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ABSTRACT
Neural Architecture Search (NAS) is a popular tool for automatically
generating Neural Network (NN) architectures. In early NAS works,
these tools typically optimized NN architectures for a single metric,
such as accuracy. However, in the case of resource constrained Ma-
chine Learning, one single metric is not enough to evaluate a NN
architecture. For example, a NN model achieving a high accuracy is
not useful if it does not fit inside the flash memory of a given system.
Therefore, recent works on NAS for resource constrained systems
have investigated various approaches to optimize for multiple met-
rics. In this paper, we propose that, on top of these approaches, it
could be beneficial for NAS optimization of resource constrained
systems to also consider input data granularity. We name such a
system “Data Aware NAS”, and we provide experimental evidence
of its benefits by comparing it to traditional NAS.
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1 INTRODUCTION
Manually designing a well-performing Machine Learning (ML)
system for a given problem is a challenging task. ML engineers
have to rely on knowledge and experience to put together a system
that they believe will work well. Afterward, experiments must test
the actual performance of the designed system. These experiments
can be time-consuming, and therefore the manual design process of
Neural Network (NN) systems usually requires a significant amount
of engineering work.

An alternative to this is the concept of AutoML. AutoML aims
to automate the steps of designing ML systems. AutoML has the
potential to both increase productivity and allow non-ML engineers
to design ML systems. Neural Architecture Search (NAS) is one
of the most well-explored AutoML subfields. In NAS, a computer
program automatically searches for an appropriate NN architecture.

It is even more challenging to design well-performing resource
constrainedML systems — as in the case of tinyML. tinyML refers to
the concept of running ML in ultra-low power systems. Under these
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power constraints, hardware capabilities are extremely limited. For
example, one of the most commonly used tinyML devices — the
Arduino Nano 33 BLE Sense is limited to a 64 MHz processor and
256 KB of RAM. Such resource constrained ML systems cannot be
optimized for a single metric. For instance, high accuracy for a NN
model means nothing if the model does not fit the constraints of
the resource constrained device. Therefore, the AutoML methods
proposed for resource constrained ML typically try to optimize for
more than one metric in various ways.

In this paper, we investigate NAS approaches to resource con-
strained ML. Specifically, we argue that it is beneficial for NAS
approaches for resource constrained systems to also search for an
appropriate data granularity. The term “data granularity” refers to
the idea that data can be input into an ML model at different levels
of granularity. E.g., an audio sample can be input to an ML model at
various sample rates. In this situation, we would say that an audio
sample given at a sample rate of 24 kHz will be of a higher data
granularity than the same audio sample given at 12 kHz. Similarly,
an image can be input into an ML model at different resolutions.
The number and type of sensors (e.g., mono vs stereo audio) is
another example of data granularity.

One of our main insights is that the NNmodel is not the only part
of the entire ML system that consumes the resources of resource
constrained devices. In addition, the data given to themodel can also
use up a significant amount of the already constrained resources.
The resource consumption of this data can be regulated by its
granularity. Likewise, both the model architecture and the data
granularity can have a notable impact on the performance of a ML
system. Therefore, both the model and the data present a search
space that can be explored to find the best-performing resource
constrained ML system for a given problem. It may, e.g., yield a
better performing ML system if the data granularity is reduced to
leave more resources available for a more complex NN architecture.

Therefore, to investigate this, we propose Data Aware NAS: an
expanded NAS for resource constrained ML that considers a unified
model and data granularity search space to generate near-optimal
ML systems for resource constrained devices.

2 DATA AWARE NAS
In this section, we further explore the idea of Data Aware NAS. We
first tackle the topic of Single-Objective Optimization (SOO) and
Multi-Objective Optimization (MOO) in NAS. We then give our
arguments for why including data granularity in the NAS search
space can enhance the performance of a system.

2.1 Single and Multi Objective Optimization
To use NAS it is necessary to formalize a metric of what a good
model is. This is the case in both resource constrained and non-
resource constrained NAS settings. This metric will be what the
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NAS will optimize a NN model for. Traditionally this has been a
single metric such as accuracy on a dataset representative of the
use case [8]. This is known as SOO NAS. In SOO NAS the goal is
simply to return the NN model that optimizes the single metric.

More recent works on NAS have considered how to work with
NAS when optimizing for multiple metrics. This is known as MOO
NAS [3]. MOO is viewed as more challenging than SOO, as the
optimization goal gets distributed on several metrics. This raises
questions both for how to compare NNmodels internally and which
models to output as the result of a MOO NAS. One way for MOO
NAS to compare models internally to decide which models to keep
working on is to create a combined metric from a weighted sum
of the metrics [14]. An alternative is to evaluate solutions based
on whether they are on the Pareto Frontier [3]. Regardless of the
comparison criteria used internally in the MOO NAS, it is common
practice to output the Pareto Frontier as the final result. Returning a
Pareto Frontier of solutions allows for a use case-specific evaluation
on which weighting of the multiple optimization metrics to prefer.
MOO is often preferable to SOO in a resource constrained ML
setting. This is because compromises between multiple metrics are
an inherent part of generating ML models for resource constrained
devices.

2.2 Benefits of Data Aware NAS
It is paramount to make the most of the available resources when
designing resource constrainedML systems. The resources available
on a device can refer to various aspects depending on the device.
However, there are some resources that we typically care about for
resource constrained ML. Some of them are memory consumption,
energy consumption and the time it takes to run inference on the
model. In this paper, we will focus on memory consumption, as this
is often a good proxy for other resources. E.g., a model taking up
less memory will (on average) consume less energy and require less
time to conduct inference. At the same time, memory consumption
is easy to reason about for a variety of devices.

In NN-based resource constrained ML, there are typically two
types of data that take up the majority of the memory. One is the
NNmodel, which can be optimized in a MOO NAS. The other one is
the data given as input to said model. Consider an example of audio
data. Typically, a microphone sensor generates this data at a sample
rate. It is then sent to the ML device, which saves it in its memory.
At this point, a common step is to preprocess the samples into,
e.g., a spectrogram using a Short Time Fourier Transform (STFT),
and afterward input it to the ML model. Such a preprocessing step
requires a number of samples corresponding to the window of time
that one run of the ML model should analyze. Thus, in the best-case
scenario, the minimum size of this buffer will at some point be:

𝑆𝑖𝑧𝑒 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒 (bit) ∗ 𝑆𝑎𝑚𝑝𝑙𝑒_𝑅𝑎𝑡𝑒 (Hz) ∗𝑊𝑖𝑛𝑑𝑜𝑤 (s)
Let us consider an example scenario with a bit width of 8 bits per
sample, a sample rate of 6 kHz, and a time to be captured of 5
seconds. The memory consumed in this scenario would be approx-
imately 30 kB — which can be a considerable amount for a small
microcontroller. Furthermore, both the data and the NN model can
have a significant impact on the performance of the overall ML
system. For example, a small NN model may not be able to generate
accurate predictions no matter the data given to it. In the same
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Figure 1: A visual representation of the relationship between
AutoML, Data Aware NAS, and NAS.

way, even a large NN model may not be able to generate accurate
predictions given data with a very low data granularity. Therefore
it is important to balance the resources consumed, and performance
gained, by both the data and the model in a resource constrainedML
system. This is the goal of our proposed Data Aware NAS. Figure 1
shows an overview of how Data Aware NAS compares to AutoML
and NAS.

Notably, a paper from 2016 investigates accelerometer datasets
and finds that sample rates used in literature were up to 57% higher
than needed [12]. It is possible that these results transfer to the
field of resource constrained ML and to other types of data and data
parameters. If so, this could mean that lowering data granularity
could lead to a significant performance gain in resource constrained
ML systems.

Lastly, it is worth noting that there exists an interesting interplay
between data granularity and NN model size. For typical NNs,
the size of the input layer is the same as that of the input data.
Therefore, reducing the data granularity will reduce the model size.
For some specialized NN models this effect is stronger. For example,
for autoencoders, the size of both their input layer and output layer
is equal to the size of the input data.

3 RELATEDWORK
The related work of this paper can be split into three categories:

Resource Constrained NAS: Works related to using NAS to
find a good NN architecture under some given resource
constraints.

Resource Constrained AutoML: Works related to creating
an automatic process for creating resource constrained ML
systems.

Manual Data Granularity Optimization: Works where the
authors have manually applied optimizations to their data
granularity.

3.1 Resource Constrained NAS
One of the earliest works on resource constrained NAS was by
Elsken et al. [7], who proposed a MOO NAS using evolutionary
algorithms. The output of their approach is a Pareto Frontier of
possible configurations with respect to multiple parameters e.g. the
number of parameters or latency [7]. Around the same time, Hsu
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et al. proposed a MOO NAS based on reinforcement learning that
optimizes both accuracy and the number of MAC operations [11].

A NAS system from Lu et al. does MOO on classification error
and the number of floating point operations [15]. A paper by Fe-
dorov et al. uses a combination of NAS and NN pruning to design
small but well-performing models [9]. Wang et al. [20] consider
an expanded form of NAS for resource constrained ML. Their ex-
panded NAS considers both the neural architecture, quantization,
and pruning strategies. To improve search time they use a predictor
for model accuracy instead of retraining a model for all combina-
tions. Cassimon et al. [4] propose a MOO NAS using reinforcement
learning. In this work, the authors add hard and soft constraints to
the reward function of the reinforcement learning model to include
multiple objectives. An example of a hard constraint could be that
the model should fit within the amount of Random Access Memory
(RAM) available. A soft constraint could be the accuracy of the
network. A work by Bakhtiarifad et al. describes a NAS system
based on a tabular benchmark that is aware of the model’s energy
consumption [3].

While all of these works propose useful variations of resource
constrained NAS, none consider the data granularity optimization
proposed in this paper.

3.2 Resource Constrained AutoML
Edge Impulse, a well-known company in the tinyML scene has
released an AutoML tool known as the EON Tuner. The EON Tuner
investigates different combinations of input granularity and NNs
architecture [2]. Due to its proprietary nature, we cannot tell how
the EON turner proposes its solutions. However, from using and
hearing about the software, it is our understanding that it generates
some combinations at its initialization stage and evaluates these
architectures according to several metrics. As such, the software
seems to have no exploitative side where it seeks to improve on
initially good architectures.

Doyo et al. recently proposed a paradigm known as tinyML
as a Service (tinyMLaaS) [6]. With this, they aim to combat the
heterogeneity that comes from multiple ML frameworks having to
work together with multiple hardware manufacturers, each with
their own tools to deploy tinyMLmodels. Their proposal is to create
a platform that contains ML compilers for every combination of
framework and hardware available. This platform can then generate
tinyML systems for any collection of heterogeneous devices. The
platform should furthermore be able to deploy these systems to
the heterogeneous devices using Software updates Over The Air
(SOTA) technologies. We envision that a Data Aware NAS system,
as proposed in this paper, could be of use in such a system.

3.3 Manual Data Granularity Optimization
In our prior paper we investigated manually reducing the data
granularity for tinyML applications in a predictive maintenance
context. This revealed a significant room for reducing the sample
rate while preserving model performance and improving inference
time [17]. Similarly, a paper by Zalewski et al. [21] describes the
manual design of a tinyML system that uses differences in data
granularity. This architecture initially uses a low data granularity
model for classification. A higher data granularity model then gets
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Figure 2: An overview of our system design.

activated if the lower data granularity model is not confident in
its result [21]. While these papers provide proof of the use of data
granularity optimization, they do not propose to automate the
concept.

4 SYSTEM DESIGN
In this section, we describe the system design of a prototype of a
Data Aware NAS. An overarching theme of the design is that we
do not attempt to create an optimal Data Aware NAS system but
rather try to provide a simple proof of concept system. Therefore,
we have often decided in favor of a simple design rather than a
complicated one that could have yielded improved performance.
Also note that we designed our system to generate Convolutional
Neural Networks (CNNs). This is due to CNNs being the target for
most NAS research [14]. A quick overview of our system design
can be seen in Figure 2.

There are mainly three components in a NAS system: a search
space, a search strategy, and a performance estimation strategy [8].

In our system, we split the search space into a search space for
data granularity and a search space for the convolutional layers in
a CNN. The data granularity search space is heavily dependent on
the system use case. Our system design considers this by making
the search space configurable. By default, we assume the data to be
audio. Since the purpose of the prototype system is only to prove
the concept of Data Aware NAS, we have limited the search space
to contain values for sample rate and type of preprocessing. The
layer search space is less dependent on the use case, but still able
to be configured. By default, we choose to include the number of
filters in a convolutional layer, the filter size, and the activation
function used by that layer.

For the search strategy, we use a genetic algorithm — a common
choice for NAS search strategies [8]. Our system supports two types
of initializations for the algorithm. By default, we generate an initial
population of trivial solutions, which according to [19] has worked
well for other NASs based on genetic algorithms. Alternatively,
we generate a random initial population. Our search strategy then
evaluates the population using our performance estimation strat-
egy described in the following paragraph. Based on tournament
selection [14], we chose some of the fittest individuals from this
population to be the baselines for the next population. Finally, we
apply various crossover and mutation operators to these baselines
to generate the next population. Note that these operators need
to be implemented according to the configured search space. The
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Table 1: The default search space parameters and their mutation operators.

Search Space Parameter Possible Values Mutation Operators

Sample Rate (SR) 48 000Hz, 24 000Hz, 12 000Hz, 6000Hz, 3000Hz, 1500Hz, 750Hz, 375Hz Increase or decrease one value.
Preprocessing Type (PT) Spectrogram (SP), Mel-Spectrogram (MS), Mel-frequency Cepstrum (MFCC) Change to another value.
Number of Layers (L) 1,2,3,4,5 Increase or decrease one value.
Number of Filters (F) (per layer) 2, 4, 8, 16, 32, 64, 128 Increase or decrease one value.
Filter Size (FS) (per layer) 3, 5 Increase or decrease one value.
Activation Function (AF) (per layer) Rectified Linear Unit (R), Sigmoid (S) Change to another value.

default crossover operator of our design chooses two individuals
from the baselines and randomly selects values from either to create
a new individual. We design several mutation operators for our
default search space. See Table 1 for an overview.

As we are designing a Data Aware NAS for resource constrained
ML, we need multiple metrics in our performance estimation strat-
egy. In this proof of concept design, we choose to optimize for
Accuracy (Acc), Precision (Pre), Recall (Rec), and Model Size (MS).
We choose to use these metrics as accuracy, precision, and recall
are fairly easy-to-evaluate metrics that give a good indication of
the predictive performance of a system. Model size is another easy-
to-evaluate metric for resource constraints that can also act as a
reasonable proxy for other resource constraints.

The evaluation of these metrics is not done in the same way.
Therefore, our performance estimation strategy consists of two
subsystems. The first subsystem evaluates accuracy, precision, and
recall metrics by training the given CNN for a configurable number
of epochs. The relatively small models used in resource constrained
ML mean that we do not suffer from extremely long model training
times which has prompted other NAS systems to evaluate these
metrics indirectly. The second subsystem evaluates the size of our
model by exporting the model to a binary format and recording
the number of bytes that the model uses. We use a sum of these
metrics to compare two ML systems. To ensure that no one metric
dominates the others, we normalize themetrics to a range between 0
and 1 before summing them. Accuracy, precision, and recall natively
fall within this range. Model size, on the other hand, is a positive
integer with no upper bound. Therefore, we convert model size to
a value between 0 and 1 using the formula below:

𝑒
− 𝑀𝑜𝑑𝑒𝑙𝑠𝑖𝑧𝑒

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒_𝑀𝑜𝑑𝑒𝑙_𝑆𝑖𝑧𝑒_𝑅𝑎𝑛𝑔𝑒

As the final result, we output the Pareto Frontier of generated ML
systems.

5 EXPERIMENTS SETUP
This section contains information about the setup used to conduct
experiments on the system described in Section 4. We implement
our system in the Python 3.10 programming language. See Appen-
dix A for a link to the GitHub repository that hosts the code of
this implementation. Python allows us to interface with popular
libraries for ML and NNs. Of these libraries, we use the Tensor-
Flow (TF) [5] library to implement CNN architectures, and the
TensorFlow Lite (TFL) library to calculate the model size of these
architectures. We furthermore use commonly used python libraries
such as Numpy [10] for efficient data structures, librosa [16] for

Table 2: Values for configurable parameters used in our ex-
periments written in natural language.

Parameter Value

Number of output classes 2
Loss Function Categorical Cross Entropy
Width of dense layer 10
Number of normal files to use 900
Number of anomalous files to use 200
Frame Size (STFT) 2048
Hop Length (STFT) 512
Number of Mel Filter Banks 80
Number of MFCCs 13
Maximum number of layers 5
Optimizer Adam
Number of training epochs per model 20
Batch Size 32
Approximate Model Size Range 100000
Population Size 10
Ratio of population updated per generation 0.5
Ratio of crossover to mutations 0.2

audio pre-processing, joblib for easy parallelization, and scikit-learn
[18] for evaluation of accuracy, precision, and recall.

For the experiments, we use a subset of the ToyADMOS dataset
[13]. The ToyADMOS dataset consists of audio recordings of toys
in normal and anomalous operating conditions. The used subset
contains recordings of audio channel one of the first case of a toy
conveyor belt. An anomalous operating condition is, e.g., that a
conveyor belt has a metallic object attached to its belt. The goal of
the ML systems produced by our Data Aware NAS is then to learn to
classify unseen audio recordings as either normal or anomalous. We
additionally mix noise recordings included in the dataset with the
normal and anomalous audio recordings to increase the difficulty
of the classification.

To run the experiments we use a high-performance comput-
ing cluster available at the Technical University of Denmark. The
computing nodes that we use contain either a XeonGold6226R or
XeonGold6326 server CPU. These nodes also contain a 40 GB and
80 GB Nvidia A100 GPU respectively. See Table 2 for additional
information about parameters for other configuration options.

Under this configuration, we run two sets of experiments.We run
each set of experiments five times to make our results independent
of the effects of a specific random seed. For each run of an experi-
ment, we give a random seed to the random number generator used
in our implementation. This random number generator selects, e.g.,
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Figure 3: Pareto Frontiers of the Data Aware experiments.

the type of mutation operator to apply during a population update.
We configure each run of the experiments to generate and evaluate
300 combinations of data granularity and model architecture.

In the first set of experiments, we run our implementation with
the entire search space of all possible values listed in Table 1.Wewill
refer to these experiments as “Data Aware” experiments. The goal
of this experiment is to establish a baseline of resource constrained
ML system that our Data Aware NAS implementation can generate.

In the second set of experiments, we keep the data granularity
at a static configuration. For the static configuration, we choose
a sample rate of 6 kHz and a data preprocessing step that gener-
ates spectrograms. We will refer to these experiments as “Fixed
Data” experiments. By comparing the ML systems generated by
this experiment with the systems generated by the Data Aware
experiment, we can tell if our Data Aware NAS can generate better
ML systems than an equivalent NAS. We believe that a sample
rate of 6 kHz and a spectrogram data preprocessing step is likely
a configuration that could have been given to a non-Data Aware
NAS system. This is due to 6 kHz being a sample rate that balances
memory consumption, see Section 2, and data quality [17], and
that spectrogram preprocessing is a common preprocessing step for
audio data not meant for human ears. Note that due to hardware
limitations we could not generate models in this experiment with a
number of filters of 128 — since, with this configuration, the model
size becomes too large for our processors.

6 RESULTS
In this section, we present the results of our experiments. See Table 3
for the Pareto Frontier of ML systems found in our experiments.
We also plot the models on the Pareto Frontier of each Data Aware
experiment in Figure 3, and each Fixed Data experiment in Figure 4.

From these results, it is clear that both the Data Aware and Fixed
Data experiments find accurate ML systems. The ML systems found
by our Data Aware experiments, however, have a model size about
three orders of magnitudes smaller than the ML systems found
by our Fixed Data experiments. As the model size metric does not

Figure 4: Pareto Frontiers of the Fixed Data experiments.

include the memory consumption of the input data buffer for the
ML system, the memory consumption of the two ML systems will
in reality be even further apart. This suggests that our hypothesis
of being able to create better resource constrained models using a
Data Aware NAS than by using a regular NAS is correct.

Surprisingly, the sample rate for the ML systems found in our
Data Aware NAS is at either 375Hz or 750Hz. These values are
low compared to sample rates found to be ideal in a naive manual
search [17]. Likewise, it seems that MFCCs are the best type of
preprocessing for these ML systems. This is also surprising given
that MFCCs were originally designed to help audio processing of
human speech — not of industrial machinery. It is therefore also
our belief that an engineer would not manually have come up with
an as accurate and resource efficient ML system as Data Aware
NAS. However, these promising results could partly be due to the
search space configured in our default system design. This search
space may not allow the regular NAS to produce small models,
given our choice of data granularity for the Fixed Data experiments.
Additionally, it seems that the ToyADMOS dataset contains much
redundant data, given that it is possible to reduce the sample rate
to 375Hz while still preserving perfect accuracy. This makes the
dataset a good case scenario for Data Aware NAS, and as such the
difference in model size may not be as large for other datasets.

7 CONCLUSION AND FUTUREWORK
In this paper, we presented our idea of Data Aware NAS — an
expanded form of NAS that additionally searches for an optimal
data granularity for the generated NN model. We argue that such a
system is especially useful when designing resource constrainedML
systems. We design and provide a proof of concept implementation
of a Data Aware NAS and conduct experiments to give experimental
proof of the validity of our idea. The results confirm our hypothesis
that we can create better models under resource constraints when
considering data granularity.

An obvious extension of this paper is to expand the current
system to include other metrics related to resource consumption.
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Table 3: Pareto Frontier of ML systems found in our experiments. We describe each part of the NN architecture according to the
component name plus the number of a layer. E.g. FS3 is the filter size of the 3rd convolutional layer. No Pareto Frontier ML
system used the possible 5th NN layer.

Experiment Run SR PT F1 FS1 AF1 F2 FS2 AF2 F3 FS3 AF3 F4 FS4 AF4 Acc Pre Rec MS

Data Aware 1 375 MFCC 2 3 R 2 5 S - - - - - - 90% 71% 80% 9240 B
Data Aware 1 750 MFCC 2 5 S 2 5 R 2 5 R - - - 100% 98% 100% 11 536 B
Data Aware 1 375 MFCC 2 3 R 2 5 R - - - - - - 84% 55% 75% 9088 B
Data Aware 1 750 MFCC 2 3 S 2 5 R 2 5 R - - - 100% 100% 100% 16 528 B
Data Aware 1 750 MFCC 4 5 S 2 5 R 2 5 R - - - 99% 100% 95% 12 108 B
Data Aware 2 375 MFCC 2 5 R 2 3 S - - - - - - 92% 79% 78% 9064 B
Data Aware 2 375 MFCC 2 5 R 2 3 R - - - - - - 83% 52% 83% 8960 B
Data Aware 2 750 MFCC 8 5 R 2 5 S 2 5 R 2 3 R 100% 100% 100% 9556 B
Data Aware 2 750 MFCC 8 5 S 2 5 R 2 5 R 2 3 R 99% 93% 100% 9552 B
Data Aware 2 750 MFCC 4 5 S 2 5 S 2 5 R 2 3 R 18% 18% 100% 8012 B
Data Aware 3 750 MFCC 8 5 R 2 5 R 2 5 R - - - 100% 100% 98% 13 172 B
Data Aware 3 750 MFCC 8 5 R 4 5 R 2 5 R - - - 100% 100% 100% 15 148 B
Data Aware 3 750 MFCC 4 5 R 2 5 R 2 5 R - - - 100% 98% 100% 11 956 B
Data Aware 4 750 MFCC 4 5 R 2 5 R 2 3 R 4 5 S 100% 100% 100% 10 744 B
Data Aware 4 750 MFCC 4 5 R 2 5 S 2 3 R 2 5 S 97% 90% 93% 8464 B
Data Aware 5 375 MFCC 2 3 R 2 5 S - - - - - - 86% 60% 78% 9192 B
Data Aware 5 375 MFCC 2 3 S 2 5 S - - - - - - 50% 26% 90% 9304 B
Data Aware 5 750 MFCC 8 5 S 2 5 S 4 5 R 2 3 S 98% 89% 100% 10 324 B
Data Aware 5 750 MFCC 2 5 R 4 5 R 2 5 S - - - 100% 98% 100% 12 308 B
Data Aware 5 750 MFCC 2 5 R 4 5 R 2 5 S - - - 100% 100% 98% 12 308 B
Data Aware 5 750 MFCC 2 5 R 4 5 R 2 5 R - - - 99% 97% 95% 12 156 B
Data Aware 5 750 MFCC 4 5 R 4 5 R 2 5 S - - - 100% 100% 100% 13 316 B
Fixed Data 1 6000 SP 64 3 R 4 3 R 2 5 S - - - 100% 100% 100% 8 966 120 B
Fixed Data 1 6000 SP 64 3 R 2 3 S 2 5 S - - - 81% 0% 0% 8 961 264 B
Fixed Data 2 6000 SP 16 5 R 2 5 R - - - - - - 100% 100% 100% 8 957 760 B
Fixed Data 2 6000 SP 16 5 R 2 5 R 64 3 R 2 5 R 18% 18% 100% 8 438 432 B
Fixed Data 2 6000 SP 16 5 R 2 5 R 64 3 R 2 5 R 81% 0% 0% 8 438 432 B
Fixed Data 3 6000 SP 32 3 S 4 5 S - - - - - - 100% 100% 100% 18 278 100 B
Fixed Data 3 6000 SP 32 3 R 16 5 R 64 3 S 2 5 S 81% 0% 0% 8 697 324 B
Fixed Data 3 6000 SP 32 3 R 8 5 S 2 3 R - - - 18% 18% 100% 8 981 060 B
Fixed Data 4 6000 SP 2 5 R 32 5 R 2 3 R - - - 98% 100% 90% 8 782 444 B
Fixed Data 4 6000 SP 2 5 R 32 5 R 2 3 R - - - 88% 60% 100% 8 782 444 B
Fixed Data 4 6000 SP 4 5 R 32 5 S 2 3 R - - - 100% 100% 100% 8 789 220 B
Fixed Data 4 6000 SP 4 5 R 32 5 S 2 5 R - - - 81% 0% 0% 8 613 956 B
Fixed Data 5 6000 SP 8 5 S 4 3 S 64 5 S 2 5 S 18% 18% 100% 8 456 952 B
Fixed Data 5 6000 SP 8 5 S 4 3 S 64 5 S 2 5 S 81% 0% 0% 8 456 952 B
Fixed Data 5 6000 SP 32 5 S 2 5 R - - - - - - 100% 100% 100% 8 962 744 B

This could, e.g., be energy consumption, memory consumption,
or inference time. We expect that energy consumption could be
estimated using a tool such as CarbonTracker [1]. Estimation of
memory consumption and inference time could be based on a gen-
erated tabular benchmark. However, the tabular benchmark for
inference time would have to be generated individually for each
device to get accurate estimations.

As described in Section 6, the ToyADMOS dataset might be a
good case scenario for Data Aware NAS due to its redundancy. In
the future, it could be interesting to investigate Data Aware NAS
on other datasets that do not exhibit as much redundancy. Likewise,
it could be investigated whether a larger search space for data
granularity and NN models could create better ML systems.

Furthermore, it could be interesting to design and implement a
more complex but better-performing Data Aware NAS. We could

then compare the ML systems generated by this system to ML sys-
tems generated using other NAS solutions for resource constrained
systems. For example, some systems proposed in Section 3.

It could also be interesting to include this system in a larger
AutoML pipeline — e.g., something like the system described in
tinyMLaaS [6].

A RESOURCES
The implementation of our Data Aware NAS system is available at:
https://github.com/Ekhao/DataAwareNeuralArchitectureSearch.
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