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Abstract. In this chapter, we present the vector space model and a
number of ways to further process such a represention: With feature
hashing, random indexing, latent semantic analysis, non-negative matrix
factorization, explicit semantic analysis and word embedding, a word or a
text may be associated with a distributed semantic representation. Deep
learning, explicit semantic networks and auxiliary non-linguistic infor-
mation provide further means for creating distributed representations
from linguistic data. We point to a few of the methods and datasets
used to evaluate the many different algorithms that create semantic rep-
resentation, and we also point to some of the problems associated with
distributed representations.

– Individual words can be represented in a vector representation, but the space
spanned by the words does not have any semantic interpretation.

– Both feature hashing and random indexing can reduce the size of the vector
space.

– When latent semantic analysis and non-negative matrix factorization are
applied on bag-of-words matrices, they created distributed semantic repre-
sentations where the dimensions may have interpretations as topics for the
corpus

– Word embedding are distributed semantic representations of words efficiently
created from context windows.

– Several ways exist for evaluating semantic representations, e.g., by word
similarities, word analogies and word intrusion tasks.

1 Vector space model

In the vector space model, a word or a text is represented in a numerical vector
and each element is associated with a term that might be a word, a phrase and/or
a character or word n-gram. If we have multiple instances of texts, the numerical
row vectors of each individual text may be stacked, forming a numerical matrix.
If the texts are documents, we can refer to it as a document-term matrix or
bag-of-words matrix

This normal vector space alone does not represent individual words in a
distributed way, and a such, any distance measured between words will be the
same, so that we cannot use this representation to indicate semantic distance
for individual words.



The vector can be expanded by pairs of (consecutive) words, i.e., bigrams,
or longer sequences, trigrams and generally n-grams, but the distances between
individual terms will still be equal. However, when the vector space model is used
to represent a text with multiple words — a paragraph or a complete document
— the text will be represented over multiple elements in the vector and then
distances between two texts may have relation to semantics. For a text, vector
elements may reflect the presence or the counts of each word in the text.

A number of methods have been suggested to improve the vector space rep-
resentation of a document: Elements associated with so-called stop words may
be exluded from the vector. Stop words are common words, such as the, and and
its, that seldomly carry much information about the topic of the document and
may hinder more than help in any further semantic processing or interpretation
with the vector representation. If a term only occurs in a single document, then
it often may be discarded because it does not affect any modeling based on
co-occurence.

Apart from n-grams, there are various other methods to modify the terms:
the individual word may be stemmed or a lemmatizer can identify it lemma,
multiword expressions may be detected as named entities and aggregated into
one term.

The document-term matrix can be scaled both row-wise and column-wise.
Long documents have many words and its associated vector with raw word counts
is long, i.e., its norm is large, and the vector representation of a short and a long
document about the same topic may lie far from each other in the vector space
if no scaling for length is performed. Furthermore, words that occur in most
documents across the corpus may not be the words that separated topics well,
and such words should have less weight. One common scaling scheme is referred
to as tf-idf — term frequency (times) inverse document frequency. The specific
form of the scaling varies, e.g., the scikit-learn machine learning package uses1

tfidf(d, t) = tf(d, t)× idf(d, t) (1)

where d and t are the document row and term column index, respectively. tf(d, t)
is the raw word counts, and the inverse document frequency is computed as
idf(d, t) = log[(1 +n)/(1 + df(d, t))] + 1 with n as the number of documents and
df(t) the number of documents with the term t.

2 Feature hashing

The representation of words and phrases, unigram, bigram or higher-order n-
grams produces very large feature spaces which poses a challenge for resource
constrained systems. The so-called “hashing trick” can limit the number of fea-
tures by setting up a limited number of buckets and assign each word to a
bucket. The method goes under the name random feature mixing or feature

1 http://scikit-learn.org/stable/modules/generated/sklearn.feature_

extraction.text.TfidfTransformer.html
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hashing [12]. The approach leads to hash collisions where multiple words share
the same bucket. From the further modeling point of view, it will look like a
massive homograph problem and it comes as no surprise that the performance
of a model using feature hashing may degrade. However, researchers have made
the perhaps surprising observation that the performance does not degrade that
much. Ganchev and Dredze found that on a range of supervised text classifica-
tion tasks across different labeled corpora with four popular machine learning
methods and binary unigram features a reduction in size of 10 would still yield
a performance of between 96,7% and 97,4% of the original model [12].

As the hashing function Ganchev and Dredze suggested Java’s hashCode
function followed by a modulo operation with a division using the size of the
intended number of buckets [12], while Gensim implements hashing via a adler32
function and a modulo operation.2

With a good hash function we han hope that the words are distributed with
an equal probability among the buckets. The rate of hash collision has then the
same probability as the birthday paradox:

P (c) = 1−
B−1∏

x=B−N
x/B (2)

Feature hashing is not a distributed representation of words. Each word is
still represented—as in the normal vector space model—with one single element
in the vector, and all distances between words are the same (except for the words
that collide, bringing their distance to zero).

3 Random indexing

In random indexing, texts are projected using a random matrix [4]. The ad-
vantage with this approach is that no model parameters need to be estimated,
and only one pass over the corpus is necessary to project the text into a low-
dimensional space. If individual words are projected they will get a distributed
representation. However, the distances between the projected words do not gain
any semantic interpretation. Nevertheless, the dimension of the data is reduced
and any subsequenct semantic modeling may benefit from that.

4 Latent semantic analysis

Latent semantic analysis (LSA) is a form of linear multivariate analysis on texts
represented in matrix form [7]. It uses singular value decomposition (SVD) and
typically works from a document-term matrix which may be weighted, e.g., with
tf-idf before the SVD is applied. SVD factorizes a document-term matrix, X,

X = ULV′, (3)

2 https://radimrehurek.com/gensim/corpora/hashdictionary.html
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into the orthogonal matrices U and V that consist of loadings over documents
and terms, respectively. L is a diagonal matrix with positive singular values. It
is usually the dimensions associated with the large singular values that are of
interest.

An SVD algorithm is available for many programming languages and these
standard implementations can work on small text data. There exists algorithms
which can work with the corpus in batches, thus enabling the LSA to work over
very large datasets that cannot fit in memory [47].

SVD may also be used on character n-grams [41].

5 Non-negative matrix factorization

Non-negative matrix factorization (NMF) factors a non-negative matrix into two
non-negative matrices [20]

X ≈WH. (4)

If the X is a document-term matrix then W will be a matrix of loading over
documents and H a matrix of loading over terms. In its basic formulation, the
only hyperparameter is the dimension of the factorized space k, i.e., the number
of columns of W and the number of rows of H. The dimension is usually chosen
to be smaller than the dimension of the X, thus the product WH will not be able
to reconstruct the original matrix and a residual remains, i.e., “approximative
NMF” in contrast to “exact NMF”.

Lee and Seung presented simple iterative algorithms for two cost function
[20]. In one case, the algorithm minimizes the residual as the Frobenius of the
difference between the original matrix and the reconstructed matrix ||X−WH||2

Hkj ← Hkj
(W′X)kj

(W′WH)kj
(5)

Wik ←Wik
(XH′)ik

(WHH′)ik
(6)

where subscript means elementwise multiplications. This algorithm has an in-
herent non-uniqueness: The columns of W and the rows of H can be permuted
and scalings can be moved between the two matrices. Furthermore, its conver-
gence properties are not straightforward, e.g., if the denominator of equation
is or becomes zero. A practical implementation may augment the denominator
with a small positive constant.

Probabilistic latent semantic analysis (PLSA) considers the probabilities of
co-occurences of documents and terms, P (d, t), as a mixture distribution with k
mixtures

P (d, t) =
∑
k

P (d|k)P (k)P (t|k), (7)

With an extension of the NMF model and suitable normalization of the matrices,
NMF can be interpreted in the context of PLSA

X ≈ cWLH (8)



where P (d, t) ≡ cX, P (d|k) ≡W, P (t|k) ≡ H and P (k) ≡ diag(L).
There exists extension of NMF. For instance, the cost function can be ex-

tended with terms for the norms of the matrices W and H. In contrast to LSA,
NMF imposes no orthogonality constraints on any of the vector pairs in W or
H. And whereas principal component-based algorithms results in “holistic” rep-
resentations, the non-negativity of NMF results in parts-based representation
[19].

NMF has been applied in text mining and discovers semantic features [19,32].
The non-orthogonality and non-negative will usually make the interpretation of
the factorization less problematic than the factorization from LSA. To overcome
the issue of selecting the dimension of the factorized space, multiple independent
NMFs can be run with different dimensions and a visualization technique can
give an overview of the results [32].

6 Explicit Semantic Analysis

Explicit Semantic Analysis (ESA) creates a semantic representation of a word
or a text with the use of an information retrieval technique. ESA represents the
word or the text as a weighting over documents. The common method converts a
corpus to a tf-idf -weighted document-term matrix. When a particular word is to
be encoded in the ESA-distributed representation, the vector space representa-
tion of the word is multiplied on the document-term matrix. The original report
used Wikipedia as the corpus [11]. The attractiveness of the ESA rest on the good
performance in semantic relatedness tasks. Another attractive feature is that the
dimensions of the space are directly interpretable as they represents documents
of the corpus used to estimate the ESA representation, e.g., Wikipedia articles.

Wikipedias may have millions of articles (the English Wikipedia has over
5 million articles), so potentially the representation of each word would have
a dimension of several millions. In practice, the number of documents selected
is somewhat lower. The original study [11] used a selection of around 240’000
Wikipedia articles after excluding small articles and articles with few incoming
and outgoing hyperlinks.

Some research has found that the type of corpus has less relevance for the
performance of ESA in document similarity tasks [2].

7 Word embeddings

Word embedding algorithms create semantic representation of words by scan-
ning large corpora, extracting a window of words and modeling the words in
the window as a relation between the word and its context, so the final al-
gorithm results in a model where each word gets represented as a point in a
low-dimensional space of, say, 100 dimensions, for a schematic example in two
dimensions, see Fig. 1. Researchers have suggested a number of algorithms. One
early algorithm, hyperspace analogue to language (HAL), built the co-occurence
matrix by scanning a corpus with a window size of 10 words with weighting



Fig. 1. Schematic representation of a two-dimensional word embedding. Here three
words, accounting, company and bird, are embedded in the two-dimensional space. A
good word embedding should place similar words close together, e.g., accounting and
company should be closer together, than to accounting.

within the window based on the number of words separating the two words of
interest [23]. From a low-dimensional representation, distances in the space of
the co-occurence matrix yield distances with semantic interpretation and may
separate words belonging to categories such as animal names, body parts and
geographical locations.

Newer word embedding models build a neural network model between a cen-
ter word and its context. Mikolov et al. simplified the neural network model to
two layers [24]: A linear layer from the input with the dimension corresponding
to the size of the vocabulary to the embedding space of 100 or more. From the
embedding space a second layer projects to the output with the size of the vocab-
ulary. In the parlance of Mikolov et al., the model that predicts the center word
from the context is called continuous back of words (CBOW), while the reverse
model where the context is predicted from the center word is termed skip-gram
(SG). The output layer has a softmax layer. The optimization of the word embed-
ding model through the softmax layer requires—in its common application—the
normalization across the vocabulary. To avoid this computational costly step,
methods use what is called noise-contrastive estimation or negative sampling,
where a few samples of the vocabulary are used as a form of substitute for the
normalization.

The word embedding has initialization parameters. The dimension of the
embedding space can have sizes ranging, for instance, from 25 to 300,3 while the

3 See, e.g., https://nlp.stanford.edu/projects/glove/.
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Fig. 2. Principal component projection of male/female words embedded with the 300-
dimensional GloVe embedding [36]. Here the female words tend towards the positive
part of the second principal component, while male words are projected in the opposite
direction. All words have been taken from the word analogy dataset of Mikolov et al.
[24].

window size has often the size (2n + 1) = 5 [1].4 An evaluation of the HAL-
based model among window sizes of 1, 2, 4, 8 and 10 found that 8 was the
size with the largest correlation with a semantic distance meaure derived from a
human reaction times experiment. An evaluation of word2vec word embedding
for predicting various word analogies found that a short window of 2 words
on either side mostly performed the best for syntactic analogies, while a wider
window of 10 words on either sides performed the best for semantic tasks [22].

The quality of the word embedding usually depends much on the size of the
corpus: the bigger the better [34]. Fig. 2 shows a projection of a few words from
a word analogy dataset of Mikolov et al. [24] with the GloVe model trained on
a very large corpora.5 Only the two first principal component are shown, but
the second principal component approximately encodes a femaleness/maleness
semantics, and family relations, personal pronoun and royalty names seem to
cluster: A qualitative evaluation of the word embedding would say that this is a
good embedding.

4 Note it is not always clear how the size is counted. One may count the window size
as the total number of words or count it based on the number of words on each side
of the word-of-interest.

5 https://nlp.stanford.edu/projects/glove/
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If word-based embeddings are to be used for a sentence, a paragraph or a
longer text, then the individual embedded representations should be aggregated
into one representation, — a procedure that might be referred to as word em-
bedding composition. Different algorithms exist of varying complexity. In some
cases simple additive composition will work well [39].

8 Deep learning representations

Deep learning can be used to train neural network-based language models or
supervised classification models. Deep learning neural networks consist of mul-
tiple layers of parameters and non-linear units. For neural networks modeling
sequential data, special recurrent units are also used, e.g., long short-term mem-
ory (LSTM) units [40]. Typically each layer will have a vectorial representation,
and layers near the output of the neural network may gain some semantic rep-
resentation after sufficient training.

Some of the deep learning models train a language model on very large
datasets predicting a word, a character or a byte from previous parts of the
text sequence. For instance, provided with large amount of text data, such as
82 million product reviews from Amazon, a UTF-8 encoded byte-level language
model with a recurrent neural network may be trained for one month [38]. In
a transfer learning scheme, the 4096-dimensional distributed representation of
the deep learning model may be used in training a supervised machine learning
model for various other prediction tasks, e.g., sentiment analysis with a specific
dataset. Another related study trained a deep learning model on 1,246 million
tweets to predict the type of emojis present in each of the tweets [9]. This pre-
trained model could be adapted with further training to related tasks.

9 Creating explicit semantic representations

Semantic representation can be explicit where relationships between words and
concepts are stated with links for lexical or conceptual relations (hyponym, hy-
pernym, synonym, antonym) and where the words and concepts can be asso-
ciated with features. WordNet is such an example. Specialized graphical user
interfaces are developed to set up these relations, see, e.g., [13].

Wikidata at https://www.wikidata.org is a knowledge graph grown out of
the Wikipedia community. It describes the concepts corresponding to Wikipedia
articles, but also a range of other topics such as scientific articles, lexemes and
word forms. Wikidata is multilingual and identifies its items (concepts, lexemes,
forms) not by words but by a non-descriptive integer identifier, e.g., the concept
of a dog has the identifier ‘Q144’ while the Danish lexem gentagelse has the iden-
tifier ‘L117’. Wikidata users can collaboratively edit the graph in an specialized
online environment featuring revision control where the users can see changes
to the graph. Users may also make explicit links to individual items in external
resources such as the linguistic resources WordNet, DanNet, ILI and BabelNet,
for the WordNet linkage, see [31].

https://www.wikidata.org


There are various methods to convert lexical and conceptual items repre-
sented in a graph to a dense vectorial representation [30,35]. These methods come
under the names graph embedding or knowledge graph embedding with spe-
cific names such as node2vec ad RDF2vec, An initial process generates ‘pseudo-
sentences’ constructed from random walks in the graph, where the ‘words’ are
nodes, — and possibly links. These pseudo-sentences are then submitted to stan-
dard word embedding software such as word2vec.

10 Creating semantic representations with non-linguistic
information

In some cases, we have access to non-linguistic data that links to linguistic
data: Words, sentences and documents might be associated with a location in
space (e.g., geolocation), colors, images and brain activity. Modeling of the joint
distribution between the linguistic and non-linguistic data can provide further
and perhaps improved semantic representation. There are several large-scale
datasets where images and texts are associated. Visual Genome6 will associate
a photo with region, attribute and relationship annotation, e.g., “man playing
frisbee”, “frisbee is white” and “building behind player”. Similarly, the COCO
dataset7 will associate a photo with a full sentence, e.g., ”a man in a red shirt
throws an orange frisbee”.

In a specialized application [33], short neuroanatomical labels associated with
3-dimensional stereotaxic coordinates from human brain mapping studies formed
the basis for a statistical model. The resulting model connected the textual label,
l, with the physical sites, z, in the brain with a probability density estimate
(PDE), p(z|l), z ∈ R3. When this PDE is evaluated in discrete steps in 3-
dimensional space, the PDE can be turned into a vector, xl, for each label, thus
the neuroanatomical label has a distributed representation where each element
is a non-negative value. In our specific application we modeled the probability
density by kernel density estimation.

p(z|l) =
1

|Nl|
∑
n∈Nl

1√
2πσ2

exp

(
− (z− xn)2

2σ2

)
(9)

With the vector representation of the labels, neuroanatomical labels that par-
tially overlap in brain space can be searched independently of the othographic
representation of the word of its presence from neuroanatomical taxonomies.

11 Evaluating semantic representations

Various methods exist for evaluation of semantic representations of words. Some
researchers distinguish between two modes of evaluations: intrinsic and extrin-
sic [6,8,46]. Intrinsic evaluation establishes dedicated test sets for the evalua-
tion, while extrinsic evaluation uses the semantic representation as part of a

6 http://visualgenome.org/
7 http://cocodataset.org
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model for a more complicated natural language processing task. Word simi-
larity/relatedness, verbal analogy or word intrusion tasks may exemplify the
former, while part-of-speech tagging, chunking, named entity extraction, depen-
dency parsing and morphosyntactic disambiguation are examples of the latter
[6,46]. Evaluations may find quite a difference in evaluation between the two
modes [6]

In connection with evaluation of embedding models, intrinsic evaluations
will typically use the cosine similiarity sC between the two compared words
represented in the embedding space

sC(x,y) =
x′y

‖x‖2 · ‖y‖2
. (10)

There are other forms of similarity measures, e.g., the Minkowski family of dis-
tances [23],

dM (x,y) = r

√∑
(|xi − yi|)2, (11)

where a Minkowski distance with r = 2 is the common Euclidean distance and
r = 1 is a city-block distance.

Methods that combine word embedding similarity with graph-based distances
on the explicit semantic networks computes a common score. In one work [21],
a semantic relatedness score, rel(wi, wj), between two words, wi and wj , was
defined as

rel(wi, wj) = sc(xwi
,xwj

) + (1− λ) max
m,n

1

dist(Si,m, Sj,n)
, (12)

where xw are the word embeddings and dist(Si,m, Sj,n) is the path distance in
the semantic network (WordNet in their case) between the two senses Si,m and
Sj,n, — the m’th sense of the i’th word and the n’th sense of the j’th word.
The λ parameter mixes between the two parts of the combined score, and with
the extra flexibility provided by this parameter, the researcher reported state-
of-the-art results on a small range of standard similarity datasets [21].

11.1 Word similarity/relatedness

Datasets with human judgement of similarity/relatedness between pairs of words
are popular means of evaluating semantic models. The website wordvectors.org
lists 13 word similarity datasets. WordSim-353 (WS-353) with 353 word pairs
[10] is probably the most popular and among the oldest.

Similarity and relatedness are similar concepts but often viewed as different
with similarity more narrowly defined than relatedness. For instance, car and
steering wheel are ‘related’ but would in many contexts not be regarded as ‘simi-
lar’. Another example is coffee and cup, where in some contexts one word would
point to a drink the other to a container [8]. Newer word similarity datasets,
such as SimLex-999, are larger and may distinguish more stringently between
relatedness and similarity [6].

http://wordvectors.org


The human scoring used in word similarity tests may be confounded by dif-
ferent effects [3]: A rescoring of a word pair list may not yield the same scores,
the humans may differ widely in the similarity score they attribute to the indi-
vidual word pairs, e.g., scores among 50 humans for the word pair sun and planet
may have used the entire range of possible similarity scores. Furthermore, the
human similarity scores may even be affected by the presentation ordering, so,
e.g., the similarity of baby to mother results in different scores than the similarity
of mother to baby [3].

With the similarity scored datasets, the models are typically ranked based
on the Spearman correlation between the cosine similarity and human similarity
judgement. The corpus-based ESA model maintained state-of-art performance
on the WordSim-353 dataset for a few years.8 In 2017, a combined corpus- and
knowledge-graph based approach using ConceptNet set a new state-of-the-art
[42].

Most of the datasets are in English, but word similarity datasets also exists
for other languages.

11.2 Verbal analogies

Verbal analogies usually comes in the form of four words semantically connected,
e.g., Germany, Berlin, France, Paris. The task is to predict the fourth word
from the three others. Given that the fourth is to be selected from the entire
vocabulary, the baseline accuracy for pure guessing would be close to zero.

The semantic testing with verbal analogies became popular after a demon-
stration with distributed word representations showed that the analogies could
be estimated with simple algebra in the word embedding space and the cosine
similarity [26,24]. This method is sometimes found under the names vector dif-
ference or vector offset [45]. The prototypical example is man is to king, what
woman is to queen.

With the analogy on four words

a : a∗ :: b : b∗, (13)

the standard guess on the fourth word, b∗, is the analogy function:

b∗ = argmax
b′

sC(xb′ ,xa∗ − xa + xb), (14)

where x is the word embedding and sC() is the cosine similarity. There are
other suggested analogy functions. A variation with multiplication and a division
instead of addition and substraction may perform slightly better [22].

Datasets with word analogies may focus on specific relations, e.g., agent-goal,
object-typical action [15]9 or syntactic relations [26], see also the 15 relations in
Table 2 in [45], e.g., hypernym, meronym, location or time association. As an

8 https://aclweb.org/aclwiki/WordSimilarity-353_Test_Collection_(State_

of_the_art)
9 The dataset is available at https://sites.google.com/site/semeval2012task2/.
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example, the first few lines of the popular dataset from Mikolov et al. from 2013
[24] display analogies between countries and capitals:

Athens Greece Baghdad Iraq

Athens Greece Bangkok Thailand

Athens Greece Beijing China

Athens Greece Berlin Germany

Apart from English, other languages with word analogy datasets are, e.g., Czech
[44] and German [17].

Evaluations in 2017 with fastText trained for 3 days on either the very large
Common Crawl data set or a combination of the English Wikipedia and news
datasets set a new state-of-the-art on 88.5% for the accuracy on a popular word
analogy dataset when fastText training included sub-word features [25]. Pre-
trained fastText models are available.

11.3 Word intrusion

Word intrusion tasks present a series of words with one of the words being
an outlier and should be detected. In one of our works to evaluate distributed
semantic representation for Danish [34], we established a small dataset with 100
sets of words, where each set consisted of 4 words, e.g., corresponding to—in
English—apple, pear, cherry and chair as one example and grass, tree, flower
and car as another example.10 In this case, we would expect random guessing
to produce an accuracy of 25%.

The identification of the outlier with a distributed semantic representation
projects each of the set of words to a low-dimensional space, e.g., a word2vec
representation and then identifies the outlier based on the distances in this space.
For instance, one may compute the overall average across words, compute the
distance from each of the words to the average and select the one furthest away
as the outlier. If the distributed semantic representation is good, we may expect
the distance to represent semantic outlierness well.

In an evaluation on a Danish set of words [34], an ESA model was found
to yield an accuracy on 73%, while a word2vec-based model trained on large
corpora yielded almost as good a performance.

The Test of English as a Foreign Language (TOEFL) synonym test is related
to the word intrusion task. The TOEFL task also selects among 4 words, but for
the TOEFL, the algorithm should select the most similar word to a given query
word. TOEFL was originally used to test the latent semantic analysis model
[18].

11.4 Sentiment analysis

Sentiment is one aspect of semantics. If the distributed semantics representation
is good we should also expect that certain aspects of it can reveal the senti-
ment well. There exists many resources, where the sentiment or the emotion of

10 https://github.com/fnielsen/dasem/blob/master/dasem/data/four_words.csv
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a text have been assigned manually. This may be on levels from words, phrases,
sentences or paragraphs to complete texts. For instance, AFINN assigns an in-
teger between −5 to 5 to each word or small phrase [29], e.g., the English word
excellent gets assigned the value 3.11

A distributed semantic representation pre-trained on an independent resource
can represent the sentiment-labeled words, and if this representation is seman-
tically accurate we may expect that a supervised learning algorithm trained
to predict sentiment will easily be able to generalize, i.e., able to predict the
sentiment of words, which have not been used during the supervised learning.
For the Danish version of AFINN, we found that the scheme worked well and
that the trained machine learning classifier could even point to words where the
sentiment label may be less than optimal and should be reconsidered [34]. For
instance, ‘udsigtsløs’ (futile) is labeled as positive in AFINN which can be con-
sidered an error. The analysis also pointed to words with ‘implicit’ negativity,
e.g., ben̊adet (pardoned), tilgiver (forgives) and præcisere (clarify) which could
indicate a change from negativity.

12 Problems: polysemy, homograph, bias and compounds

Various problems exist with the semantic representations. For distributed seman-
tic representation based on the orthographic representation of words, polysemy
and homograph are problems: That two words with the same othographic rep-
resentations can have different semantics, e.g., jaguar (disregarding case) can
mean a feline, a car make or an operating system version. Maintaining the case
of the word will help slightly on the polysemy/homograph problem, but will ex-
pand the vocabulary of the corpus, creating a problem with the estimation of the
semantic model. For some of the pre-trained models based on a very large cor-
pus, the case is maintained. Applying part-of-speech (POS) tagging before the
word embedding training and using the POS-tag—together with its associated
word—can disambiguate word classes (e.g., to fly vs. a fly), but does not help
with polysemy/homograph within word classes. Another approach uses word
sense disambiguation (WSD) before word embedding. A system called SensEm-
bed uses babelfy12 for the disambiguation before training a CBOW word2vec
model [14]. Rather than words, it is senses that are embedded, thus a word with
multiple senses will be embedded at several different points in the embedding
space. WSD may use a semantic network, such as WordNet or BabelNet, so
embedded senses correspond to concepts in the semantic network. In this case,
the corpus-based distributional sense embedding may be augmented with the
information from the explicit semantic network. The SensEmbed researchers ar-
gue that the semantic network are particular helpful for rare words and gives as
an example the highly related pair orthodonist-dentist, where orthodonist only

11 https://github.com/fnielsen/afinn/blob/master/afinn/data/AFINN-en-165.

txt
12 http://babelfy.org/
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occured 70 times in the corpus, making its distributed representation not accu-
rate, and the corpus-based orthodonist-dentist similarity estimation poor. How-
ever, in BabelNet, the semantic network they used, the two words were directly
linked and the combined distributional-semantic network similarity model can
determine the synonymity of the word pair [14]. Other methods that handles
polysemy/homographs, but without direct WSD, model the word context with
shallow or deep learning models [43,37].

Bias in word embeddings should also be considered. These biases reflect the
stereotypes in the corpus used to train the word embedding. Bias may be related
to gender where words for occupation are associated with a specific gender,
e.g., a reflected in the title “man is to computer programmer as woman is to
homemaker” [5]. If one is aware of the bias, then it might be possible to correct
it.

Compounds, that occur frequently in languages such as German and Danish,
may pose a problem as they are often rare words. Decompounding methods
exist [16], and may help if the individual compounded words are common. But
it may also be worth considering fastText that with its modeling of n-grams
are able to handle out-of-vocabulary words. For instance, consider the Danish
compound noun bogføringsvirksomhed (bookkeeping company) which is out-of-
vocabulary in a Dasem-trained13 fastText model, but fastText is nevertheless
able to identify semantically related within-vocabulary words when only the n-
gram representation of the word is used:

forretningsvirksomhed (business)
r̊adgivningsvirksomhed (advisory/consultant business)
revisionsvirksomhed (auditing business)

Here the last compound, virksomhed, is shared.
Yet another issue is misspellings and optical character recognition (OCR)

errors in the corpus used to train the distributed representation model. Such
erroneous words will also get projected in the embedding space. Whether this is
a problem depends on the task: If the task is just to project words or to select
among a pre-specified number of words, the presence of misspellings may not
matter, but in the case where the task is to select the closest word to a given
query, misspelling and OCR errors will likely decrease the performance.

13 What does it mean?

It is unclear what form the semantic space should have to best represent seman-
tics. In many cass, the semantic space is estimated with reference to an Euclidean
space, but it need not be the best. Researchers have argued that other forms of
spaces could yield a better representations than a Euclidean space for certain
semantic structures. In a tree, the number of leaf nodes grows exponentially with

13 Dasem is a Python package for Danish semantics available at https://github.com/
fnielsen/dasem
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the distance to the root node of the tree, if the tree is having a specific branching
factor. A continuous space with a similar characteristics is hyperbolic geometry.
Embedding in this space has been referred to as Poincaré embedding, and the
researchers showed that this form of embedding may be better than Euclidean
embedding for a hierarchical problem, the WordNet noun hierarchy [28].

Due to polysemy/homographs a semantic word space could be regarded as
violating the triangle inequality [27]. Consider the two word pairs (bee, fly) and
(fly, travel). Here the semantic similarity within the pairs are high and fly is a
homograph, so the semantic distance from bee to travel is short when via fly,
but longer when the pair (bee, travel) is viewed in isolation.

Semantic spaces may need to be of a certain size to faithfully represent some
concept relations. Consider a small semantic star network with one super con-
cept, A, and 4 subconcepts, Bi, i ∈ [1, 2, 3, 4], where the semantic distances
should be dist(A,Bi) = 1 and dist(Bi, Bj) = c, c > 1. In 2 dimensions, it would
not be possible to place the subconcepts Bi in a configuration so all 6 distances
between them are equal. Here the addition of a further dimension would en-
able the four subconcepts to be places in a 3-dimensional tetraedic configuration
where the subconcepts all have similar distances to each other.14

When spaces have many dimensions certain effects usually arise: distance
concentration and hubness. The latter means that, e.g., for a tf-idf -weighted
corpus some documents of the corpus will very often appear as nearest neighbors
to other documents.
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33. Nielsen, F.Å., Hansen, L.K.: Modeling of activation data in the BrainMap database:
detection of outliers. Human Brain Mapping 15, 146–156 (March 2002)
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