
A Primer for tinyML Predictive Maintenance:
Input and Model Optimisation

Emil Njor[0000−0003−0219−1624], Jan Madsen[0000−0002−5098−8454], and
Xenofon Fafoutis[0000−0002−9871−0013]

DTU Compute, Technical University of Denmark, Denmark
{emjn,jama,xefa}@dtu.dk

Abstract. In this paper, we investigate techniques used to optimise
tinyML based Predictive Maintenance (PdM). We first describe PdM and
tinyML and how they can provide an alternative to cloud-based PdM. We
present the background behind deploying PdM using tinyML, including
commonly used libraries, hardware, datasets and models. Furthermore,
we show known techniques for optimising tinyML models. We argue that
an optimisation of the entire tinyML pipeline, not just the actual models,
is required to deploy tinyML based PdM in an industrial setting. To
provide an example, we create a tinyML model and provide early results
of optimising the input given to the model.

Keywords: tinyML · Predictive Maintenance · Optimisation · Embed-
ded Machine learning · Resource-Constrained Systems

1 Introduction

Predictive Maintenance (PdM) is a promising maintenance paradigm where
models are used to predict equipment failure. PdM is expected to replace re-
active maintenance and preventive maintenance [23]. In reactive maintenance,
equipment is repaired after a failure which, e.g. in factories can lead to expen-
sive production downtime. In preventive maintenance, equipment is replaced
according to a predefined schedule. This can be wasteful as perfectly working
equipment might be replaced. It also provides no guarantee that failures do not
occur before maintenance. Assuming a perfect model, PdM can predict a failure
before it occurs, and maintenance can be planned and conducted in advance to
avoid the failure [23].

There are three general approaches to implementing PdM systems. The first
is a knowledge-based approach, which uses e.g. rules or physical models to predict
failures. The second and third are traditional Machine Learning (ML) and Deep
Learning approaches respectively [23]. The output of PdM models generally come
in three different forms. One is a binary prediction, where the model outputs
whether there is an impending equipment failure. A second form is anomalous
behaviour detection. In this form, the model flags equipment behaviour as normal
or anomalous. The third form of predictions is a Remaining Useful Life (RUL)
prediction, where the RUL of some equipment is estimated [23].



2 E. Njor et al.

At the moment, most PdM systems are deployed either in the cloud or on
powerful computers. The data used by such models, however, are often generated
by small sensor devices. Therefore, using current approaches, data has to be
collected and sent over a network for processing. This has a couple of drawbacks
e.g: (i) Security and privacy of data can be compromised when sent over a
network. (ii) Network communication induces a non-zero and often unpredictable
latency, which can be intolerable in some use cases. (iii) The system will be
less reliable as it relies on a working network connection and cloud. This is
especially a problem for systems deployed in rural areas or at sea. (iv) Using
network modules on sensor devices requires a significant amount of energy. This is
especially a problem for battery-driven sensor devices. The alternative to sending
data over a network for processing is to process data directly on the sensor device.
This has been popularized as the concept of tinyML [8].

According to the tinyML Foundation [8], tinyML is broadly defined as: “A
fast growing field of machine learning technologies and applications including
hardware, algorithms and software capable of performing on-device sensor data
analytics at extremely low power, typically in the mW range and below, and
hence enabling a variety of always-on use-cases and targeting battery operated
devices.” tinyML thus provides a solution to the drawbacks of sending data
over a network to be processed. tinyML has its own challenges, however, and
it is therefore heavily dependent on the use case whether a tinyML or a cloud
solution is the better choice. The following are some challenges of tinyML: (i) The
microcontrollers embedded in sensor devices have few computational resources,
so inference of models will take significantly longer than in the cloud or on
desktops. (ii) Microcontrollers also have a limited amount of memory, so the size
of the models deployed with tinyML will have to be small. (iii) Microcontrollers
often have little to no operating system, which means that tinyML can not rely
on standard operating system features such as dynamic memory allocation. (iv)
There are a wide variety of microcontrollers on the market, and the hardware
and their software tools are heterogeneous.

The field of tinyML is still in its infancy, and work has to be put into making
it ready for industrial adaptation. The contribution of this work is twofold. We
first provide the background of how to apply tinyML based PdM in a tutorial
style, and a short (yet – to the best of our knowledge – comprehensive) survey of
known optimisation techniques for tinyML models. Secondly, we argue that it is
important to optimise the entire PdM pipeline and not just the tinyML models
to mature tinyML based PdM As an example, we create a tinyML based PdM
model and show that by optimising the input to the model we can further reduce
the compute and memory requirements for running inference of the model. We
show the tinyML optimisation pipeline that we argue for in Figure 1.

2 Related Work

While the field of tinyML is still in its infancy, it has received much attention
in recent years. Several surveys have been published on the topic. The surveys,



A Primer for tinyML Predictive Maintenance: Input and Model Optimisation 3

System Design

Cascading-

Architectures

Data

Processing

Input-

Optimisations

Training

Quantisation-

Aware-

Training

TF Model

Quantisation

Pruning

Clustering

Knowledge-

Distillation

TFLM Model

Removing-

Operations

Fig. 1. The tinyML optimisation pipeline. Pipeline stages in bold followed by optimi-
sations that are possible at the respective stages. More information about each opti-
misation is given in Section 4 and 5. TF and TFLM are abbriviations to TensorFlow
and TensorFlow Lite Micro respectivly. See Section 3 for more information about TF
and TFLM.

however, mostly investigate tinyML for any ML application, and not specifically
PdM. In doing so, they tend to focus on common supervised learning techniques
and cases. These techniques and cases differ from PdM in especially two areas.
Firstly, as we shall discuss later, PdM datasets are often imbalanced or unlabeled.
Secondly, PdM is a bit unique as late failure predictions in many cases should
be penalised more heavily than early failure predictions. One tinyML survey is
focused on anomaly detection [28]. This survey is focused on the types of anomaly
detection systems and the techniques that are used to reduce the size of the ML
models. It does not go into depth with the applications, libraries, hardware or
datasets that are typically used for tinyML based anomaly detection. In this
paper, we touch on these specifically for anomaly detection for PdM.

A survey by R. Sanchez-Iborra and A. Skarmeta [26] investigates general
tinyML benefits, challenges, applications, libraries and models. The survey con-
cludes with a case study, for which a decision tree model is deemed the best
tinyML model choice [26]. The data for the case study is synthetically con-
structed, however, and is arguably constructed using decision tree-like logic, so
the great performance of the decision tree is not surprising It does not com-
ment on common datasets or hardware for tinyML. It also does not go into
depth about optimising tinyML models. Another survey by L. Dutta et al. [5]
describes the benefits of tinyML, and compares tinyML to other approaches to
processing sensor data. It also touches on the hardware-software co-design, op-
timisation techniques, libraries and tools, recent advances and the role of the
industry in tinyML research. A few example datasets and tinyML results on
these datasets are also presented [5]. Lastly, a survey from P. Ray [25] describes
hardware, libraries, optimisations and use cases. It also includes the authors’
ideas for a future roadmap of tinyML. This is a quite comprehensive survey, but
does not comment on common tinyML datasets.

A book on tinyML using Tensorflow Lite Micro [32] acts as a tutorial for de-
ploying several types of ML applications on ARM-based microcontrollers. The
book contains a comprehensive overview of the background of tinyML and Opti-
misation techniques, however, it does not investigate PdM or anomaly detection.



4 E. Njor et al.

Apart from investigating tinyML, this paper also tackles optimisations of the
input to tinyML models. To our knowledge, this has not yet been investigated in
the domain of tinyML based PdM. It has, however, been applied in other fields.
For example, a publication by X. Fafoutis et al. describes how a cloud-based ML
system can be optimised by conducting feature extraction directly on a sensor
device. This is shown to reduce the required compute and networking by several
orders of magnitude [7]. Another paper by A. Khan et al. found that sampling
rates used in the literature are up to 57% higher than needed [14].

3 Background of Applying tinyML

In this section, we present the background knowledge required to apply tinyML,
with a focus on tinyML for PdM. The section can be regarded as a mini-survey
of the libraries, hardware, datasets and models which are used in tinyML and
PdM research; and can serve as a tutorial for individuals that enter the field.

Libraries. Several software libraries have been introduced to ease the devel-
opment of tinyML applications. The most popular is arguably the open-source
TensorFlow Lite Micro (TFLM) library, whose primary contributor is Google
[4]. We base this on the tinyML book being focused on this library [32]. Further-
more, the online learning platform “edX” has a course on tinyML that focuses
on the library [6].

The TFLM library is split into two parts. One part is a converter which con-
verts TensorFlow (TF) models to the TFLM model format. TF is an open-source
framework for creating, training and inferring Neural Network (NN) models also
spearheaded by Google. The second part is an interpreter written in C++, which
runs on a microcontroller and interprets the TFLM model. As the TFLM in-
terpreter is designed for microcontrollers, it has low compute and memory re-
quirements and does not rely on an operating system. TFLM does not support
training and only supports a subset of the operations supported by TF. The
library is also able to take advantage of efficient implementations of common
neural network functions on ARM-based microcontrollers described in [17].

Alternatives to using TFLM include Microsoft’s Embedded Learning Library,
ARM-NN, sklearnporter and µTensor [26]. Most of these libraries are made for
NNs as opposed to traditional ML, suggesting that the current focus of tinyML
is leaning heavily towards NNs.

Hardware. This section describes some of the hardware that can be used for
doing PdM inference using tinyML. We focus our attention on what we see as
the current standard systems for deploying tinyML - that is ARM-based micro-
controllers, but also comment on alternative hardware platforms. ARM-based
microcontrollers can be split into two sub-groups - those building on the ARM
Cortex-M platform and those building on the ARM Cortex-A platform. The
ARM Cortex-M platform is the most energy-efficient of the two, while the ARM



A Primer for tinyML Predictive Maintenance: Input and Model Optimisation 5

Cortex-A platform provides superior performance [1]. The Cortex-A platform is
used in devices like smartphones and the Raspberry Pi, whereas the Cortex-M
platform is mainly used in embedded devices such as sensors.

TFLM as discussed in Section 3 is made for the Cortex-M platform, and
confirmed supported for a number of devices listed on the TFLM webpage [30].
One of the supported devices is the Arduino Nano 33 BLE Sense. The device
has an ARM Cortex-M4 processor, 256 KB of SRAM and 1 MB of flash memory.
It furthermore has a wide array of internal sensors, which allows the device to
be used as a prototype for several applications.

The literature proposes many alternatives to using ARM-based microcon-
trollers. One approach is to use the open-source processor platform PULP to
speed up tinyML inference [9]. A paper shows that this platform can complete
inference on a CIFAR-10 network in up to 30x fewer clock cycles than the cur-
rent state of the art ARM-based microcontrollers [9]. Other publications propose
completely new hardware such as BinarEye, which is a processor optimized for
efficient processing of Convolutional Neural Networks (CNNs) [20]. Some pa-
pers even propose alternative ways to encode data in hardware to improve the
processing energy efficiency [31].

Datasets. In order to implement tinyML based PdM appropriate data is needed.
It is unfortunately notoriously difficult to find good datasets for predictive main-
tenance. One reason is that failures can lead to financial and reputational loss,
especially in industry, and we often go to great lengths to avoid failures. Para-
doxically it is also the goal of PdM to avoid failures. Even when a failure occurs,
the data about the failure is often not released publicly.

We have identified three suitable datasets for tinyML based PdM. The first
is the ToyADMOS dataset, which contains audio recordings of toys in normal
and anomalous operating conditions [15]. A subset of the ToyADMOS dataset
is used in the MLPerf Tiny benchmark, which to our knowledge is the only
current benchmark targeting tinyML [2]. Similarly, we have the MIMII dataset
that contains audio recordings of industrial machines in normal and anomalous
operating conditions [22]. The third dataset is the Turbofan Engine Degradation
dataset which contains sensor readings of simulated turbofan engines as they
degrade towards failure [27].

An issue in many PdM datasets is the imbalance of observations. By their
nature, normal operating conditions are more frequent than anomalous, and thus
the data includes a majority of normal observations. The literature proposes to
use generative models or transfer learning to solve these problems [23].

Models. The right model to choose for tinyML based PdM depends on the
hardware and the data that is available for the PdM application. If the hardware
capabilities are extremely limited, such as in the ATMega328P Microcontroller,
which has only 2 KB RAM, then simple traditional ML methods, such as deci-
sion trees could be the right choice. For example, while the size of the TFLM
interpreter used for NNs varies by the model that it needs to interpret, even the

https://www.microchip.com/en-us/product/atmega328


6 E. Njor et al.

smallest example in the TFLM paper takes up 1.3 KB of RAM [4]. In a 2KB
RAM microcontroller, this would not leave much room for the model, data and
remaining logic. More specialised models can also be considered in this case, e.g
the bonsai model, which is derived from decision trees [16]. In other microcon-
trollers such as the Arduino Nano 33 BLE Sense with 256 KB of RAM, NNs,
especially for image processing, might be the better choice.

If the data is labelled, either with impending failure labels or RUL labels, then
supervised learning approaches are likely the best choice. There are many su-
pervised learning approaches [23], but Decision Trees, Support Vector Machines
(SVMs), Artificial Neural Networks (ANNs) or CNNs can in our opinion all be
good choices. The actual decision depends on other factors. CNNs are NNs that
contain convolutional layers. Convolutional layers train a filter to pass over a ten-
sor, usually an image, to extract features that help the classification/regression.

If the data is unlabeled then we need to turn to unsupervised learning. When
this is the case we are often trying to do PdM anomaly detection. There are a
few ML models that are suitable for making anomaly detection. Two of the most
popular models are k-Nearest Neighbor (KNN) and autoencoders [23]. A KNN
model is a traditional ML model which clusters observations based on features
derived from the observations. The idea is that an anomalous sample will diverge
from the cluster(s) of normal observations and that it can thereby be stamped as
an anomaly. An autoencoder model is a deep learning model, which we train to
compress and decompress normal observations. We also say that the autoencoder
is “reconstructing” its input. The idea for this model is that the autoencoder will
learn to reconstruct normal observations, but that it will struggle to reconstruct
anomalous observations. Just as with other NNs we can introduce convolutional
layers to autoencoders to improve their capabilities in image processing. In this
case, we call the model a convolutional autoencoder. Using a loss function we can
quantify the difference between the input and the output, which we expect to
be higher for anomalous observations. For both models, a loss threshold should
be set for when to classify a sample as normal or abnormal [23].

A significant step towards deploying convolutional models e.g. CNNs and
convolutional autoencoders on small devices such as smartphones, but also mi-
crocontrollers, are depthwise separable convolutions. These were first proposed
in [29], and popularized in MobileNets [12].

4 Model Optimisations

Most disadvantages of tinyML that we listed in Section 1 come from microcon-
trollers being much less powerful than desktop or server computers. Therefore
it is natural to apply optimisations to a tinyML pipeline that we want to run
in microcontrollers. Section 3 explained that the focus of tinyML at this point
seems to be NN models, so we will focus on optimisations for these models.
Overall we describe six ways to optimise the performance of NN based models
for tinyML. These are quantisation, pruning, clustering, knowledge distillation,
removing operations and cascading architectures.

https://docs.arduino.cc/hardware/nano-33-ble-sense


A Primer for tinyML Predictive Maintenance: Input and Model Optimisation 7

Quantisation. Most NNs represent their weights, biases and activations as
32-bit floats. This poses two problems for deploying them on microcontrollers.
Firstly, not all microcontrollers have hardware support for floating-point units.
Secondly, the many 32-bit values can take up a large part of the memory of
microcontrollers. For example the Arduino Nano 33 BLE Sense, mentioned in
Section 3, has 256 KB of RAM. That leaves room for 64.000 weights, biases, and
activations. While that might sound like a lot, many modern NNs have much
more. E.g. AlexNet and Resnet-50 both contain more than one million weights,
biases and activations [3]. That is without even considering the memory required
for the model structure, the input data, or the remaining application.

Fortunately, research has shown that it is possible to quantise NNs, while
still retaining a good model [21]. For most hardware, operations using 8-bit
integers are some of the fastest operations, and as such many tinyML models
are quantised from 32-bit floats to 8-bit integers. This quantisation is typically
done by taking the minimum and maximum 32-bit floating-point weights and
mapping them and the intervals between them to 8-bit integers. Note that after
full 8-bit integer quantisation, multiplying or adding two 8-bit integers can easily
create an overflow situation. This is due to the minimum and maximum 32-bit
floating-point weights being mapped to the minimum and maximum values for 8-
bit integers. Consider that applying just the smallest multiplication or addition
to the largest 32-bit floating-point weight after quantisation will result in an
overflow. Therefore some approaches only quantise weights and biases (or only
weights, as they grossly outnumber biases), and let the remaining activations
(and biases) stay as 32-bit floats. A way to achieve full 8-bit integer quantisation
is to compute the 8-bit integer computations and store the result in 16-bit/32-
bit integers. This can then be scaled down to 8-bit integers again for the next
computation. By using quantisation we can therefore reduce both the model
size, increase inference speed, and make the model run on an even larger range
of devices. The downside is a potential loss in accuracy [28]. This potential
accuracy loss can be reduced using quantisation aware training. In this method,
a model is trained with the knowledge that it will be quantised later [13]. Note
that a 4 times reduction in the number of weights, biases and activations will
make neither AlexNet nor Resnet-50 fit in the Arduino that we are considering.
To achieve that we require further optimisations or smaller models.

Researchers have also been looking into further quantisation and even bi-
narisation of NNs, which can further decrease the size by up to 32 times and
inference time of the networks by up to 52 times [24].

Pruning. It is common in NNs that some weights are more relevant than oth-
ers. After quantisation, some weights might even be zero and not contribute to
the inference at all. In such cases, we can prune the connections associated with
these weights. All incoming connections to a neuron might be pruned using such
an approach. In that case, we can also prune that neuron and any outgoing con-
nections. This will further reduce the model size and make it faster to compute.
It is also an option to prune non-zero weight connections. In this case, some

https://docs.arduino.cc/hardware/nano-33-ble-sense


8 E. Njor et al.

rules should be set for when to prune a connection. This could e.g. be pruning
connections when their associated weights are below a threshold [18]. Such an
approach is used in [10], where pruning reduces the size of a NN by 9 to 13 times.

Clustering. An approach that is closely related to both quantisation and prun-
ing is clustering. In this optimisation technique, weights are clustered into groups,
where all weights in one group are assigned the same weight. Similarly to prun-
ing, this technique reduces the model size, however, the computation is not sped
up. The paper that initially introduced clustering claims that their approach re-
duced the size of a NN by 27 to 31 times [10]. This is after pruning has reduced
the size by 9 to 13 times as reported above in Section 4.

Knowledge Distillation. Larger NN models are often better at learning the
structure of a complicated dataset. However, as discussed earlier, it might be
infeasible to deploy large models on microcontrollers. A solution is to “distil” the
knowledge of a large model into a smaller model. This is known as knowledge
distillation. The idea is to train a small model, not just using the ground truths
but also using the predictions of a larger model [11]. Consider the following
example. We want to create a small model that can classify the contents of an
image. Normally this would be done by training the network to make the same
classification as the ground truth labels. In knowledge distillation, we first train
a larger model on our data. We then have the larger model give its classifications
for all images in the dataset. Then we train the small classifier, not just to classify
the ground truth, but to also make similar classifications as the larger model.
This can be done by altering the loss function of the smaller model. Often the
larger model is referred to as the “teacher”, and the small model as the “student”.

Removing Operations. A technique that is specific to the TFLM interpreter
is the option to decide which NN operations the interpreter can execute. By
removing operations from the interpreter, it is possible to reduce its size [4].

Cascading Architectures. Another approach to reducing the size and infer-
ence speed of a model is to split the model into two or more models of increasing
size. Typically the idea is to use a small model as a filter before activating the
larger model. E.g. when using a Google Home device, a small model is running
locally, which listens for the “Hey Google” keywords. Once it detects these key-
words, it sends the remaining speech to a larger model in the cloud to further
process the request [32]. While the idea of cascading architectures is usually
restricted to model size and alternative systems, research has looked into a cas-
cading use of internal hardware in a system [33].

5 Input Optimisations

While there has been much research into optimising ML models for tinyML, there
has, to our knowledge, been little work into optimising model inputs. Therefore



A Primer for tinyML Predictive Maintenance: Input and Model Optimisation 9

in this section, we describe preliminary work that we have done on optimising
the input for a PdM tinyML model.

We choose to work with the ToyADMOS dataset, as it is the benchmarking
dataset for tinyML. From the dataset, we use the recordings of one microphone
from one case of the ToyConveyor part of the ToyADMOS dataset. This dataset
is targeted towards unsupervised anomaly detection and contains normal and
anomalous sound recordings. Due to this, and that tinyML is focused on NNs,
we create a convolutional autoencoder model. The reason for choosing a con-
volutional autoencoder, above a standard autoencoder, is that it is common to
generate images (spectrograms) from audio, and input this to the NN model
[19]. We implement this model using TF and TFLM. We train the convolutional
autoencoder on Mel spectrograms of the normal sound samples of the dataset.
Thus the model learns to reconstruct a Mel spectrogram of a normal sound sam-
ple. After training the model, we mix a few normal Mel spectrograms (not used
in training) and anomalous Mel spectrograms to create a test set. Generating a
TFLM model from the convolutional autoencoder shows that the model takes
up ∼172 KB before applying model Optimisations. This suggests that the model
will be able to fit in the Arduino Nano 33 BLE Sense microcontroller.

The autoencoder architecture can be divided into an encoder and a decoder.
The first layer of the encoder is a convolutional layer of 32 3x3 filters. The second
layer is a max-pooling layer with a pooling size of 2x2. The third and fourth layers
are a convolutional layer of 64 3x3 filters and a max-pooling layer, with a pooling
size of 2x2, respectively. The first layer of the decoder is a convolutional layer
with 32 3x3 filters. The second layer is an upsampling layer with a size of 2x2.
The third and fourth layers of the decoder contain a convolutional layer of 16
3x3 filters and an upsampling layer of size 2x2. Lastly, the decoder contains a
convolutional layer with one 3x3 filter to reproduce the spectrogram shape. All
convolutional layers use the rectified linear unit activation function.

We evaluate the model using a Receiver Operating Characteristic (ROC)
Area Under Curve (AUC) score calculated on the test set. A ROC AUC score of
1 means that there is a threshold for which the model can completely separate
the normal and anomalous samples. A model that would take random actions,
also known as a no-skill model, would on average get a ROC AUC score of 0.5.

At a sample rate of 24000 Hz of the sound files, we can train and run a model
that in five out of five runs have a ROCAUC score of 1. We treat this sample
rate as a benchmark and investigate the effects of reducing it. The idea is that
the lower the sample rate, the lower the processing and storage capability is
required to run inference on the files, which would be a useful optimisation for
tinyML. We conduct experiments where we reduce the sample rate by a factor
of two until reaching 375 Hz. Note that we do not cross-optimise the parameters
of the Short Time Fourier Transform (STFT) used to create Mel spectrograms
to the sampling frequency. The results are shown in Table 1, and are plotted in
Figure 2 and 3 As this experiment is preliminary work, we measure the inference
time on an M1 Pro chip with 10 CPU cores and 16 GPU cores. We expect to
see a similar decrease in inference time on the Arduino Nano 33 BLE Sense.



10 E. Njor et al.

Table 1. Mean and standard deviation of results from 5 training rounds.

Sample Rate (Hz) ROC AUC score Inference time (s)

24000 1.000± 0.0000 5.20± 0.022
12000 0.999± 0.0004 1.65± 0.015
6000 0.993± 0.0054 0.97± 0.041
3000 0.972± 0.0133 0.55± 0.011
1500 0.766± 0.0488 0.39± 0.013
750 0.649± 0.1110 0.28± 0.030
375 0.483± 0.0294 0.21± 0.001

0500010000150002000025000
Sample Rate (Hz)

0.5

0.6

0.7

0.8

0.9

1.0

RO
C 
AU

C 
Sc
or
e

375

750

1500

300060001200024000

Fig. 2. AUC score by sample rate

0500010000150002000025000
Sample Rate (Hz)

0

1

2

3

4

5

In
fe
re
nc

e 
Ti
m
e 
(s
)

37515003000
6000

12000

24000

Fig. 3. Inference time by sample rate

The results suggest that we can reduce the sample rate from 24000Hz to
about 6000 Hz while still retaining a respectable ROC AUC score. This shows
that we can reduce the input size by four times and speed up inference about
five times by optimising the input in this example. The reduced inference time is
a clear proxy for reduced computational requirements. By lowering the sample
rate, we also reduce the dimensions of Mel spectrograms, and in turn reduce the
input and output dimensions of the convolutional autoencoder. Thus both the
input and model memory requirement is reduced when lowering the sample rate.
We furthermore expect that these reductions translate to a reduction in energy
consumption, both due to lower compute and memory requirements, but also
due to lower sensing requirements at lower sampling rates.

6 Conclusion

In this paper, we presented the background behind deploying tinyML based
PdM. We furthermore investigated the optimisations that can be used to achieve
PdM using tinyML. We started by describing the model optimisations that are
proposed in tinyML research. Lastly, we expressed our idea that optimisations
should be considered throughout the ML pipeline, and that especially optimising



A Primer for tinyML Predictive Maintenance: Input and Model Optimisation 11

input to tinyML is a promising research direction. An example of input Optimi-
sation was done for an industry-standard dataset for a convolutional autoencoder
that fits in the memory of a tinyML device. The results suggest that there is a
great potential for input optimisation to help achieve PdM using tinyML.

Acknowledgement. This work is supported by the Innovation Fund Denmark
for the project DIREC (9142-00001B).

Resources. The source code used for the experiments is publicly accessible on
GitHub: https://github.com/Ekhao/ToyADMOSTinyAutoencoder

References

1. ARM: Processor ip for the widest range of devices, https://www.arm.com/
products/silicon-ip-cpu

2. Banbury, C., Reddi, V.J., Torelli, P., Jeffries, N., Kiraly, C., et al.: MLPerf Tiny
Benchmark. In: Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 1) (2021)

3. Bernstein, L., Sludds, A., Hamerly, R., Sze, V., Emer, J., Englund, D.: Freely
scalable and reconfigurable optical hardware for deep learning. Scientific reports
11(1), 1–12 (2021)

4. David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N.,
Nappier, I., Natraj, M., et al.: Tensorflow lite micro: Embedded machine learning
for tinyml systems. Proc. Machine Learning and Systems 3, 800–811 (2021)

5. Dutta, D.L., Bharali, S.: TinyML Meets IoT: A Comprehensive Survey. Internet
of Things (Netherlands) 16 (12 2021). https://doi.org/10.1016/j.iot.2021.100461

6. edX: Professional certificate in tiny machine learning (tinyml), https://www.edx.
org/professional-certificate/harvardx-tiny-machine-learning

7. Fafoutis, X., Marchegiani, L., Elsts, A., Pope, J., Piechocki, R., Craddock, I.: Ex-
tending the battery lifetime of wearable sensors with embedded machine learning.
In: IEEE 4th World Forum on Internet of Things (WF-IoT). pp. 269–274 (2018)

8. tinyML Foundation: About us tinyml, https://www.tinyml.org/
9. Garofalo, A., Rusci, M., Conti, F., Rossi, D., Benini, L.: Pulp-nn: accelerating quan-

tized neural networks on parallel ultra-low-power risc-v processors. Philosophical
Transactions of the Royal Society A 378(2164), 20190155 (2020)

10. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149 (2015)

11. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural net-
work. arXiv preprint arXiv:1503.02531 2(7) (2015)

12. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

13. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 2704–2713 (2018)

https://github.com/Ekhao/ToyADMOSTinyAutoencoder
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
https://doi.org/10.1016/j.iot.2021.100461
https://doi.org/10.1016/j.iot.2021.100461
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.edx.org/professional-certificate/harvardx-tiny-machine-learning
https://www.tinyml.org/


12 E. Njor et al.

14. Khan, A., Hammerla, N., Mellor, S., Plötz, T.: Optimising sampling rates for
accelerometer-based human activity recognition. Pattern Recognition Letters 73,
33–40 (2016)

15. Koizumi, Y., Saito, S., Uematsu, H., Harada, N., Imoto, K.: Toyadmos: A dataset
of miniature-machine operating sounds for anomalous sound detection. In: IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WAS-
PAA). pp. 313–317 (2019)

16. Kumar, A., Goyal, S., Varma, M.: Resource-efficient machine learning in 2 kb ram
for the internet of things. In: Int. Conf. Machine Learning. pp. 1935–1944 (2017)

17. Lai, L., Suda, N., Chandra, V.: Cmsis-nn: Efficient neural network kernels for arm
cortex-m cpus. arXiv preprint arXiv:1801.06601 (2018)

18. LeCun, Y., Denker, J., Solla, S.: Optimal brain damage. Advances in neural infor-
mation processing systems 2 (1989)

19. Marchegiani, L., Newman, P.: Listening for sirens: Locating and classifying acoustic
alarms in city scenes. IEEE Transactions on Intelligent Transportation Systems pp.
1–10 (2022). https://doi.org/10.1109/TITS.2022.3158076

20. Moons, B., Bankman, D., Yang, L., Murmann, B., Verhelst, M.: Binareye: An
always-on energy-accuracy-scalable binary cnn processor with all memory on chip
in 28nm cmos. In: IEEE Custom Integrated Circuits Conf (CICC). pp. 1–4 (2018)

21. Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., van Baalen, M.,
Blankevoort, T.: A white paper on neural network quantization. arXiv preprint
arXiv:2106.08295 (2021)

22. Purohit, H., Tanabe, R., Ichige, K., Endo, T., Nikaido, Y., Suefusa, K., Kawaguchi,
Y.: Mimii dataset: Sound dataset for malfunctioning industrial machine investiga-
tion and inspection. arXiv preprint arXiv:1909.09347 (2019)

23. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance:
Systems, purposes and approaches. arXiv preprint arXiv:1912.07383 (2019)

24. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Enabling ai at the edge with
xnor-networks. Communications of the ACM 63(12), 83–90 (2020)

25. Ray, P.P.: A review on tinyml: State-of-the-art and prospects. Journal of King
Saud University - Computer and Information Sciences (2021)

26. Sanchez-Iborra, R., Skarmeta, A.F.: Tinyml-enabled frugal smart objects: Chal-
lenges and opportunities. IEEE Circuits and Systems Magazine 20, 4–18 (7 2020)

27. Saxena, A., Goebel, K.: Turbofan engine degradation simulation data set. NASA
Ames Prognostics Data Repository pp. 1551–3203 (2008)

28. Siang, Y.Y., Ahamd, M.R., Abidin, M.S.Z.: Anomaly detection based on tiny ma-
chine learning: A review. Open International Journal of Informatics 9(Special Issue
2), 67–78 (2021)

29. Sifre, L., Mallat, S.: Rigid-motion scattering for texture classification. arXiv
preprint arXiv:1403.1687 (2014)

30. TensorFlow: Tensorflow lite for microcontrollers, https://www.tensorflow.org/lite/
microcontrollers

31. Tzimpragos, G., Madhavan, A., Vasudevan, D., Strukov, D., Sherwood, T.: In-
sensor classification with boosted race trees. Communications of the ACM 64(6),
99–105 (2021)

32. Warden, P., Situnayake, D.: TinyML. O’Reilly Media, Incorporated (2019)
33. Zalewski, P., Marchegiani, L., Elsts, A., Piechocki, R., Craddock, I., Fafoutis, X.:

From bits of data to bits of knowledge—an on-board classification framework for
wearable sensing systems. Sensors 20(6), 1655 (2020)

https://doi.org/10.1109/TITS.2022.3158076
https://doi.org/10.1109/TITS.2022.3158076
https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers

	A Primer for tinyML Predictive Maintenance: Input and Model Optimisation

