
Intermittent Neuromorphic Wearable Systems

Junaid Ahmed Qazi, Emil Njor, Matthias Bo Stuart, Xenofon Fafoutis, Charalampos Orfanidis
Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU)

Kgs. Lyngby, Denmark
{jahqa, emjn, mbst, xefa, chaorf}@dtu.dk

Abstract— Wearable medical devices have become a focal
point of research and development, particularly for their use in
long-term monitoring of patients with chronic diseases. These
devices offer significant advantages, including early detection of
complications, reduced hospital readmission rates, and overall
lower healthcare costs by enabling a more proactive approach
to patient care. In recent years, the integration of Artificial
Intelligence (AI) into wearable systems has gained considerable
attention, further enhancing the capabilities of these devices.
However, AI-driven wearables consume significantly more
power than their traditional counterparts, which can limit the
device’s lifetime. To alleviate this problem, this paper presents
a novel framework combining two state-of-the-art techniques
for reducing embedded AI energy consumption: neuromorphic
computing and intermittent computing. As a proof of concept,
our framework is applied to an Electromyography (EMG)
application to classify various hand gestures using the Ninapro
DB2 dataset. Our findings demonstrate that the proposed
framework supports the creation of wearable AI devices with
state-of-the-art energy efficiency.

I. INTRODUCTION

Creating performant wearable medical devices for long-
term monitoring of chronically ill patients and the elderly
has been a critical area of research for many years [1]–[3].
Long-term monitoring using wearables offers transforma-
tive advantages, including early detection of life-threatening
complications, reduced hospital readmission, and subsequent
lowering of overall healthcare costs [4]. These benefits con-
tribute to improved patient outcomes and a more sustainable
healthcare system.

Integrating Artificial Intelligence (AI) into these wearable
medical devices is a promising avenue for further improving
their capabilities [5]. For example, AI in medical wearables
can be used to predict complex complications such as strokes
and arrhythmia through advanced pattern recognition. A
critical challenge in introducing AI in medical wearables is
the limited resources (i.e., computation, memory, and energy)
available on wearable systems. As AI models are signifi-
cantly more resource-demanding than traditional computing
systems, these resource constraints present a significant chal-
lenge to be overcome. Resource-efficient AI [6] has gained
traction as a research field in recent years, introducing several
novel approaches for improving the energy efficiency of AI
models. Two promising approaches include neuromorphic
computing and intermittent computing, which we combine
into a novel framework in this paper.

Neuromorphic computing is a novel computational
paradigm that seeks to mimic the processing done by neurons

in the human brain. These mechanisms can be modeled in
Spiking Neural Networks (SNNs) [7] [8], where intelligent
decisions are born from data represented as “spikes” travers-
ing through a modified neural network structure [9]. Spikes
are discrete events over time, contrary to artificial neural
networks (ANNs), where data is represented as continuous
values. In an SNN, computations happen only when incom-
ing spikes reach a threshold, effectively reducing unneces-
sary computations. The event-based nature of spikes allows
SNNs to consume significantly less energy than ANNs on
appropriate hardware [10], [11].

Intermittent computing is a paradigm where wearable sys-
tems operate intermittently based on non-continuous power
sources, preserving their state across power cycles [12]. This
can enable wearables to run on energy-harvesting sources
such as solar or thermal energy. In intermittent computing,
energy is used for computation purposes when it exceeds
a set threshold. After some amount of computation, the
device goes back to sleep or powers off completely and
waits until a sufficient amount of energy is available to
start a new cycle. Before the sleep/power off, essential
variables are stored in non-volatile memory to enable the
restoration of the computational state when energy is once
again available. The threshold of when to start computation
must be set appropriately to avoid power failures. See [13]
for an illustrating example of intermittent computing used
for the remote deployment of a system for monitoring the
fauna in a forest with acoustic event detection.

Our framework utilizes the available resources of wearable
systems more efficiently and allows the integration of AI
models in even more wearable devices for healthcare. As
a proof of concept, we apply our framework to an elec-
tromyography (EMG) [14], [15] application and compare its
performance in terms of energy, latency, and accuracy against
a non-intermittent baseline. This demonstration showcases
the potential of our framework to create energy-harvesting
wearable systems for long-term monitoring of critical health
conditions, such as monitoring muscle activity for neuromus-
cular disorders [16], [17]. To the best of our knowledge, this
work represents the first investigation into the feasibility and
performance of intermittent computing-based SNNs, opening
up a new frontier in AI-driven wearable healthcare.

II. BACKGROUND

This section further elaborates on the principles of neu-
romorphic and intermittent computing, both serving as a



Time

Voltage

Current
Input Spikes
Input and Output Spikes

Threshold

Fig. 1. Illustration of a LIF model. Change of voltage caused by the input
spikes. An output spike is observed when the voltage reaches a threshold.

foundation for understanding the following sections.

A. Neuromorphic Computing

Unlike traditional computing systems, neuromorphic com-
puters do not rely on the Von Neumann or Harvard architec-
tures. Instead, they use neurons and synapses for memory
and processing, mimicking the behavior of the biological
neurons present in our brains. In neuromorphic comput-
ing, computation and memory storage occur simultaneously
within the same physical units, exactly as it does in biological
neurons. This eliminates the energy-demanding task of data
shuffling between processing and memory units, which is
a major bottleneck in traditional computers. Neurons and
synapses operate as independent units, where each individ-
ual unit is capable of performing its own computations.
This decentralized approach prevents congestion bottlenecks
from occurring in centralized computing, thereby enabling
tasks such as pattern recognition, sensor data analysis, and
decision-making to take place in parallel [18].

B. Spiking Neural Networks

A common algorithm developed for neuromorphic com-
puting is a Spiking Neural Network (SNN), which, simply
put, is an ANN that uses “spikes” instead of continuous
numerical values for computation. These spikes are discrete
events sent between neurons in an SNN. A neuron sends out
a new spike whenever a specific threshold is reached from
receiving spikes from other neurons [10].

For data to be passed to an SNN, it must be encoded into
spikes over time — also known as a spike train [18]. There-
fore, to use common datasets, the data should be converted
into spikes through a process known as “input encoding”
[19]. The spikes generated from this input encoding are
fed to the SNN and, over time, create a cascade of spikes
throughout the SNN.

Each neuron in an SNN contains a neuron model that
describes how incoming spikes contribute to building up
a “membrane potential” culminating in a spike when the
threshold is reached.

A common neuron model is the Integrate-and-Fire (IF)
model. When an IF neuron model receives spikes, it increases
the membrane potential of the neuron, and if the potential
reaches a certain threshold, the neuron generates an output
spike. After firing, the membrane potential is reset to a
baseline value [20]. A more advanced neuron model is the

Leaky Integrate-and-Fire (LIF) model, which introduces a
leakage. In the LIF model, the membrane potential decreases
over time if no new input spikes are received [10]. This
leakage mimics the natural decay of electrical charge in
biological neurons. Fig. 1 illustrates a LIF neuron. Another
popular model is the Current-Based Leaky Integrate-and-Fire
(CUBA-LIF), which in addition to the parameters of an LIF
model, also incorporates synaptic currents. When a spike
is fired, it travels through the synapses to the next neuron.
These synapses act as channels that modulate the strength
and timing of the signal transmission, influencing how the
postsynaptic neuron’s membrane potential changes [20].

All data in an SNN are encoded into spikes, including
the output classification data, and thus, there is a need to
decode the output spikes into a classification. There are
many output decoding schemes; however, rate decoding and
latency decoding are among the most widely used. In rate
decoding, the neuron with the highest output spike count
represents the predicted class, while in latency decoding, it
is determined by the first output neuron to fire [10].

Processing in SNNs takes place over time, typically split
into discrete timesteps [9]. Timesteps represent the smallest
time interval over which the network is updated. During each
timestep, neurons receive incoming spikes, integrate these in-
puts into their membrane potential, and send an output spike
if their threshold is reached. This process repeats iteratively
for each time step, resulting in the network evolving over
time. Time steps allow SNNs to capture temporal patterns
of data, and ensure all neurons within the network operate
in a synchronized manner [20]. Due to the temporal nature
of input spikes, precise timing is a requirement for SNNs.

C. Intermittent Computing

In intermittent computing, a device’s state is preserved
in non-volatile memory before energy depletion in order to
restore it once sufficient energy is harvested again. This
process is known as checkpointing and includes storing
required information and variables to restore the state of
the device. Traditionally, devices are designed to operate
on a continuous energy source. However, with the advent
of intermittent computing and energy harvesting, devices
often face interruptions in power supply, leading them to
revert to their initial state after a failure. Checkpointing
addresses this challenge by enabling the device to return to a
previous state instead of restarting from the beginning [21]. A
comparison between conventional and intermittent execution
of AI models is illustrated in Fig. 2.

III. MATERIALS AND METHODS

This section presents the details of our neuromorphic
and intermittent computing framework. We first describe the
design of the framework, in particular, which variables must
be saved in checkpoints based on the neuron model, output
decoding and number of timesteps used. We then explain our
strategy for evaluating the resource consumption of SNN,
the overhead of our checkpointing framework, and propose
a checkpointing placement strategy. Lastly, we introduce the



Layer 1

Layer 2

Layer 3

Layer 4 - End

checkpoint 1

checkpoint 2

checkpoint 3

checkpoint 4

checkpoint 2

Layer 1

Layer 2

Layer 1

Layer 2

Layer 3

Layer 4 - End

Power
FailurePower

Failure

Fig. 2. Standard AI model with power failure (left) compared to an AI
model with checkpointing with power failure (right).

SNN that we will use in future sections as an example of a
practical use of our framework.

A. Intermittent Neuromorphic Computing Framework

To enable intermittent computation in SNNs, checkpoint-
ing is used to store only the necessary dynamic parame-
ters, i.e., those that change during computation. As we are
only considering SNN inference, we are guaranteed that
the model’s weights and input encoding remain constant.
Therefore, the checkpointing strategy requires saving only
the neuron model states, the timestep information, and the
output decoding results.

1) Neuron Models and Checkpointing Strategy: We con-
sider two neuron models within our framework: Leaky
Integrate-and-Fire (LIF) and CUBA-LIF. The key distinction
between them is how they process input spikes. The LIF
Model considers only membrane potential changes, mak-
ing membrane potential the sole dynamic parameter. The
CUBA-LIF Model incorporates both membrane potential and
synaptic currents as dynamic parameters, requiring both to
be stored in checkpoints. Since the model consists of a
second-order LIF neuron, synaptic currents, and membrane
potentials change as input data propagates through the layers.
These must be stored in a checkpoint at specific intervals.

2) Checkpointing Overhead Across Timesteps and Layers:
Our framework only stores one SNN checkpoint at a time,
where a new checkpoint overwrites the previous one when
it is saved. The total checkpoint overhead in bytes can,
therefore, be summarized in Table II, while Table I provides
notation definitions.

3) Output Decoding Considerations: We consider two
types of output decoding in the framework. The first is rate
decoding, where the predicted class is determined by the
output neuron with the highest spike count. For this output
decoding to work intermittently, we must store all previous
output spikes in a checkpoint. We refer to the memory
size of this collection of dynamic variables as spkout. The
second is the temporal decoding, where the predicted class is
determined by the first output neuron to spike. For this output

TABLE I
NOTATION AND DESCRIPTIONS OF PARAMETERS.

Notation Description

spklayer Checkpoint spike train
spkout Final layer spike train
ts Timesteps
stateall State of all membrane potentials and synaptic currents
staterem State of membrane potentials and synaptic currents

after checkpoint
stateprev State of membrane potentials and synaptic currents

before checkpoint

TABLE II
CHECKPOINT OVERHEAD ACROSS DIFFERENT TIMESTEPS AND MODEL

LAYERS.

Timestep Model Layer Checkpoint Overhead

First First spklayer + stateprev
Intermediate spklayer + stateprev
Final stateall + spkout

Intermediate First spklayer+stateall + spkout
Intermediate spklayer+stateall + spkout
Final stateall + spkout

Final First spklayer+staterem + spkout
Intermediate spklayer+staterem + spkout
Final None

decoding to work intermittently, we only need to save the
first output spike. Thus, once the first output spike is fired,
computation can cease. When using temporal decoding, we
therefore set spkout = 0 as no output spikes will have to be
saved.

4) Timesteps and Checkpointing Dynamics: Timesteps
function as a scaling factor for checkpointing overhead. If
only one timestep is used, neuron model parameters do not
need to be stored — only spike outputs (spklayer). However,
for a model using multiple timesteps, the stored parameters
depend on the timestep and model layer, as shown in Fig. 3.

This structured checkpointing strategy ensures minimal
memory overhead while maintaining the ability to resume
inference efficiently in intermittent environments.

B. Evaluation Methodology

The literature describes several quantitative methods for
calculating the energy and latency of SNNs. [22] proposes
a simple approach that multiplies the energy of a single
Synaptic Operation (SOP) with the number of spikes that
caused an SOP. They used the Intel Loihi SOP power
consumption in their calculations and estimated that their
SNN is 65-135 times more energy efficient than an ANN.
The methodology used for energy consumption calculations
described in [23] is different, as they mention that SOP plays
only a small part within the total energy consumption of
an SNN. The methodology of [23] can be summarized as
follows:

Einf = Emem + Eops+addr (1)



First Layer

Intermediate
Layers

Final Layer

spklayer+stateprev

stateall+spkout

spklayer+stateprev

ts = first

First Layer

Intermediate
Layers

Final Layer

spklayer+stateall+spkout

stateall+spkout

spklayer+stateall+spkout

ts = intermediate

First Layer

Intermediate
Layers

Final Layer

spklayer+staterem+spkout

None

spklayer+staterem+spkout

ts = final

Fig. 3. Checkpointing strategy based on timestep and model layer.

The energy consumption of running SNN inference is
denoted by Einf , the energy consumed by memory access
is represented by Emem, and the energy associated with
synaptic operations and addressing mechanisms is expressed
as Eops+addr. We use this method for our evaluation. At
the time of writing, to the best of our knowledge, there is no
established methodology for calculating the inference latency
of an SNN in the literature.

Regarding the energy and latency overhead of checkpoints,
we assume that they can be generalized as writing data to
non-volatile memory (NVMe). Using this assumption, the
energy consumption for a checkpoint of a given amount of
bytes can be calculated according to eq. (2).

Ecp = Overheadcp × ENVMe (2)

Where Ecp is the energy consumption of a checkpoint,
Overheadcp is the total overhead in bytes for a checkpoint,
and ENVMe is the NVMe energy consumption for a byte.
Similarly, the latency of a checkpoint can be calculated
according to eq. (3).

Tcp = Overheadcp × TNVMe (3)

Where Tcp is the latency of a checkpoint, Overheadcp is the
total overhead in bytes for a checkpoint, and TNVMe is the
NVMe Latency for a byte.

For the values of ENVMe and TNVMe, we refer to the
datasheet of a widely available NVMe module [24]. This
specific module was selected based on its balance between
energy consumption, latency, and total storage capacity. It
is important to note that the choice of NVMe module can
significantly impact system viability and should therefore be
carefully considered when designing a hardware implemen-
tation.

In certain scenarios, the overhead of writing a check-
point might be larger than the total inference overhead of
the model, making checkpointing unnecessary. We evalu-
ate this by comparing the energy overhead of the (non-
checkpointing) SNN with the energy overhead of the check-
pointing SNN as seen in Eq. 4.

Ecp + Eremain < Einf (4)

Where Eremain is the energy consumption required to finish
inference after a checkpoint, and Einf is the total inference

energy consumption. Using Eq. 4, we can determine which
parts of the SNN are feasible locations for a checkpoint. The
evaluation of the latency is solely based on Tcp.

Eq. 4 defines regions of the model where checkpointing
is meaningful. However, it does not determine the opti-
mal checkpointing frequency. We say that a checkpoint is
“optimal” if the energy overhead of creating a checkpoint
is less than the energy overhead of computation since the
last checkpoint. Using this strategy, a checkpoint will never
take more energy to create than the energy overhead of
reaching the same computational state in the case of a loss of
power. An optimal checkpointing strategy places checkpoints
whenever Eq. 5 is true.

Ebefore > Ecp (5)

where Ebefore represents the total energy consumption
since the previous checkpoint.

C. SNN Design

In order to provide a proof of concept of our framework,
we need an SNN to apply it to. For that purpose, we create a
Convolutional Spiking Neural Network (CSNN), where the
first layer is convolutional, followed by three fully connected
layers, as seen in Table III. The model layers were selected
through iterative testing and by reviewing the literature for
similar models [25] [26]. Specific layer configurations were
selected through hyperparameter optimization. This was done
both for the convolution and fully connected layers, and for
any neuron model parameters. We find that ten timesteps
result in the highest performance. Finally, we implement the
model using the SNNTorch framework [10].

To train the model, we use the Ninapro DB2 dataset [25]
that consists of surface Electromyography (sEMG) signals
recorded using 12 electrodes of 40 patients performing 49
different hand and wrist gestures (e.g., finger movements,
grasping gestures). The EMG data in this dataset have been
filtered to remove power line interference using a Hampel
filter. Furthermore, the data streams of all electrodes were
synchronized using high-resolution timestamps. To reduce
model training time, we created a patient-specific model
using the data of a random patient and the first 12 gestures
of exercise B in the dataset, as illustrated in Fig. 4. The
dataset is not in the spike domain and thus requires input
encoding. Rate encoding and decoding were selected for
this task through iterative testing. Moreover, a second-order
Leaky Integrate-and-Fire neuron model was chosen due to
its high performance for temporal data.

IV. RESULTS

This section presents the performance evaluation of the
introduced framework on the previously introduced SNN
model. We first examine the model’s accuracy, followed
by an analysis of energy consumption per layer. Next,
we quantify the overhead introduced by checkpointing in
terms of energy and latency, highlighting variations based
on checkpoint locations. Finally, we compare the model’s
overall energy and latency with and without checkpointing,



Fig. 4. The selected hand movements from the Ninapro DB2 dataset [25].
Original image shared under ©CC BY 4.0

TABLE III
OVERVIEW OF THE SNN MODEL, CONSISTING OF A SINGLE

CONVOLUTION LAYER, FOLLOWED BY THREE FULLY-CONNECTED

LAYERS

Layer Input Output

Input - 12× 1× 200
Convolution 12× 1× 200 12× 1× 32
Flatten 12× 1× 32 1× 384
FC1 1× 384 1× 512
FC2 1× 512 1× 256
FC3 - Output 1× 256 1× 12

demonstrating the trade-offs involved in optimizing resource
usage for wearable systems.

Fig. 5 depicts the performance of our SNN model in terms
of test and training accuracy. The model is trained over 100
epochs, and the test accuracy stabilizes around epoch 20 at
70%. The accuracy seems to be in line with the state of
the art [27]. Note that the objective of this paper is not to
create a high-performance model but rather to investigate
whether the intermittent neuromorphic computing paradigm
is a viable option for health applications.

Table IV presents the energy consumption of the inference
for each layer without checkpoints. Layer 1, the convolution
layer, exhibits the highest energy consumption according to
the methodology in [23]. Both kernel size and filter size
were found to impact the convolution layer’s total energy
consumption. As a result, efforts were made to keep these
parameters low enough to minimize energy consumption,
while ensuring model performance was not significantly
compromised. Table V shows the overhead added when we
use checkpoints in terms of energy and latency. Observe
that the overhead alters significantly between checkpoint
locations.

Using the framework defined in the previous section, we
estimate the optimal checkpoint locations in the model as
shown in Table VI. Fig. 6 illustrates the energy consumption

0 20 40 60 80 100
Epochs

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Training Accuracy
Test Accuracy

Fig. 5. Train and test accuracy of the SNN model over 100 epochs.

TABLE IV
TOTAL ENERGY FOR EACH MODEL LAYER

Layer Energy (µJ)

1 427.78
2 56.05
3 17.83
4 1.35

Total Energy 503.01

of the SNN model with and without using our framework
as well. Note here that using the framework adds minor en-
ergy overhead, which should be tolerable in many wearable
systems.

Fig. 7 presents the inference latency of the model when op-
erating with checkpoints. While the energy overhead seems
negligible, the time delay does not. Although this can seem
daunting, it is important to consider that it is common for
intermittent computing applications to have periods where
they do not operate (i.e., are in SLEEP mode) and just
harvest energy. Therefore, health applications that tolerate
those limitations should also tolerate the increased inference
latency. A discussion about applications that tolerate inter-

TABLE V
OVERHEAD OF CHECKPOINTING IN DIFFERENT LOCATIONS

Timestep Checkpoint Energy (µJ) Latency (ms)

First 1 27.88 25.34
2 64.20 58.37
3 81.67 74.24
4 81.97 74.52

Intermediate 1 82.82 75.29
2 83.10 75.54
3 82.54 75.03
4 81.97 74.52

Final 1 55.78 50.71
2 20.02 18.2
3 1.43 1.30
4 0.00 0.00



0 1 2 3 4 5 6 7 8 9 10
Timesteps

0

500

1000

1500

2000

2500

3000

3500

En
er

gy
 O

ve
rh

ea
d 

(u
J)

SNN Model w/o Checkpointing
SNN Model w/ Checkpointing w/ Framework
SNN Model w/ Checkpointing w/o Framework

Fig. 6. Energy overhead comparison of the model without checkpointing,
with checkpointing after every layer, and with checkpointing.

mittent neuromorphic computing follows in the next section.

TABLE VI
CHECKPOINT LOCATIONS IN THE SNN MODEL FOUND THROUGH THE

EVALUATION METRICS IN THE FRAMEWORK

Checkpoint Locations

Timestep 1, Checkpoint 1
Timestep 3, Checkpoint 1
Timestep 5, Checkpoint 1
Timestep 7, Checkpoint 1
Timestep 9, Checkpoint 1

Timestep 10, Checkpoint 2
Timestep 10, Checkpoint 3

V. DISCUSSION

In this paper, we have introduced a framework that can
systematically determine the necessary data to be stored in
an intermittent computing checkpoint in an SNN based on the
location within the model and the type of model being used.
Additionally, we have developed methodologies to identify
optimal checkpoint locations and evaluate the impact of
checkpointing on computational overhead.

Table IV illustrates that the model has a total energy
consumption of 503.01 µJ, in which the first layer, con-
volution, is the largest contributor. Table V indicates the
energy overhead added due to the checkpoints, in which
we see that the overhead depends heavily on the timestep
and checkpoint location. First and final timestep checkpoints
have a lower energy overhead compared to checkpoints in
intermediate timesteps. This happens as the model’s state,
i.e., synaptic currents and membrane potentials, does not
have to be stored within a checkpoint in certain cases.
Using the proposed framework, the checkpoint frequency and
location were evaluated and illustrated in Table VI.

0 1 2 3 4 5 6 7 8 9 10
Timesteps

0

50

100

150

200

250

300

350

La
te

nc
y 

(m
s)

SNN Model w/ Checkpointing w/ Framework

Fig. 7. Latency overhead of the SNN model with checkpointing.

Fig. 6 illustrates the energy consumption of the SNN
model. Using the proposed framework to add checkpoints,
the energy consumption is increased from 503.01 µJ to
883.61 µJ. Adding a checkpoint after each layer results in a
significantly higher increase of 3479.35 µJ. Although adding
checkpoints after each layer minimizes data loss in the event
of a power failure, its substantial energy overhead makes it
impractical for wearable devices. In contrast, the framework
achieves an optimized balance, maintaining reasonable en-
ergy overhead while effectively reducing potential data loss
after power failure.

Fig. 7 and Table V show that the added latency from
checkpointing is non-negligible. These delays can be re-
duced by using sophisticated memory technologies such
as magnetoresistive RAM (MRAM) and resistive RAM
(ReRAM). However, intermittent computing systems are
powered mainly by energy harvesting. These energy sources
are inherently unpredictable, and the time to harvest suf-
ficient energy to execute a number of instructions might
be much larger than the latency introduced by checkpoint-
ing. While significant relative to the inherent latency of
model inference, the latency introduced by checkpointing is
comparatively minor to the latency incurred by intermittent
computing operations from a non-continuous power source.

To this end, it is essential to highlight that intermittent
neuromorphic computing is designed for application sce-
narios that can tolerate non-operational time intervals. For
instance, when monitoring chronic muscular disorders such
as Amyotrophic lateral sclerosis (ALS) [28], short gaps may
be tolerable if the overall trend of muscle activity can still
be captured. Likewise, Duchenne Muscular Dystrophy [29]
monitoring can tolerate some non-functional periods where
the system is harvesting energy [17]. On the other hand,
intermittent neuromorphic computing is unsuitable for appli-
cations such as freezing of gait detection in patients with
Parkinson’s disease, which require constant monitoring and
low latency responses [30].



VI. CONCLUSION

In this paper, we explored the feasibility of integrating in-
termittent computing into neuromorphic systems, specifically
Spiking Neural Networks (SNNs), for wearable applications
in health. We implemented a framework to efficiently place
checkpoints in an SNN, and to include only the bare nec-
essary data in order to enable intermittent operation. Our
findings indicate that the checkpointing overhead is highly
dependent on model architecture, checkpoint placement, and
the operational constraints of intermittent computing.

While intermittent computing introduces overhead in terms
of energy consumption and latency, these trade-offs are often
tolerable in health applications where continuous operation is
not strictly required. In particular, applications such as neu-
romuscular disorder monitoring can benefit from intermittent
neuromorphic without significant loss of information.

Future work will focus on evaluating the implemented
framework on real neuromorphic hardware. Additionally,
exploring techniques that could enhance the practicality of
intermittent neuromorphic computing for real-world deploy-
ments, such as advanced memory technologies to mitigate
introduced delays. By researching these approaches, we
aim to further advance intermittent neuromorphic wearable
systems for healthcare applications.

REFERENCES

[1] M. T. Mardini, Y. Iraqi, and N. Agoulmine, “A survey of healthcare
monitoring systems for chronically ill patients and elderly,” Journal
of Medical Systems, vol. 43, p. 50, Jan 2019.

[2] V. Patel, A. Orchanian-Cheff, and R. Wu, “Evaluating the validity and
utility of wearable technology for continuously monitoring patients in
a hospital setting: Systematic review,” JMIR Mhealth Uhealth, vol. 9,
p. e17411, Aug 2021.

[3] Y. Guo, X. Liu, S. Peng, X. Jiang, K. Xu, C. Chen, Z. Wang,
C. Dai, and W. Chen, “A review of wearable and unobtrusive sensing
technologies for chronic disease management,” Computers in Biology
and Medicine, vol. 129, p. 104163, 2021.

[4] G. Mattison, O. Canfell, D. Forrester, C. Dobbins, D. Smith, J. Töyräs,
and C. Sullivan, “The influence of wearables on health care outcomes
in chronic disease: Systematic review,” J Med Internet Res, Jul 2022.

[5] N. Gautam, S. N. Ghanta, J. Mueller, M. Mansour, Z. Chen, C. Puente,
Y. M. Ha, T. Tarun, G. Dhar, K. Sivakumar, Y. Zhang, A. A.
Halimeh, U. Nakarmi, S. Al-Kindi, D. DeMazumder, and S. J. Al’Aref,
“Artificial intelligence, wearables and remote monitoring for heart
failure: Current and future applications,” Diagnostics, vol. 12, 2022.

[6] É. Buteau, G. Gagné, W. Bonilla, M. Boukadoum, P. Fortier, and
B. Gosselin, “Tinyml for real-time embedded HD-EMG hand gesture
recognition with on-device fine-tuning,” in 2024 46th Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC), pp. 1–6, 2024.

[7] T. Liu, Y. Ning, P. Liu, Y. Zhang, Y. Chua, W. Chen, and S. Zhang,
“Modularity facilitates classification performance of spiking neural
networks for decoding cortical spike trains,” in 2023 45th Annual
International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), pp. 1–4, 2023.

[8] B. S. Sai Badrinatha Reddy, P. K, and B. J. Kailath, “SNN with
gradient-based backpropagation algorithm for ECG arrhythmia classi-
fication with LIF neuron and AdEx neuron,” in 2024 28th International
Symposium on VLSI Design and Test (VDAT), pp. 1–6, 2024.

[9] W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Networks, vol. 10, no. 9, 1997.

[10] J. K. Eshraghian, M. Ward, E. O. Neftci, X. Wang, G. Lenz,
G. Dwivedi, M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training
spiking neural networks using lessons from deep learning,” Proceed-
ings of the IEEE, vol. 111, no. 9, pp. 1016–1054, 2023.

[11] S. Sai, S. Sharma, and V. Chamola, “Explainable AI-empowered Neu-
romorphic Computing Framework for Consumer Healthcare,” IEEE
Transactions on Consumer Electronics, pp. 1–1, 2024.

[12] S. Ahmed, B. Islam, K. S. Yildirim, M. Zimmerling, P. Pawełczak,
M. H. Alizai, B. Lucia, L. Mottola, J. Sorber, and J. Hester, “The
Internet of Batteryless Things,” Communications of the ACM, vol. 67,
no. 3, pp. 64–73, 2024.

[13] B. Islam, Y. Luo, and S. Nirjon, “Amalgamated intermittent computing
systems,” in Proceedings of the 8th ACM/IEEE Conference on Internet
of Things Design and Implementation, IoTDI ’23, (New York, NY,
USA), p. 184–196, Association for Computing Machinery, 2023.

[14] J. Heaffey, E. Koutsos, and P. Georgiou, “Wearable device for remote
EMG and muscle fatigue monitoring,” in 2015 IEEE Biomedical
Circuits and Systems Conference (BioCAS), 2015.

[15] R. P. Mathews, H. Jafari Sharemi, I. Habibagahi, J. Jang, A. Ray,
and A. Babakhani, “Towards a miniaturized, low power, batteryless,
and wireless bio-potential sensing node,” in 2022 IEEE Biomedical
Circuits and Systems Conference (BioCAS), pp. 404–408, 2022.

[16] J. C. Deenen et al., “The Epidemiology of Neuromuscular Disorders:
A Comprehensive Overview of the Literature,” Journal of Neuromus-
cular Diseases, vol. 2, pp. 73–85, 2015.

[17] V. Kartsch, S. Benatti, M. Mancini, M. Magno, and L. Benini, “Smart
wearable wristband for EMG based gesture recognition powered by
solar energy harvester,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2018.

[18] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “SPAN:
spike pattern association neuron for learning spatio-temporal spike
pattern,” International Journal of Neural Systems, vol. 22, no. 04,
p. 1250012, 2012. PMID: 22830962.

[19] D. Auge, J. Hille, M. Etienne, and A. Knoll, “A survey of encoding
techniques for signal processing in spiking neural networks,” Neural
Processing Letters, vol. 53, p. 4693–4710, 2021.

[20] K. Yamazaki, V.-K. Vo-Ho, D. Bulsara, and N. Le, “Spiking neural
networks and their applications: A review,” Brain Sciences, vol. 12,
no. 7, 2022.

[21] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
Computing: Challenges and Opportunities,” in Leibniz International
Proceedings in Informatics, Lipics, vol. 71 of 2nd Summit on Advances
in Programming Languages, SNAPL 2017, p. 8, Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2017.

[22] U. K. N. G. W. Gamage, L. Zanatta, M. Fumagalli, C. Cadena, and
S. Tolu, “Event-Based Classification of Defects in Civil Infrastructures
with Artificial and Spiking Neural Networks,” in Lecture Notes in
Computer Science, vol. 17, pp. 629–640, Springer, 2023.

[23] E. Lemaire, L. Cordone, A. Castagnetti, P. E. Novac, J. Courtois, and
B. Miramond, “An analytical estimation of spiking neural networks
energy efficiency,” in 29th International Conference on Neural In-
formation Processing, ICONIP 2022, vol. 13623 of Lecture Notes in
Computer Science, (Virtual Event), pp. 574–587, Springer, 2023.

[24] Fujitsu Semiconductor Limited, “Mb85rc256v - 256k (32k × 8) bit i²c
interface fram.” https://www.fujitsu.com/uk/Images/MB85RC256V-
20171207.pdf, 2017. Accessed: 2025-04-30.

[25] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. Müller, “Electromyography
data for non-invasive naturally-controlled robotic hand prostheses,”
Scientific Data, vol. 1, no. 1, p. 140053, 2014.

[26] A. Vitale, E. Donati, R. Germann, and M. Magno, “Neuromorphic
edge computing for biomedical applications: Gesture classification
using EMG signals,” IEEE Sensors Journal, vol. 22, no. 20, 2022.

[27] C. Frenkel, D. Bol, and G. Indiveri, “Bottom-up and top-down ap-
proaches for the design of neuromorphic processing systems: Tradeoffs
and synergies between natural and artificial intelligence,” Proceedings
of the IEEE, vol. 111, pp. 623–652, 2023.

[28] E. L. Feldman, S. A. Goutman, S. Petri, L. Mazzini, M. G. Savelieff,
P. J. Shaw, and G. Sobue, “Amyotrophic lateral sclerosis,” The Lancet,
vol. 400, pp. 1363–1380, Oct 2022.

[29] B.-Y. Youn, Y. Ko, S. Moon, J. Lee, S.-G. Ko, and J.-Y. Kim, “Dig-
ital biomarkers for neuromuscular disorders: A systematic scoping
review,” Diagnostics, vol. 11, no. 7, 2021.

[30] A. Moore, J. Li, C. H. Contag, L. J. Currano, C. O. Pyles, D. A.
Hinkle, and V. S. Patil, “Wearable surface electromyography system
to predict freeze of gait in Parkinson’s disease patients,” Sensors, 2024.


