
Conformance Testing in UPPAAL:
A diabolic approach

E. J. Njor
Dept. of Computer Science

Aalborg University
Aalborg, Denmark

enjor16@student.aau.dk

F. Lorber
Dept. of Computer Science

Aalborg University
Aalborg, Denmark
florber@cs.aau.dk

N. I. Schmidt
Dept. of Computer Science

Aalborg University
Aalborg, Denmark

nschmi16@student.aau.dk

S. R. Petersen
Dept. of Computer Science

Aalborg University
Aalborg, Denmark

srpe16@student.aau.dk

Abstract—Model-based mutation testing is a fault-based
method in the model-based testing area of research. It has
been applied to several modeling formalisms, including timed
automata. We propose a model transformation termed “diabolic
completion” that allows for conformance testing directly in the
UPPAAL tool. We have also developed a system to automate most
of the process, which include taking a model, and performing
diabolic completion, with the additions of allowing creation of
mutants, conformance checking using the UPPAAL verification
engine, and test case generation. We then set up a case study
using a car alarm system model, which has been used several
times in this area of research, and compare the efficiency with two
existing tools, Ecdar 2.2 and MoMuT::TA, observing a significant
speedup.

I. INTRODUCTION

The importance of correct systems cannot be understated,
especially in the case of safety-critical systems, such as

for instance air traffic control systems. The current industry so-
lution to deal with correctness is to thoroughly test the system.
This testing is usually conducted by a tester, with a best effort
“ad-hoc” approach, to the point where the tester believes the
system to be correct. The tester, however, can unfortunately
miss major bugs, which can have fatal consequences.

To get around having a manual tester, the concept of model-
based testing has been proposed. In model-based testing,
one creates a mathematical model of the system, called the
specification, which can then be used to generate test cases
for the System Under Test (SUT) [7]. Several approaches to
this have been proposed, ranging from manual testing using
the model, up to structural coverage tests [23]. In this paper we
look into a fault-based approach called Model-Based Mutation
Testing (MBMT) where a specification is mutated to create
potentially faulty models, called mutants. Then the mutants are
checked for conformance to the original model. If a mutant
does not conform to the model, this shows that the mutant
contains an observable fault and produces a counter example.
Using this counter example, a test case can be generated for
an SUT of the specification, based on the introduced fault.
In current society, software systems are reaching new heights
in complexity and importance. This results in the need for
better and more practical testing methods, which MBMT tries
to address. What makes MBMT an appropriate method for
combating this, is the systematically testing of a SUT, giving

better coverage of certain faults determined by the mutation
operators, and the semi-automation of the testing process,
which results in it being cheaper than manual or exhaustive
testing techniques [17] [20].

One important aspect of many safety-critical systems is the
need to adhere to real-time specific requirements. In such
systems, it is not only important that a system needs to provide
a specific output in certain situations, but also that the output
is given at a specific point in time, or before some deadline
expires. One formalism for specifying such specifications are
timed automata [5], which are extended finite state machines
that use variables called clocks to measure time.

Complete systems for creating mutations and generating test
cases for timed automata are at the time of writing, to the
writers knowledge, limited to Ecdar 2.2 and MoMuT::TA. In
this paper we propose a method to do conformance testing
and test case generation using the verification engine of
UPPAAL [16], a widely used and very efficient model-checker
for timed automata. We then do an evaluation of this method
on a car alarm system, and compare the results with the two
previous tools.

The remainder of the paper is structured as follows. First, in
Section II we will provide preliminaries on timed automata and
model-based mutation testing. Then, in Section III we discuss
related work. Next, in Section IV, we will show how to apply
model-based mutation testing using UPPAAL. In Section V
and Section VI we will give details on our implementation and
demonstrate results of our approach, comparing to previous
techniques. Finally, in Section VII and Section VIII we will
provide conclusions and an outlook on future work.

II. PRELIMINARIES

A. UPPAAL Timed automata

Timed automata, originally described in Alur et al. [5],
are an extension of finite state machines that include real-
valued clocks that keep track of the time passed, which can
be reset along transitions and used in constraints in locations
and transitions. The time domain used for the clocks is R+.

The reasoning for introducing this extension at the time,
was to be able to more accurately model physical processes
compared to other possible models, such as: finite automata
[21], non-deterministic Büchi automata [6], deterministic and

nondeterministic Muller automata [19], etc. These types of
automata are all examples of methods that have abstracted
away time. This can cause problems in time sensitive systems.

Definition 1. The set of possible guards Φ(C) over the
set of clocks C is defined by the abstract syntax: δ ::= c ∼
n|c− d ∼ n|δ ∧ δ, given c, d ∈ C, and n ∈ N.1

Definition 2. The UPPAAL version of a timed automata,
which is partially derived from Aceto et al. [1], is a tuple
A = (Σ, L, l0, I, C,E), where:
• Σ = ΣI ∪ ΣO is a finite, non-empty set of symbols,

either specified as input or output on the form α? ∈ ΣI or
α! ∈ ΣO respectively, given α is in the language alphabet.

• L is a finite, non-empty set of locations.
• l0 ∈ L is the initial location.
• I : L→ Φ(C) assigns invariants to locations.
• C is a finite set of real valued clocks.
• E ⊆ L×L×Φ(C)×Σ×C is a finite set of transitions. A

transition e = (l, l′, δ, a, λ) is a transition from location l
to l′, given the guard δ is satisfied, with the input/output
a, and clock resets λ.

Definition 3. A timed trace σ is a sequence
of pairs of time delays and actions, denoted as
[(t1, a1), (t2, a2), ..., (tk, ak)] | ti ∈ R+, ai ∈ Σ, for
some positive integer i, given i ≤ k. A timed trace σ can
be applied to a model M , denoted by M(σ), in which case
for each (ti, ai) ∈ σ an action of the timed trace is applied
to the model after its respective time delay. At the end of
a timed trace σ we end up in a state (l, C), denoted by
M(σ) = (l, C)|l ∈ L, where C is a set of clocks and their
values, and l is the location we end up in.

We only consider deterministic timed automata as input
models to our approach, meaning that at no point in time will
there be two transitions with the same label leaving a state.
In addition we do not consider timed automata with silent
transitions, i.e., transitions without an input or output label.

Example. To show an example of a timed UPPAAL automa-
ton, we use the specification of a vending machine, shown in
Figure 1. Its formal definition is:
• Σ = {btnc?, btnt?, coffee!, tea!}
• L = {S1, S2, S3}
• l0 = S1
• I(S1) = true,
I(S2) = true,
I(S3) = true

• C = {x}
• E = {(S1, S2, x > 2, btnc?, {x := 0}),
{(S1, S3, x > 2, btnt?, {x := 0}),
{(S2, S1, x < 3, coffee!, {}),
{(S3, S1, x < 3, tea!, {})}

B. Model-Based Mutation Testing

Model-Based Mutation Testing (MBMT) is a subfield of
the model-based testing techniques. The approach relies on an

1UPPAAL allows for variables, which are treated as natural numbers.

S2 S1 S3

x > 2, btnc?, x := 0 x > 2, btnt?, x := 0

x < 3, coffee! x < 3, tea!

Fig. 1: Running example of a coffee vending machine.

assumed to be correct specification, which is used to generate
tests for a possibly malfunctioning SUT. MBMT utilizes a
fault-based approach, where it generates new models using
mutations based on the specification of the SUT. A mutant is
an altered version of the specification it is based of, with one or
more changes introduced. The changes are made with mutation
operators, where an effectively infinite amount of operators are
possible. Some of the operators for timed automata introduced
in Aichernig et al. [3], are as follows:
• Change action: The action on a transition is changed.
• Change target: A transitions target location is changed.
• Change source: A transitions source location is changed.
• Change guard: The guard on a transition is changed.

The purpose of the mutation operators is to introduce common
mistakes typically found in the SUTs.

After this, typically model completion tools are applied
on the mutant and specification to make them input-enabled.
Then, we check for conformance between each mutant and
the specification. In real-time systems, the timed input-output
conformance tioco [13] is generally used as the conformance
relation. An implementation I conforms to a specification S
with respect to tioco, iff for all traces through the specification,
the outputs of I are a subset of the outputs of S, where
the passage of time is considered an output as well. Thus,
I must never show additional output behavior, or delay longer
than S. Assuming that the mutant does not conform to the
specification, i.e., it shows new incorrect output behaviour, the
conformance check will produce a counter example, which
is a trace through the mutant that is not possible in the
specification. Finally, these traces can be transformed into test
cases and executed on the SUT to see whether it conforms to
the specification or to one of the mutants.

III. RELATED WORK

MBMT has already been applied to many types of models,
including: probabilistic finite state machines [11], UML state
machines [2] and Timed Automata, in MoMuT::TA [4], Ecdar
2.2 [9], [14] and, without an actual conformance check, in UP-
PAAL [18]. Aichernig et al. [4] were the first to apply model-
based mutation testing to timed automata. They introduced the
mutation operators and used the SMT-solver Z3 in their tool
MoMuT::TA to perform a bounded tioco conformance check.
Due to the boundedness of the approach, large systems with
long traces would either not be completely explored, or need
more time for the conformance check.

Larsen et al. [14] used the mutants created by MoMuT::TA
to perform refinement checks with the tool Ecdar, producing
adaptive test strategies instead of linear test cases. Later,

Gundersen et al. [9], [14] developed and used the tool Ecdar
2.2, which supports mutation, test-case generation and test-
case execution from within the tool.

Lorber et al. [18] proposed to use the properties of a spec-
ification to test whether mutants still fulfill these properties,
instead of performing a complete conformance check. This
reduces the computation time required and generates less test
cases than the usual approaches, which are faster to execute.

Godskesen et al. [8] proposed a fault-based method using
a connectivity fault model. They also use a kill state (in a
seperate observer automaton) to identify the killing of mutants,
and reachability queries to get the trace. Contrary to our
approach, they test for errors that lie in the communication
between the SUT and the environment, instead of in the SUT.

Krenn et al. [12] elevated the MBMT approach, by showing
how to expand a trace gotten from a single mutated timed
automaton into a trace of a network of timed automata,
enabling the fault-based verification of composed systems.

General testing approaches using timed automata include
the following: Larsen et al. [15] proposed to conduct con-
formance testing using online black box testing between a
specification and an implementation, and Hessel et al. [10]
conducted offline testing using an observer automata and an
observer language to specify coverage criteria. This lead to the
creation of UPPAAL TRON and UPPAAL CoVer, respectively.

The proposed approach aims to use the UPPAAL verifica-
tion engine to achieve testing for conformance between mu-
tants and their specification, which means we will, like Ecdar
2.2, achieve unbounded conformance testing, as opposed to
MoMuT::TA that is bounded. The approach will provide more
generality, as complete UPPAAL models can be supported,
while previous approaches excluded certain elements such
as C-like code or urgent/committed locations that are sup-
ported by UPPAAL, and, using the highly optimized UPPAAL
eninge, be faster than previous approaches.

IV. MODEL-BASED MUTATION TESTING IN UPPAAL
In this section, we introduce our approach to perform

MBMT directly in UPPAAL. The main idea behind this
is to create the mutants and the specification as separate
communicating timed automata, and have UPPAAL explore
them in parallel. For that, the specification needs to undergo
a transformation, which we named "diabolic completion". It
works by adding a new location, which from this point forward
we will refer to as the "kill state". The goal is to create the
state and the transitions leading there in a way, such that it can
only be reached if the mutant performs an output that cannot be
taken by the specification. This reduces the conformance check
to a reachability check for that location. The next subsection
will expand on the different steps needed to utilize this
transformation in the complete test-case generation method.

The workflow consists of the following steps:
• Create mutants
• Make the specification input enabled
• For each mutant

– Make the mutant input enabled

– Perform diabolic completion
– Perform the reachability analysis
– Generate test cases

A. Mutation.

The creation of the mutants follows the mutation operators
proposed by Aichernig et al. [3]. However, even though the
theory supports the full set of operators, as of now we only
implemented the operators “change action”, “change source”
and “change target”. We are only using first-order mutants, that
is, each mutant only contains one introduced fault. An example
of a ”change action” mutation can be seen in Figure 2a.

B. Making models input enabled.

In the second step, model completion is performed to
make the models ready for conformance checking. Specifically
demonic and angelic completion (see Defintion 6-7) are
applied to the specification and mutants, respectively, to make
them input-enabled. The idea behind demonic completion
on the specification is to support underspecification, i.e., the
implementation is allowed to react to more inputs than initially
specified, but such an input would leave the specified area and
from then on all behaviour is valid. The angelic completion
of the mutants ensures that the mutants cannot block any
input, but simply neglect any input that is not specified in
their model. We need four definitions to formally define the
completions.

Definition 4. We define a function we call the inverse
location input function f¬in : X → Y that maps a location
to a set of inputs, containing all the inputs not specified in
any of the transitions that start from the given location. The
domain of X is therefore L, and Y is P(ΣI). The concrete
function maps x→ I ′, which is done given I ′ = ΣI − I , and
where I =

⋃
e∈E|p1(e)=x, p4(e)∈ΣI

p4(e). pi(e) is used to denote

the i-th projection of the tuple e, that is, in this case the label
of the edge.

Definition 5. We define the inverse guard function f¬guard :
X → Y that maps a guard to the negated version of the guard ,
where the domains of X and Y is Φ(C). The concrete function
maps x → A′, given x is built using the abstract syntax in
Definition 1. A′ is defined as A′ = l′1 ∨ l′2 ∨ ... ∨ l′k, for all
i ≤ k, where k is the number of simple constraints l in x2.
For an l where l = a ∼ b, for some natural number b, and
where a is built using the abstract syntax a ::= c|c − d, l′i is
built in one of 5 ways:
• l′i = {a ≤ b}|li = {a > b}
• l′i = {a < b}|li = {a ≥ b}
• l′i = {a > b}|li = {a ≤ b}
• l′i = {a ≥ b}|li = {a < b}
• l′i = {a < b ∨ a > b}|li = {a = b}

Definition 6. We define a function we call the action resolve
function fresolve : X → Y that maps a tuple x = {E, l, l′, a},

2Note that guards in timed automata do not allow for disjunction. The
implementation will split these transitions into multiple transitions.

which contains a set of transitions, a start location, an end
location and an action, to a new set of transitions, containing
all the transitions from E and a new one with action a,
going from the start location l to the end location l′, with
a guard that ensures that it can only be taken, as long as
the invariant allows it, and no other transitions with the same
action and start location have a guard that allows traversal at
the same time. The concrete function maps x → E′, where
E′ = E ∪ enew, given Eact 6= ∅, where Eact =

⋃
e∈E|p4(e)=a

e.

The new transition enew = (l, l′, g, a, ∅), where the guard g =
f¬guard(e1)∧f¬guard(e2)∧ ...∧f¬guard(ek)∧f¬guard(I(l)),
∀ei ∈ Eact.

1) Angelic completion: Angelic completion [22] is when a
model is made input-enabled by creating self-loops on every
location, making them partially reflexive, allowing them to
take all possible inputs in every possible location.

Angelic completion is applied to the mutants, as real time
systems are not considered to block unexpected input, but
rather to ignore input if given at an unexpected time. An
example of the angelic completion can be seen in Figure 2b.
In this example shows that it would not make sense to change
state if an unexpected input is given while it is making coffee,
but rather continue making coffee until it is done.

Definition 7. Now we define angelic completion based on
the previously defined functions, where we start by adding
transitions to each location for inputs that are generally
available in the location but disabled at certain times, E′ =
E ∪ fresolve(E, p1(e), p1(e), p4(e)), which is done ∀e ∈ E.
Then we add for each location the remaining transitions for
inputs that are not enabled at all, E′′ = E′ ∪ (l, l, ∅, ain, ∅),
which is done for all ain ∈ f¬in(l), for all l ∈ L.

2) Demonic completion: Demonic completion [22], like
angelic, concerns itself with making a model input-enabled.
Demonic completion achieves this by creating a sink location,
with transitions leading there from every location for every
input unspecified for that location. I.e., these transitions are
taken if we observe an unexpected input, which makes us
leave the specified behaviour. The sink location itself accepts
all input or output, making it completely reflexive.

Demonic completion is applied on the specification itself,
because it should allow for implementations to expand on the
features of the specification. It is a very real possibility that
only a small part of a system is modelled (e.g., the safety-
critical parts are modelled) and the implementation contains
more functionality than the specification. In the case that an
unspecified input is given, the behavior is unpredictable, but
should still be accepted. An example of demonic completion
can be found in Figure 2c. Should a new functionality be
added (such an additional button to create hot chocolate), then
that intuitively shouldn’t fail the specification, which did not
specify what happens if hot chocolate is requested.

Definition 8. Now we define demonic completion, on the
previous defined functions, where we start with adding a new
sink location, i.e., L′ = L∪ lsink. We then make that location
both input and output enabled, by adding the transition E′ =

E ∪ (lsink, lsink, ∅,ΣI ∪ΣO, ∅). Now we will, like in angelic
completion, add all transitions for guarded input transitions
in each location E′′ = E′ ∪ fresolve(E′, p1(e), lsink, p4(e)),
which is done ∀e ∈ E. We then add the remaining transitions
E′′′ = E′′ ∪ (s, lsink, ∅, ain, ∅), which is done for all aI ∈
f¬in(l) and ∀l ∈ L.

C. Diabolic Completion

Diabolic completion works by adding a new location, the
"kill state". Once this state is reached, the mutant has been
killed, meaning the mutant does not conform to the specifica-
tion. The state is reached if the mutant gives any unexpected
output (either an output not available in the current location,
or an output that comes at a wrong point of time), which does
not match an already existing transition of the current location
in the specification. An example of diabolic completion can
be found in Figure 2d. The transition with the action error!
symbolizes every output that is not accepted in the source
location, and, for instance, the transition with the action coffee!
from S2 to S4 and the guard x ≥ 3 covers the case where an
output arises while the guard of the correct transition was not
satisfied. After applying this transformation and creating the
kill state, we can perform a reachability check on the parallel
product of the specification and the mutant to find a case where
the mutant can perform an output that leads the specification
to the kill state.

1) Algorithm and mathematical definition: The algorithm
for diabolic completion is shown in listing 1.

Listing 1: Algorithm for diabolic completion.
1 INPUT: A tuple M = (Σ, L, l0, I, C, E),
2 representing a UPPAAL model.
3 OUTPUT: A tuple H = (Σ, L, l0, I, C, E),
4 representing a UPPAAL model
5 after diabolic completion.
6 Diabolic_Completion(M){
7 tuple H = M
8 /*Adding kill state*/
9 H.S = H.S ∪ kill_state

10 /*Transitions added from each s to kill_s*/
11 foreach l in M.L{
12 set temp_actions = ΣO

13 foreach e in M.E{
14 if(e.l == l && e.a is an output){
15 if(e.δ != NULL && e.a ∈ temp_action){
16 H.E = resolve(H.E, e.l, kill_s, e.a)
17 }
18 temp_actions −= e.a
19 }
20 }
21 foreach a in temp_actions{
22 H.E = H.E ∪ (l, kill_s, NULL, a, NULL)
23 }
24 }
25 return H
26 }

S2 S1 S3

x > 2, coffee!, x := 0 x > 2, btnt?, x := 0

x < 3, coffee! x < 3, tea!

(a) Mutated vending machine

S2 S1 S3

x > 2, btnc?, x := 0 x > 2, btnt?, x := 0

x < 3, coffee! x < 3, tea!

error? error? error?

x ≤ 2, btnc?, btnt?

(b) Angelic completion

S2 S1 S3

S4

x > 2, btnc?, x := 0 x > 2, btnt?, x := 0

x < 3, coffee! x < 3, tea!

error?
x ≤ 2,
btnc?,
btnt?

error? error?

ΣI ∪ ΣO

(c) Demonic completion

S2 S1 S3

S4

x > 2, btnc?, x := 0 x > 2, btnt?, x := 0

x < 3, coffee! x < 3, tea!

error! error! error!

x >= 3, coffee! x >= 3, tea!

(d) Diabolic completion

Fig. 2: UPPAAL timed automata that show a mutation and angelic, demonic and diabolic completion of the vending machine.
The red color indicates the changed parts. In the timed automaton, the error? labels are used to show a set of inputs. The set
error? = ΣI − p3(e)|∀e ∈ E ∧ p1(e) = p1(eerror?), and, error! = ΣO − p3(e)|∀e ∈ E ∧ p1(e) = p1(eerror!)

The algorithm starts of by taking a tuple representing the
model as input (see section II-A), where it first adds the new
kill state seen in Line 9. After that, it traverses all locations,
and for each location it creates a set of all output actions
(Line 12) to check which ones were processed already. Then,
for each outgoing transition of the current location that is
an output (Line 14) and has not yet been processed, the
resolve() function (Line 16) is applied. This function is defined
mathematically in Definition 6, and creates a transition to the
kill state with a negation of the guard of all transitions with the
current source location and action. Next the algorithm removes
the current action from the set of actions that still needs to
be processed (Line 18). Finally, for each action left in the
temporary variable, a transition is created from the current
location to the kill state, with the given action and an empty
guard, seen in Line 22.

Definition 10. We define a function we call the inverse
location output function f¬out : X → Y that maps a location
to a set of outputs, containing all the outputs not used in any of
the transitions starting from the given location. The domain of
X is therefore L, and the domain of Y is P(ΣO). The concrete
function is x→ O′, which is done given O′ = ΣO − O, and
where O =

⋃
e∈E|p1(e)=x, p4(e)∈ΣO

p4(e).

Definition 11. We define the process of diabolic completion,
using the functions previously defined, by adding a kill state,
i.e., L′ = L ∪ kill. Then we add the output transitions for
outputs that are generally available in a location but disabled
at certain times, E′ = E ∪ fresolve(E, p1(e), kill, p4(e)),
which is done for all e ∈ E. And finally we add all
the remaining transitions for outputs that are not enabled
at all, E′′ = E ∪ (l, kill, ∅, aout, ∅), which is done for all

aout ∈ f¬out(l), which in turn is also done for all l ∈ L.

D. Detecting non-conformance

After applying all the described transformations, detecting
non-conformance basically is reduced to a reachability-check
on the kill state. To do that, the specification and a mutant
need to be explored in parallel, so that each action one
takes is also taken on the other model. Thus, the reachability
check on the kill state in the specification is performed on
the parallel product of the the specification and a mutant.
Assume a specification S, that was made input-enabled by
demonic completion and a mutant M , turned input enabled
via angelic completion. By applying diabolic completion to the
specification we received S′. Then we can build a network of
communicating timed automata, consisting of the specification
after demonic and diabolic completion S′, and the mutant that
has undergone angelic completion M . If the kill location is
reachable in that network, this shows that the mutant did not
conform to the specification, and the other way around.

Theorem 1: ∀σ ∈ M : S′(σ) = (kill, C) ↔ σ ∈ M ∧ σ 6∈
S, where C is a set of clock valuations.

Proof 1: We intend to show that the left side of the statement
is equivalent to the right side, and therefore have to split the
proof into two parts:

1) ∀σ ∈M : S′(σ) = (kill, C)→ σ ∈M ∧ σ 6∈ S
2) ∀σ ∈M : σ ∈M ∧ σ 6∈ S → S′(σ) = (kill, C)

We intend to prove the 1) part of the proof first, and will
do so using proof by contradiction. Therefore our new negated
assumption would be:
∃σ ∈M : S′(σ) = (kill, C) ∧ σ 6∈M ∨ σ ∈ S
This we can reduce, as σ 6∈M will never be true, considering

that we are looking for ∃σ ∈ M . The reduced expression
would be: ∃σ ∈M : S′(σ) = (kill, C) ∧ σ ∈ S

Remember S′ is the model S, but where S′ had diabolic
completion performed on it, which added a new location kill,
and transitions to reach it. This means that there cannot exist
a trace where both S′(σ) = (kill, C), and σ ∈ S is true, since
the step from location l′ that leads to kill would be an output
action not accepted by any transitions in the corresponding
location l in S. This is therefore a contradiction, proving 1)
to be a true statement.

We now intend to prove the 2) part of the proof, and
will again do so by contradiction. As such our new negated
assumption would be: ∃σ ∈ M : σ ∈ M ∧ σ 6∈ S ∧
S′(σ) = (kill, C). Again, we eliminate σ ∈ M , and receive:
∃σ ∈M : σ 6∈ S ∧ S′(σ) = (kill, C)

Remember S is input-enabled, meaning it at all times can
take any input, and should it reach the state (sink,C), then any
input and output would be accepted. Therefore, for a σ 6∈ S,
we would need some output step (ti, ai) ∈ σ : p2((ti, ai)) ∈
ΣO, so that σ 6∈ S. Also remember that diabolic completion,
makes a model output-enabled, meaning that every output in
σ either was present in S or leads to the kill state. Thus, such
a step (ti, ai) cannot exist. This is therefore a contradiction,
proving 2) to be a true statement, finishing our proof.

E. Generating Test Cases

The conformance testing of the previous section can either
result in showing non-conformance or conformance between
the specification and the mutant. In the case that non-
conformance is shown, we say that the mutant has been killed.
This also means that the mutant has introduced a fault into the
system that is being modeled. The trace that discovered the
fault in the mutant can be extracted from UPPAAL, and a test
case can be generated for the SUT, that tests the actions that
leads the mutant to its fault. Thus we have created a test that
shows whether or not the fault introduced by the mutant is
present in the SUT.

V. IMPLEMENTATION

We have created an implementation for automatic diabolic
completion of a model provided as input, and with the possibil-
ity of going through the whole MBMT process of generating
mutants, checking conformance with the specification, and
test case generation based on the mutants. This was accom-
plished employing our transformation on the specification, and
interfacing with UPPAAL to make use of their verification
engine. This was done using the library written in Java, made
publicly available by the creators of UPPAAL. In the following
sections, we will go into detail with how the theory is linked
to the implementation.

A. From theory to implementation

In Definition 6. the function fresolve is defined, which cre-
ates a new transition to the kill state, based on each outgoing
transition with the same action as the one given to it. The
guard created for the new transition is combined based on all

the inverted guards of these transitions with the same action.
Since UPPAAL does not allow for the use of disjunction in its
guards, a problem occurs when conjunctions are negated. For
the case of the guard only containing one or more disjunctions,
we simply split the guard into multiple edges, whereas if the
guard contain both one or more conjunctions and disjunctions
combined, it gets a bit more complicated. The way we avoid
this problem, in our system, is by the transformation we will
refer to as the “chain transformation”. An example of the
resulting model after applying chain transformation on Figure
3a can be seen in Figure 3b. What happens is that a location
is created for each conjunction in the guard, and for each
of the sides of a disjunction a transition is created to reach
the location / leave it towards the target location. The way it
should be understood is that each added location represents a
single conjunction, and the transitions between the locations
represents the logical expressions on all sides of disjunctions
between two conjunctions. Such a transformation does not
result in an equivalent automaton. However, it preserves reach-
ability of the location behind the transformation, which in our
case is the sink location.

In UPPAAL it is possible to create a network of models
that communicate with each other using the defined input
and output channels. Since we make use of the UPPAAL
verification engine to test if a mutant conforms to a specifica-
tion, we have to make sure the mutant and specification can
communicate. The way we achieve this, is by transforming
all of the mutants by flipping all the input channels to
output channels, and all the output channels to input channels.
The resulting set of transitions after this transformation is:
E′ = (E−e)∪ (p1(e), p2(e), p3(e), fio(p4(e)), p5(e))∀e ∈ E,
where the function fio used is a function that maps from
X → Y , where X,Y ⊆ ΣI ∪ ΣO. The concrete function
maps x→ α!, which is done for all x, where x = α?. It also
maps x → α?, which is done for all x, where x = α!. An
example of this transformation can be seen done on figure 1,
and the result in figure 3c.

B. System execution

First, the mutants are generated, where every possible
mutant is created based on the mutation operators: “change
source”, “change target”, and “change action to output action”.

Then some preprocessing is done on the specification to set
up for the other stages. Specifically the system goes through
every location of the model, where for each location that has
an invariant, the invariant is removed and combined with every
guard of the outgoing edges, that is, if we have a guard g and
an invariant i, the resulting guard g′ would be g′ = g ∧ i.

Then, angelic completion is applied on all mutants, and
demonic- and diabolic-completion is done on the specification.
At this point it is possible that the specification model has tran-
sitions containing disjunctions that UPPAAL does not allow,
and, as mentioned, we use the chain transformation explained
in section V-A, to remove them from the specification. Finally,
we flip the outputs of each mutant, to allow for the possibility
of communication between the mutant and specification.

S1 S2
(x < 5 ∨ x > 10) ∧ (y < 7 ∨ y > 14), a!

(a) Before chain tranformation

S1 C S2

x < 5

x > 10

y < 7, a!

y > 14, a!

(b) After chain transformation

S2 S1 S3

x > 2, btnc!,x := 0 x > 2, btnt!,x := 0

x < 3, coffee? x < 3, tea?

(c) Flip of input/output

Fig. 3: Timed UPPAAL automata showing an example of a transition containing both conjunction and disjunction and the
results of applying the chain transformation on it. It also show an example of flipping the output to input, and input to output,
based on the vending machine model shown in figure 1. Everything colored red are to be understood as the changes to the
model, and C inside a location as it being commited (no time may pass while in this location).

At this point in the execution, the conformance testing of
the mutants is possible using the UPPAAL verification engine.
This is done by checking for whether it is possible for the
specification to reach the kill state, using reachability queries.
This is done by making the query E<> Spec.KillState, where
"Spec" is the template, using the integrated query language
made for verification in UPPAAL. Assuming reaching the
killstate was possible, UPPAAL outputs the shortest trace to
reaching the killstate.

C. Test-case generation

UPPAAL contains the test-case generation feature Yg-
gdrasil. This feature allows to add test code to transitions
and locations. This test code can be of any form, but one
simple way to do it is to call functions in input transitions,
and check via assert statements for output transitions. For the
coffee machine example that might be "ButtonPressed();" for
the button transition, and "assert(coffee);" for the coffee output
transitions. In addition, one can specify prefix and postfix code
to ensure that the file contains everything you need to run
the test case. The trace provided by UPPAAL is then used
to generate test cases for the SUT, by combining all the test
code of the transitions traversed in the trace, where the test
code should be written into the transitions in the initial model.
The system creates a file for each of the test cases generated,
which can then be imported as tests into the SUT.

However, this test code only contains the positive transi-
tions, and no code for the final transition that leads to the
killstate. If one sticks to the pattern of only using assert
statements in the output transitions test code, one could simply
add a negation for that step. However, since we wanted to keep
our program general, this was not done in our program. This
means that the test code for the final transition needs to be
manually added, while we only add the label of the transition
in the file to indicate which transition led to the sinkstate.

VI. CASE STUDY

We conducted a case study, analysing the the execution
time for the entire execution process of creating mutants,

Program Time
Our Program 00:02:43
Ecdar 2.2 00:03:16
MoMuT::TA 00:43:45

TABLE I: Runtime for Ecdar 2.2, MoMuT::TA and our system.

doing conformance testing, and the test output. This was done
on Ecdar 2.2, MoMuT::TA and our system, using the same
car alarm system previously used in Aichernig et al. [4] and
Gundersen et al. [9].

A. Test setup

The test was setup on a computer with the operating system
Windows 10 Enterprise, a Intel Core i7-5600U CPU and 8GB
of DDR3 RAM. We limited the operators in both tools to:
“change source”, “change target”, and “change action to output
action”.

The output our system gives is in a plain text format, con-
taining generated unit tests as explained in section V, whereas
MoMuT::TA gives a trace showing the non-conformance,
which the user has to parse to use.

B. Results

Using the setup outlined in the earlier, we ran both systems
on the car alarm system. The results are shown in table I.

It is clear that both Ecdar and our tool were significantly
faster than MoMuT::TA on the given case study. However,
the case study does not contain any of the elements where
the SMT-solving used by MoMuT::TA has an advantage. In
any model using data variables or parameters, MoMuT::TA
might compare a lot better. Hence, before testing several
different studies, these results are not conclusive. In addi-
tion, MoMuT::TA has, at the current time, more mutation
operators implemented, and provides limited support for non-
determinism. We were also faster than Ecdar, though to a way
lesser degree. The speedup gained was most likely based on
the fact that we only need to perform a reachability check
instead of the full conformance check.

VII. CONCLUSION

We have proposed a method for achieving conformance
testing directly in UPPAAL. This has been made possible
using the model transformation we have termed “diabolic
completion”, and using the already optimized verification
engine in UPPAAL to determine whether or not there is
conformance between a specification and its mutant(s).

We have made an implementation in Java, using the library
made available by the creators of UPPAAL. The implementa-
tion is able to automatically do the model transformation of
diabolic completion, based on a model written in the same
format as the ones used in UPPAAL. It is also able to do
mutant creation using the mutation operators we have im-
plemented: Change source, change target, and change action.
The final functionality implemented is the automatic test case
generation, collecting the test code along the witness trace
using the Yggdrasil feature of UPPAAL.

We ended up comparing the performance of the mutation
generation and conformance testing between Ecdar 2.2, Mo-
MuT::TA and our system. This was all done using the same
mutation operators, to ensure a fair comparison. The results
show a significant speedup.

In addition, our approach provides more generality, as all
UPPAAL features are allowed in the model. However, the
mutation operators currently do not focus on these features.

VIII. FUTURE WORK

One limitation of our implementation is that it can only
take a single model, also known as a template in UPPAAL, as
input. This has the implication that integrated systems cannot
be tested in our system. Therefore being able to do this, would
open up for more complex systems to be tested using our
implementation

Currently our system only supports single order mutants
with one fault per mutant. There are both advantages and dis-
advantages to single order compared to higher order mutants..
The implementation of the option to use higher order mutants
would increase the flexibility of our system.

We also believe there would be value in exploring new
mutation operators affecting all of UPPAALs features, and
conducting an empirical evaluation of mutation operators, to
determine which ones would be best at discovering faults in
general, or specific types of faults, in the SUT. We believe
this could increase the flexibility of MBMT as a whole, and
help users understand what mutation operators to choose for
certain types of systems they want tested.

REFERENCES

[1] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba.
Reactive systems: modelling, specification and verification. cambridge
university press, 2007.

[2] Bernhard K. Aichernig, Harald Brandl, Elisabeth Jöbstl, Willibald
Krenn, Rupert Schlick, and Stefan Tiran. Killing strategies for model-
based mutation testing. Software Testing, Verification and Reliability,
25(8):716–748, 2015.

[3] Bernhard K. Aichernig, Florian Lorber, and Dejan Ničković. Time
for mutants — model-based mutation testing with timed automata. In
Margus Veanes and Luca Viganò, editors, Tests and Proofs, pages 20–38,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[4] Bernhard K. Aichernig, Florian Lorber, and Dejan Ničković. Time for
mutants — model-based mutation testing with timed automata. In Tests
and Proofs, pages 20–38. Springer Berlin Heidelberg, 2013.

[5] Rajeev Alur and David L Dill. A theory of timed automata. Theoretical
computer science, 126(2):183–235, 1994.

[6] J. Richard Büchi. On a Decision Method in Restricted Second Order
Arithmetic, pages 425–435. Springer New York, New York, NY, 1990.

[7] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C.
Patton, and B. M. Horowitz. Model-based testing in practice. In Pro-
ceedings of the 1999 International Conference on Software Engineering
(IEEE Cat. No.99CB37002), pages 285–294, May 1999.

[8] Jens Chr. Godskesen, Brian Nielsen, and Arne Skou. Connectivity
testing through model-checking. In David de Frutos-Escrig and Manuel
Núñez, editors, Formal Techniques for Networked and Distributed Sys-
tems – FORTE 2004, pages 167–184, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[9] Tobias R. Gundersen, Florian Lorber, Ulrik Nyman, and Christian
Ovesen. Effortless fault localisation: Conformance testing of real-time
systems in ecdar. In Andrea Orlandini and Martin Zimmermann, editors,
Proceedings Ninth International Symposium on Games, Automata, Log-
ics, and Formal Verification, Saarbrücken, Germany, 26-28th September
2018, volume 277 of Electronic Proceedings in Theoretical Computer
Science, pages 147–160. Open Publishing Association, 2018.

[10] Anders Hessel, Kim G. Larsen, Marius Mikucionis, Brian Nielsen, Paul
Pettersson, and Arne Skou. Testing Real-Time Systems Using UPPAAL,
pages 77–117. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[11] R. M. Hierons and M. G. Merayo. Mutation testing from probabilistic
finite state machines. In Testing: Academic and Industrial Confer-
ence Practice and Research Techniques - MUTATION (TAICPART-
MUTATION 2007), pages 141–150, Sep. 2007.

[12] Willibald Krenn, Dejan Nickovic, and Loredana Tec. Incremental lan-
guage inclusion checking for networks of timed automata. In Víctor A.
Braberman and Laurent Fribourg, editors, Formal Modeling and Analysis
of Timed Systems - 11th International Conference, FORMATS 2013,
Buenos Aires, Argentina, August 29-31, 2013. Proceedings, volume 8053
of Lecture Notes in Computer Science, pages 152–167. Springer, 2013.

[13] Moez Krichen and Stavros Tripakis. Conformance testing for real-time
systems. Formal Methods in System Design, 34(3):238–304, Jun 2009.

[14] K. G. Larsen, F. Lorber, B. Nielsen, and U. M. Nyman. Mutation-based
test-case generation with ecdar. In 2017 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW),
pages 319–328, March 2017.

[15] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online testing of
real-time systems using uppaal. In Jens Grabowski and Brian Nielsen,
editors, Formal Approaches to Software Testing, pages 79–94, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[16] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
Int. J. Softw. Tools Technol. Transf., 1(1-2):134–152, December 1997.

[17] F. Lorber, K. G. Larsen, and B. Nielsen. Model-based mutation testing
of real-time systems via model checking. In 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 59–68, April 2018.

[18] F. Lorber, K. G. Larsen, and B. Nielsen. Model-based mutation testing
of real-time systems via model checking. In 2018 IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW), pages 59–68, April 2018.

[19] David E. Muller. Infinite sequences and finite machines. In Proceedings
of the 1963 Proceedings of the Fourth Annual Symposium on Switching
Circuit Theory and Logical Design, SWCT ’63, pages 3–16, Washing-
ton, DC, USA, 1963. IEEE Computer Society.

[20] M. Papadakis and N. Malevris. An empirical evaluation of the first and
second order mutation testing strategies. In 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops,
pages 90–99, April 2010.

[21] Michael Sipser. Introduction to the theory of computation. SIGACT
News, 27(1):29–37, March 1996.

[22] Jan Tretmans. Model Based Testing with Labelled Transition Systems,
pages 1–38. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[23] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of
model-based testing approaches. Softw. Test. Verif. Reliab., 22(5):297–
312, August 2012.

