter 3. Therefore, it consists of a
formal definition of Herbrand terms, enumerations, and semantic trees. Here-
after it presents formal proofs of two major steps towards completeness, namely
König’s lemma, and Herbrand’s theorem. It also shows the formal statements of
the lifting lemma and the completeness theorem, and proves the completeness
theorem thoroughly albeit informally.

6.1 Herbrand Terms

We now formalize Herbrand interpretions. These interpretations have two im-
portant properties. The first is that their universe consists of herbrand terms.
The type of Herbrand terms is similar to that of first-order terms except that it
does not contain variables:

datatype hterm = HFun fun-sym hterm list

66 Formalization: Completeness

Therefore, Herbrand terms correspond to ground terms. We call atoms Her-
brand atoms, if they consist of Herbrand terms, i.e. are literals of type hterm literal .
These atoms correspond to ground atoms.

We illustrate the correspondence between ground terms and Herbrand terms by
introducing functions that convert between hterms that are ground, and hterms:

primrec fterm-of-hterm :: hterm ⇒ fterm
and fterms-of-hterms :: hterm list ⇒ fterm list where
fterm-of-hterm (HFun p ts) = Fun p (fterms-of-hterms ts)
| fterms-of-hterms [] = []
| fterms-of-hterms (t#ts) = fterm-of-hterm t # fterms-of-hterms ts

primrec hterm-of-fterm :: fterm ⇒ hterm
and hterms-of-fterms :: fterm list ⇒ hterm list where
hterm-of-fterm (Fun p ts) = HFun p (hterms-of-fterms ts)
| hterms-of-fterms [] = []
| hterms-of-fterms (t#ts) = hterm-of-fterm t # hterms-of-fterms ts

The functions are defined using mutual recursion. They only use primitive
recursion which is why we can define them using primrec, but we could also
have used fun.

The second important property of herbrand interpretations is that their function
denotation is the constructor HFun. We call it the Herbrand function denota-
tion. The constructor HFun has type fun-sym ⇒ hterm list ⇒ hterm which
is the same as hterm fun-denot, and hence its universe is indeed the herbrand
universe. It is a natural function denotation to define, since it simply packs up
its input in an hterm. When we evaluate a ground term, we really just apply the
function denotation recursively to a term, and therefore, evaluating a ground
term under HFun constructs the conversion of the term to an hterm.

We can prove this formally in Isabelle by induction:

lemma eval-ground : ground t =⇒ (evalt E HFun t) = hterm-of-fterm t grounds ts
=⇒ (evalts E HFun ts) = hterms-of-fterms ts

6.2 Enumerations 67

6.2 Enumerations

To put labels on the different levels of the semantic tree, we need an enumeration
of Herbrand atoms, that is, an infinite sequence A0, A1, A2, . . . of ground atoms,
that contains all herbrand atoms.

Two types in Isabelle are very well suited for representing enumerations. One
is hterm literal stream, and the other is nat⇒ hterm literal.

The hterm stream is a type that represents infinite lists of hterms. Like list, it
comes with a cons operation ##, a head function shd and a tail function stl.
The stream library comes with functions that can be used to build up streams
from other streams. Therefore, we could first build a stream of strings, then use
that to build a stream of terms, and lastly use that to build a stream of atoms.
This is an easy way to build an enumeration from the ground up.

The function type nat ⇒ hterm does not have the nice functions to build up
streams from each other. However, an enumeration of Herbrand terms has
already been formalized by Berghofer [Ber07]. He does it by defining a nat ⇒
hterm function called hterm-diag whose domain consists of all hterms. Therefore,
we choose to adapt his enumeration and extend it to enumerations of Herbrand
atoms, and ground atoms.

We present our enumeration of herbrand terms:

definition diag-hatom :: nat ⇒ hterm literal where
diag-hatom a ≡

(let (p,ts) = diag a in
(Pos (diag-string p) (diag-list diag-hterm ts))

)

We do not go in to details, but notice that it combines three other enumerations:
diag, diag-string, and diag-list.

We also present the inverse function, which given an atom, returns the corre-
sponding number:

definition undiag-hatom :: hterm literal ⇒ nat where
undiag-hatom a ≡ undiag (undiag-string (get-pred a), undiag-list undiag-hterm

(get-terms a))

68 Formalization: Completeness

Lastly, we present the corresponding functions for ground atoms. We reuse the
above functions by converting the ground atoms to herbrand atoms:

definition diag-fatom :: nat ⇒ fterm literal where
diag-fatom n = fatom-of-hatom (diag-hatom n)

definition undiag-fatom :: fterm literal ⇒ nat where
undiag-fatom t = undiag-hatom (hatom-of-fatom t)

We notice that the enumeration does not consider whether the literal is positive
or negative. This means that we can call undiag-hatom on a negative literal and
get the number of the complement atom.

The definitions of all the enumerations and all the lemmas about them are
included in appendix A.

6.3 Semantic Trees and Partial Interpretations

The core of our completeness proof is to take a semantic tree and to cut it down
to the root by looking at the partial interpretations it contains. We therefore
also need to represent partial interpretations. In the literature, semantic trees
are usually represented as labeled binary trees. In a well-formed semantic tree,
the label of the left children on the i’th level is diag-fatom i, and the label of the
right children on the i’th level is complementary (diag-fatom i). A path in the
tree can then be converted to a partial interpretation by collecting the labels on
the path in a set of literals that represents the partial predicate denotation. We
presented these definitions in chapter 3, and they could be implemented directly
in Isabelle.

We choose another approach that illustrates the correspondence between paths
and partial interpretations more clearly. We instead represent the semantic trees
as unlabeled binary trees.

datatype tree =
Leaf
| Branch (ltree: tree) (rtree: tree)

We do not need the labels, since we can always calculate them from the position
of an unlabeled node. This representation has the advantage that we do not

6.3 Semantic Trees and Partial Interpretations 69

need to worry about well-formedness, since the label on the nodes only exist
implicitly. This removes junk trees that are not semantic such as the one in
which all labels are Atom ”p” [].

Paths in a binary tree are modeled as lists of elements of the type dir.

datatype dir = Left | Right

A path corresponds to the process of walking from the root, by iterating over
the list and walking left or right in the binary tree.

For representing partial predicate denotations, we choose the type bool list where
True on the i’th position means that diag-fatom i is true in the partial predicate
denotation and False means that diag-fatom i is false. In other words, the
partial predicate denotation assigns truth-values to the ground atoms.

type-synonym partial-pred-denot = bool list

Instead of using defining dir as the above datatype we can define Left and Right
as synonyms of True and False. Then we see that the paths in the binary tree
are actually partial predicate denotations.

type-synonym dir = bool
definition Left :: bool where Left = True
definition Right :: bool where Right = False

This gives us a simple definition of paths and this definition also represents
partial interpretations. The equality of paths and partial interpretations serves
as a pedagogical point and gives us the advantage that we do not need lemmas
that describe the correspondence between these concepts.

We choose to represent trees as a datatype. This means that we have defined
the trees as being of finite size. However, semantic trees can also be infinite. In
Isabelle we can easily expand the definition to infinite trees by using instead a
codatatype:

codatatype tree =
Leaf
| Branch (ltree: tree) (rtree: tree)

70 Formalization: Completeness

This codatatype represents both finite and infinite trees, in other words, pos-
sibly infinite trees. The stream type is another example of a codatatype. The
codatatypes are a recent addition to Isabelle. Proving properties about co-
datatypes is a skill in itself that I assess would take me considerable time to
understand in depth and learn how to use. Therefore, we chose another ap-
proach.

We represent finite trees by the tree datatype, and possibly infinite trees as the
type dir list set. A dir list set represents a tree by consisting of all the paths
that are in the tree. For a tree to be well-formed, any prefix of a path in the
tree must also be a path in the tree. We formalize this property:

abbreviation wf-tree :: dir list set ⇒ bool where
wf-tree T ≡ (∀ ds d . (ds @ d) ∈ T −→ ds ∈ T)

We likewise need a representation for infinite paths in the trees. This is another
chance to use streams. Instead we choose to use functions of type nat⇒ dir list.
The idea is that can represent an infinite path by a function f , where f n gives
of the prefix of the path with length n. We call such a function a list chain, and
define it formally:

abbreviation list-chain :: (nat ⇒ ′a list) ⇒ bool where
list-chain f ≡ (f 0 = []) ∧ (∀n. ∃ a. f (Suc n) = (f n) @ [a])

We will often consider subtrees rooted in some node of a tree. We define this
concept:

fun subtree :: dir list set ⇒ dir list ⇒ dir list set where
subtree T r = {ds ∈ T . ∃ ds ′. ds = r @ ds ′}

The definition takes the path to a node, and then returns the set of paths that
pass through this node, i.e. have it as a prefix.

6.4 König’s Lemma

Our first step in cutting down semantic trees is König’s lemma. The lemma
states that any infinite binary tree contains an infinite path. The contrapositive

6.4 König’s Lemma 71

of this is that a binary tree in which all paths are finite is also finite. Therefore,
we can use the theorem to cut trees down to finite size.

We first prove that one of the subtrees T1 and T2 of any infinite tree T is also
infinite.

lemma inf-subs:
assumes inf : ¬finite(subtree T ds)
shows ¬finite(subtree T (ds @ [Left])) ∨ ¬finite(subtree T (ds @ [Right]))

Proof. We prove it in its contrapositive formulation: If both the subtrees T1
and T2 of a tree T are finite then so is T .

The theorem is now obvious, since T consists of the finite number of notes in
T1 plus the finite number of notes in T2 plus the root note of T . This is clearly
finite. q. e. d.

We now present König’s lemma and its proof in natural language.

Theorem 6.1 Any infinite tree T contains an infinite path.

Proof. We construct the path as follows. Since T is finite, we know from the
previous lemma that either the left subtree T1 or the right subtree T2 is infinite.
If T1 is infinite, the first step of the infinite path is Left and then we continue
this process on T1 to get the following steps. If T1 is not infinite, then it was
T2 which was infinite and then we let Right be the first step in the path and
then continue this process on T2 to get the following steps in infinite the path.
q. e. d.

The formalization of the lemma is

lemma konig :
assumes inf : ¬finite T
assumes wellformed : wf-tree T
shows ∃ c. list-chain c ∧ (∀n. (c n) ∈ T)

72 Formalization: Completeness

The assumptions state that T is an infinite and well-formed tree. The thesis
is that there is some list-chain, all of whose prefixes are in T , i.e., there is an
infinite path in T .

To formalize this proof we need a way to pick the infinite subtrees. For this
purpose, we define the function ?nextnode. We can call it on an node that is
the root of an infinite subtree, and then it returns the path to the left subtree
if it is infinite and otherwise the path to the right subtree, which must then be
infinite.

let ?nextnode =
λds. (if ¬finite(subtree T (ds @ [Left])) then ds @ [Left] else ds @ [Right])

The function is defined inside the proof as a schematic variable. This is some-
what similar to the abbreviations, since it just defines ?nextnode as a syntactical
shorthand for its definition.

We also define the function buildchain. Given a natural number n and a function
next of type dir list⇒ dir list it starts from [] and then applies next to it n times.

fun buildchain :: (dir list ⇒ dir list) ⇒ nat ⇒ dir list where
buildchain next 0 = []
| buildchain next (Suc n) = next (buildchain next n)

This is enough for us to construct our list-chain:

let ?c = buildchain ?nextnode

Of course, we need to show that it is actually a list-chain. This can be shown
with auto. It is also easy to realize, since ?nextnode always appends an element
to the end of the previous list.

We also need to show that for any n, the path ?c n is in T . We prove a
generalization of this by induction on the natural number n. The generalization
is that ?c n is in the tree, and that the subtree rooted in ?c n is infinite.
We need to make this generalization because ?nextnode only gives us a new
infinite subtree, if we call it on the root of an infinite subtree. Therefore, in our
induction, we need to carry this information in our induction hypothesis.

It is easy to prove for the base case of 0. Since T is infinite, it must contain
some path ds, and since the tree is well-formed, it must also contain the prefix

6.5 Semantics of Partial Predicate Denotations 73

[], but [] is actually ?c 0. The subtree rooted in ?c 0 = [] is actually the whole
tree, and it is infinite by assumption.

We also prove the induction case, i.e. prove the theorem for n+1. The induction
hypothesis is that that ?c n is in T , and that the subtree rooted in ?c n is infinite.
We must prove the same property for n + 1. By the induction hypothesis, the
subtree rooted in ?c n is infinite. Therefore we can apply ?nextnode to get a
new infinite subtree ?nextnode (?c n). We recall that by definition of ?c, and
of buildchain, we know that ?c n consists of n applications of ?nextnode. Thus,
?nextnode (?c n) must be n+1 applications of ?nextnode, i.e., ?c (n+1). So the
subtree roted in ?c (n+ 1) is infinite. This also means that there must be some
path ds in the subtree, and ?c (n+1) must surely be a prefix of this. Therefore,
since the T well-formed, ?c (n+ 1) must also be in T .

This concludes our formalization of König’s lemma.

6.5 Semantics of Partial Predicate Denotations

Let us introduce the semantics for partial predicate denotations. We first in-
troduce their semantics for literals. Our semantics is optimistic with regard to
satisfying literals. If the partial predicate denotation does not contain enough
information about a literal to actively falsify it, then it does not falsify it, but
satisfies it.

A partial predicate denotation assigns truth-values to ground atoms. It falsifies
an atom if it assigns False to an instance of the atom. Likewise, it falsifies a
negative literal if it assigns True to an instance of the complementary atom.

fun falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G (Pos p ts) =

(∃ i ts ′.
i < length G
∧ G ! i = False
∧ diag-fatom i = Pos p ts ′

∧ instance-ofts ts ′ ts)
| falsifiesl G (Neg p ts) =

(∃ i ts ′.
i < length G
∧ G ! i = True
∧ diag-fatom i = Pos p ts ′

∧ instance-ofts ts ′ ts)

74 Formalization: Completeness

For a positive literal Pos p ts, it is done by looking if there is an entry in G
containing an atom that is an instance of the literal, and is assigned to False.
The definition for negative literals mirrors this.

A partial predicate denotation G is said to satisfy a literal if it does not falsify
it. In other words, an atom is satisfied if all instances of it in G are assigned
to True. Likewise, a negative literal is satisfied if all instances of it in G are
assigned to False.

A partial predicate denotation falsifies a clause by falsifying some literal in the
clause, and it falsifies a clausal form by falsifying some clause in the clausal
form:

abbreviation falsifiesc :: partial-pred-denot ⇒ fterm clause ⇒ bool where
falsifiesc G C ≡ (∀ l ∈ C . falsifiesl G l)

abbreviation falsifiescs :: partial-pred-denot ⇒ fterm clause set ⇒ bool where
falsifiescs G Cs ≡ (∃C ∈ Cs. falsifiesc G C)

We can use this to formalize closed and open branches. To do that, we must
firstly formalize branches.

inductive branch :: dir list ⇒ tree ⇒ bool where
branch [] Leaf
| branch ds l =⇒ branch (Left # ds) (Branch l r)
| branch ds r =⇒ branch (Right # ds) (Branch l r)

The definition says that the empty list is a subtree of a leaf, and that if the
tail of a list is a branch of an immediate left subtree, then if we add Left to
the beginning we have a branch of the whole tree, and similarly for the right
subtree. Since it is inductive, it also states that these are the only branches.

We have again used an inductive predicate. A closed branch for a clausal form
is a branch that falsifies the clausal form. An open branch is a branch that does
not.

abbreviation closed-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set ⇒ bool
where
closed-branch G T Cs ≡ branch G T ∧ falsifiescs G Cs

6.6 Herbrand’s Theorem 75

abbreviation open-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set ⇒ bool
where
open-branch G T Cs ≡ branch G T ∧ ¬falsifiescs G Cs

A closed tree is a finite tree in which the branches and only the branches are
closed:

fun closed-tree :: tree ⇒ fterm clause set ⇒ bool where
closed-tree T Cs ←→ anybranch T (λb. closed-branch b T Cs)

∧ anyinternal T (λp. ¬falsifiescs p Cs)

6.6 Herbrand’s Theorem

Herbrand’s theorem comes in several versions [CL73]. We prove the following
version:

Theorem 6.2 If a clausal form Cs is unsatisfiable then there exists a finite and
closed semantic tree for Cs.

We first prove the theorem in the following slightly different and contrapositive
formulation:

Lemma 6.3 If all finite semantic trees of a clausal form Cs have an open
branch, then Cs has a model.

6.6.1 Building a Model

We will use König’s lemma to find an infinite path G, all of whose prefixes
are partial predicate denotations that satisfy Cs. The infinite path G can be
seen as an infinite partial predicate denotation. This is the same as a predicate
denotation because it assigns a truth value to any predicate symbol and list of
elements of the Herbrand universe.

Before we find it, we show that it also satisfies Cs. It might seem obvious,
but it does require substantial work that illustrates the interplay of syntax and
semantics similarly to our soundness proof.

76 Formalization: Completeness

Lemma 6.4 If G is an infinite path and all its prefixes satisfy a clausal form
Cs, then G itself also satisfies Cs.

Proof. We fix an arbitrary variable denotation E and a clause C in Cs, to
show that any clause in Cs is true under any variable denotation.

Since our universe is Herbrand terms, the variable denotation E has type var-sym⇒
hterm. Therefore, we can easily create a function sub-of-denot that turns it into
a substitution σ, by converting its domain from hterms to ground terms. This
mirrors our soundness proof, where we converted substitution to variable deno-
tations.

fun sub-of-denot :: hterm var-denot ⇒ substitution where
sub-of-denot E = fterm-of-hterm ◦ E

Using the substitution σ on our clause, we get a new clause C{σ}ls with the
following properties:

a. C{σ}ls is ground. This is because the domain of σ consists of ground terms.

b. Under E and HFun, both C and C{σ}ls are satisfied and falsified by the
same predicate denotations. The reason is this: We consider a variable x
that occurs in C. The variable will be evaluated to an Herbrand term h. If
we look at C{σ}ls, the variable is first replaced by h’s conversion to a term.
Then this term is evaluated by HFun and thus converts to h again. So in
both cases x evaluates to h.

c. If C{σ}ls is falsified by a partial predicate denotation G′, then so is C. That
a literal l{σ}l in C{σ}ls is falsified by G′, means that G′ falsifies some ground
instance of l{σ}l. This ground instance is also an instance of l, and so, also
l in C is also falsified.

d. If C is satisfied by a partial predicate denotation, then so is C{σ}ls. This is
the contrapositive of item c.

Thus, by item b, to prove that C is satisfied by G, it suffices to show that
G satisfies C{σ}ls. Take a prefix G′ of the full predicate denotation G, such
that G′ is large enough that it covers all literals in C{σ}ls. It satisfies C (by
our assumption) and thus also C{σ}ls (by item d). So must G since it is an
extension of G′, and extending it only adds assignments of True and False to
irrelevant literals that are not in C{σ}ls. q. e. d.

6.6 Herbrand’s Theorem 77

In the above proof, we looked at an infinite path G that we had gotten from
König’s lemma, and argued that it was a predicate denotation. But we remember
that our formalization of König’s lemma actually gives us a list-chain of paths.

Therefore, we make a function that converts a list-chain to a predicate denota-
tion.

abbreviation extend :: (nat ⇒ partial-pred-denot) ⇒ hterm pred-denot where
extend f P ts ≡ (

let n = undiag-hatom (Pos P ts) in
f (Suc n) ! n

)

We call the function extend, because extend f can be seen as an extension of any
f n. When we give a predicate symbol p and an hterm list ts to extend f , then
it finds the number n of the atom Pos p ts, and then it finds a prefix f (Suc n)
in that is long enough to contain n. Then it looks up whether the n′th entry
assigns Pos p ts to True or False.

With this cleared up we present our formalization of this lemma:

lemma extend-preserves-model :
assumes f-chain: list-chain (f :: nat ⇒ partial-pred-denot)
assumes n-max : ∀ l∈C . undiag-fatom l ≤ n
assumes C-ground : groundls C
assumes C-false: ¬evalc HFun (extend f) C
shows falsifiesc (f (Suc n)) C

6.6.2 Proving Herbrand’s Theorem

We are now ready to prove Herbrand’s theorem by finding our infinite path.

Proof. We build a semantic tree T from a clausal form Cs. It consists of all
paths that, when seen as a partial predicate denotations, satisfiy Cs.

We now show that this tree is infinite by generating infinitely many different
paths that are contained in this tree: We consider some other semantic tree that
is finite. From our assumption we know that this tree has an open branch. This
is true no matter what the depth of that tree is. So we can build a semantic
tree of depth 1, to get an open branch of length 1. Since it is open, it does not
falsify any ground instance of any clause. Therefore this path is also a path in

78 Formalization: Completeness

T . We can do the same for a semantic tree of depth 2, and one of depth 3, and
so on. Thus the tree is infinite.

Now we can use König’s lemma to obtain an infinite path G in T . All its
prefixes are satisfying partial predicate denotation, and we already showed that
this implies that G also satisfies C. q. e. d.

We formalize the lemma and its proof in Isabelle.

theorem herbrand ′:
assumes openb: ∀T . ∃G. open-branch G T Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃G. evalcs HFun G Cs

This was our second formulation of Herbrand’s lemma. We would also like to
prove the first one. We first take the contra-positive of herbrand′:

theorem herbrand ′-contra:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat : ∀G. ¬evalcs HFun G Cs
shows ∃T . ∀G. branch G T −→ closed-branch G T Cs

We see that we have a tree in which all the branches are closed. However, we
wanted exactly the branches to be closed. We can obtain such a tree by cutting
branches off as soon as they are long enough to falsify a clause.

This cutting of branches is formalized by introducing tree operations that can
remove nodes, and proving a quite substantial amount of theorems about them.
They are not presented here because they do not give much logical insight.
Instead we present the formalization of Herbrand’s lemma and refer to appen-
dices B and C.

theorem herbrand :
assumes unsat : ∀G. ¬ evalcs HFun G Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃T . closed-tree T Cs

The proof simply combines herbrand’-contra with the tree operations.

6.7 Lifting Lemma 79

6.7 Lifting Lemma

Our next step is to prove the lifting lemma. We first state it:

lemma lifting :
assumes appart : varsc c ∩ varsc d = {}
assumes inst1: instance-ofc c ′ c
assumes inst2: instance-ofc d ′ d
assumes appl : applicable c ′ d ′ l ′ m ′ σ
shows ∃ l m τ . applicable c d l m τ ∧

instance-ofc (resolution c ′ d ′ l ′ m ′ σ) (resolution c d l m τ)

This thesis does not contain a formalized proof of this lemma, because it turned
out to be much more challenging than expected. The main reason was that
several proofs of the lemma from the literature were flawed. In chapter 8, we
will discuss this challenge, as well as possibilities for overcoming it. For now,
we turn to the completeness proof.

6.8 Completeness

Assuming a proof of the lifting lemma, we have all the theory necessary to prove
the resolution calculus complete. We state the completeness theorem:

theorem completeness:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat : ∀F G. ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

I used quite a lot of time trying to make a formalized proof of the lifting lemma.
Therefore, I did not have time to also formalize a proof of the completeness
itself. Furthermore, the correctness of such a proof would depend entirely on the
correctness of the lifting lemma. We will therefore instead look at an informal,
but thorough, proof of the theorem, which can form the basis of its formalization.
The proof follows the one from chapter 3, but uses the definitions of the Isabelle
formalization.

Proof. Since our clausal form Cs is unsatisfiable, it must by Herbrand’s lemma
have a finite closed semantic tree. Our proof is by induction on the size of this

80 Formalization: Completeness

tree T and for arbitrary clausal forms. We therefore restate the completeness
lemma to assume the existence of the finite closed semantic tree, such that it
will be part of our induction hypothesis.

theorem completeness ′:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows closed-tree T Cs =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

If the tree has size 1, then it must consist only of a leaf node. The empty list [] is
a branch in this tree. By definition of closed semantic trees, we know that there
must be some clause C ∈ Cs that [] falsifies, i.e. it has to falsify all of the literals
in C. The only clause that [] can falsify is {} because any other clause contains
a literal that [] does not falsify. Thus {} ∈ Cs and we have hence derived the
empty clause.

We also prove it for the induction case of trees of size n > 1. Our induction
hypothesis is that we can derive the empty clause from any clausal form Cs′

with a closed semantic tree T ′ of size smaller than T .

We must prove that we can also derive the empty clause from Cs using our
semantic tree T . We find a node N in T , whose children N1 and N2 are leafs.
The existence of this node can be proven by induction on trees. Now, we consider
the path B from the root to N , the branch B1 from the root to N1, and the
branch B2 from the root to N2. By the definition of semantic trees, we know
that B1 = B @ [True] and B2 = B @ [False]. Furthermore, we know that
there exists some clause C1 that has a ground instance C ′1 that is falsified by
B1. Likewise there is a C2 and a C ′2 corresponding to B2. Since C ′1 is falsified
by B @ [True], all the literals in C ′1 must be falsified by this list. But they
are not all falsified by B, since it is not a branch node. Therefore there must
be a literal l1 ∈ C1 that is falsified by B @ [True], but not by B. This literal
must have number |B| + 1 in our enumeration, since it is the only one that is
falsified by B @ [True] but not B. It must also be negative. Additionally, all
the other literals in C ′1 must be falsified by B, since they are falsified by B1, but
not l′1. Likewise C ′2 must contain l′2 which is the positive literal with number
|B|+1. Therefore C ′1 and C ′2 have a clashing pair of literals, and we can perform
resolution to get a resolvent C ′. The resolvent C ′ must be falsified by B since
resolving C ′1 and C ′2 removes the only two of their literals that were not falsified
by B. By the lifting lemma, we can obtain the resolvent C of C1 and C2 with
instance C ′. We create a new tree T ′ which is T with N1 and N2 removed, and
a new clause set Cs′ = Cs∪{C}. Since C ′ is falsified by the branch B of T ′, and
all other branches of B′ are already closed, we can cut T ′ down to a closed tree
for Cs ∪ {C} using the tree operations for that we used in Herbrand’s theorem
to cut branches.

6.8 Completeness 81

By the induction hypothesis we can derive the empty clause from Cs′. This
gives us the following derivation of the empty clause from Cs: From Cs we
derive Cs′ = Cs ∪ {C} using the resolution rule. Then from that, we derive the
empty clause. q. e. d.

82 Formalization: Completeness

Chapter 7

Examples

In this section we show some formalizations of resolution derivations in our
resolution calculus. We start with the derivation we presented in chapter 2.
This derivation works on ground clauses. Therefore, the complementary sets of
literals each contain one element. This means that any substitution is a unifier,
including the empty substitution. Furthermore, the empty substitution is an
mgu, since we can construct any substitution from it.

theorem unifier-single: unifierls σ {l}

theorem empty-mgu: unifierls ε L =⇒ mguls ε L

We define the literals of the clauses.

definition PP :: fterm literal where
PP = Pos ′′P ′′ [Fun ′′c ′′ []]

definition PQ :: fterm literal where
PQ = Pos ′′Q ′′ [Fun ′′d ′′ []]

definition NP :: fterm literal where

84 Examples

NP = Neg ′′P ′′ [Fun ′′c ′′ []]

definition NQ :: fterm literal where
NQ = Neg ′′Q ′′ [Fun ′′d ′′ []]

The first letter, P or N indicates if the literal is positive or negative, and the
next letter P or Q, indicates if the predicate symbol is P or Q. We present the
formalization of our derivation:

lemma resolution-example1 :
∃Cs. resolution-deriv {{NP ,PQ},{NQ},{PP ,PQ}}

{{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP},{}}

We see that the empty clause can indeed be derived. I have not included the
proof, but it essentially consists of spelling out each derivation step as a proof
statement in Isabelle. It is included in appendix D. The full derivation is then
proven using the simplification rules of resolution-deriv.

We can also prove the example we looked at in chapter 3 as an example of how
the completeness proof works. Again we define the literals first:

definition Pa :: fterm literal where
Pa = Pos ′′a ′′ []

definition Na :: fterm literal where
Na = Neg ′′a ′′ []

definition Pb :: fterm literal where
Pb = Pos ′′b ′′ []

definition Nb :: fterm literal where
Nb = Neg ′′b ′′ []

definition Paa :: fterm literal where
Paa = Pos ′′a ′′ [Fun ′′a ′′ []]

definition Naa :: fterm literal where
Naa = Neg ′′a ′′ [Fun ′′a ′′ []]

definition Pax :: fterm literal where
Pax = Pos ′′a ′′ [Var ′′x ′′]

definition Nax :: fterm literal where
Nax = Neg ′′a ′′ [Var ′′x ′′]

85

We also need a most general unifier for the terms a(a()) and a(x):

definition mguPaaPax :: substitution where
mguPaaPax = (λx . if x = ′′x ′′ then Fun ′′a ′′ [] else Var x)

lemma mguPaaPax-mgu: mguls mguPaaPax {Paa,Pax}

It takes considerable work to prove that it is an mgu. For the formalized proof,
we refer to appendix C. With a formalization of a unification algorithm, we
could just calculate an mgu instead of explicitly proving its existence.

We can now perform the derivation:

lemma resolution-example2 :
∃Cs. resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}

Finally, using our soundness lemma, we show that since we can derive the empty
clause in the examples, the clausal forms are indeed unsatisfiable. We first prove
that if we can derive the empty clause from a clausal form, then it is satisfiable:

lemma ref-sound :
assumes deriv : resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

shows ¬evalcs F G Cs

We then apply this theorem to our examples:

lemma resolution-example1-sem: ¬evalcs F G {{NP , PQ}, {NQ}, {PP , PQ}}

lemma resolution-example2-sem: ¬evalcs F G {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}

86 Examples

Chapter 8

Discussion

This chapter discusses the formalization of the resolution calculus.

• It discusses proofs of the lifting lemma from the literature.

• It suggests solutions obtaining a formalized proof of the lifting lemma.

• It discusses the relation the formalization of the resolution calculus to
automated theorem provers.

• It discusses the lessons I have learned during the formalization process.

• It discusses the thesis itself.

8.1 Proving the Lifting Lemma

The formalization does not yet have a formal proof of completeness. To obtain a
proof, there are two hurdles to overcome. First, we must prove the lifting lemma,
and then we must use it to prove completeness. In chapter 6, we already had
a thorough proof of completeness that could be formalized, and therefore, the
larger challenge is formalizing a proof of the lifting lemma.

88 Discussion

Formalizing a proof of the lifting lemma turned out to be more of a challenge
than I expected. The reason is that the presentations I studied turned out not
to be well suited for a formalization, because they had some flaws that could
not easily be resolved. In this section, we will study a proof from the literature.
We observe some flaws and discuss how to resolve them.

8.1.1 A Proof From the Literature

We will study a proof of the lifting lemma from Ben-Ari’s book Mathematical
Logic for Computer Science [BA12]. We will see why the proof can not easily
be formalized, and describe some flaws and imprecisions. The notation and
definitions are similar to ours, except that substitutions are sets of key-value
pairs writen k ← v, where k is a key and v a value. Thus they can be combined
with the ∪ operator. A substitution is well-formed if it is finite and maps each
key to exactly one value. The notation for applying substitutions is lσ and that
for composition is σ1σ2

Theorem 10.33 (Lifting Lemma) Let C ′1, C ′2 be ground instances of C1,
C2, respectively. Let C ′ be a ground resolvent of C ′1 and C ′2. Then there is
a resolvent C of C1 and C2 such that C ′ is a ground instance of C.

Proof First, standardize apart so that the names of the variables in C1 are
different from those in C2. Let l ∈ C ′1, lc ∈ C ′ be the clashing literals in the
ground resolution.

Since C ′1 is an instance of C1 and l ∈ C ′1, there must be a set of literals
L1 ⊆ C1 such that l is an instance of each literal in L1. Similarly there
must be a set of literals L2 ⊆ C2 such that lc is an instance of each literal
in L2.

The last paragraph is problematic, since with this formulation we can just let
L1 = {} and then it contains nothing that can be resolved. I suggest that we
instead obtain a substitution θ such that C1θ = C ′1 and C2θ = C ′2. Then we let
L1 be the set of all literals l1 ∈ C1 where l1θ = l, and let L2 be the set of all
literals l2 ∈ C2 where l2θ = l. In this way we catch exactly the clashing sets of
literals that are to be removed.

Let λ1 and λ2 [be] mgu’s for L1 and L2, respectively, and let λ = λ1∪λ2. λ
is a well-formed substitution since L1 and L2 have no variables in common.

8.1 Proving the Lifting Lemma 89

This argument strictly does not hold. Here is a counter-example: Let L1 = {c}
and L2 = {c}. L1 and L2 have no variables in common. An mgu for L1 is
u1 = {x ← y, y ← x}. An mgu for L2 is u2 = {x ← z, z ← x}. Then consider
the union u1 ∪ u2 = {x ← y, y ← x, x ← z, z ← x}. It is not well formed since
x is mapped to both y and z.

I think we can remedy this by requiring that we require λ1 to not substitute
any variable that is not in L1, and likewise for L2. In fact, the mgu’s produced
by unification algorithms have this property. This flaw is minor, but for a
formalization even such small flaws are not allowed.

By construction, L1λ and L2λ are sets which contain a single literal each.
These literals have clashing ground instances, so they have a[n] mgu σ.

The argument is presumably that if they have clashing ground instances, then
they have a unifier and then they have an mgu. Here is another minor flaw:
The two literals f(x) and f(f(x)) both have ground instance f(f(c)), but they
cannot be unified. This can also be remedied by adding the above restrictions
on λ1 and λ2.

Furthermore, this argument is left to the reader: The reason they have clashing
ground instances. Here is the argument: θ unifies L1 to a ground instance L1θ,
so since λ1 is mgu: θ = λ1u1 for some u1. Thus L1θ = L1(λ1u1) = (L1λ1)u1 =
(L1λ)u1. Likewise for L2λ.

Since Li ⊆ Ci, we have Liλ ⊆ Ciλ. Therefore, C1λ and C2λ are clauses
that can be made to clash under the mgu σ. It follows that they can be
resolved to obtain clause C:

C = ((C1λ)σ − (L1λ)σ) ∪ ((C2λ)σ − (L2λ)σ).

By the associativity of substitution (Theorem 10.10):

C = (C1(λσ)− L1(λσ)) ∪ (C2(λσ)− (L2(λσ)).

C is a resolvent of C1 and C2 provided that λσ is an mgu of L1 and Lc
2.

But λ is already reduced to equations of the form x← t for distinct variables
x and σ is constructed to be an mgu, so λσ is a reduced set of equations,
all of which are necessary to unify L1 and Lc

2. Hence λσ is an mgu.

90 Discussion

The last two sentences can be difficult to understand. For instance, it is not
entirely clear what the author means by a reduced set of equations or how we
know that they are necessary to unify L1 and Lc

2. A more thorough treatment
is necessary for a formalization.

Since C ′1 and C ′2 are ground instances of C1 and C2:

C ′1 = C1θ1 = C1λσθ
′
1 C ′2 = C2θ2 = C2λσθ

′
2

for some substitutions θ1,θ2,θ′1,θ′2. Let θ′ = θ′1 ∪ θ′2.

Substitutions θ1 and θ2 are introduced, corresponding to the θ that I suggested
we introduced earlier.

We should also argue that θ′ is well formed. To do this we need to make some
of the same considerations as for when we made λ. We also have to think about
how λ and σ were defined.

Then C ′ = Cθ′ and C ′ is a ground instance of C.

Here it is in my opinion not clear why C ′ = Cθ′. I have (unsuccessfully) tried
to come up with a proof for it. My attempt follows here:

We want to have that C ′1 = C1λσθ
′
1 = C1λσθ

′. This should follow from the
variable distinctness of θ′1 and θ′2 as well as from the variable distinctness of
C1λσ and C2λσ. Likewise we argue that C ′2 = C2λσθ

′
2 = C2λσθ

′.

Then:
C ′ = (C ′1 − {l}) ∪ (C ′2 − {lc})

= (C1λσθ
′ − L1λσθ

′) ∪ (C2λσθ
′ − L2λσθ

′)

= (C1λσ − L1λσ)θ
′ ∪ (C2λσθ

′ − L2λσ)θ
′

= ((C1λσ − L1λσ) ∪ (C2λσθ
′ − L2λσ))θ

′

= Cθ′

To prove this I used that (A∪B)σ = Aσ ∪Bσ, which holds in general, but also
(A − B)σ = Aσ − Bσ which does not hold in general. For instance ({Z,X} −
{X}){Z ← X} = {X}, but {Z,X}{Z ← X} − {X}{Z ← X} = {}. Thus my
proof attempt is unsuccessful.

8.1 Proving the Lifting Lemma 91

To sum up, the proof has several flaws and imprecisions. They can be summa-
rized in five bullet points:

• L1 and L2 are not properly defined.

• It is not enough that C1 and C2 are standardized apart. We also need
to make sure that many of the substitutions of the proof preserve this
property.

• Union of substitutions is not necessarily well formed under the given con-
ditions.

• From the text it is not clear why λσ is an mgu of L1 and Lc
2.

• It is not clear why C ′ = Cθ′.

I have pointed to solutions to these flaws and imprecisions except for the last
one, which I am not sure how to address. In appendix E, I repeat the exercise for
another proof, and present a counter-example by Leitsch [Lei89] to that proof.

If we want to prove the lifting lemma, then we must either fix the flaws in the
proof somehow, or we must come up with a new proof entirely.

8.1.2 Another Resolution Calculus

Another approach is to use a resolution calculus that has a simpler proof of the
lifting lemma. One such resolution calculus is presented by Leitsch [Lei97]. We
look at its definition using the notation of this thesis. It is an example of binary
resolution with factoring, but the binary resolution rule is a little different from
the one we presented.

Definition 8.1 (Leitsch’s Binary Resolution Rule)

C1 C2

((C1 − {l1}) ∪ (C2 − {l2})){σ}

C1 and C2 have no variables in common,
l1 ∈ C1, l2 ∈ C2,
σ is an mgu for {l1, lc2}

The difference from our binary resolution rule is that the literals are removed
before the mgu is applied, instead of the other way round. Letisch presents
a simple proof of the lifting lemma for this resolution calculus. One of its
advantages is that it does not have the problems of the above proof because
it avoids the wrong equation (A − B){σ} = A{σ} − B{σ} completely. Other
authors use similar resolution calculi, including Robinson, who invented the
resolution calculus.

92 Discussion

8.1.3 The Unification Algorithm

Another challenge in formalizing the lifting lemma is that its proof assumes the
existence of most general unifiers. That is, if we have a unifier for a set, then
we also have a most general unifier for the set. The standard way to prove this
theorem is by constructing a unification algorithm and proving it correct. A
unification algorithm is an algorithm that explicitly constructs the most general
unifier.

A shortcut to obtain this goal would be to adapt the unification algorithm of
another formalization such as that of IsaFoR [TS09].

8.1.4 Recommended Approach

We have identified two approaches to proving the lifting lemma. One is to
repair the proof for our current definition, or making a new proof. The other
is to choose a definition of resolution that removes literals before applying the
mgu.

To achieve the goal of obtaining a formalized complete resolution calculus, I rec-
ommend the second approach. It has the clear advantage of having a thorough
paper proof to follow. The disadvantage is that we need to prove soundness
again for the new system. However, soundness proofs are simpler than com-
pleteness proofs, and our current proof can hopefully be adapted without too
much effort.

Formalizing the lifting lemma for our current definition of resolution could also
be an interesting result, because it would confirm that such systems are complete
and it would give us a way to repair the proof from Ben-Ari’s textbook.

8.2 Formalizing a Logical System in a Logical
System

I have proven the resolution system sound in the logical system of Isabelle’s
HOL. Therefore, one can argue that the soundness of my resolution calculus
depends on the soundness on Isabelle. Thus, one could argue, I should also
prove Isabelle sound. To do this I would need a stronger proof system than
Isabelle since Gödel’s incompleteness theorem tells us that a sound proof system

8.3 Automatic Theorem Proving 93

cannot prove itself sound. But then we must again consider the soundness of
that stronger logical system. Therefore, one can argue, that we have not really
learned much by doing this exercise.

However, in our introduction we looked at a proof system such as Isabelle as a
collection of arguments that we agree on are true, and from which we construct
our proof. In this view, our formalization is at least as good as an informal proof.
An informal proof will prove the soundness using a number of mathematical
arguments. Our proof does the same, except that we restrict ourselves to a
subset that we agree on beforehand. This also means that we cannot appeal
to the sometimes faulty human intuition, and that a computer can check if the
proof indeed only uses the argument we agreed on. Giving a theorem a proof
that a human can read and understand, and a proof that a computer can check
increases our confidence in the theorem.

Furthermore, there is good empirical evidence that Isabelle is sound. It is used
by many researchers to formalize many different disciplines of mathematics,
computer science, logic, and more. If an unsoundness does occur it can poten-
tially be fixed without affecting the theorems proven thus far. Finally, the logic
of proof assistants can also be verified formally [Har06].

8.3 Automatic Theorem Proving

As mentioned in the introduction, the resolution calculus has been implemented
successfully in automatic theorem provers. It is worth discussing what the im-
plications of this formalization of the resolution calculus has on these provers.

Firstly, the formalization increases confidence in the background theory of these
provers. It also provides through proofs of soundness and completeness, which
can give a better understanding of these theorems. However, the best of the
automatic theorem provers have additional rules in addition to resolution, such
as superposition rules. These rules are not part of this formalization.

Furthermore, the systems are concrete implementations in a programming lan-
guage of a more abstract proof system. This means that even if the full abstract
system is proven sound and complete, this does not necessarily mean that the
concrete implementation is sound and complete. One way to overcome this
obstacle is to create a verified prover.

Isabelle can generate code in the Standard ML programming language from a
formalization. To do this, however, the formalization needs to be specified in a

94 Discussion

way that makes it executable. Our formalization is not at that stage, since we,
for instance, have not formalized a unification algorithm. The approach has,
however, been used to create a verified prover for another prover [Rid04].

8.4 Societal Perspective

As we have seen, this thesis can be seen as a first step towards a verified au-
tomatic prover based on resolution. Provers are highly advanced software and
their formalization will show that verified software is an obtainable goal. Soft-
ware plays a very important role in our society, as increasingly many tools and
devices contain some kind of software. Today the correctness of software is
mostly tested by providing it with input and seeing if it behaves as expected.
However, it is almost always impossible to test all possible inputs, which means
that there might be some case in which the program does not behave as ex-
pected. A good example is the sorting algorithm of the Java library which was
thoroughly tested, but still contained a bug [dGRdB+15].

Verifying the software formally means that we logically prove the absence of
bugs. Such proofs cover all possible cases, because they explain why the software
works on an arbitrary input. This is especially important as software becomes
a larger and larger part of our lives. A good example is the verified airplane
alerting algorithm [CM00] that we considered in chapter 1, because software
bugs can have serious consequences in the case of air transport. Thus, the
verification of software is important in itself. However, if proof systems are to
play an important role in software verification, it is also important that we gain
high confidence in their soundness. This thesis is a step in that direction.

8.5 Lessons Learned

I have learned a lot during the process of formalizing resolution. Firstly, I
have learned that it is important to prepare well. During the first phase of the
process I studied the literature quite thoroughly and was an advantage when
I had to formalize lemmas and theorem, because I understood them well and
got to know them without thinking about formalization details. This meant
that when I formalized the proofs of König’s lemma and Herbrand’s theorem, I
had already overcome the challenge of understanding the proofs, and thus could
focus on formalization.

8.6 Reflections on the Thesis 95

Another lesson that I have learned is that the formalization process can uncover
flaws in proofs. When I initially read the proof of the lifting lemma, I thought
I understood it. However, the formalization process made me discover its flaws.
This mirrors the experience of others.

Additionally, I have learned that the formalization process can lead to more
precise proofs, and help us understand theorems better. A good example of
this is my soundness proof. Many of the proofs I read in the literature only
glanced over this property. The formalization, however, makes the correspon-
dence between syntax and semantics very clear by introducing the evaluation of
substitutions and proving the substitution lemma formally. The separation of
syntax and semantics is central to logics, and the formalization makes this very
explicit.

8.6 Reflections on the Thesis

During the process of writing this thesis, I have intended that my thesis should
be more than an account of my formalization. Therefore, I have an analysis
chapter in which I analyze different opportunities for defining the resolution
calculus and proving it complete, as well as their merits and weaknesses. I also
have this discussion chapter, in which I discuss my results and what further
work can be done. Additionally, the formalization chapters also contain anal-
yses, reflections, and discussion about the different choices I had to make in
addition to the account of the formalization. There is thus a balance between
the different taxonomic levels in the thesis. I could have made this balance
more clear by isolating analysis, formalization, and discussions, completely, and
in this was have shorter formalization chapters that were purely accounts of the
formalization. On the other hand, in the current presentation, the reflections
on the formalization occur in the context in which they came about. This has
the advantage that it makes this context very clear.

96 Discussion

Chapter 9

Conclusions

This chapter concludes on the results of the thesis by determining to which
degree the goals of the thesis were achieved. Furthermore, it looks at a number
of opportunities for further work based on the thesis.

9.1 Results

The thesis has three goals, namely to make an Isabelle formalization of

1. the resolution calculus

2. its soundness

3. its completeness

The thesis contains a formalization of the syntactic objects of terms, literals,
and clauses. From this it formalizes the resolution calculus. Thus, the thesis
clearly fulfilled item 1.

98 Conclusions

The thesis also fulfills item 2, by formally proving the resolution calculus sound.
The formal soundness proof contributes with a proof with a clear separation of
syntax and semantics, and explicitly shows their interplay.

The thesis partially fulfills item 3. While it does not formally prove resolu-
tion complete, it does take important and significant steps towards this goal.
First, it formally proves König’s lemma and Herbrand’s theorem. Second, it
finds weaknesses in informal proofs of the lifting lemma and identifies opportu-
nities to overcome this problem. Finally, it proves completeness thoroughly, but
informally.

9.2 Contribution

The formalization of the resolution calculus is part of the ongoing effort of
formalizing results of mathematics and computer science in proof assistants.
There are already formalizations of several different proof systems and properties
of different logics. Resolution is a central proof system in the study of logic,
and especially in the area of automated theorem proving. Its formalization is
therefore a desirable step towards the formalization of computer science.

9.3 Future Work

There are many opportunities for future work based on this thesis. The first and
most obvious one is to finish the formalization of the completeness proof. The
best opportunity to do this was presented in chapter 8 – namely to use another
resolution calculus, that has a more thorough proof of the lifting lemma.

Another opportunity for future work is to try to prove formally that our cur-
rent resolution calculus fulfills the lifting lemma. It is possible that there are
thorough proofs of this somewhere in the literature, and it is also possible that
we can repair the mistakes of the proofs we looked at.

Yet another opportunity is to create a verified automatic theorem prover from
our formalization. The next important step in this direction is to formalize
a unification algorithm. In chapter 8, we suggested adapting an already fin-
ished formalization. It could, however, also be an interesting result to formalize
some other unification algorithm. The most efficient automatic theorem provers
are based on the logical systems of the resolution calculus and superposition.

9.3 Future Work 99

Therefore, it also could be interesting to work towards a formalization of super-
position.

In chapter 3 we looked at two other opportunities for proving the resolution
calculus complete. It would be interesting to pursue these opportunities also.
Both of them build on formalization work that has already been done, and on
advanced literature.

100 Conclusions

Appendix A

Formalization Code:
TermsAndLiterals.thy

The code in appendix A.2 is a redistribution of a formalization by Berghofer
[Ber07] with modifications by the author of this thesis. It is released under the
BSD software license in appendix A.1.

A.1 BSD Software License

Copyright (c) 2004, Gerwin Klein, Tobias Nipkow, Lawrence C. Paulson
Copyright (c) 2004, contributing authors

(see author notice in individual files)

All rights reserved.

All files in the Archive of Formal Proofs that are unmarked or marked
with ’License: BSD’ are released under the following license. Files
marked with ’License: LGPL’ are released under the terms detailed in
LICENSE.LGPL

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

102 Formalization Code: TermsAndLiterals.thy

Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. Redistributions
in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. Neither the name of
the Archive of Formal Proofs nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

A.2 Terms and Literals

Author: Stefan Berghofer, TU Muenchen, 2003

Author: Anders Schlichtkrull, DTU, 2015

theory TermsAndLiterals imports Main begin
type-synonym var-sym = string
type-synonym fun-sym = string
type-synonym pred-sym = string
datatype fterm =
Fun fun-sym fterm list
| Var var-sym

fun ground :: fterm ⇒ bool where
ground (Var x) ←→ False
| ground (Fun f ts) ←→ (∀ t ∈ set ts. ground t)

abbreviation grounds :: fterm list ⇒ bool where
grounds ts ≡ (∀ t ∈ set ts. ground t)

datatype hterm = HFun fun-sym hterm list
datatype ′t literal =
is-pos: Pos (get-pred : pred-sym) (get-terms: ′t list)
| Neg (get-pred : pred-sym) (get-terms: ′t list)

A.2 Terms and Literals 103

A.2.1 Enumerating datatypes

A.2.1.1 Enumerating Pairs of Natural Numbers

primrec diag :: nat ⇒ (nat × nat)
where
diag 0 = (0 , 0)
| diag (Suc n) =

(let (x , y) = diag n
in case y of

0 ⇒ (0 , Suc x)
| Suc y ⇒ (Suc x , y))

theorem diag-le1 : fst (diag (Suc n)) < Suc n
by (induct n) (simp-all add : Let-def split-def split add : nat .split)

theorem diag-le2 : snd (diag (Suc (Suc n))) < Suc (Suc n)
apply (induct n)
apply (simp-all add : Let-def split-def split add : nat .split nat .split-asm)
apply (rule impI)
apply (case-tac n)
apply simp
apply hypsubst
apply (rule diag-le1)
done

theorem diag-le3 : fst (diag n) = Suc x =⇒ snd (diag n) < n
apply (case-tac n)
apply simp
apply (case-tac nat)
apply (simp add : Let-def)
apply hypsubst
apply (rule diag-le2)
done

theorem diag-le4 : fst (diag n) = Suc x =⇒ x < n
apply (case-tac n)
apply simp
apply (case-tac nat)
apply (simp add : Let-def)
apply hypsubst-thin
apply (drule sym)
apply (drule ord-eq-less-trans)
apply (rule diag-le1)

104 Formalization Code: TermsAndLiterals.thy

apply simp
done

function undiag :: nat × nat ⇒ nat
where
undiag (0 , 0) = 0
| undiag (0 , Suc y) = Suc (undiag (y , 0))
| undiag (Suc x , y) = Suc (undiag (x , Suc y))
by pat-completeness auto

termination
by (relation measure (λ(x , y). ((x + y) ∗ (x + y + 1)) div 2 + x)) auto

theorem diag-undiag [simp]: diag (undiag (x , y)) = (x , y)
by (rule undiag .induct) (simp add : Let-def)+

A.2.1.2 Enumerating Trees

datatype btree = Leaf nat | Branch btree btree

function diag-btree :: nat ⇒ btree
where
diag-btree n = (case fst (diag n) of

0 ⇒ Leaf (snd (diag n))
| Suc x ⇒ Branch (diag-btree x) (diag-btree (snd (diag n))))

by auto

termination
by (relation measure (λx . x)) (auto intro: diag-le3 diag-le4)

primrec undiag-btree :: btree ⇒ nat
where
undiag-btree (Leaf n) = undiag (0 , n)
| undiag-btree (Branch t1 t2) =

undiag (Suc (undiag-btree t1), undiag-btree t2)

theorem diag-undiag-btree [simp]: diag-btree (undiag-btree t) = t
by (induct t) (simp-all add : Let-def)

declare diag-btree.simps [simp del] undiag-btree.simps [simp del]

A.2.1.3 Enumerating Lists

fun list-of-btree :: (nat ⇒ ′a) ⇒ btree ⇒ ′a list
where

A.2 Terms and Literals 105

list-of-btree f (Leaf x) = []
| list-of-btree f (Branch (Leaf n) t) = f n # list-of-btree f t

primrec btree-of-list :: (′a ⇒ nat) ⇒ ′a list ⇒ btree
where
btree-of-list f [] = Leaf 0
| btree-of-list f (x # xs) = Branch (Leaf (f x)) (btree-of-list f xs)

definition diag-list :: (nat ⇒ ′a) ⇒ nat ⇒ ′a list where
diag-list f n = list-of-btree f (diag-btree n)

definition undiag-list :: (′a ⇒ nat) ⇒ ′a list ⇒ nat where
undiag-list f xs = undiag-btree (btree-of-list f xs)

theorem diag-undiag-list [simp]:
(
∧
x . d (u x) = x) =⇒ diag-list d (undiag-list u xs) = xs

by (induct xs) (simp-all add : diag-list-def undiag-list-def)

A.2.1.4 Enumerating hterms

fun term-of-btree :: (nat ⇒ string) ⇒ btree ⇒ hterm
and term-list-of-btree :: (nat ⇒ string) ⇒ btree ⇒ hterm list
where
term-of-btree f (Leaf m) = HFun (f m) []
| term-of-btree f (Branch (Leaf m) t) =

HFun (f m) (term-list-of-btree f t)
| term-list-of-btree f (Leaf m) = []
| term-list-of-btree f (Branch t1 t2) =

term-of-btree f t1 # term-list-of-btree f t2

primrec btree-of-term :: (string ⇒ nat) ⇒ hterm ⇒ btree
and btree-of-term-list :: (string ⇒ nat) ⇒ hterm list ⇒ btree

where
btree-of-term f (HFun m ts) = (if ts=[] then Leaf (f m) else Branch (Leaf (f m))

(btree-of-term-list f ts))
| btree-of-term-list f [] = Leaf 0
| btree-of-term-list f (t # ts) = Branch (btree-of-term f t) (btree-of-term-list f ts)

theorem term-btree: assumes du:
∧
x . d (u x) = x

shows term-of-btree d (btree-of-term u t) = t
and term-list-of-btree d (btree-of-term-list u ts) = ts
by (induct t and ts rule: btree-of-term.induct btree-of-term-list .induct) (simp-all

add : du)

106 Formalization Code: TermsAndLiterals.thy

definition diag-term :: (nat ⇒ string) ⇒ nat ⇒ hterm where
diag-term f n = term-of-btree f (diag-btree n)

definition undiag-term :: (string ⇒ nat) ⇒ hterm ⇒ nat where
undiag-term f t = undiag-btree (btree-of-term f t)

theorem diag-undiag-term [simp]:
(
∧
x . d (u x) = x) =⇒ diag-term d (undiag-term u t) = t

by (simp add : diag-term-def undiag-term-def term-btree)

A.2.1.5 Enumerating chars

definition diag-char :: nat ⇒ char where
diag-char == char-of-nat

definition undiag-char :: char ⇒ nat where
undiag-char == nat-of-char

theorem diag-undiag-char [simp]: diag-char (undiag-char c) = c
unfolding diag-char-def undiag-char-def by auto

A.2.1.6 Enumerating strings

definition diag-string :: nat ⇒ string where
diag-string ≡ diag-list diag-char

definition undiag-string :: string ⇒ nat where
undiag-string ≡ undiag-list undiag-char

theorem diag-undiag-string [simp]:
diag-string (undiag-string s) = s
unfolding diag-string-def undiag-string-def by auto

A.2.1.7 Really enumerating hterms

definition diag-hterm :: nat ⇒ hterm where
diag-hterm ≡ diag-term diag-string

A.2 Terms and Literals 107

definition undiag-hterm :: hterm ⇒ nat where
undiag-hterm ≡ undiag-term undiag-string

theorem diag-undiag-hterm[simp]:
diag-hterm (undiag-hterm t) = t
unfolding diag-hterm-def undiag-hterm-def by auto

A.2.1.8 Enumerating hatoms

definition undiag-hatom :: hterm literal ⇒ nat where
undiag-hatom a ≡ undiag (undiag-string (get-pred a), undiag-list undiag-hterm

(get-terms a))

definition diag-hatom :: nat ⇒ hterm literal where
diag-hatom a ≡

(let (p,ts) = diag a in
(Pos (diag-string p) (diag-list diag-hterm ts))

)

theorem diag-undiag-hatom[simp]:
is-pos a =⇒ diag-hatom (undiag-hatom a) = a
unfolding diag-hatom-def undiag-hatom-def by auto

A.2.1.9 Enumerating ground terms

primrec fterm-of-hterm :: hterm ⇒ fterm
and fterms-of-hterms :: hterm list ⇒ fterm list where
fterm-of-hterm (HFun p ts) = Fun p (fterms-of-hterms ts)
| fterms-of-hterms [] = []
| fterms-of-hterms (t#ts) = fterm-of-hterm t # fterms-of-hterms ts
primrec hterm-of-fterm :: fterm ⇒ hterm
and hterms-of-fterms :: fterm list ⇒ hterm list where
hterm-of-fterm (Fun p ts) = HFun p (hterms-of-fterms ts)
| hterms-of-fterms [] = []
| hterms-of-fterms (t#ts) = hterm-of-fterm t # hterms-of-fterms ts

theorem [simp]: hterm-of-fterm (fterm-of-hterm t) = t
hterms-of-fterms (fterms-of-hterms ts) = ts

by (induct t and ts rule: fterm-of-hterm.induct fterms-of-hterms.induct) auto

theorem [simp]: ground t =⇒ fterm-of-hterm (hterm-of-fterm t) = t
grounds ts =⇒fterms-of-hterms (hterms-of-fterms ts) = ts

by (induct t and ts rule: hterm-of-fterm.induct hterms-of-fterms.induct) auto

108 Formalization Code: TermsAndLiterals.thy

definition diag-fterm :: nat ⇒ fterm where
diag-fterm n = fterm-of-hterm (diag-hterm n)

definition undiag-fterm :: fterm ⇒ nat where
undiag-fterm t = undiag-hterm (hterm-of-fterm t)

theorem diag-undiag-fterm: ground t =⇒ diag-fterm (undiag-fterm t) = t
unfolding diag-fterm-def undiag-fterm-def by auto

A.2.1.10 Enumerating ground atoms

fun fatom-of-hatom :: hterm literal ⇒ fterm literal where
fatom-of-hatom (Pos p ts) = Pos p (fterms-of-hterms ts)
| fatom-of-hatom (Neg p ts) = Neg p (fterms-of-hterms ts)

fun hatom-of-fatom :: fterm literal ⇒ hterm literal where
hatom-of-fatom (Pos p ts) = Pos p (hterms-of-fterms ts)
| hatom-of-fatom (Neg p ts) = Neg p (hterms-of-fterms ts)

theorem [simp]: hatom-of-fatom (fatom-of-hatom (Pos p ts)) = Pos p ts
by auto

theorem [simp]: grounds ts =⇒ fatom-of-hatom (hatom-of-fatom (Pos p ts)) = Pos
p ts
by auto

definition undiag-fatom :: fterm literal ⇒ nat where
undiag-fatom t = undiag-hatom (hatom-of-fatom t)

definition diag-fatom :: nat ⇒ fterm literal where
diag-fatom n = fatom-of-hatom (diag-hatom n)

theorem diag-undiag-fatom[simp]: grounds ts =⇒ diag-fatom (undiag-fatom (Pos p
ts)) = Pos p ts
unfolding undiag-fatom-def diag-fatom-def by auto

end

Appendix B
Formalization Code:

Tree.thy

theory Tree imports Main begin

hide-const (open) Left Right
type-synonym dir = bool

definition Left :: bool where Left = True

definition Right :: bool where Right = False
declare Left-def [simp]
declare Right-def [simp]
datatype tree =
Leaf
| Branch (ltree: tree) (rtree: tree)

B.1 Paths

inductive path :: dir list ⇒ tree ⇒ bool where
path [] t
| path ds l =⇒ path (Left#ds) (Branch l r)
| path ds r =⇒ path (Right#ds) (Branch l r)

110 Formalization Code: Tree.thy

lemma path-inv-Leaf : path p Leaf ←→ p = []
apply auto
using path.simps apply blast
apply (simp add : path.intros)
done

lemma path-inv-Branch-Left :
path (Left#p) (Branch l r) ←→ path p l

using path.intros apply auto
using Left-def Right-def path.cases apply blast
done

lemma path-inv-Branch-Right :
path (Right#p) (Branch l r) ←→ path p r

using path.intros apply auto
using Left-def Right-def path.cases apply blast
done

lemma path-inv-Branch:
path p (Branch l r) ←→ (p=[] ∨ (∃ a p ′. p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path

p ′ r))) (is ?L ←→ ?R)
proof
assume ?L then show ?R using path.simps[of p] by auto

next
assume r : ?R
then show ?L
proof
assume p = [] then show ?L using path.intros by auto

next
assume ∃ a p ′. p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path p ′ r)
then obtain a p ′ where p=a#p ′∧ (a −→ path p ′ l) ∧ (¬a −→ path p ′ r) by

auto
then show ?L using path.intros by (cases a) auto

qed
qed

B.2 Branches

inductive branch :: dir list ⇒ tree ⇒ bool where
branch [] Leaf
| branch ds l =⇒ branch (Left # ds) (Branch l r)

B.2 Branches 111

| branch ds r =⇒ branch (Right # ds) (Branch l r)

lemma has-branch: ∃ b. branch b T
proof (induction T)
case (Leaf) then show ?case using branch.intros by auto

next
case (Branch T 1 T 2)
then obtain b where branch b T 1 by auto
then have branch (Left#b) (Branch T 1 T 2) using branch.intros by auto
then show ?case by auto

qed

lemma branch-inv-Leaf : branch b Leaf ←→ b = [] using branch.simps by blast

lemma branch-inv-Branch-Left :
branch (Left#b) (Branch l r) ←→ branch b l

using branch.intros apply auto
using Left-def Right-def branch.cases apply blast
done

lemma branch-inv-Branch-Right :
branch (Right#b) (Branch l r) ←→ branch b r

using branch.intros apply auto
using Left-def branch.cases by blast

lemma branch-inv-Branch:
branch b (Branch l r) ←→

(∃ a b ′. b=a#b ′∧ (a −→ branch b ′ l) ∧ (¬a −→ branch b ′ r))
using branch.simps[of b] by auto

lemma branch-inv-Leaf2 :
T=Leaf ←→ (∀ b. branch b T −→ b=[])

proof −
{
assume T=Leaf
then have ∀ b. branch b T −→ b = [] using branch-inv-Leaf by auto

}
moreover
{
assume ∀ b. branch b T −→ b=[]
then have ∀ b. branch b T −→ ¬(∃ a b ′. b = a # b ′) by auto
then have ∀ b. branch b T −→ ¬(∃ l r . branch b (Branch l r))

112 Formalization Code: Tree.thy

using branch-inv-Branch by auto
then have T=Leaf using has-branch[of T] by (metis branch.simps)

}
ultimately show T=Leaf ←→ (∀ b. branch b T −→ b=[]) by auto

qed

lemma branch-is-path:
branch ds T =⇒ path ds T

proof (induction T arbitrary : ds)
case Leaf
then have ds = [] using branch-inv-Leaf by auto
then show ?case using path.intros by auto

next
case (Branch T 1 T 2)
then obtain a b where ds-p: ds = a # b ∧ (a −→ branch b T 1) ∧ (¬ a −→ branch

b T 2) using branch-inv-Branch[of ds] by blast
then have (a −→ path b T 1) ∧ (¬a −→ path b T 2) using Branch by auto
then show ?case using ds-p path.intros by (cases a) auto

qed

B.3 Internal Nodes

inductive internal :: dir list ⇒ tree ⇒ bool where
internal [] (Branch l r)
| internal ds l =⇒ internal (Left#ds) (Branch l r)
| internal ds r =⇒ internal (Right#ds) (Branch l r)

lemma internal-inv-Leaf : ¬internal b Leaf using internal .simps by blast

lemma internal-inv-Branch-Left :
internal (Left#b) (Branch l r) ←→ internal b l

apply rule
using internal .intros apply auto
using Left-def Right-def internal .cases apply blast
done

lemma internal-inv-Branch-Right :
internal (Right#b) (Branch l r) ←→ internal b r

using internal .intros apply auto
using Left-def Right-def internal .cases apply blast
done

B.3 Internal Nodes 113

lemma internal-inv-Branch:
internal p (Branch l r) ←→ (p=[] ∨ (∃ a p ′. p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a
−→ internal p ′ r))) (is ?L ←→ ?R)
proof
assume ?L then show ?R using internal .simps[of p] by auto

next
assume r : ?R
then show ?L
proof
assume p = [] then show ?L using internal .intros by auto

next
assume ∃ a p ′. p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a −→ internal p ′ r)
then obtain a p ′ where p=a#p ′∧ (a −→ internal p ′ l) ∧ (¬a −→ internal p ′

r) by auto
then show ?L using internal .intros by (cases a) auto

qed
qed

lemma internal-is-path:
internal ds T =⇒ path ds T

proof (induction T arbitrary : ds)
case Leaf
then have False using internal-inv-Leaf by auto
then show ?case by auto

next
case (Branch T 1 T 2)
then obtain a b where ds-p: ds=[] ∨ ds = a # b ∧ (a −→ internal b T 1) ∧ (¬ a
−→ internal b T 2) using internal-inv-Branch by blast
then have ds = [] ∨ (a −→ path b T 1) ∧ (¬a −→ path b T 2) using Branch by

auto
then show ?case using ds-p path.intros by (cases a) auto

qed

fun parent :: dir list ⇒ dir list where
parent ds = tl ds

abbreviation prefix :: ′a list ⇒ ′a list ⇒ bool where
prefix a b ≡ ∃ c. a @ c = b

abbreviation pprefix :: ′a list ⇒ ′a list ⇒ bool where
pprefix a b ≡ ∃ c. a @ c = b ∧ a 6=b

114 Formalization Code: Tree.thy

abbreviation postfix :: ′a list ⇒ ′a list ⇒ bool where
postfix a b ≡ ∃ c. c @ a = b

abbreviation ppostfix :: ′a list ⇒ ′a list ⇒ bool where
ppostfix a b ≡ ∃ c. c @ a = b ∧ a 6=b

B.4 Deleting Nodes

fun delete :: dir list ⇒ tree ⇒ tree where
delete [] T = Leaf
| delete (True#ds) (Branch T 1 T 2) = Branch (delete ds T 1) T 2

| delete (False#ds) (Branch T 1 T 2) = Branch T 1 (delete ds T 2)

fun cutoff :: (dir list ⇒ bool) ⇒ dir list ⇒ tree ⇒ tree where
cutoff red ds (Branch T 1 T 2) =
(if red ds then Leaf else Branch (cutoff red (ds@[Left]) T 1) (cutoff red (ds@[Right])

T 2))
| cutoff red ds Leaf = Leaf

abbreviation anypath :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anypath T P ≡ ∀ p. path p T −→ P p

abbreviation anybranch :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anybranch T P ≡ ∀ p. branch p T −→ P p

abbreviation anyinternal :: tree ⇒ (dir list ⇒ bool) ⇒ bool where
anyinternal T P ≡ ∀ p. internal p T −→ P p

lemma cutoff-branch ′:
anybranch T (λb. red(ds@b)) =⇒ anybranch (cutoff red ds T) (λb. red(ds@b))

proof (induction T arbitrary : ds)
case (Leaf)
let ?T = cutoff red ds Leaf
{
fix b
assume branch b ?T

B.4 Deleting Nodes 115

then have branch b Leaf by auto
then have red(ds@b) using Leaf by auto

}
then show ?case by simp

next
case (Branch T 1 T 2)
let ?T = cutoff red ds (Branch T 1 T 2)
from Branch have ∀ p. branch (Left#p) (Branch T 1 T 2) −→ red (ds @ (Left#p))

by blast
then have ∀ p. branch p T 1 −→ red (ds @ (Left#p)) using branch.intros by auto
then have anybranch T 1 (λp. red ((ds @ [Left]) @ p)) using branch.intros by

auto
then have aa: anybranch (cutoff red (ds @ [Left]) T 1) (λp. red ((ds @ [Left]) @

p))
using Branch by blast

from Branch have ∀ p. branch (Right#p) (Branch T 1 T 2) −→ red (ds @ (Right#p))
by blast
then have ∀ p. branch p T 2 −→ red (ds @ (Right#p)) using branch.intros by auto
then have anybranch T 2 (λp. red ((ds @ [Right]) @ p)) using branch.intros by

auto
then have bb: anybranch (cutoff red (ds @ [Right]) T 2) (λp. red ((ds @ [Right]) @

p))
using Branch by blast

{
fix b
assume b-p: branch b ?T
have red ds ∨ ¬red ds by auto
then have red(ds@b)
proof
assume ds-p: red ds
then have ?T = Leaf by auto
then have b = [] using b-p branch-inv-Leaf by auto
then show red(ds@b) using ds-p by auto

next
assume ds-p: ¬red ds
let ?T 1

′ = cutoff red (ds@[Left]) T 1

let ?T 2
′ = cutoff red (ds@[Right]) T 2

from ds-p have ?T = Branch ?T 1
′ ?T 2

′ by auto
from this b-p obtain a b ′ where b = a # b ′ ∧ (a −→ branch b ′ ?T 1

′) ∧ (¬a
−→ branch b ′ ?T 2

′) using branch-inv-Branch[of b ?T 1
′ ?T 2

′] by auto
then show red(ds@b) using aa bb by (cases a) auto

qed
}
then show ?case by blast

qed

116 Formalization Code: Tree.thy

lemma cutoff-branch: anybranch T (λp. red p) =⇒ anybranch (cutoff red [] T) (λp.
red p)
using cutoff-branch ′[of T red []] by auto

lemma cutoff-internal ′:
anybranch T (λb. red(ds@b)) =⇒ anyinternal (cutoff red ds T) (λb. ¬red(ds@b))

proof (induction T arbitrary : ds)
case (Leaf) then show ?case using internal-inv-Leaf by simp

next
case (Branch T 1 T 2)
let ?T = cutoff red ds (Branch T 1 T 2)
from Branch have ∀ p. branch (Left#p) (Branch T 1 T 2) −→ red (ds @ (Left#p))

by blast
then have ∀ p. branch p T 1 −→ red (ds @ (Left#p)) using branch.intros by auto
then have anybranch T 1 (λp. red ((ds @ [Left]) @ p)) using branch.intros by

auto
then have aa: anyinternal (cutoff red (ds @ [Left]) T 1) (λp. ¬ red ((ds @ [Left])

@ p)) using Branch by blast

from Branch have ∀ p. branch (Right#p) (Branch T 1 T 2) −→ red (ds @ (Right#p))
by blast
then have ∀ p. branch p T 2 −→ red (ds @ (Right#p)) using branch.intros by auto
then have anybranch T 2 (λp. red ((ds @ [Right]) @ p)) using branch.intros by

auto
then have bb: anyinternal (cutoff red (ds @ [Right]) T 2) (λp. ¬ red ((ds @ [Right])

@ p)) using Branch by blast
{
fix p
assume b-p: internal p ?T
then have ds-p: ¬red ds using internal-inv-Leaf internal .intros by auto
have p=[] ∨ p 6=[] by auto
then have ¬red(ds@p)
proof
assume p=[] then show ¬red(ds@p) using ds-p by auto

next
let ?T 1

′ = cutoff red (ds@[Left]) T 1

let ?T 2
′ = cutoff red (ds@[Right]) T 2

assume p 6=[]
moreover
have ?T = Branch ?T 1

′ ?T 2
′ using ds-p by auto

ultimately
obtain a p ′ where b-p: p = a # p ′ ∧

(a −→ internal p ′ (cutoff red (ds @ [Left]) T 1)) ∧
(¬ a −→ internal p ′ (cutoff red (ds @ [Right]) T 2))

using b-p internal-inv-Branch[of p ?T 1
′ ?T 2

′] by auto

B.5 Possibly Infinite Trees 117

then have ¬red(ds @ [a] @ p ′) using aa bb by (cases a) auto
then show ¬red(ds @ p) using b-p by simp

qed
}
then show ?case by blast

qed

lemma cutoff-internal : anybranch T red =⇒ anyinternal (cutoff red [] T) (λp. ¬red
p)
using cutoff-internal ′[of T red []] by auto

lemma cutoff-branch-internal :
anybranch T red =⇒ ∃T ′. anyinternal T ′ (λp. ¬red p) ∧ anybranch T ′ (λp. red p)
using cutoff-internal [of T] cutoff-branch[of T] by blast

B.5 Possibly Infinite Trees

abbreviation wf-tree :: dir list set ⇒ bool where
wf-tree T ≡ (∀ ds d . (ds @ d) ∈ T −→ ds ∈ T)

fun subtree :: dir list set ⇒ dir list ⇒ dir list set where
subtree T r = {ds ∈ T . ∃ ds ′. ds = r @ ds ′}

lemma subtree-pos:
subtree T ds ⊆ subtree T (ds @ [Left]) ∪ subtree T (ds @ [Right]) ∪ {ds}

proof (rule subsetI ; rule Set .UnCI)
let ?subtree = subtree T
fix x
assume asm: x ∈ ?subtree ds
assume x /∈ {ds}
then have x 6= ds by simp
then have ∃ e d . x = ds @ [d] @ e using asm list .exhaust by auto
then have (∃ e. x = ds @ [Left] @ e) ∨ (∃ e. x = ds @ [Right] @ e) using

bool .exhaust by auto
then show x ∈ ?subtree (ds @ [Left]) ∪ ?subtree (ds @ [Right]) using asm by auto

qed

B.6 Infinite Paths

abbreviation list-chain :: (nat ⇒ ′a list) ⇒ bool where
list-chain f ≡ (f 0 = []) ∧ (∀n. ∃ a. f (Suc n) = (f n) @ [a])

118 Formalization Code: Tree.thy

lemma chain-length: list-chain f =⇒ length (f n) = n
apply (induction n)
apply auto
apply (metis length-append-singleton)
done

lemma chain-prefix : list-chain f =⇒ n1 ≤ n2 =⇒ ∃ a. (f n1) @ a = (f n2)
proof (induction n2)
case (Suc n2)
then have n1 ≤ n2 ∨ n1 = Suc n2 by auto
then show ?case
proof
assume n1 ≤ n2

then obtain a where a: f n1 @ a = f n2 using Suc by auto
have b: ∃ b. f (Suc n2) = f n2 @ [b] using Suc by auto
from a b have ∃ b. f n1 @ (a @ [b]) = f (Suc n2) by auto
then show ∃ c. f n1 @ c = f (Suc n2) by blast

next
assume n1 = Suc n2

then have f n1 @ [] = f (Suc n2) by auto
then show ∃ a. f n1 @ a = f (Suc n2) by auto

qed
qed auto

lemma ith-in-extension:
assumes chain: list-chain f
assumes smalli : i < length (f n1)
assumes n1n2: n1 ≤ n2

shows f n1 ! i = f n2 ! i
proof −
from chain n1n2 have ∃ a. f n1 @ a = f n2 using chain-prefix by blast
then obtain a where a-p: f n1 @ a = f n2 by auto
have (f n1 @ a) ! i = f n1 ! i using smalli by (simp add : nth-append)
then show ?thesis using a-p by auto

qed

B.7 König’s Lemma

lemma inf-subs:
assumes inf : ¬finite(subtree T ds)
shows ¬finite(subtree T (ds @ [Left])) ∨ ¬finite(subtree T (ds @ [Right]))

proof −
let ?subtree = subtree T

B.7 König’s Lemma 119

{
assume asms: finite(?subtree(ds @ [Left]))

finite(?subtree(ds @ [Right]))
have ?subtree ds ⊆ ?subtree (ds @ [Left]) ∪ ?subtree (ds @ [Right]) ∪ {ds}
using subtree-pos by auto

then have finite(?subtree (ds)) using asms by (simp add : finite-subset)
}
then show ¬finite(?subtree (ds @ [Left])) ∨ ¬finite(?subtree (ds @ [Right])) using

inf by auto
qed

fun buildchain :: (dir list ⇒ dir list) ⇒ nat ⇒ dir list where
buildchain next 0 = []
| buildchain next (Suc n) = next (buildchain next n)

lemma konig :
assumes inf : ¬finite T
assumes wellformed : wf-tree T
shows ∃ c. list-chain c ∧ (∀n. (c n) ∈ T)

proof
let ?subtree = subtree T
let ?nextnode = λds. (if ¬finite (subtree T (ds @ [Left])) then ds @ [Left] else ds

@ [Right])

let ?c = buildchain ?nextnode

have is-chain: list-chain ?c by auto

from wellformed have prefix :
∧
ds d . (ds @ d) ∈ T =⇒ ds ∈ T by blast

{
fix n
have (?c n) ∈ T ∧ ¬finite (?subtree (?c n))
proof (induction n)
case 0
have ∃ ds. ds ∈ T using inf by (simp add : not-finite-existsD)
then obtain ds where ds ∈ T by auto
then have ([]@ds) ∈ T by auto
then have [] ∈ T using prefix [of []] by auto
then show ?case using inf by auto

next
case (Suc n)
from Suc have next-in: (?c n) ∈ T by auto
from Suc have next-inf : ¬finite (?subtree (?c n)) by auto

from next-inf have next-next-inf :
¬finite (?subtree (?nextnode (?c n)))

120 Formalization Code: Tree.thy

using inf-subs by auto
then have ∃ ds. ds ∈ ?subtree (?nextnode (?c n))
by (simp add : not-finite-existsD)

then obtain ds where dss: ds ∈ ?subtree (?nextnode (?c n)) by auto
then have ds ∈ T ∃ suf . ds = (?nextnode (?c n)) @ suf by auto
then obtain suf where ds ∈ T ∧ ds = (?nextnode (?c n)) @ suf by auto
then have (?nextnode (?c n)) ∈ T
using prefix [of ?nextnode (?c n) suf] by auto

then have (?c (Suc n)) ∈ T by auto
then show ?case using next-next-inf by auto

qed
}
then show list-chain ?c ∧ (∀n. (?c n)∈ T) using is-chain by auto

qed

end

Appendix C
Formalization Code:

Resolution.thy

theory Resolution imports TermsAndLiterals Tree ∼∼/src/HOL/IMP/Star begin

hide-const (open) TermsAndLiterals.Leaf TermsAndLiterals.Branch

C.1 Terms and literals

fun complement :: ′t literal ⇒ ′t literal (-c [300] 300) where
(Pos P ts)c = Neg P ts
| (Neg P ts)c = Pos P ts

lemma cancel-comp1 : (lc)c = l by (cases l) auto

lemma cancel-comp2 :
assumes asm: l1c = l2c

shows l1 = l2
proof −
from asm have (l1c)c = (l2c)c by auto
then have l1 = (l2c)c using cancel-comp1 [of l1] by auto
then show ?thesis using cancel-comp1 [of l2] by auto

qed

lemma comp-exi1 : ∃ l ′. l ′ = lc by (cases l) auto

122 Formalization Code: Resolution.thy

lemma comp-exi2 : ∃ l . l ′ = lc

proof
show l ′ = (l ′c)c using cancel-comp1 [of l ′] by auto

qed

lemma comp-swap: l1c = l2 ←→ l1 = l2c

proof −
have l1c = l2 =⇒ l1 = l2c using cancel-comp1 [of l1] by auto
moreover
have l1 = l2c =⇒ l1c = l2 using cancel-comp1 by auto
ultimately
show ?thesis by auto

qed

C.2 Clauses
type-synonym ′t clause = ′t literal set

abbreviation complementls :: ′t literal set ⇒ ′t literal set (-C [300] 300) where
LC ≡ complement ‘ L

lemma cancel-compls1 : (LC)C = L
apply auto
apply (simp add : cancel-comp1)
apply (metis imageI cancel-comp1)
done

lemma cancel-compls2 :
assumes asm: L1

C = L2
C

shows L1 = L2

proof −
from asm have (L1

C)C = (L2
C)C by auto

then show ?thesis using cancel-compls1 [of L1] cancel-compls1 [of L2] by simp
qed

fun varst :: fterm ⇒ var-sym set
and varsts :: fterm list ⇒ var-sym set where
varst (Var x) = {x}
| varst (Fun f ts) = varsts ts
| varsts [] = {}
| varsts (t # ts) = (varst t) ∪ (varsts ts)

definition varsl :: fterm literal ⇒ var-sym set where
varsl l = varsts (get-terms l)

definition varsls :: fterm literal set ⇒ var-sym set where

C.3 Semantics 123

varsls L ≡
⋃
l∈L. varsl l

abbreviation groundl :: fterm literal ⇒ bool where
groundl l ≡ grounds (get-terms l)

abbreviation groundls :: fterm clause ⇒ bool where
groundls L ≡ ∀ l ∈ L. groundl l

lemma ground-comp: groundl (lc) ←→ groundl l by (cases l) auto

lemma ground-compls: groundls (LC) ←→ groundls L using ground-comp by auto

C.3 Semantics
type-synonym ′u fun-denot = fun-sym ⇒ ′u list ⇒ ′u
type-synonym ′u pred-denot = pred-sym ⇒ ′u list ⇒ bool
type-synonym ′u var-denot = var-sym ⇒ ′u

fun evalt :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm ⇒ ′u where
evalt E F (Var x) = E x
| evalt E F (Fun f ts) = F f (map (evalt E F) ts)

abbreviation evalts :: ′u var-denot ⇒ ′u fun-denot ⇒ fterm list ⇒ ′u list where
evalts E F ts ≡ map (evalt E F) ts

fun evall :: ′u var-denot ⇒ ′u fun-denot ⇒ ′u pred-denot ⇒ fterm literal ⇒ bool
where
evall E F G (Pos p ts) ←→ (G p (evalts E F ts))
| evall E F G (Neg p ts) ←→ ¬(G p (evalts E F ts))

definition evalc :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause ⇒ bool where
evalc F G C ←→ (∀E . ∃ l ∈ C . evall E F G l)

definition evalcs :: ′u fun-denot ⇒ ′u pred-denot ⇒ fterm clause set ⇒ bool where
evalcs F G Cs ←→ (∀C ∈ Cs. evalc F G C)

definition validcs :: fterm clause set ⇒ bool where
validcs Cs ←→ (∀F G. evalcs F G Cs)

C.3.1 Semantics of Ground Terms

lemma ground-var-denott : ground t =⇒ (evalt E F t = evalt E ′ F t)
proof (induction t)
case (Var x)
then have False by auto
then show ?case by auto

124 Formalization Code: Resolution.thy

next
case (Fun f ts)
then have ∀ t ∈ set ts. ground t by auto
then have ∀ t ∈ set ts. evalt E F t = evalt E ′ F t using Fun by auto
then have evalts E F ts = evalts E ′ F ts by auto
then have F f (map (evalt E F) ts) = F f (map (evalt E ′ F) ts) by metis
then show ?case by simp

qed

lemma ground-var-denotts: grounds ts =⇒ (evalts E F ts = evalts E ′ F ts)
using ground-var-denott by (metis map-eq-conv)

lemma ground-var-denot : groundl l =⇒ (evall E F G l = evall E ′ F G l)
proof (induction l)
case Pos then show ?case using ground-var-denotts by (metis evall .simps(1)

literal .sel(3))
next
case Neg then show ?case using ground-var-denotts by (metis evall .simps(2)

literal .sel(4))
qed

C.4 Substitutions
type-synonym substitution = var-sym ⇒ fterm

fun sub :: fterm ⇒ substitution ⇒ fterm (-{-}t [300 ,0] 300) where
(Var x){σ}t = σ x
| (Fun f ts){σ}t = Fun f (map (λt . t {σ}t) ts)

abbreviation subs :: fterm list ⇒ substitution ⇒ fterm list (-{-}ts [300 ,0] 300)
where
ts{σ}ts ≡ (map (λt . t {σ}t) ts)

fun subl :: fterm literal ⇒ substitution ⇒ fterm literal (-{-}l [300 ,0] 300) where
(Pos p ts){σ}l = Pos p (ts{σ}ts)
| (Neg p ts){σ}l = Neg p (ts{σ}ts)

abbreviation subls :: fterm literal set ⇒ substitution ⇒ fterm literal set (-{-}ls
[300 ,0] 300) where
L {σ}ls ≡ (λl . l {σ}l) ‘ L

definition instance-oft :: fterm ⇒ fterm ⇒ bool where
instance-oft t1 t2 ←→ (∃σ. t1 = t2{σ}t)

definition instance-ofts :: fterm list ⇒ fterm list ⇒ bool where
instance-ofts ts1 ts2 ←→ (∃σ. ts1 = ts2{σ}ts)

C.4 Substitutions 125

definition instance-ofl :: fterm literal ⇒ fterm literal ⇒ bool where
instance-ofl l1 l2 ←→ (∃σ. l1 = l2{σ}l)

lemma comp-sub: (lc) {σ}l=(l {σ}l)c
by (cases l) auto

definition var-renaming :: substitution ⇒ bool where
var-renaming σ ←→ (∀ x . ∃ y . σ x = Var y)

C.4.1 The Empty Substitution

abbreviation ε :: substitution where
ε ≡ Var

lemma empty-subt : (t :: fterm){ε}t = t
apply (induction t)
apply (auto simp add : map-idI)
done

lemma empty-subts: (ts :: fterm list){ε}ts = ts
using empty-subt by auto

lemma empty-subl : (l :: fterm literal){ε}l = l
using empty-subts by (cases l) auto

lemma instance-oft-self : instance-oft t t
unfolding instance-oft-def
proof
show t = t{ε}t using empty-subt by auto

qed

lemma instance-ofts-self : instance-ofts ts ts
unfolding instance-ofts-def
proof
show ts = ts{ε}ts using empty-subts by auto

qed

lemma instance-ofl-self : instance-ofl l l
unfolding instance-ofl-def
proof
show l = l{ε}l using empty-subl by auto

qed

C.4.2 Substitutions and Ground Terms

lemma ground-sub: ground t =⇒ t {σ}t = t

126 Formalization Code: Resolution.thy

apply (induction t)
apply (auto simp add : map-idI)
done

lemma ground-subs: grounds ts =⇒ ts {σ}ts = ts
using ground-sub by (simp add : map-idI)

lemma groundl-subs: groundl l =⇒ l {σ}l = l
using ground-subs by (cases l) auto

lemma groundls-subls:
assumes ground : groundls L
shows L {σ}ls = L

proof −
{
fix l
assume l-L: l ∈ L
then have groundl l using ground by auto
then have l = l{σ}l using groundl-subs by auto
moreover
then have l {σ}l ∈ L {σ}ls using l-L by auto
ultimately
have l ∈ L {σ}ls by auto

}
moreover
{
fix l
assume l-L: l ∈ L {σ}ls
then obtain l ′ where l ′-p: l ′ ∈ L ∧ l ′ {σ}l = l by auto
then have l ′ = l using ground groundl-subs by auto
from l-L l ′-p this have l ∈ L by auto

}
ultimately show ?thesis by auto

qed

C.4.3 Composition

definition composition :: substitution ⇒ substitution ⇒ substitution (infixl · 55)
where
(σ1 · σ2) x = (σ1 x){σ2}t

lemma composition-conseq2t : t{σ1}t{σ2}t = t{σ1 · σ2}t
proof (induction t)
case (Var x)
have (Var x){σ1}t{σ2}t = (σ1 x){σ2}t by simp
also have ... = (σ1 · σ2) x unfolding composition-def by simp
finally show ?case by auto

C.4 Substitutions 127

next
case (Fun t ts)
then show ?case unfolding composition-def by auto

qed

lemma composition-conseq2ts: ts{σ1}ts{σ2}ts = ts{σ1 · σ2}ts
using composition-conseq2t by auto

lemma composition-conseq2l : l{σ1}l{σ2}l = l{σ1 · σ2}l
using composition-conseq2t by (cases l) auto

lemma composition-assoc: σ1 · (σ2 · σ3) = (σ1 · σ2) · σ3

proof
fix x
show (σ1 · (σ2 · σ3)) x = ((σ1 · σ2) · σ3) x unfolding composition-def using

composition-conseq2t by simp
qed

lemma empty-comp1 : (σ · ε) = σ
proof
fix x
show (σ · ε) x = σ x unfolding composition-def using empty-subt by auto

qed

lemma empty-comp2 : (ε · σ) = σ
proof
fix x
show (ε · σ) x = σ x unfolding composition-def by simp

qed

lemma instance-ofts-trans :
assumes ts12: instance-ofts ts1 ts2
assumes ts23: instance-ofts ts2 ts3
shows instance-ofts ts1 ts3

proof −
from ts12 obtain σ12 where ts1 = ts2 {σ12}ts
unfolding instance-ofts-def by auto

moreover
from ts23 obtain σ23 where ts2 = ts3 {σ23}ts
unfolding instance-ofts-def by auto

ultimately
have ts1 = ts3 {σ23}ts {σ12}ts by auto
then have ts1 = ts3 {σ23 · σ12}ts using composition-conseq2ts by simp
then show ?thesis unfolding instance-ofts-def by auto

qed

128 Formalization Code: Resolution.thy

C.5 Unifiers

definition unifiert :: substitution ⇒ fterm set ⇒ bool where
unifiert σ ts ←→ (∃ t ′. ∀ t ∈ ts. t{σ}t = t ′)

definition unifierls :: substitution ⇒ fterm literal set ⇒ bool where
unifierls σ L ←→ (∃ l ′. ∀ l ∈ L. l{σ}l = l ′)

lemma unif-sub:
assumes unif : unifierls σ L
assumes nonempty : L 6= {}
shows ∃ l . subls L σ = {subl l σ}

proof −
from nonempty obtain l where l ∈ L by auto
from unif this have L {σ}ls = {l {σ}l} unfolding unifierls-def by auto
then show ?thesis by auto

qed

lemma unifierls-def2 :
assumes L-elem: L 6= {}
shows unifierls σ L ←→ (∃ l . L {σ}ls ={l})

proof
assume unif : unifierls σ L
from L-elem obtain l where l ∈ L by auto
then have L {σ}ls = {l {σ}l} using unif unfolding unifierls-def by auto
then show ∃ l . L{σ}ls = {l} by auto

next
assume ∃ l . L {σ}ls ={l}
then obtain l where L {σ}ls = {l} by auto
then have ∀ l ′ ∈ L. l ′{σ}l = l by auto
then show unifierls σ L unfolding unifierls-def by auto

qed

lemma groundls-unif-singleton:
assumes groundls: groundls L
assumes unif : unifierls σ ′ L
assumes empt : L 6= {}
shows ∃ l . L = {l}

proof −
from unif empt have ∃ l . L {σ ′}ls = {l} using unif-sub by auto
then show ?thesis using groundls-subls groundls by auto

qed

definition unifiablet :: fterm set ⇒ bool where
unifiablet fs ←→ (∃σ. unifiert σ fs)

C.5 Unifiers 129

definition unifiablels :: fterm literal set ⇒ bool where
unifiablels L ←→ (∃σ. unifierls σ L)

lemma unifier-comp[simp]: unifierls σ (LC) ←→ unifierls σ L
proof
assume unifierls σ (LC)
then obtain l ′′ where l ′′-p: ∀ l ∈ LC . l{σ}l = l ′′

unfolding unifierls-def by auto
obtain l ′ where (l ′)c = l ′′ using comp-exi2 [of l ′′] by auto
from this l ′′-p have l ′-p:∀ l ∈ LC . l{σ}l = (l ′)c by auto
have ∀ l ∈ L. l{σ}l = l ′

proof
fix l
assume l∈L
then have lc ∈ LC by auto
then have (lc){σ}l = (l ′)c using l ′-p by auto
then have (l {σ}l)c = (l ′)c by (cases l) auto
then show l{σ}l = l ′ using cancel-comp2 by blast

qed
then show unifierls σ L unfolding unifierls-def by auto

next
assume unifierls σ L
then obtain l ′ where l ′-p: ∀ l ∈ L. l{σ}l = l ′ unfolding unifierls-def by auto
have ∀ l ∈ LC . l{σ}l = (l ′)c

proof
fix l
assume l ∈ LC

then have lc ∈ L using cancel-comp1 by (metis image-iff)
then show l{σ}l = (l ′)c using l ′-p comp-sub cancel-comp1 by metis

qed
then show unifierls σ (LC) unfolding unifierls-def by auto

qed

lemma unifier-sub1 : unifierls σ L =⇒ L ′ ⊆ L =⇒ unifierls σ L ′

unfolding unifierls-def by auto

lemma unifier-sub2 :
assumes asm: unifierls σ (L1 ∪ L2)
shows unifierls σ L1 ∧ unifierls σ L2

proof −
have L1 ⊆ (L1 ∪ L2) ∧ L2 ⊆ (L1 ∪ L2) by simp
from this asm show ?thesis using unifier-sub1 by auto

qed

C.5.1 Most General Unifiers

130 Formalization Code: Resolution.thy

definition mgut :: substitution ⇒ fterm set ⇒ bool where
mgut σ fs ←→ unifiert σ fs ∧ (∀ u. unifiert u fs −→ (∃ i . u = σ · i))

definition mguls :: substitution ⇒ fterm literal set ⇒ bool where
mguls σ L ←→ unifierls σ L ∧ (∀ u. unifierls u L −→ (∃ i . u = σ · i))

C.6 Resolution

definition applicable :: fterm clause ⇒ fterm clause
⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ bool where

applicable C 1 C 2 L1 L2 σ ←→
C 1 6= {} ∧ C 2 6= {} ∧ L1 6= {} ∧ L2 6= {}
∧ varsls C 1 ∩ varsls C 2 = {}
∧ L1 ⊆ C 1 ∧ L2 ⊆ C 2

∧ mguls σ (L1 ∪ L2
C)

definition resolution :: fterm clause ⇒ fterm clause
⇒ fterm literal set ⇒ fterm literal set
⇒ substitution ⇒ fterm clause where

resolution C 1 C 2 L1 L2 σ = (C 1 {σ}ls − L1 {σ}ls) ∪ (C 2 {σ}ls − L2 {σ}ls)

inductive resolution-step :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-rule:
C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ =⇒

resolution-step Cs (Cs ∪ {resolution C 1 C 2 L1 L2 σ})
| standardize-apart :

C ∈ Cs =⇒ var-renaming σ =⇒ resolution-step Cs (Cs ∪ {C {σ}ls})

definition resolution-deriv :: fterm clause set ⇒ fterm clause set ⇒ bool where
resolution-deriv = star resolution-step

lemma ground-resolution:
assumes ground : groundls C 1 ∧ groundls C 2

assumes appl : applicable C 1 C 2 L1 L2 σ
shows resolution C 1 C 2 L1 L2 σ = (C 1 − L1) ∪ (C 2 − L2) ∧ (∃ l . L1 = {l} ∧ L2

= {l}C)
proof −
from appl ground have groundl : groundls L1 ∧ groundls L2 unfolding applicable-def
by auto
from this ground appl have resl : (C 1 {σ}ls − L1 {σ}ls) ∪ (C 2 {σ}ls − L2 {σ}ls)

= (C 1 − L1) ∪ (C 2 − L2)
using groundls-subls unfolding applicable-def by auto

from ground appl have l1 ′l2 ′ground : groundls L1 ∧ groundls L2

unfolding applicable-def by auto

C.7 Soundness 131

then have groundls (L1 ∪ L2
C) using ground-compls by auto

moreover
from appl have unifierls σ (L1 ∪ L2

C) unfolding mguls-def applicable-def by auto
ultimately
obtain l where L1 ∪ L2

C = {l}
using appl groundls-unif-singleton
unfolding applicable-def by (metis sup-eq-bot-iff)
from appl this have L1 = {l} ∧ L2

C = {l} unfolding applicable-def by (metis
image-is-empty singleton-Un-iff)
then have l-p: L1 = {l} ∧ L2 = {l}C using cancel-compls1 [of L2] by auto

from resl l-p show ?thesis unfolding resolution-def by auto
qed

lemma ground-resolution-ground :
assumes asm: groundls C 1 ∧ groundls C 2

assumes appl : applicable C 1 C 2 L1 L2 σ
shows groundls (resolution C 1 C 2 L1 L2 σ)

proof −
from asm appl have resolution C 1 C 2 L1 L2 σ = (C 1 − L1) ∪ (C 2 − L2) using

ground-resolution by auto
then show ?thesis using asm by auto

qed

C.7 Soundness

fun evalsub :: ′u fun-denot ⇒ ′u var-denot ⇒ substitution ⇒ ′u var-denot where
evalsub F E σ = (evalt E F) ◦ σ

lemma substitutiont : evalt E F (t {σ}t) = evalt (evalsub F E σ) F t
apply (induction t)
apply auto
apply (metis (mono-tags, lifting) comp-apply map-cong)
done

lemma substitutionts: evalts E F (ts {σ}ts) = evalts (evalsub F E σ) F ts
using substitutiont by auto

lemma substitutionl : evall E F G (l {σ}l) ←→ evall (evalsub F E σ) F G l
apply (induction l)
using substitutionts apply (metis evall .simps(1) subl .simps(1))
using substitutionts apply (metis evall .simps(2) subl .simps(2))
done

132 Formalization Code: Resolution.thy

lemma subst-sound :
assumes asm: evalc F G C
shows evalc F G (C {σ}ls)

proof −
have ∀E . ∃ l ∈ C {σ}ls. evall E F G l
proof
fix E
from asm have ∃ l ∈ C . evall (evalsub F E σ) F G l unfolding evalc-def by

auto
then show ∃ l ∈ C {σ}ls. evall E F G l using substitutionl [of E F G - σ] by

auto
qed

then show ?thesis unfolding evalc-def by auto
qed

lemma simple-resolution-sound :
assumes C 1sat : evalc F G C 1

assumes C 2sat : evalc F G C 2

assumes l1inc1: l1 ∈ C 1

assumes l2inc2: l2 ∈ C 2

assumes Comp: l1c = l2
shows evalc F G ((C 1 − {l1}) ∪ (C 2 − {l2}))

proof −
have ∀E . ∃ l ∈ (((C 1 − {l1}) ∪ (C 2 − {l2}))). evall E F G l
proof
fix E
have evall E F G l1 ∨ evall E F G l2 using Comp by (cases l1) auto
then show ∃ l ∈ (((C 1 − {l1}) ∪ (C 2 − {l2}))). evall E F G l
proof
assume evall E F G l1
then have ¬evall E F G l2 using Comp by (cases l1) auto

then have ∃ l2 ′∈ C 2. l2 ′ 6= l2 ∧ evall E F G l2 ′ using l2inc2 C 2sat unfolding
evalc-def by auto

then show ∃ l∈(C 1 − {l1}) ∪ (C 2 − {l2}). evall E F G l by auto
next
assume evall E F G l2
then have ¬evall E F G l1 using Comp by (cases l1) auto

then have ∃ l1 ′∈ C 1. l1 ′ 6= l1 ∧ evall E F G l1 ′ using l1inc1 C 1sat unfolding
evalc-def by auto

then show ∃ l∈(C 1 − {l1}) ∪ (C 2 − {l2}). evall E F G l by auto
qed

qed
then show ?thesis unfolding evalc-def by simp

qed

lemma resolution-sound :
assumes sat1: evalc F G C 1

C.7 Soundness 133

assumes sat2: evalc F G C 2

assumes appl : applicable C 1 C 2 L1 L2 σ
shows evalc F G (resolution C 1 C 2 L1 L2 σ)

proof −
from sat1 have sat1σ: evalc F G (C 1 {σ}ls) using subst-sound by blast
from sat2 have sat2σ: evalc F G (C 2 {σ}ls) using subst-sound by blast

from appl obtain l1 where l1-p: l1 ∈ L1 unfolding applicable-def by auto

from l1-p appl have l1 ∈ C 1 unfolding applicable-def by auto
then have inc1σ: l1 {σ}l ∈ C 1 {σ}ls by auto

from l1-p have unified1: l1 ∈ (L1 ∪ (L2
C)) by auto

from l1-p appl have l1σisl1σ: {l1{σ}l} = L1 {σ}ls
unfolding mguls-def unifierls-def applicable-def by auto

from appl obtain l2 where l2-p: l2 ∈ L2 unfolding applicable-def by auto

from l2-p appl have l2 ∈ C 2 unfolding applicable-def by auto
then have inc2σ: l2 {σ}l ∈ C 2 {σ}ls by auto

from l2-p have unified2: l2c ∈ (L1 ∪ (L2
C)) by auto

from unified1 unified2 appl have l1 {σ}l = (l2c){σ}l
unfolding mguls-def unifierls-def applicable-def by auto

then have comp: (l1 {σ}l)c = l2 {σ}l using comp-sub comp-swap by auto

from appl have unifierls σ (L2
C)

using unifier-sub2 unfolding mguls-def applicable-def by blast
then have unifierls σ L2 by auto
from this l2-p have l2σisl2σ: {l2{σ}l} = L2 {σ}ls unfolding unifierls-def by auto

from sat1σ sat2σ inc1σ inc2σ comp have evalc F G (C 1{σ}ls − {l1{σ}l} ∪
(C 2{σ}ls − {l2{σ}l})) using simple-resolution-sound [of F G C 1 {σ}ls C 2 {σ}ls l1
{σ}l l2 {σ}l]

by auto
from this l1σisl1σ l2σisl2σ show ?thesis unfolding resolution-def by auto

qed

lemma sound-step: resolution-step Cs Cs ′ =⇒ evalcs F G Cs =⇒ evalcs F G Cs ′

proof (induction rule: resolution-step.induct)
case (resolution-rule C 1 Cs C 2 l1 l2 σ)
then have evalc F G C 1 ∧ evalc F G C 2 unfolding evalcs-def by auto
then have evalc F G (resolution C 1 C 2 l1 l2 σ)
using resolution-sound resolution-rule by auto

then show ?case using resolution-rule unfolding evalcs-def by auto

134 Formalization Code: Resolution.thy

next
case (standardize-apart C Cs σ)
then have evalc F G C unfolding evalcs-def by auto
then have evalc F G (C{σ}ls) using subst-sound by auto
then show ?case using standardize-apart unfolding evalcs-def by auto

qed

lemma sound-derivation:
resolution-deriv Cs Cs ′ =⇒ evalcs F G Cs =⇒ evalcs F G Cs ′

unfolding resolution-deriv-def
proof (induction rule: star .induct)
case refl then show ?case by auto

next
case (step Cs1 Cs2 Cs3) then show ?case using sound-step by auto

qed

C.8 Enumerations

fun hlit-of-flit :: fterm literal ⇒ hterm literal where
hlit-of-flit (Pos P ts) = Pos P (hterms-of-fterms ts)
| hlit-of-flit (Neg P ts) = Neg P (hterms-of-fterms ts)

lemma undiag-neg : undiag-fatom (Neg P ts) = undiag-fatom (Pos P ts)
unfolding undiag-fatom-def undiag-hatom-def by auto

lemma undiag-neg2 : undiag-hatom (Neg P ts) = undiag-hatom (Pos P ts)
unfolding undiag-fatom-def undiag-hatom-def by auto

lemma ground-h-undiag : groundl l =⇒ undiag-hatom (hlit-of-flit l) = undiag-fatom l
proof (induction l)
case (Pos P ts)
then show ?case unfolding undiag-fatom-def by auto

next
case (Neg P ts)
then show ?case using undiag-neg undiag-neg2 unfolding undiag-fatom-def by

auto
qed

C.9 Herbrand Interpretations
value HFun

C.10 Partial Interpretations 135

lemma hterms-ground : ground (fterm-of-hterm t) grounds (fterms-of-hterms ts)
apply (induction t and ts rule: fterm-of-hterm.induct fterms-of-hterms.induct)
apply auto
done

lemma eval-ground : ground t =⇒ (evalt E HFun t) = hterm-of-fterm t grounds ts
=⇒ (evalts E HFun ts) = hterms-of-fterms ts
apply (induction t and ts rule: hterm-of-fterm.induct hterms-of-fterms.induct)
apply auto
done

lemma evall-grounds:
assumes asm: grounds ts
shows evall E HFun G (Pos P ts) ←→ G P (hterms-of-fterms ts)

proof −
have evall E HFun G (Pos P ts) = G P (evalts E HFun ts) by auto
also have ... = G P (hterms-of-fterms ts) using asm eval-ground by metis
finally show ?thesis by auto

qed

C.10 Partial Interpretations
type-synonym partial-pred-denot = bool list

fun falsifiesl :: partial-pred-denot ⇒ fterm literal ⇒ bool where
falsifiesl G (Pos p ts) =

(∃ i ts ′.
i < length G
∧ G ! i = False
∧ diag-fatom i = Pos p ts ′

∧ instance-ofts ts ′ ts)
| falsifiesl G (Neg p ts) =

(∃ i ts ′.
i < length G
∧ G ! i = True
∧ diag-fatom i = Pos p ts ′

∧ instance-ofts ts ′ ts)

abbreviation falsifiesc :: partial-pred-denot ⇒ fterm clause ⇒ bool where
falsifiesc G C ≡ (∀ l ∈ C . falsifiesl G l)

abbreviation falsifiescs :: partial-pred-denot ⇒ fterm clause set ⇒ bool where
falsifiescs G Cs ≡ (∃C ∈ Cs. falsifiesc G C)

abbreviation extend :: (nat ⇒ partial-pred-denot) ⇒ hterm pred-denot where

136 Formalization Code: Resolution.thy

extend f P ts ≡ (
let n = undiag-hatom (Pos P ts) in
f (Suc n) ! n

)

fun sub-of-denot :: hterm var-denot ⇒ substitution where
sub-of-denot E = fterm-of-hterm ◦ E

lemma ground-sub-of-denott : ground ((t :: fterm) {sub-of-denot E}t)
apply (induction t)
apply (auto simp add : hterms-ground)
done

lemma ground-sub-of-denotts: grounds ((ts :: fterm list) {sub-of-denot E}ts)
apply auto
using ground-sub-of-denott apply simp
done

lemma ground-sub-of-denotl : groundl ((l :: fterm literal) {sub-of-denot E}l)
proof −
have grounds (subs (get-terms l :: fterm list) (sub-of-denot E))
using ground-sub-of-denotts by auto

then show ?thesis by (cases l) auto
qed

lemma sub-of-denot-equivx : evalt E HFun (sub-of-denot E x) = E x
proof −
have ground (sub-of-denot E x) using hterms-ground by auto
then
have evalt E HFun (sub-of-denot E x) = hterm-of-fterm (sub-of-denot E x)
using eval-ground(1) by auto

also have ... = hterm-of-fterm (fterm-of-hterm (E x)) by auto
also have ... = E x by auto
finally show ?thesis by auto

qed

lemma sub-of-denot-equivt :
evalt E HFun (t {sub-of-denot E}t) = evalt E HFun t

apply (induction t)
using sub-of-denot-equivx apply auto
done

lemma sub-of-denot-equivts: evalts E HFun (ts {sub-of-denot E}ts) = evalts E HFun
ts
using sub-of-denot-equivt apply simp
done

C.10 Partial Interpretations 137

lemma sub-of-denot-equivl : evall E HFun G (l {sub-of-denot E}l) = evall E HFun G
l
proof (induction l)
case (Pos p ts)
have evall E HFun G ((Pos p ts) {sub-of-denot E}l) ←→ G p (evalts E HFun (ts
{sub-of-denot E}ts)) by auto
also have ... ←→ G p (evalts E HFun ts) using sub-of-denot-equivts[of E ts] by

metis
also have ... ←→ evall E HFun G (Pos p ts) by simp
finally
show ?case by blast

next
case (Neg p ts)
have evall E HFun G ((Neg p ts) {sub-of-denot E}l) ←→ ¬G p (evalts E HFun (ts
{sub-of-denot E}ts)) by auto
also have ... ←→ ¬G p (evalts E HFun ts) using sub-of-denot-equivts[of E ts] by

metis
also have ... = evall E HFun G (Neg p ts) by simp
finally
show ?case by blast

qed

lemma sub-of-denot-equiv-ground ′:
evall E HFun G l = evall E HFun G (l {sub-of-denot E}l) ∧ groundl (l {sub-of-denot

E}l)
using sub-of-denot-equivl ground-sub-of-denotl by auto

lemma partial-equiv-subst ′: falsifiesl G ((l ::fterm literal) {σ}l) =⇒ falsifiesl G l
proof (induction l)
case (Pos P ts)
then have falsifiesl G (Pos P (ts{σ}ts)) by auto
then obtain i ts ′ where i-ts ′:

i < length G
∧ G ! i = False
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ (ts {σ}ts) by auto
moreover
have instance-ofts (ts {σ}ts) ts unfolding instance-ofts-def by auto
then have instance-ofts ts ′ ts using i-ts ′ instance-ofts-trans by auto
ultimately
have

i < length G
∧ G ! i = False
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ ts by auto

138 Formalization Code: Resolution.thy

then show ?case by auto
next
case (Neg P ts)
then have falsifiesl G (Neg P (ts{σ}ts)) by auto
then obtain i ts ′ where i-ts ′:

i < length G
∧ G ! i = True
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ (ts {σ}ts) by auto
moreover
have instance-ofts (ts {σ}ts) ts unfolding instance-ofts-def by auto
then have instance-ofts ts ′ ts using i-ts ′ instance-ofts-trans by auto
ultimately
have

i < length G
∧ G ! i = True
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ ts by auto
then show ?case by auto

qed

lemma partial-equiv-subst :
assumes asm: falsifiesc G ((C :: fterm clause) {σ}ls)
shows falsifiesc G C

proof
fix l
assume l ∈ C
then have falsifiesl G (l {σ}l) using asm by auto
then show falsifiesl G l using partial-equiv-subst ′ by auto

qed

lemma sub-of-denot-equiv-ground :
((∃ l ∈ C . evall E HFun G l) ←→ (∃ l ∈ C {sub-of-denot E}ls. evall E HFun G l))

∧ groundls (C {sub-of-denot E}ls)
using sub-of-denot-equiv-ground ′ by auto

C.10.1 Semantic Trees

abbreviation closed-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set ⇒ bool
where
closed-branch G T Cs ≡ branch G T ∧ falsifiescs G Cs

abbreviation open-branch :: partial-pred-denot ⇒ tree ⇒ fterm clause set ⇒ bool
where
open-branch G T Cs ≡ branch G T ∧ ¬falsifiescs G Cs

C.11 Herbrand’s Theorem 139

fun closed-tree :: tree ⇒ fterm clause set ⇒ bool where
closed-tree T Cs ←→ anybranch T (λb. closed-branch b T Cs)

∧ anyinternal T (λp. ¬falsifiescs p Cs)

C.11 Herbrand’s Theorem

lemma maximum:
assumes asm: finite C
shows ∃n :: nat . ∀ l ∈ C . f l ≤ n

proof
from asm show ∀ l∈C . f l ≤ (Max (f ‘ C)) by auto

qed

lemma extend-preserves-model :
assumes f-chain: list-chain (f :: nat ⇒ partial-pred-denot)
assumes n-max : ∀ l∈C . undiag-fatom l ≤ n
assumes C-ground : groundls C
assumes C-false: ¬evalc HFun (extend f) C
shows falsifiesc (f (Suc n)) C

proof
let ?F = HFun
let ?G = extend f

fix l
assume asm: l∈C
let ?i = undiag-fatom l
from asm have i-n: ?i ≤ n using n-max by auto
then have j-n: ?i ≤ length (f n) using f-chain chain-length[of f n] by auto

from C-false have ¬(∀E . ∃ l ∈ C . evall E ?F ?G l) unfolding evalc-def by auto
then have ∃E . ∀ l ∈ C . ¬ evall E ?F ?G l by auto
then have ∀E . ∀ l ∈ C . ¬ evall E ?F ?G l using C-ground ground-var-denot by

blast
then have last : ∀E . ¬ evall E ?F ?G l using asm by blast

then show falsifiesl (f (Suc n)) l
proof (cases l)
case (Pos P ts)
from Pos asm C-ground have ts-ground : grounds ts by auto
from Pos asm C-ground have undiag-l : undiag-hatom (hlit-of-flit l) = ?i using

ground-h-undiag by blast

from last have ¬?G P (hterms-of-fterms ts) using evall-grounds[of ts - ?G P]
ts-ground Pos by auto

then have f (Suc ?i) ! ?i = False using Pos undiag-l by auto

140 Formalization Code: Resolution.thy

moreover
have f (Suc ?i) ! ?i = f (Suc n) ! ?i
using f-chain i-n j-n chain-length[of f] ith-in-extension[of f] by simp

ultimately have f (Suc n) ! ?i = False by auto
then have
?i < length (f (Suc n)) (∗ j-n ∗)
∧ f (Suc n) ! ?i = False (∗last thing ∗)
∧ diag-fatom ?i = Pos P ts (∗ by definition of ?i ∗)
∧ instance-ofts ts ts
using

j-n ts-ground diag-undiag-fatom instance-ofts-self f-chain chain-length[of f]
Pos

by auto
then show ?thesis using Pos by auto

next
case (Neg P ts)
from Neg asm C-ground have ts-ground : grounds ts by auto
from Neg asm C-ground have undiag-l : undiag-hatom (hlit-of-flit l) = ?i using

ground-h-undiag by blast

from last have ?G P (hterms-of-fterms ts) using evall-grounds[of ts - ?G P]
C-ground asm Neg by auto

then have f (Suc ?i) ! ?i = True using Neg undiag-neg undiag-l
by (metis hatom-of-fatom.simps undiag-fatom-def)

moreover
have f (Suc ?i) ! ?i = f (Suc n) ! ?i
using f-chain i-n j-n chain-length[of f] ith-in-extension[of f] by simp

ultimately have f (Suc n) ! ?i = True by auto
then have
?i < length (f (Suc n)) (∗ j-n ∗)
∧ f (Suc n) ! ?i = True (∗last thing ∗)
∧ diag-fatom ?i = Pos P ts (∗ by definition of ?i ∗)
∧ instance-ofts ts ts
using j-n diag-undiag-fatom instance-ofts-self [of ts] f-chain chain-length[of f]

Neg undiag-neg ts-ground
by auto

then show ?thesis using Neg by auto
qed

qed

lemma list-chain-model :
assumes f-chain: list-chain (f :: nat ⇒ partial-pred-denot)
assumes model-cs: ∀n. ¬falsifiescs (f n) Cs
assumes fin-cs: finite Cs
assumes fin-c: ∀C ∈ Cs. finite C

C.11 Herbrand’s Theorem 141

shows ∃G. evalcs HFun G Cs
proof
let ?F = HFun
let ?G = extend f

have ∀C E . (C ∈ Cs −→ (∃ l ∈ C . evall E ?F ?G l))
proof (rule allI ; rule allI ; rule impI)
fix C
fix E
assume asm: C ∈ Cs
let ?σ = sub-of-denot E
have groundcσ: groundls (C {?σ}ls) using sub-of-denot-equiv-ground by auto
from fin-c asm have finite (C {?σ}ls) by auto
then obtain n where largest : ∀ l ∈ (C {?σ}ls). undiag-fatom l ≤ n using

maximum by blast
from model-cs asm have ¬falsifiesc (f (Suc n)) C by auto
then have model-c: ¬falsifiesc (f (Suc n)) (C {?σ}ls) using partial-equiv-subst

by blast

have evalc HFun ?G (C {?σ}ls)
using groundcσ f-chain largest model-c

extend-preserves-model [of f C {?σ}ls n] by blast
then have ∀E . ∃ l ∈ (C {?σ}ls). evall E ?F ?G l unfolding evalc-def by auto
then have ∃ l ∈ (C {?σ}ls). evall E ?F ?G l by auto
then show ∃ l∈C . evall E ?F ?G l using sub-of-denot-equiv-ground by simp

qed
then have ∀C ∈ Cs. ∀E . ∃ l ∈ C . evall E ?F ?G l by auto
then have ∀C ∈ Cs. evalc ?F ?G C unfolding evalc-def by auto
then show evalcs ?F ?G Cs unfolding evalcs-def by auto

qed

fun deeptree :: nat ⇒ tree where
deeptree 0 = Leaf
| deeptree (Suc n) = Branch (deeptree n) (deeptree n)

thm extend-preserves-model
thm list-chain-model

lemma branch-length: branch b (deeptree n) =⇒ length b = n
proof (induction n arbitrary : b)
case 0 then show ?case using branch-inv-Leaf by auto

next
case (Suc n)
then have branch b (Branch (deeptree n) (deeptree n)) by auto

142 Formalization Code: Resolution.thy

then obtain a b ′where p: b=a#b ′∧ branch b ′ (deeptree n) using branch-inv-Branch[of
b] by blast
then have length b ′ = n using Suc by auto
then show ?case using p by auto

qed

lemma infinity :
assumes bij : ∀n :: nat . undiago (diago n) = n
assumes all-tree: ∀n :: nat . (diago n) ∈ tree
shows ¬finite tree

proof −
from bij all-tree have ∀n. n = undiago (diago n) ∧ (diago n) ∈ tree by auto
then have ∀n. ∃ ds. n = undiago ds ∧ ds ∈ tree by auto
then have undiago ‘ tree = (UNIV :: nat set) by auto
then have ¬finite treeby (metis finite-imageI infinite-UNIV-nat)
then show ?thesis by auto

qed

lemma longer-falsifies ′:
falsifiesl ds l =⇒ falsifiesl (ds@d) l

proof (induction l)
case (Pos P ts)
then obtain i ts ′ where i-ts ′:

i < length ds
∧ ds ! i = False
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ ts by auto
moreover
from i-ts ′ have i < length (ds@d) by auto
moreover
from i-ts ′ have (ds@d) ! i = False by (simp add : nth-append)
ultimately
have

i < length (ds@d)
∧ (ds@d) ! i = False
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ ts by auto
then show ?case by auto

next
case (Neg P ts)
then obtain i ts ′ where i-ts ′:

i < length ds
∧ ds ! i = True
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ ts by auto

C.11 Herbrand’s Theorem 143

moreover
from i-ts ′ have i < length (ds@d) by auto
moreover
from i-ts ′ have (ds@d) ! i = True by (simp add : nth-append)
ultimately
have

i < length (ds@d)
∧ (ds@d) ! i = True
∧ diag-fatom i = Pos P ts ′

∧ instance-ofts ts ′ ts by auto
then show ?case by auto

qed

lemma longer-falsifies:
assumes asm: falsifiescs ds Cs
shows falsifiescs (ds @ d) Cs

proof −
from asm obtain C where C-p: C ∈ Cs ∧ falsifiesc ds C by auto
then have ∀ l ∈ C . falsifiesl ds l by auto
then have ∀ l ∈ C . falsifiesl (ds@d) l using longer-falsifies ′ by auto
then have falsifiesc (ds @ d) C by auto
then show falsifiescs (ds @ d) Cs using C-p by auto

qed

theorem herbrand ′:
assumes openb: ∀T . ∃G. open-branch G T Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃G. evalcs HFun G Cs

proof −

let ?tree = {G. ¬falsifiescs G Cs}
let ?undiag = length
let ?diag = (λl . SOME b. open-branch b (deeptree l) Cs) :: nat ⇒ partial-pred-denot

from openb have diag-open: ∀ l . open-branch (?diag l) (deeptree l) Cs
using someI-ex [of %b. open-branch b (deeptree -) Cs] by auto

then have ∀n. ?undiag (?diag n) = n using branch-length by auto
moreover
have ∀n. (?diag n) ∈ ?tree using diag-open by auto
ultimately
have ¬finite ?tree using infinity [of - λn. SOME b. open-branch b (- n) Cs] by simp

moreover
have ∀ ds d . ¬falsifiescs (ds @ d) Cs −→ ¬falsifiescs ds Cs
using longer-falsifies[of Cs] by blast

then have (∀ ds d . ds @ d ∈ ?tree −→ ds ∈ ?tree) by auto

144 Formalization Code: Resolution.thy

ultimately
have ∃ c. list-chain c ∧ (∀n. c n ∈ ?tree) using konig [of ?tree] by blast
then have ∃G. list-chain G ∧ (∀n. ¬ falsifiescs (G n) Cs) by auto

then show ∃G. evalcs HFun G Cs using list-chain-model finite-cs by auto
qed

theorem herbrand ′-contra:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat : ∀G. ¬evalcs HFun G Cs
shows ∃T . ∀G. branch G T −→ closed-branch G T Cs

proof −
from finite-cs unsat have ∀T . ∃G. open-branch G T Cs =⇒ ∃G. evalcs HFun G

Cs using herbrand ′ by blast
then show ?thesis using unsat by blast

qed

theorem herbrand :
assumes unsat : ∀G. ¬ evalcs HFun G Cs
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows ∃T . closed-tree T Cs

proof −
from unsat finite-cs obtain T where anybranch T (λb. closed-branch b T Cs)

using herbrand ′-contra[of Cs] by blast
then have ∃T . anybranch T (λp. falsifiescs p Cs) ∧ anyinternal T (λp. ¬ falsifiescs

p Cs)
using cutoff-branch-internal [of T (λp. falsifiescs p Cs)] by blast

then show ?thesis by auto
qed

C.12 Lifting Lemma

lemma lifting :
assumes appart : varsc c ∩ varsc d = {}
assumes inst1: instance-ofc c ′ c
assumes inst2: instance-ofc d ′ d
assumes appl : applicable c ′ d ′ l ′ m ′ σ
shows ∃ l m τ . applicable c d l m τ ∧

instance-ofc (resolution c ′ d ′ l ′ m ′ σ) (resolution c d l m τ)
oops

C.13 Completeness

lemma falsifiesc [] C =⇒ C = {}

C.13 Completeness 145

proof −
{ fix l
assume l ∈ C
moreover
have ¬falsifiesl [] l by (cases l) auto
ultimately have ¬falsifiesc [] C by auto

} then show falsifiesc [] C =⇒ C = {} by auto
qed

theorem completeness ′:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
shows closed-tree T Cs =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

proof (induction T arbitrary : Cs rule: Nat .measure-induct-rule[of size])
fix T ::tree
fix Cs :: fterm clause set
assume (

∧
T ′ Cs. size T ′ < size T =⇒

closed-tree T ′ Cs =⇒ ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′)
assume closed-tree T Cs
have True by auto
then show ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′ oops

theorem completeness:
assumes finite-cs: finite Cs ∀C∈Cs. finite C
assumes unsat : ∀F G. ¬evalcs F G Cs
shows ∃Cs ′. resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

oops

end

146 Formalization Code: Resolution.thy

Appendix D

Formalization Code:
Examples.thy

theory Examples imports Resolution begin
value Var ′′x ′′

value Fun ′′one ′′ []
value Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]
value Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]
value Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]
value Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]
value Pos ′′equals ′′

[Fun ′′add ′′[Fun ′′mul ′′[Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′[]],Var ′′x ′′]

fun Fnat :: nat fun-denot where
Fnat f [n,m] =
(if f = ′′add ′′ then n + m else
if f = ′′mul ′′ then n ∗ m else 0)

| Fnat f [] =
(if f = ′′one ′′ then 1 else
if f = ′′zero ′′ then 0 else 0)

| Fnat f us = 0

fun Gnat :: nat pred-denot where
Gnat p [x ,y] =

(if p = ′′less ′′ ∧ x < y then True else

148 Formalization Code: Examples.thy

if p = ′′greater ′′ ∧ x > y then True else
if p = ′′equals ′′ ∧ x = y then True else False)

| Gnat p us = False

fun Enat :: nat var-denot where
Enat x =

(if x = ′′x ′′ then 26 else
if x = ′′y ′′ then 5 else 0)

lemma evalt Enat Fnat (Var ′′x ′′) = 26
by auto

lemma evalt Enat Fnat (Fun ′′one ′′ []) = 1
by auto

lemma evalt Enat Fnat (Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′]) = 25
by auto

lemma
evalt Enat Fnat (Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′], Fun ′′one ′′ []]) = 26
by auto

lemma evall Enat Fnat Gnat (Pos ′′greater ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma evall Enat Fnat Gnat (Neg ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = True
by auto

lemma evall Enat Fnat Gnat (Pos ′′less ′′ [Var ′′x ′′, Var ′′y ′′]) = False
by auto

lemma evall Enat Fnat Gnat

(Pos ′′equals ′′

[Fun ′′add ′′ [Fun ′′mul ′′ [Var ′′y ′′,Var ′′y ′′],Fun ′′one ′′ []]
,Var ′′x ′′]

) = True
by auto

definition PP :: fterm literal where
PP = Pos ′′P ′′ [Fun ′′c ′′ []]

definition PQ :: fterm literal where
PQ = Pos ′′Q ′′ [Fun ′′d ′′ []]

definition NP :: fterm literal where

149

NP = Neg ′′P ′′ [Fun ′′c ′′ []]

definition NQ :: fterm literal where
NQ = Neg ′′Q ′′ [Fun ′′d ′′ []]

theorem empty-mgu: unifierls ε L =⇒ mguls ε L
unfolding unifierls-def mguls-def apply auto
apply (rule-tac x=u in exI)
using empty-comp1 empty-comp2 apply (auto)
done

theorem unifier-single: unifierls σ {l}
unfolding unifierls-def by auto

theorem resolution-rule ′:
C 1 ∈ Cs =⇒ C 2 ∈ Cs =⇒ applicable C 1 C 2 L1 L2 σ

=⇒ C = {resolution C 1 C 2 L1 L2 σ}
=⇒ resolution-step Cs (Cs ∪ C)
using resolution-rule by auto

lemma resolution-example1 :
∃Cs. resolution-deriv {{NP ,PQ},{NQ},{PP ,PQ}}

{{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP},{}}
proof −
have resolution-step

{{NP ,PQ},{NQ},{PP ,PQ}}
({{NP ,PQ},{NQ},{PP ,PQ}} ∪ {{NP}})

apply (rule resolution-rule ′[of {NP ,PQ} - {NQ} {PQ} {NQ} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply (auto)
done

then have resolution-step
{{NP ,PQ},{NQ},{PP ,PQ}}
({{NP ,PQ},{NQ},{PP ,PQ},{NP}})

by (simp add : insert-commute)
moreover
have resolution-step

{{NP ,PQ},{NQ},{PP ,PQ},{NP}}
({{NP ,PQ},{NQ},{PP ,PQ},{NP}} ∪ {{PP}})

apply (rule resolution-rule ′[of {NQ} - {PP ,PQ} {NQ} {PQ} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply (auto)
done

then have resolution-step

150 Formalization Code: Examples.thy

{{NP ,PQ},{NQ},{PP ,PQ},{NP}}
({{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP}})

by (simp add : insert-commute)
moreover
have resolution-step

{{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP}}
({{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP}} ∪ {{}})

apply (rule resolution-rule ′[of {NP} - {PP} {NP} {PP} ε])
unfolding applicable-def varsls-def varsl-def

NQ-def NP-def PQ-def PP-def resolution-def
using unifier-single empty-mgu apply (auto)
done

then have resolution-step
{{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP}}
({{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP},{}})

by (simp add : insert-commute)
ultimately
have resolution-deriv {{NP ,PQ},{NQ},{PP ,PQ}}

{{NP ,PQ},{NQ},{PP ,PQ},{NP},{PP},{}}
unfolding resolution-deriv-def using star .intros[of resolution-step] by auto

then show ?thesis by auto
qed

definition Pa :: fterm literal where
Pa = Pos ′′a ′′ []

definition Na :: fterm literal where
Na = Neg ′′a ′′ []

definition Pb :: fterm literal where
Pb = Pos ′′b ′′ []

definition Nb :: fterm literal where
Nb = Neg ′′b ′′ []

definition Paa :: fterm literal where
Paa = Pos ′′a ′′ [Fun ′′a ′′ []]

definition Naa :: fterm literal where
Naa = Neg ′′a ′′ [Fun ′′a ′′ []]

151

definition Pax :: fterm literal where
Pax = Pos ′′a ′′ [Var ′′x ′′]

definition Nax :: fterm literal where
Nax = Neg ′′a ′′ [Var ′′x ′′]

definition mguPaaPax :: substitution where
mguPaaPax = (λx . if x = ′′x ′′ then Fun ′′a ′′ [] else Var x)

lemma mguPaaPax-mgu: mguls mguPaaPax {Paa,Pax}
proof −
let ?σ = λx . if x = ′′x ′′ then Fun ′′a ′′ [] else Var x
have a: unifierls (λx . if x = ′′x ′′ then Fun ′′a ′′ [] else Var x) {Paa,Pax} unfolding

Paa-def Pax-def unifierls-def by auto
have b: ∀ u. unifierls u {Paa,Pax} −→ (∃ i . u = ?σ · i)
proof (rule;rule)
fix u
assume unifierls u {Paa,Pax}
then have uuu: u ′′x ′′ = Fun ′′a ′′ [] unfolding unifierls-def Paa-def Pax-def

by auto
have ?σ · u = u
proof
fix x
{
assume x= ′′x ′′

moreover
have (?σ · u) ′′x ′′ = Fun ′′a ′′ [] unfolding composition-def by auto
ultimately have (?σ · u) x = u x using uuu by auto

}
moreover
{
assume x 6= ′′x ′′
then have (?σ · u) x = (ε x) {u}t unfolding composition-def by auto
then have (?σ · u) x = u x by auto

}
ultimately show (?σ · u) x = u x by auto

qed
then have (∃ i . ?σ · i = u) by auto
then show (∃ i . u = ?σ · i) by auto
qed

from a b show ?thesis unfolding mguls-def unfolding mguPaaPax-def by auto
qed

lemma resolution-example2 :
∃Cs. resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}

152 Formalization Code: Examples.thy

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}
proof −
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}} ∪ {{Na,Pb}})

apply (rule resolution-rule ′[of {Pax} - {Na,Pb,Naa} {Pax} {Naa} mguPaaPax
])

using mguPaaPax-mgu unfolding applicable-def varsls-def varsl-def
Nb-def Na-def Pax-def Pa-def Pb-def Naa-def Paa-def mguPaaPax-def

resolution-def
apply auto
done

then have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}})

by (simp add : insert-commute)
moreover
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}} ∪ {{Na}})

apply (rule resolution-rule ′[of {Nb,Na} - {Na,Pb} {Nb} {Pb} ε])
unfolding applicable-def varsls-def varsl-def

Pb-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply (auto)
done

then have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}})

by (simp add : insert-commute)
moreover
have resolution-step

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}} ∪ {{}})

apply (rule resolution-rule ′[of {Na} - {Pa} {Na} {Pa} ε])
unfolding applicable-def varsls-def varsl-def

Pa-def Nb-def Na-def PP-def resolution-def
using unifier-single empty-mgu apply (auto)
done

then have resolution-step
{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na}}
({{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}})

by (simp add : insert-commute)
ultimately
have resolution-deriv {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}

{{Nb,Na},{Pax},{Pa},{Na,Pb,Naa},{Na,Pb},{Na},{}}
unfolding resolution-deriv-def using star .intros[of resolution-step] by auto

then show ?thesis by auto

153

qed

lemma ref-sound :
assumes deriv : resolution-deriv Cs Cs ′ ∧ {} ∈ Cs ′

shows ¬evalcs F G Cs
proof −
from deriv have evalcs F G Cs =⇒ evalcs F G Cs ′ using sound-derivation by

auto
moreover
from deriv have evalcs F G Cs ′ =⇒ evalc F G {} unfolding evalcs-def by auto
moreover
then have evalc F G {} =⇒ False unfolding evalc-def by auto
ultimately show ?thesis by auto

qed

lemma resolution-example1-sem: ¬evalcs F G {{NP , PQ}, {NQ}, {PP , PQ}}
using resolution-example1 ref-sound by auto

lemma resolution-example2-sem: ¬evalcs F G {{Nb,Na},{Pax},{Pa},{Na,Pb,Naa}}
using resolution-example2 ref-sound by auto

end

154 Formalization Code: Examples.thy

Appendix E
Chang and Lee’s Lifting

Lemma

Here follows an account of flaws and imprecisions in Chang and Lee’s proof
of the lifting lemma [CL73]. It also presents a counter-example to the proof.
Their notation uses ∼ to give the complement literal and ◦ for composition of
substitutions. Like Ben-Ari, they represent substitutions as finite sets of key-
value pairs and can thus apply the ∪ operator to combine them.

Lemma 5.1 (Lifting Lemma) If C ′1 and C ′2 are instances of C1 and C2,
respectively, and if C ′ is a resolvent of C ′1 and C ′2, then there is a resolvent
C of C1 and C2 such that C ′ is an instance of C.

Proof We rename, if necessary, the variables in C1 and C2 so that variables
in C1 are all different from those in C2. Let L′1 and L′2 be the literals
resolved upon, and let

C ′ = (C ′1γ − L′1γ) ∪ (C ′2γ − L′2γ),

where γ is a most general unifier of L′1 and ∼L′2.

This is problematic in the binary resolution with factoring of their book. The
reason is that in the proof it is assumed that no factoring is done on C ′1 and C ′2,

156 Chang and Lee’s Lifting Lemma

but factoring is actually allowed by the resolution calculus of the book. One
could argue that it is acceptable, since factoring is just further instantiation and
thus we could perhaps just obtain the factored C ′1 and C ′2. However, we will see
in the counter-example that this handling of factors is problematic.

Since C ′1 and C ′2 are instances of C1 and C2, respectively, there is a substi-
tution θ such that C ′1 = C1θ and C ′2 = C2θ. Let L1

i , ..., L
ri
i be the literals

in Ci corresponding to L′i (i.e., L1
i θ = · · · = Lri

i θ = L′i), i = 1, 2. If ri > 1,
obtain a most general unifier λi, for {L1

i , ..., L
ri
i } and let Li = L1

iλi, i = l, 2.
(Note that L1

iλi, ..., L
ri
i λi are the same, since λi is a most general unifier.)

Then Li, is a literal in the factor Ciλi of Ci. If ri = 1, let λi = ε and
Li = L1

iλi.

Let λ = λ1 ∪ λ2.

Like in the proof of Ben-Ari, we should make sure that the union λ1 ∪ λ2 is
well-formed. Again we could require additional properties of the mgus λ1 and
λ2.

Thus, clearly L′i is an instance of Li. Since L′i and ∼L′2 are unifiable, L1

and ∼L2 are unifiable.

L′i should probably have been L′1 in the last sentence.

Let σ be a most general unifier of L1 and ∼L2. Let

C = ((C1λ)σ − L1σ) ∪ ((C2λ)σ − L2σ)

= ((C1λ)σ − ({L1
1, ..., L

r1
1 }λ)σ) ∪ ((C2λ)σ − ({L1

2, ..., L
r2
2 }λ)σ)

= (C1(λ ◦ σ)− {L1
1, ..., L

r1
1 }(λ ◦ σ)) ∪ (C2(λ ◦ σ)− {L1

2, ..., L
r2
2 }(λ ◦ σ)).

C is a resolvent of Cl and C2. Clearly, C ′ is an instance of C since

C ′ = (C ′1γ − L′1γ) ∪ (C ′2γ − L′2γ)
= ((C1θ)γ − ({L1

1, ..., L
r1
1 }θ)γ) ∪ ((C2θ)γ − ({L1

2, ..., L
r2
2 }θ)γ)

= (C1(θ ◦ γ)− {L1
1, ..., L

r1
1 }(θ ◦ γ)) ∪ (C2(θ ◦ γ)− {L1

2, ..., L
r2
2 }(θ ◦ γ))

and λ ◦ σ is more general than θ ◦ γ. Thus we complete the proof of this
lemma.

157

Realizing that λ ◦ σ is more general than θ ◦ γ is left to the reader, but I do not
find it obvious.

I do not find it clear that C ′ is an instance of C. Like the last proof, I have
made a unsuccessful proof attempt:

Since λ ◦ σ is more general than θ ◦ γ we can obtain substitution u where
θ ◦ γ = (λ ◦ σ) ◦ u. Then

C ′ = (C1(θ ◦ γ)− {L1
1, ..., L

r1
1 }(θ ◦ γ)) ∪ (C2(θ ◦ γ)− {L1

2, ..., L
r2
2 }(θ ◦ γ))

= (C1((λ ◦ σ) ◦ u)− {L1
1, ..., L

r1
1 }((λ ◦ σ) ◦ u))

∪ (C2((λ ◦ σ) ◦ u)− {L1
2, ..., L

r2
2 }((λ ◦ σ) ◦ u))

= ((C1(λ ◦ σ))u− ({L1
1, ..., L

r1
1 }(λ ◦ σ))u)

∪ ((C2(λ ◦ σ))u− ({L1
2, ..., L

r2
2 }(λ ◦ σ))u)

= (C1(λ ◦ σ)− {L1
1, ..., L

r1
1 }(λ ◦ σ))u ∪ (C2(λ ◦ σ)− {L1

2, ..., L
r2
2 }(λ ◦ σ))u

= ((C1(λ ◦ σ)− {L1
1, ..., L

r1
1 }(λ ◦ σ)) ∪ (C2(λ ◦ σ)− {L1

2, ..., L
r2
2 }(λ ◦ σ)))u

= Cu

But here I used (A−B)σ = Aσ −Bσ again, which does not hold.

An example

Leitsch found a counter-example to the proof that illustrates its problems with
factors [Lei89]. We present this counter-example, and try to follow the proof:

Let C1 = {P (y), P (x)}, C2 = {∼P (a)}, C ′1 = {P (a), P (x)}, C2 = {¬P (a)},
C ′ = {}. Notice that C ′ can indeed be obtained as a resolvent of C ′1 and C ′2
since {P (x)} is a factor of C ′1 and then when we resolve that with C ′2 we get {}.
We let L1 and L2 be the literals resolved upon, i.e. L1 = P (x) and L2 = ∼P (a).
A most general unifier is γ = {x ← a}. We also obtain the substitution that
made the instances of C1 and C2 i.e. θ = {y ← a} and indeed C1θ = C ′1 and
C2θ = C ′2. We now obtain all the literals in C1 that turn in to L1 when θ is
applied, that is, only L1

1 = P (x), likewise for C2 and L2 we get only L1
2 = ∼P (a).

Since there was only one of each we get λ1 = ε and λ2 = ε which again means
λ = ε. Now we can get L1 = L1

1λ = P (x) and L2 = L1
2λ = ∼P (a). Finally, we

obtain an mgu σ of L1 and ∼L2 namely σ = {x ← a}. Now we can construct

158 Chang and Lee’s Lifting Lemma

C:
C = (C1λσ − L1σ) ∪ (C2λσ − L2σ)

= (C1σ − L1σ) ∪ (C2σ − L2σ)

= ({P (y), P (a)} − P (a)) ∪ ({∼P (a)} − ∼P (a))
= {P (y)}

But clearly, C ′ = {} is not an instance of C = {P (y)}.

Summary

This proof contains some mistakes and imprecisions that are similar to those of
the first one:

• C ′ may have come from doing factoring on C ′1 or C ′2 before the resolution.

• λ is not necessarily well-formed.

• It is not clear that λ ◦ σ is more general than θ ◦ γ.

• It is not clear that C ′ is an instance of C.

Bibliography

[BA12] Mordechai Ben-Ari. Mathematical Logic for Computer Science.
Springer, 3rd edition, 2012.

[Ber07] Stefan Berghofer. First-order logic according to Fitting.
Archive of Formal Proofs, 2007. http://afp.sf.net/entries/
FOL-Fitting.shtml, Formal proof development.

[BG01] Leo Bachmair and Harald Ganzinger. Chapter 2 - resolution the-
orem proving. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, Handbook of Automated Rea-
soning, pages 19 – 99. North-Holland, Amsterdam, 2001.

[Bla15] Jasmin Christian Blanchette. Hammering away: A user’s guide to
Sledgehammer for Isabelle/HOL. May 2015. https://isabelle.
in.tum.de/doc/sledgehammer.pdf.

[BPT14a] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Tray-
tel. Abstract completeness. Archive of Formal Proofs, April
2014. http://afp.sf.net/entries/Abstract_Completeness.
shtml, Formal proof development.

[BPT14b] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Tray-
tel. Unified classical logic completeness - a coinductive pearl.
In Stéphane Demri, Deepak Kapur, and Christoph Weidenbach,
editors, Automated Reasoning, volume 8562 of Lecture Notes in
Computer Science, pages 46–60. Springer International Publish-
ing, 2014.

http://afp.sf.net/entries/FOL-Fitting.shtml
http://afp.sf.net/entries/FOL-Fitting.shtml
https://isabelle.in.tum.de/doc/sledgehammer.pdf
https://isabelle.in.tum.de/doc/sledgehammer.pdf
http://afp.sf.net/entries/Abstract_Completeness.shtml
http://afp.sf.net/entries/Abstract_Completeness.shtml

160 BIBLIOGRAPHY

[Cha15] Amine Chaieb. The pythagorean theorem. The Isa-
belle2015 Library, May 2015. https://isabelle.in.tum.
de/website-Isabelle2015/dist/library/HOL/HOL-ex/
Pythagoras.html.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic
and Mechanical Theorem Proving. Academic Press, Inc., Orlando,
FL, USA, 1st edition, 1973.

[CM00] Víctor Carreño and César Muñoz. Aircraft trajectory modeling
and alerting algorithm verification. In Mark Aagaard and John
Harrison, editors, Theorem Proving in Higher Order Logics, vol-
ume 1869 of Lecture Notes in Computer Science, pages 90–105.
Springer Berlin Heidelberg, 2000.

[dGRdB+15] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel,
and Reiner Hähnle. OpenJDK’s Java.utils.Collection.sort() is
broken: The good, the bad and the worst case. In Computer
Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I,
pages 273–289, 2015.

[EFT96] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Undergraduate Texts in Mathematics. Springer New York, 1996.

[Fit96] Melvin Fitting. First-Order Logic and Automated Theorem Prov-
ing. Graduate Texts in Computer Science. Springer, 1996.

[GLJ13] Jean Goubault-Larrecq and Jean-Pierre Jouannaud. The blos-
som of finite semantic trees. In Andrei Voronkov and Christoph
Weidenbach, editors, Programming Logics, volume 7797 of Lec-
ture Notes in Computer Science, pages 90–122. Springer Berlin
Heidelberg, 2013.

[Gon08] Georges Gonthier. Formal proof – the four-color theorem. Notices
of the AMS, 55(11):1382–1393, 2008.

[Har06] John Harrison. Towards self-verification of HOL Light. In Ul-
rich Furbach and Natarajan Shankar, editors, Proceedings of the
third International Joint Conference, IJCAR 2006, volume 4130
of Lecture Notes in Computer Science, pages 177–191, Seattle,
WA, 2006. Springer-Verlag.

[Hea80] Percy John Heawood. Map-colour theorem. The quarterly journal
of pure and applied mathematics, 24:332–338, 1880.

https://isabelle.in.tum.de/website-Isabelle2015/dist/library/HOL/HOL-ex/Pythagoras.html
https://isabelle.in.tum.de/website-Isabelle2015/dist/library/HOL/HOL-ex/Pythagoras.html
https://isabelle.in.tum.de/website-Isabelle2015/dist/library/HOL/HOL-ex/Pythagoras.html

BIBLIOGRAPHY 161

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch,
and SimonWinwood. seL4: Formal verification of an OS kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 207–220, New York, NY,
USA, 2009. ACM.

[KNV+13] Deepak Kapur, Robert Nieuwenhuis, Andrei Voronkov, Christoph
Weidenbach, and Reinhard Wilhelm. Harald Ganzinger’s legacy:
Contributions to logics and programming. In Andrei Voronkov
and Christoph Weidenbach, editors, Programming Logics, volume
7797 of Lecture Notes in Computer Science, pages 1–18. Springer
Berlin Heidelberg, 2013.

[Lei89] Alexander Leitsch. On different concepts of resolution. Mathe-
matical Logic Quarterly, 35(1):71–77, 1989.

[Lei97] Alexander Leitsch. The Resolution Calculus. Texts in theoretical
computer science. Springer, 1997.

[MR04] James Margetson and Tom Ridge. Completeness theorem.
Archive of Formal Proofs, September 2004. http://afp.sf.net/
entries/Completeness.shtml, Formal proof development.

[NK14] Tobias Nipkow and Gerwin Klein. Concrete Semantics: With
Isabelle/HOL. Springer Publishing Company, Incorporated, 2014.

[NL12] Benedikt Nordhoff and Peter Lammich. Dijkstra’s shortest path
algorithm. Archive of Formal Proofs, January 2012. http://
afp.sf.net/entries/Dijkstra_Shortest_Path.shtml, Formal
proof development.

[Pau13] Lawrence C. Paulson. Gödel’s incompleteness theorems. Archive
of Formal Proofs, November 2013. http://afp.sf.net/
entries/Incompleteness.shtml, Formal proof development.

[Rid04] Tom Ridge. A mechanically verified, efficient, sound and com-
plete theorem prover for first order logic. Archive of For-
mal Proofs, September 2004. http://afp.sf.net/entries/
Verified-Prover.shtml, Formal proof development.

[Rob79] J.A. Robinson. Logic, Form and Function: The Mechanization of
Deductive Reasoning. Artificial Intelligence Series. North-Holland,
1979.

http://afp.sf.net/entries/Completeness.shtml
http://afp.sf.net/entries/Completeness.shtml
http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml
http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml
http://afp.sf.net/entries/Incompleteness.shtml
http://afp.sf.net/entries/Incompleteness.shtml
http://afp.sf.net/entries/Verified-Prover.shtml
http://afp.sf.net/entries/Verified-Prover.shtml

162 BIBLIOGRAPHY

[RV99] Alexandre Riazanov and Andrei Voronkov. Vampire. In Au-
tomated Deduction — CADE-16, volume 1632 of Lecture Notes
in Computer Science, pages 292–296. Springer Berlin Heidelberg,
1999.

[Sch13] Stephan Schulz. System description: E 1.8. In Logic for Program-
ming, Artificial Intelligence, and Reasoning - 19th International
Conference, LPAR-19, Stellenbosch, South Africa, December 14-
19, 2013. Proceedings, pages 735–743, 2013.

[SS15] Geoff Sutcliffe and Christian Suttner. The CADE ATP system
competition. http://www.cs.miami.edu/~tptp/CASC/, August
2015.

[Sut14] Geoff Sutcliffe. The CADE-24 Automated Theorem Proving Sys-
tem Competition – CASC-24. AI Communications, 27(4):405–416,
2014.

[TS09] René Thiemann and Christian Sternagel. Certification of termi-
nation proofs using CeTA. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving
in Higher Order Logics, volume 5674 of Lecture Notes in Computer
Science, pages 452–468. Springer Berlin Heidelberg, 2009.

[WDF+09] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit
Kumar, Martin Suda, and Patrick Wischnewski. SPASS version
3.5. In Renate A. Schmidt, editor, Automated Deduction – CADE-
22, volume 5663 of Lecture Notes in Computer Science, pages
140–145. Springer Berlin Heidelberg, 2009.

http://www.cs.miami.edu/~tptp/CASC/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	2 Preliminaries and Theory Background
	2.1 First-order Logic
	2.2 Syntax
	2.3 Semantics
	2.3.1 Interpretations
	2.3.2 Terms
	2.3.3 Formulas

	2.4 Proof Systems
	2.5 Soundness and Completeness
	2.6 Prenex Conjunctive Normal Form
	2.7 Clausal Forms
	2.8 Substitutions
	2.9 Resolution
	2.10 Isabelle
	2.11 HOL

	3 Analysis of the Problem
	3.1 Resolution Calculus in the Literature
	3.1.1 Binary Resolution with Factoring
	3.1.2 General Resolution
	3.1.3 Resolution Suited for Hand Calculation
	3.1.4 Other Variants of the Resolution Calculus

	3.2 Soundness and Completeness Proofs
	3.2.1 Semantic Trees
	3.2.2 Consistency Properties
	3.2.3 Unified Completeness

	3.3 Other Considerations
	3.4 Other Presentations
	3.5 The Approach of This Project

	4 Formalization: Logical Background
	4.1 Terms
	4.2 Literals
	4.3 Clauses
	4.4 Collecting Variables
	4.5 Ground
	4.6 Semantics
	4.7 Substitutions
	4.7.1 Composition
	4.7.2 Unifiers

	5 Formalization: Resolution Calculus and Soundness
	5.1 The Resolution Calculus
	5.2 Soundness of the Resolution Rule
	5.2.1 Soundness of Substitution
	5.2.2 Soundness of Simple Resolution
	5.2.3 Combining the Rules
	5.2.4 Applicability

	5.3 Soundness of Resolution Derivations

	6 Formalization: Completeness
	6.1 Herbrand Terms
	6.2 Enumerations
	6.3 Semantic Trees and Partial Interpretations
	6.4 König's Lemma
	6.5 Semantics of Partial Predicate Denotations
	6.6 Herbrand's Theorem
	6.6.1 Building a Model
	6.6.2 Proving Herbrand's Theorem

	6.7 Lifting Lemma
	6.8 Completeness

	7 Examples
	8 Discussion
	8.1 Proving the Lifting Lemma
	8.1.1 A Proof From the Literature
	8.1.2 Another Resolution Calculus
	8.1.3 The Unification Algorithm
	8.1.4 Recommended Approach

	8.2 Formalizing a Logical System in a Logical System
	8.3 Automatic Theorem Proving
	8.4 Societal Perspective
	8.5 Lessons Learned
	8.6 Reflections on the Thesis

	9 Conclusions
	9.1 Results
	9.2 Contribution
	9.3 Future Work

	A Formalization Code: TermsAndLiterals.thy
	A.1 BSD Software License
	A.2 Terms and Literals
	A.2.1 Enumerating datatypes

	B Formalization Code: Tree.thy
	B.1 Paths
	B.2 Branches
	B.3 Internal Nodes
	B.4 Deleting Nodes
	B.5 Possibly Infinite Trees
	B.6 Infinite Paths
	B.7 König's Lemma

	C Formalization Code: Resolution.thy
	C.1 Terms and literals
	C.2 Clauses
	C.3 Semantics
	C.3.1 Semantics of Ground Terms

	C.4 Substitutions
	C.4.1 The Empty Substitution
	C.4.2 Substitutions and Ground Terms
	C.4.3 Composition

	C.5 Unifiers
	C.5.1 Most General Unifiers

	C.6 Resolution
	C.7 Soundness
	C.8 Enumerations
	C.9 Herbrand Interpretations
	C.10 Partial Interpretations
	C.10.1 Semantic Trees

	C.11 Herbrand's Theorem
	C.12 Lifting Lemma
	C.13 Completeness

	D Formalization Code: Examples.thy
	E Chang and Lee's Lifting Lemma
	Bibliography

