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Abstract

We revisit various string indexing problems with range reporting features, namely, position-
restricted substring searching, indexing substrings with gaps, and indexing substrings with in-
tervals. We obtain the following main results.

• We give e�cient reductions for each of the above problems to a new problem, which we
call substring range reporting. Hence, we unify the previous work by showing that we may
restrict our attention to a single problem rather than studying each of the above problems
individually.

• We show how to solve substring range reporting with optimal query time and little space.
Combined with our reductions this leads to significantly improved time-space trade-o↵s
for the above problems. In particular, for each problem we obtain the first solutions with
optimal time query and O(n logO(1) n) space, where n is the length of the indexed string.

• We show that our techniques for substring range reporting generalize to substring range
counting and substring range emptiness variants. We also obtain non-trivial time-space
trade-o↵s for these problems.

Our bounds for substring range reporting are based on a novel combination of su�x trees and
range reporting data structures. The reductions are simple and general and may apply to other
combinations of string indexing with range reporting.

1 Introduction

Given a string S of length n the string indexing problem is to preprocess S into a compact rep-
resentation that e�ciently supports substring queries, that is, given another string P of length m
report all occurrences of substrings in S that match P . Combining the classic su�x tree data struc-
ture [14] with perfect hashing [13] leads to an optimal time-space trade-o↵ for string indexing, i.e.,
an O(n) space representation that supports queries in O(m + occ) time, where occ is the number
of occurrences of P in S.

In recent years, several extensions of string indexing problems that add range reporting features
have been proposed. For instance, Mäkinen and Navarro proposed the position-restricted substring
searching problem [21, 22]. Here, queries take an additional range [a, b] of positions in S and the
goal is to report the occurrences of P within S[a, b]. For such extensions of string indexing no
optimal time-space trade-o↵ is known. For instance, for position-restricted substring searching one
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can either get O(n log" n) space (for any constant " > 0) and O(m + log log n + occ) query time or
O(n1+") space with O(m + occ) query time [8, 21, 22]. Hence, removing the log log n term in the
query comes at the cost of significantly increasing the space.

In this paper, we revisit a number string indexing problems with range reporting features,
namely position-restricted substring searching, indexing substrings with gaps, and indexing sub-
strings with intervals. We achieve the following results.

• We give e�cient reductions for each of the above problems to a new problem, which we
call substring range reporting. Hence, we unify the previous work by showing that we may
restrict our attention to a single problem rather than studying each of the above problems
individually.

• We show how to solve substring range reporting with optimal query time and little space.
Combined with our reductions this leads to significantly improved time-space trade-o↵s for
all of the above problems. For instance, we show how to solve position-restricted substring
searching in O(n log" n) space and O(m + occ) query time.

• We show that our techniques for substring range reporting generalize to substring range
counting and substring range emptiness variants. We also obtain non-trivial time-space trade-
o↵s for these problems.

Our bounds for substring range reporting are based on a novel combination of su�x trees and
range reporting data structures. The reductions are simple and general and may apply to other
combinations of string indexing with range reporting.

1.1 Substring Range Reporting

Let S be a string where each position is associated with a integer value in the range [0, u]. The
integer associated with position i in S is the label of position i, denoted label(i), and we call S
a labeled string. Given a labeled string S, the substring range reporting problem is to compactly
represent S while supporting substring range reporting queries, that is, given a string P and a pair
of integers a and b, 0  a  b  u, report all starting positions in S that match P and whose labels
are in the range [a, b].

We assume a standard unit-cost RAM model with word size w and a standard instruction set
including arithmetic operations, bitwise boolean operations, and shifts. We assume that a label
can be stored in a constant number of words and therefore w = ⇥(log u). The space complexity is
the number of words used by the algorithm. All bounds mentioned in this paper are valid in this
model of computation.

To solve substring range reporting a basic approach is to combine a su�x tree with a 2D range
reporting data structure. A query for a pattern P and range [a, b] consists of a search in the su�x
tree and then a 2D range reporting query with [a, b] and the lexicographic range of su�xes defined
P . This is essentially the overall approach used in the known solutions for position-restricted
substring searching [4, 8, 9, 21, 22, 31], which is a special case of substring range reporting (see the
next section).

Depending on the choice of the 2D range reporting data structure this approach leads to di↵erent
trade-o↵s. In particular, if we plug in the 2D range reporting data structure of Alstrup et al. [2],
we get a solution with O(n log" n) space and O(m + log log u + occ) query time (see Mäkinen
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and Navarro [21, 22]). The log log u term in the query time is from the range reporting query.
Alternatively, if we use a fast data structure for the range successor problem [8,31] to do the range
reporting, we get optimal O(m+occ) query time but increase the space to at least ⌦(n1+"). Indeed,
since any 2D range reporting data structure with O(n logO(1) n) space must use ⌦(log log u) query
time [26], we cannot hope to avoid this blowup in space with this approach.

Our first main contribution is a new and simple technique that overcomes the inherent problem
of the previous approach. We show the following result.

Theorem 1 Let S be a labeled string of length n with labels in the range [0, u]. For any constants
", � > 0, we can solve substring range reporting using O(n(log" n + log log u)) space, O(n(log n +
log� u)) expected preprocessing time, and O(m + occ) query time, for a pattern string of length m.

Compared to the previous results we achieve optimal query time with an additional O(n log log u)
term in the space. For the applications considered here, we have that u = O(n) and therefore the
space bound simplifies to O(n(log" n + log log u)) = O(n log" n). Hence, in this case there is no
asymptotic space overhead.

The key idea to obtain Theorem 1 is a new and simple combination of su�x trees with multiple
range reporting data structures for both 1 and 2 dimensions. Our solution handles queries di↵erently
depending on the length of the input pattern such that the overall query is optimized accordingly.

Interestingly, the idea of using di↵erent query algorithms depending on the length of the pattern
is closely related to the concept of filtering search introduced for the standard range reporting
problem by Chazelle as early as 1986 [6]. Our new results show that this idea is also useful in
combinatorial pattern matching.

Finally, we also consider substring range counting and substring range emptiness variants. Here,
the goal is to count the number of occurrences in the range and to determine whether or not the
range is empty, respectively. Similar to substring range reporting, these problems can also be
solved in a straightforward way by combining a su�x with a 2D range counting or emptiness data
structure. We show how to extend our techniques to obtain improved time-space trade-o↵s for both
of these problems.

1.2 Applications

Our second main contribution is to show that substring range reporting actually captures several
other string indexing problems. In particular, we show how to reduce the following problems to
substring range reporting.

• Position-restricted substring searching: Given a string S of length n, construct a data struc-
ture supporting the following query: Given a string P and query interval [a, b], with 1  a 
b  n, return the positions of substrings in S matching P whose positions are in the interval
[a, b].

• Indexing substrings with intervals: Given a string S of length n, and a set of intervals ⇡ =
{[s

1

, f
1

], [s
2

, f
2

], . . . , [s|⇡|, f|⇡|]} such that si, fi 2 [1, n] and si  fi, for all 1  i  |⇡|, construct
a data structure supporting the following query: Given a string P and query interval [a, b],
with 1  a  b  n, return the positions of substrings in S matching P whose positions are
in [a, b] and in one of the intervals in ⇡.
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• Indexing substrings with gaps: Given a string S of length n and an integer d, the problem is
to construct a data structure supporting the following query: Given two strings P

1

and P
2

return all positions of substrings in S matching P
1

� ?d � P
2

. Here � denotes concatenation
and ? is a wildcard matching all characters in the alphabet.

Previous results Let m be the length of P . Mäkinen and Navarro [21, 22] introduced the
position-restricted substring searching problem. Their fastest solution uses O(n log" n) space,
O(n log n) expected preprocessing time, and O(m+log log n+occ) query time. Crochemore et al. [8]
proposed another solution using O(n1+") space, O(n1+") preprocessing time, and O(m+occ) query
time (see also Section 1.1). Using techniques from range non-overlapping indexing [7] it is possible
to improve these bounds for small alphabet sizes [27]. Several succinct versions of the problem have
also been proposed [4,21,22,31]. All of these have significantly worse query time since they require
superconstant time per reported occurrence. Finally, Crochemore et al. [10] studied a restricted
version of the problem with a = 1 or b = n.

For the indexing substrings with intervals problem, Crochemore et al. [8, 9] gave a solution
with O(n log2 n) space, O(|⇡| + n log3 n) expected preprocessing time, and O(m + log log n + occ)
query time. They also showed how to achieve O(n1+") space, O(n1+" + |⇡|) preprocessing time,
and O(m+occ) query time. Several papers [3,17,20] have studied the property matching problem,
which is similar to the indexing substrings with intervals problem, but where both start and end
point of the match must be in the same interval.

Iliopoulos and Rahman [18] studied the problem of indexing substrings with gaps. They gave a
solution using O(n log" n) space, O(n log n) expected preprocessing time, and O(m+loglog n+occ)
query time, where m is the length of the two input strings. Crochemore and Tischler recently
proposed a variant of the problem [11].

Our results We reduce position-restricted substring searching, indexing substrings with intervals,
and indexing substrings with gaps to substring range reporting. Applying Theorem 1 with our new
reductions, we get the following result.

Theorem 2 Let S be a string of length n and let m be the length of the query. For any constant
" > 0, we can solve

(i) Position-restricted substring searching using O(n log" n) space, O(n log n) expected preprocess-
ing time, and O(m + occ) query time.

(ii) Indexing substrings with intervals using O(n log" n) space, O(|⇡| + n log n) expected prepro-
cessing time, and O(m + occ) query time.

(iii) Indexing substrings with gaps using O(n log" n) space, O(n log n) expected preprocessing time,
and O(m + occ) query time (m is the size of the two input strings).

This improves the best known time-space trade-o↵s for all three problems, that all su↵er from the
trade-o↵ inherent in 2D range reporting.

The reductions are simple and general and may apply to other combinations of string indexing
with range reporting.
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2 Basic Concepts

2.1 Strings and Su�x Trees

Throughout the section we will let S be a labeled string of length |S| = n with labels in [0, u]. We
denote the character at position i by S[i] and the substrings from position i to j by S[i, j]. The
substrings S[1, j] and S[i, n] are the prefixes and su�xes of S, respectively. The reverse of S is SR.
We denote the label of position i by labelS(i). The order of su�x S[i, n], denoted orderS(i), is the
lexicographic order of S[i, n] among the su�xes of S.

The su�x tree for S, denoted TS , is the compacted trie storing all su�xes of S [14]. The depth
of a node v in TS is the number of edges on the path from v to the root. Each of the edges in TS

is associated with some substring of S. The children of each node are sorted from left to right in
increasing alphabetic order of the first character of the substring associated with the edge leading
to them. The concatenation of substrings from the root to v is denoted strS(v). The string depth
of v, denoted strdepthS(v), is the length of strS(v). The locus of a string P , denoted locusS(P ), is
the minimum depth node v such that P is a prefix of strS(v). If P is not a prefix of a substring in
S we define locusS(P ) to be ?.

Each leaf ` in TS uniquely corresponds to a su�x in S, namely, the su�x strS(`). Hence, we
will use labelS(`) and orderS(`) to refer to the label and order of the corresponding su�x. For an
internal node v we extend the notation such that

labelS(v) = {labelS(`) | ` is a descendant leaf of v}
orderS(v) = {orderS(`) | ` is a descendant leaf of v}.

Since children of a node are sorted, the left to right order of the leaves in TS corresponds to the
lexicographic order of the su�xes of S. Hence, for any node v, orderS(v) is an interval. We denote
the left and right endpoints of this interval by lv and rv. When the underlying string S is clear
from the context we will often drop the subscript S for brevity.

The su�x tree for S uses O(n) space and can be constructed in O(sort(n)) time, where sort(n)
is the time for sorting n values in the model of computation [12]. We only need a standard
comparison-based O(n log n) su�x tree construction in our results. Let P be a string of length m.
If locusS(P ) = ? then P does not occur as a substring in S. Otherwise, the substrings in S that
match P are the su�xes in orderS(locusS(P )). Hence, we can compute all occurrences of P in S
by traversing the su�x tree from the root to locusS(P ) and then report all su�xes stored in the
subtree. Using perfect hashing [13] to represent the outgoing edges of each node in TS we achieve
an O(n) solution to string indexing that supports queries in O(m + occ) time (here occ is the total
number of occurrences of P in S).

2.2 Range Reporting

Let X ✓ {0, . . . , u}d be a set of points in a d-dimensional grid. The range reporting problem in
d-dimensions is to compactly represent X while supporting range reporting queries, that is, given a
rectangle R = [a

1

, b
1

]⇥ · · ·⇥ [ad, bd] report all points in the set R\X. We use the following results
for range reporting in 1 and 2 dimensions.

Lemma 1 (Alstrup et al. [1], Mortensen et al. [24]) For a set of n points in [0, u] and any
constant � > 0, we can solve 1D range reporting using O(n) space, O(n log� u) expected preprocess-
ing time and O(1 + occ) query time.
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Lemma 2 (Alstrup et al. [2]) For a set of n points in [0, u]⇥ [0, u] and any constant " > 0, we
can solve 2D range reporting using O(n log" n) space, O(n log n) expected preprocessing time, and
O(log log u + occ) query time.

3 Substring Range Reporting

We now show Theorem 1. Recall that S is a labeled string of length n with labels from [0, u].

3.1 The Data Structure

Our substring range reporting data structure consists of the following components.

• The su�x tree TS for S. For each node v in TS we also store lv and rv. We partition TS into
a top tree and a number of bottom trees. The top tree consists of all nodes in TS whose string
depth is at most log log u and all their children. The trees induced by the remaining nodes
are the forest of bottom trees.

• A 2D range reporting data structure on the set of points {(orderS(i), labelS(i)) | i 2 {1, . . . , n}}.

• For each node v in the top tree, a 1D range reporting data structure on the set {labelS(i) |
i 2 orderS(v)}.

We analyze the space and preprocessing time for the data structure. We use the range reporting
data structures from Lemmas 1 and 2. The space for the su�x tree is O(n) and the space for the
2D range reporting data structure is O(n log" n), for any constant " > 0. We bound the space for
the (potentially ⌦(n)) 1D range reporting data structures stored for the top tree. Let Vd be the
set of nodes in the top tree with depth d. Since the sets orderS(v), v 2 Vd, partition the set of
descendant leaves of nodes in Vd, the total size of these sets is as most n. Hence, the total size
of the 1D range reporting data structures for the nodes in Vd is therefore O(n). Since there are
at most log log u + 1 levels in the top tree, the space for all 1D range reporting data structures is
O(n log log u). Hence, the total space for the data structure is O(n(log" n + log log u)).

We can construct the su�x tree in O(sort(n)) time and the 2D range reporting data structure
in O(n log n) expected time. For any constant � > 0, the expected preprocessing time for all 1D
range reporting data structures is

O

0

@
X

v in top tree

|orderS(v)| log� u

1

A = O(n log log u log� u) = O(n log2� u).

Setting � = 2� we use O(n(log n + log� u)) expected preprocessing time in total.

3.2 Substring Range Queries

Let P be a string of length m, and let a and b be a pair of integers, 0  a  b  u. To answer a
substring range query we want to compute the set of starting positions for P whose labels are in
[a, b]. First, we compute the node v = locusS(P ). If v = ? then P is not a substring of S, and we
return the empty set. Otherwise, we compute the set of descendant leaves of v with labels in [a, b].
There are two cases to consider.
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(i) If v is in the top tree we query the 1D range reporting data structure for v with the interval
[a, b].

(ii) If v is in a bottom tree, we query the 2D range reporting data with the rectangle [lv, rv]⇥[a, b].

Given the points returned by the range reporting data structures, we output the corresponding
starting positions of the corresponding su�xes. From the definition of the data structure it follows
that these are precisely the occurrences of P within the range [a, b]. Next consider the time
complexity. We find locusS(P ) in O(m) time (see Section 2). In case (i) we use O(1 + occ) time to
compute the result by Lemma 1. Hence, the total time for a substring range query for case (i) is
O(m+occ). In case (ii) we use O(log log u+occ) time to compute the result by Lemma 2. We have
that v = locusS(P ) is in a bottom tree and therefore m � strdepth(parent(locusS(v))) > log log u.
Hence, the total time to answer a substring range query in case (ii) is O(m + log log u + occ) =
O(m + occ). Thus, in both cases we use O(m + occ) time.

Summing up, our solution uses O(n(log" n + log log u) space, O(n(log n + log� u)) expected
preprocessing time, and O(m + occ) query time. This completes the proof of Theorem 1.

4 Applications

In this section we show how to improve the results for the three problems position-restricted sub-
string searching, indexing substrings with intervals, and indexing gapped substrings, using our data
structure for substring range reporting. Let reportS(P, a, b) denote a substring range reporting
query on string S with parameters P , a, and b.

4.1 Position-Restricted Substring Searching

We can reduce position-restricted substring searching to substring range reporting by setting
label(i) = i for all i = 1, . . . , n. To answer a query we return the result of the substring range
query reportS(P, a, b). Since each label is equal to the position, it follows that the solution to
the substring range reporting instance immediately gives a solution to position-restricted substring
searching. Applying Theorem 1 with u = n, this proves Theorem 2(i).

4.2 Indexing Substrings with Intervals

We can reduce indexing substrings with intervals to substring range reporting by setting

label(i) =

(
i if i 2 ' for some ' 2 ⇡,

0 otherwise.

To answer a query we return the result of the substring range reporting query reportS(P, a, b).
Let I be the solution to the indexing substrings with intervals instance and let I 0 be the solution
to the substring range reporting instance derived by the above reduction. Then i 2 I , i 2 I 0.

To prove this assume i 2 I. Then i 2 ' for some ' 2 ⇡ and i 2 [a, b]. From i 2 ' and the
definition of label(i) it follows that label(i) = i. Thus, label(i) = i 2 [a, b] and thus i 2 I 0. Assume
i 2 I 0. Then label(i) 2 [a, b]. Since a > 0 also label(i) > 0, and it follows that label(i) = i. By the
reduction this means that i 2 ' for some ' 2 ⇡. Since i = label(i), we have i 2 [a, b] and therefore
i 2 I.
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Figure 1: A string S, the labeling for d = 2 (below the string), and the su�x tree of TSR . Given
a query P

1

= ab and P
2

= bac we find v = locusSR(ba) (marked in the su�x tree). We have
lv = 6 and rv = 7 from the left-to-right-order in the TSR . The substring range reporting query
reports(P2

, 6, 7) returns 7. Hence, we report the occurrence at position 7 � 2 � 2 = 3.

We can construct the labeling in O(n+ |⇡|) if the intervals are sorted by startpoint or endpoint.
Otherwise additional time for sorting is needed. A similar approach is used in the solution by
Crochemore et al. [8].

Applying Theorem 1 with u = n, this proves Theorem 2(ii).

4.3 Indexing Substrings with Gaps

We can reduce the indexing substrings with gaps problem to substring range reporting as follows.
Construct the su�x tree of the reverse of S, i.e., the su�x tree TSR for SR. For each node v in
TSR also store lv and rv. Set

labelS(i) =

(
orderSR(n � i + d + 2) for i � d + 2,

0 otherwise.

To answer a query find the locus node v of PR
1

in TSR . Then use the substring range reporting
data structure to return all positions of substrings in S matching P

2

whose labels are in the range
[lv, rv]. For each position i returned by reportS(P

2

, lv, rv), return i � |P
1

| � d. See Fig. 1 for an
example.

Correctness of the reduction We will now show that the reduction is correct. Let I be the
solution to the indexing substrings with gaps instance and let I 0 be the solution to the substring
range reporting instance derived by the above reduction. We will show i 2 I , i 2 I 0. Let mi = |Pi|
for i = 1, 2.

If i 2 I then there is an occurrence of P
1

at position i in S and an occurrence of P
2

at
position i0 = i + m

1

+ d in S. It follows directly, that there is an occurrence of PR
1

at position
i00 = n � (i + m

1

) + 2 in SR. By definition,

labelS(i0) = labelS(i + m
1

+ d) = orderSR(n � (i + m
1

+ d) + d + 2) = orderSR(i00),

where the second equality follows from the fact that i + m
1

+ d � d + 2. Since there is an
occurrence of PR

1

at position i00 in SR, we have labelS(i0) = orderSR(i00) 2 orderSR(locusSR(PR
1

)).
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Thus, labelS(i0) 2 [lv, rv], and since there is an occurrence of P
2

at position i0 in S, we have
i0 � m

1

� d = i 2 I 0.
If i 2 I 0 then there is an occurrence of P

2

at position i0 = i + m
1

+ d with label(i0) in the range
[lv, rv], where v = locusSR(PR

1

). We need to show that this implies that there is an occurrence of
P
1

at position i in S. By definition,

labelS(i0) = orderSR(n � i0 + d + 2) = orderSR(n � i � m
1

+ 2).

Let i00 = n � i � m
1

+ 2. Since orderSR(i00) = labelS(i0) 2 [lv, rv], there is an occurrence of PR
1

at
position i00 in SR. It follows directly, that there is an occurrence of P

1

at position n� i00�m
1

+2 =
n � (n � i � m

1

+ 2) � m
1

+ 2 = i in S. Therefore, i 2 I.

Complexity Construction of the su�x tree TSR takes time O(n log n) and the labeling can be
constructed in time O(n). Both use space O(n). It takes O(m

1

) time to find the locus nodes of
PR
1

in TSR . The substring range reporting query takes time O(m
2

+ occ). Thus the total query
time is O(m + occ).

Applying Theorem 1 with u = n, this completes the proof of Theorem 2(iii).

5 Substring Range Counting and Emptiness

We now show how to apply our techniques to substring range counting and substring range empti-
ness. Analogous to substring range reporting, the goal is here to count the number of occurrences
in the range and to determine whether or not the range is empty, respectively. A straightforward
way to solve these problems is to combine a su�x tree with a 2D range counting data structure
and a 2D range emptiness data structure, respectively. Using the techniques from Section 3 we
show how to significantly improve the bounds of this approach in both cases. We note that by
the reductions in Section 4 the bounds for substring range counting and substring range emptiness
also immediately imply results for counting and emptiness versions of position-restricted substring
searching, indexing substrings with intervals, and indexing substrings with gaps.

5.1 Preliminaries

Let X ✓ {0, . . . , u} be a set of points in a d-dimensional grid. Given a query rectangle R =
[a

1

, b
1

] ⇥ · · · ⇥ [ad, bd], a range counting query computes |R \ X|, and a range emptiness query
computes if R \ X = ;. Given X the range counting problem and the range emptiness problem is
to compactly represent X, while supporting range counting queries and range emptiness queries,
respectively. Note that any solution for range reporting or range counting implies a solution for
range emptiness with the same complexity (ignoring the occ term for range reporting queries). We
will need the following additional geometric data structures.

Lemma 3 (JáJá et al. [19]) For a set of n points in [0, u]⇥ [0, u] we can solve 2D range counting
in O(n) space, O(n log n) preprocessing time, and O(log n/ log log n + log log u) query time.

Lemma 4 (van Emde Boas et al. [29, 30], Mehlhorn and Näher [23]) For a set of n points
in [0, u] we can solve 1D range counting in O(n) space, O(n log log n) preprocessing time, and
O(log log u) query time.
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To achieve the result of Lemma 4 we use a van Emde Boas data structure [29, 30] implemented
in linear space [23] using perfect hashing. This data structure supports predecessor queries in
O(log log u) time. By also storing for each point it’s rank in the sorted order of the points, we can
compute a range counting query by two predecessor queries. To build the data structure e�ciently
we need to sort the points and build suitable perfect hash tables. We can sort deterministically in
O(n log log n) time [16], and we can build the needed hash tables in O(n) time using deterministic
hashing [15] combined with a standard two-level approach (see e.g., Thorup [28]).

Lemma 5 (Chan et al. [5]) For a set of n points in [0, u]⇥[0, u] we can solve 2D range emptiness
in O(n log log n) space, O(n log n) preprocessing time, and O(log log u) query time.

5.2 The Data Structures

We now show how to e�ciently solve substring range counting and substring range emptiness.
Recall that S is a labeled string of length n with labels from [0, u].

We can directly solve substring range counting by combining a su�x tree with the 2D range
counting result from Lemma 3. This leads to a solution using O(n) space and O(m+log n/ log log n+
log log u) query time. We show how to improve the query time to O(m + log log u) at the cost of
increasing the space to O(n log n/ log log n). Hence, we remove the log n/ log log n term from the
query time at the cost of increasing the space by a log n/ log log n factor. We cannot hope to achieve
such a bound using a su�x tree combined with a 2D range counting data structure since any 2D
range counting data structure using O(n logO(1) n) space requires ⌦(log n/ log log n) query time [25].
We can also directly solve substring range emptiness by combining a su�x tree with the 2D range
emptiness result from Lemma 5. This solution uses O(n log log n) space and O(m+log log u) query
time. We show how to achieve optimal O(m) query time with space O(n log log u).

Our data structure for substring range counting and existence follows the construction in Sec-
tion 3. We partition the su�x tree into a top and a number of bottom trees and store a 1D data
structure for each node in the top tree and a single 2D data structure. To answer a query for a
pattern string P of length m, we search the su�x tree with P and use the 1D data structure if the
search ends in the top tree and otherwise use the 2D data structure.

We describe the specific details for each problem. First we consider substring range counting.
In this case the top tree consists of all nodes of string depth at most log n/ log log n. The 1D and 2D
data structures used are the ones from Lemma 4 and 3. By the same arguments as in Section 3 the
total space used for the 1D data structures for all nodes in the top tree at depth d is at most O(n)
and hence the total space for all 1D data structures is O(n(log n/ log log n)). Since the 2D data
structure uses O(n) space, the total space is O(n log n/ log log n). The time to build all 1D data
structures is O(n(log n/ log log n) · log log n)) = O(n log n). Since the su�x tree and the 2D data
structure can be built within the same bound, the total preprocessing time is O(n log n). Given
a pattern of length m, a query uses O(m + log log u) time if the search ends in the top tree, and
O(m + log n/ log log n + log log u) time if the search ends in a bottom tree. Since bottom trees
consists of nodes of string depth more than log n/ log log n the time to answer a query in both cases
is O(m + log log u). In summary, we have the following result.

Theorem 3 Let S be a labeled string of length n with labels in the range [0, u]. We can solve
substring range counting using O(n log n/ log log n) space, O(n log n) preprocessing time, and O(m+
log log u) query time, for a pattern string of length m.
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Next we consider substring range emptiness. In this case the top tree consists of all nodes
of string depth at most log log u. We use the 1D and 2D data structures from Lemma 1 and
Lemma 5. The total space for all 1D data structures is O(n log log u). Since the 2D data structure
uses O(n log log n) space the total space is O(n log log u). For any constant � > 0, the expected time
to build all 1D data structures is O(n log log u log� u) = O(n log� u) for suitable constant � > 0. The
su�x tree and the 2D data structure can be built in O(n log n) time and hence the total expected
preprocessing time is O(n(log n + log� u)). If the search for a pattern string ends in the top tree
the query time is O(m) and if the search ends in a bottom tree the query time is O(m + log log u).
As above, the partition in top and bottom trees ensures that the query time in both cases is O(m).
In summary, we have the following result.

Theorem 4 Let S be a labeled string of length n with labels in the range [0, u]. For any constant
� > 0 we can solve substring range existence using O(n log log u) space, O(n(log n+log� u)) expected
preprocessing time, and O(m) query time, for a pattern string of length m.

6 Acknowledgments

We thank Christian Worm Mortensen and Kasper Green Larsen for clarifications on the prepro-
cessing times for the results in Lemma 3 and Lemma 5.

References

[1] S. Alstrup, G. Brodal, and T. Rauhe. Optimal static range reporting in one dimension. In
Proc. 33rd STOC, pages 476–482, 2001.

[2] S. Alstrup, G. Stølting Brodal, and T. Rauhe. New data structures for orthogonal range
searching. In Proc. 41st FOCS, pages 198–207, 2000.

[3] A. Amir, E. Chencinski, C. S. Iliopoulos, T. Kopelowitz, and H. Zhang. Property matching
and weighted matching. Theoret. Comput. Sci., 395(2-3):298–310, 2008.

[4] P. Bose, M. He, A. Maheshwari, and P. Morin. Succinct orthogonal range search structures
on a grid with applications to text indexing. In Proc. 11th WADS, pages 98–109, 2009.
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