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Abstract. Given two rooted, labeled trees P and T the tree path sub-
sequence problem is to determine which paths in P are subsequences of
which paths in T . Here a path begins at the root and ends at a leaf. In
this paper we propose this problem as a useful query primitive for XML
data, and provide new algorithms improving the previously best known
time and space bounds.

1 Introduction

We say that a tree is labeled if each node is assigned a character from an alphabet
Σ. Given two sequences of labeled nodes p and t, we say that p is a subsequence

of t, denoted p ⊑ t, if p can be obtained by removing nodes from t. Given two
rooted, labeled trees P and T the tree path subsequence problem (TPS) is to
determine which paths in P are subsequences of which paths in T . Here a path
begins at the root and ends at a leaf. That is, for each path p in P we must
report all paths t in T such that p ⊑ t.

This problem was introduced by Chen [3] who gave an algorithm using
O(min(lP nT , nP lT + nT )) time and O(lP dT ) space. Here, nS , lS, and dS de-
notes the number of nodes, number of leaves, and depth, respectively, of a tree
S. Note that in the worst-case this is quadratic time and space. In this paper we
show the following result:

Theorem 1. For trees P and T the tree path subsequence problem can be solved

in O(min
(

lP nT , nP lT + nT , nP nT

log nT
+ nP log nP

)

) time and O(nP + nT ) space.

Hence, if one of the trees has few leaves we match the previous time bounds,
while improving the space to linear. The latter bound improves the worst-case
time by a logarithmic factor whenever log nP = O(nT / lognT )). Note that – in
the worst-case – the number of pairs consisting of a path from P and a path T
is Ω(nP nT ), and therefore we need at least as many bits to report the solution
to TPS. Hence, on a RAM with logarithmic word size our worst-case bound is
optimal.

⋆ This work is part of the DSSCV project supported by the IST Programme of the
European Union (IST-2001-35443).

⋆⋆ This work was performed while the author was a PhD student at the IT University
of Copenhagen.
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Fig. 1. (a) The trie of queries 1,2,3, or the tree for query 4. (b) A fragment of a catalog
of books.

More importantly, all our algorithms use linear space, whereas the previous
ones used quadratic space in the worst-case. For practical applications this makes
it possible to solve TPS on larger trees and speed up the running time since more
of the computation can be kept in main memory.

The first two time bounds are useful when the number of leaves in one of the
trees has few leaves. In this case our contribution is the reduction to linear space.
If, on the other hand, the number of leaves in both trees are proportional to the
number of nodes in the tree the last time bound is the best. In this paper we
present the first algorithm with subquadratic worst-case time and space bound.

Applications We propose TPS as a useful query primitive for XML data. The
key idea is that an XML document D may be viewed as a rooted, labeled tree. For
example, suppose that we want to maintain a catalog of books for a bookstore.
A fragment of a possible XML tree, denoted D, corresponding to the catalog is
shown in Fig. 1(b). In addition to supporting full-text queries, such as find all
documents containing the word “John”, we can also use the tree structure of the
catalog to ask more specific queries, such as the following examples:

1. Find all books written by John,
2. find all books written by Paul,
3. find all books with a chapter that has something to do with XML, or
4. find all books written by John and Paul with a chapter that has something

to do with XML.

The queries 1,2, and 3 correspond to a path query on D, that is, compute which
paths in D that contains a specific path as a subsequence. For instance, com-
puting the paths in D that contain the path of three nodes labeled “book”,
“chapter”, and “XML”, respectively, effectively answers query 3. Most XML-
query languages, such as XPath [4], support such queries.

Using a simple algorithm (a describtion of which we omit due to lack of space)
a path query can be solved in linear time. Specifically, if q is a path consisting of
nq nodes, answering the path query on D takes O(nq + nD) time. Hence, if we
are given path queries q1, . . . , qk we can answer them in O((nq1

+ · · ·+ nqk
)nD)

time. If, however, the paths overlap we can do better by constructing the trie,
Q, of q1, . . . , qk. Answering all paths queries now correspond to solving TPS on



Q and D. As example the queries 1,2, and 3 form the trie shown in Fig. 1(a).
Depending on the overlap between q1, . . . , qk, nQ is up to a linear factor smaller
than nq1

+ · · · + nqk
.

Next consider query 4. This query cannot be answered by solving a TPS
problem but is an instance of the tree inclusion problem (TI). Here we want to
decide if P is included in T , that is, if P can be obtained from T by deleting

nodes of T . Deleting a node y in T means making the children of y children of
the parent of y and then removing y. It is straightforward to check that we can
answer query 4 by deciding if the tree in Fig. 1(a) can be included in the tree in
Fig. 1(b).

Recently, TI has been recognized as an important XML query primitive and
has recieved considerable attention, see e.g., [9–14]. Unfortunately, TI is NP-
complete in general [8] and therefore the existing algorithms are based on heuris-
tics. Observe that a necessary condition for P to included in T is that all paths
in P are subsequences of paths in T . Hence, we can use TPS to quickly rule out
trees that cannot be included T . We believe that in this way TPS can be used
as an effective ”filter” for many tree inclusion problems that occur in practice.

Technical Overview Given two strings (or labeled paths) a and b, it is straight-
forward to determine if a is a subsequence of b by scanning the character from
left to right in b. This uses O(|a| + |b|) time. We can solve TPS by applying
this algorithm to each of the pair of paths in P and T , however, this may
use as much as O(nP nT (nP + nT )) time. Alternatively, Baeza-Yates [2] showed
how to preprocess b in O(|b| log |b|) time such that testing whether a is a sub-
sequence of b can be done in O(|a| log |b|) time. Using this data structure on
each path in T we can solve the TPS problem, however, this may take as much
as O(nT log nT + n2

P log nT ). Hence, the availiable subsequence algorithms on
strings does not provide an immediate solution.

Inspired by the work of Chen [3] we take another approach. We provide a
framework for solving TPS. The main idea is to traverse T while maintaining
a subset of nodes in P , called the state. When reaching a leaf z in T the state
represents the paths in P that are a subsequences of the path from the root
to z. At each step the state is updated using a simple procedure defined on
subset of nodes. The result of Theorem 1 is obtained by taking the best of two
algorithms based on our framework: The first one uses a simple data structure
to maintain the state. This leads to an algorithm using O(min(lP nT , nP lT +
nT )) time. At a high level this algorithm resembles the algorithm of Chen [3]
and achieves the same running time. However, we improve the analysis of the
algorithm and show a space bound of O(nP + nT ). This should be compared to
the worst-case quadratic space bound of O(lP dT ) given by Chen [3]. Our second
algorithm takes a different approach combining several techniques. Starting with
a simple quadratic time and space algorithm, we show how to reduce the space
to O(nP log nT ) using a decomposition of T into disjoint paths. We then divide
P into small subtrees of logarithmic size called micro trees. The micro trees are
then preprocessed such that subsets of nodes in a micro tree can be maintained



in constant time and space. Intuitively, this leads to a logarithmic improvement
of the time and space bound.

Notation and Definitions In this section we define the notation and defini-
tions we will use throughout the paper. For a graph G we denote the set of nodes
and edges by V (G) and E(G), respectively. Let T be a rooted tree. The root of
T is denoted by root(T ). The size of T , denoted by nT , is |V (T )|. The depth of a
node y ∈ V (T ), depth(y), is the number of edges on the path from y to root(T )
and the depth of T , denoted dT , is the maximum depth of any node in T . The
parent of y is denoted parent(y). A node with no children is a leaf and otherwise
it is an internal node. The number of leaves in T is denoted lT . Let T (y) denote
the subtree of T rooted at a node y ∈ V (T ). If z ∈ V (T (y)) then y is an ancestor
of z and if z ∈ V (T (y))\{y} then y is a proper ancestor of z. If y is a (proper)
ancestor of z then z is a (proper) descendant of y. We say that T is labeled if
each node y is a assigned a character, denoted label(y), from an alphabet Σ. The
path from y to root(T ), of nodes root(T ) = y1, . . . , yk = y is denoted path(y).
Hence, we can formally state TPS as follows: Given two rooted tree P and T
with leaves x1, . . . , xr and y1, . . . , ys, respectively, determine all pairs (i, j) such
that path(xi) ⊑ path(yj). For simplicity we will assume that leaves in P and T
are always numbered as above and we identify each of the paths by the number
of the corresponding leaf.

Throughout the paper we assume a standard RAM model of computation
with logarithmic word size. We use a standard instruction set including bitwise
boolean operations, shifts, addition, multiplication, etc.

2 A Framework for solving TPS

In this section we present a simple general algorithm for the tree path subse-
quence problem. The key ingredient in our algorithm is the following procedure.
For any X ⊆ V (P ) and y ∈ V (T ) define:

Down(X, y): Return the set Child({x ∈ X | label(x) = label(y)}) ∪ {x ∈ X |
label(x) 6= label(y)}.

The notation Child(X) denotes the set of children of X . Hence, Down(X, y)
is the set consisting of nodes in X with a different label than y and the children
of the nodes X with the same label as y. We will now show how to solve TPS
using this procedure.

First assign a unique number in the range {1, . . . , lP } to each leaf in P . Then,
for each i, 1 ≤ i ≤ lP , add a pseudo-leaf ⊥i as the single child of the ith leaf. All
pseudo-leaves are assigned a special label β 6∈ Σ. The algorithm traverses T in
a depth first order and computes at each node y the set Xy. We call this set the
state at y. Initially, the state consists of {root(P )}. For z ∈ child(y), the state
Xz can be computed from state Xy as follows: Xz = Down(Xy, z).

If z is a leaf we report the number of each pseudo-leaf in Xz as the paths
in P that are subsequences of path(z). See Fig. 2 for an example. To show the
correctness of this approach we need the following lemma.
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Fig. 2. Letters inside nodes are labels, and the identifier of each node is written outside
the node. Initially we have X = {root(P )}. Since label(root(P )) = a = label(root(T ))
we replace root(P ) with is children and get Xroot(T ) = {x1, x2}. Since label(1) =
label(x1) 6= label(x2) we get X1 = {x3, x2}. Continuing this way we get X2 = {⊥1, x2},
X3 = {⊥1,⊥2}, X4 = {x3,⊥2}, and X5 = {x3,⊥2}. The nodes 3 and 5 are leaves of T

and we thus report paths 1 and 2 after computing X3 and path 2 after computing X5.

Lemma 1. For any node y ∈ V (T ) the state Xy satisfies the following property:

If x ∈ Xy then path(parent(x)) ⊑ path(y).

Proof. By induction on the number of iterations of the procedure. Initially, X =
{root(P )} satisfies the property since root(P ) has no parent. Suppose that Xy

is the current state and z ∈ child(y) is the next node in the depth first traversal
of T . By the induction hypothesis Xy satisfies the property, that is, for any
x ∈ Xy, path(parent(x)) ⊑ path(y)). Then, Xz = Down(Xy, z) = Child({x ∈
Xy | label(x) = label(z)}) ∪ {x ∈ Xy | label(x) 6= label(z)}.

Let x be a node in Xy. There are two cases. If label(x) = label(z) then
path(x) ⊑ path(z) since path(parent(x)) ⊑ path(y). Hence, for any child x′

of x we have path(parent(x′)) ⊑ path(z). On the other hand, if label(x) 6=
label(z) then x ∈ Xz. Since y = parent(z) we have path(y) ⊑ path(z), and
hence path(parent(x)) ⊑ path(y) ⊑ path(z). ⊓⊔

By the above lemma all paths reported at a leaf z ∈ V (T ) are subsequences of
path(z). The following lemma shows that the paths reported at a leaf z ∈ V (T )
are exactly the paths in P that are subsequences of path(z).

Lemma 2. Let z be a leaf in T and let ⊥i be a pseudo-leaf in P . Then, ⊥i ∈
Xz ⇔ path(parent(⊥i)) ⊑ path(z).

Proof. It follows immediately from Lemma 1 that ⊥i ∈ Xz ⇒ path(parent(⊥i)) ⊑
path(z). It remains to show that path(parent(⊥i)) ⊑ path(z) ⇒ ⊥i ∈ Xz. Let
path(z) = z1, . . . , zk, where z1 = root(T ) and zk = z, and let path(parent(⊥i)) =
y1, . . . , yℓ, where y1 = root(P ) and yℓ = parent(⊥i). Since path(parent(⊥i)) ⊑
path(z) there are nodes zji

= yi for 1 ≤ i ≤ k, such that (i) ji < ji+1 and
(ii) there exists no node zj with label(zj) = label(yi), where ji−1 < j < ji.
Initially, X = {root(P )}. We have root(P ) ∈ Xzj

for all j < j1, since zj1 is the
first node on path(z) with label label(root(P )). When we get to zj1 , root(P )
is removed from the state and y2 is inserted. Similarly, yi is in all states Xzj

for ji−1 ≤ j < ji. It follows that ⊥i is in all states Xzj
where j ≥ jℓ and thus

⊥i ∈ Xzk
= Xz. ⊓⊔



The next lemma can be used to give an upper bound on the number of nodes in
a state. The proof is omitted due to lack of space.

Lemma 3. For any y ∈ V (T ) the state Xy has the following property: Let

x ∈ Xy. Then no ancestor of x is in Xy.

It follows from Lemma 3 that |Xy| ≤ lP for any y ∈ V (T ). If we store the state
in an unordered linked list each step of the depth-first traversal takes time O(lP )
giving a total O(lP nT ) time algorithm. Since each state is of size at most lP the
space used is O(nP + lP nT ). In the following sections we show how to improve
these bounds.

3 A Simple Algorithm

In this section we consider a simple implementation of the above algorithm,
which has running time O(min(lP nT , nP lT )) and uses O(nP + nT ) space. We
assume that the size of the alphabet is nT + nP and each character in Σ is
represented by an integer in the range {1, . . . , nT + nP }. If this is not the case
we can sort all characters in V (P )∪V (T ) and replace each label by its rank in the
sorted order. This does not change the solution to the problem, and assuming at
least a logarithmic number of leaves in both trees it does not affect the running
time. To get the space usage down to linear we will avoid saving all states. For
this purpose we introduce the procedure Up, which reconstructs the state Xz

from the state Xy, where z = parent(y). We can thus save space as we only need
to save the current state.

We use the following data structure to represent the current state Xy: A node

dictionary consists of two dictionaries denoted Xc and Xp. The dictionary Xc

represents the node set corresponding to Xy, and the dictionary Xp represents
the node set corresponding to the set {x ∈ Xz | x 6∈ Xy and z is an ancestor of y}.
That is, Xc represents the nodes in the current state, and Xp represents the
nodes that is in a state Xz, where z is an ancestor of y in T , but not in Xy. We
will use Xp to reconstruct previous states. The dictionary Xc is indexed by Σ
and Xp is indexed by V (T ). The subsets stored at each entry are represented
by doubly-linked lists. Furthermore, each node in Xc maintains a pointer to
its parent in Xp and each node x′ in Xp stores a linked list of pointers to its
children in Xp. With this representation the total size of the node dictoinary is
O(nP + nT ).

Next we show how to solve the tree path subsequence problem in our frame-
work using the node dictionary representation. For simplicity, we add a node ⊤
to P as a the parent of root(P ). Initially, the Xp represents ⊤ and Xc represents
root(P ). The Down and Up procedures are implemented as follows:

Down((Xp, Xc), y): 1. Set X := Xc[label(y)] and Xc[label(y)] := ∅.
2. For each x ∈ X do:

(a) Set Xp[y] := Xp[y] ∪ {x}.
(b) For each x′ ∈ child(x) do:



i. Set Xc[label(x′)] := Xc[label(x′)] ∪ {x}.
ii. Create pointers between x′ and x.

3. Return (Xp, Xc).
Up((Xp, Xc), y): 1. Set X := Xp[y] and Xp[y] := ∅.

2. For each x ∈ X do:
(a) Set Xc[label(x)] := Xc[label(x)] ∪ {x}.
(b) For each x′ ∈ child(x) do:

i. Remove pointers between x′ and x.
ii. Set Xc[label(x′)] := Xc[label(x′)] \ {x′}.

3. Return (Xp, Xc).

The next lemma shows that Up correctly reconstructs the former state.

Lemma 4. Let Xz = (Xc, Xp) be a state computed at a node z ∈ V (T ), and let

y be a child of z. Then, Xz = Up(Down(Xz, y), y).

Proof. Let (Xc
1 , Xp

1 ) = Down(Xz, y) and (Xc
2 , X

p
2 ) = Up((Xc

1 , Xp
1 ), y). We will

first show that x ∈ Xz ⇒ x ∈ Up(Down(Xz , y), y).
Let x be a node in Xc. There are two cases. If x ∈ Xc[label(y)], then it follows

from the implementation of Down that x ∈ Xp
1 [y]. By the implementation of

Up, x ∈ Xp
1 [y] implies x ∈ Xc

2 . If x 6∈ Xc[label(y)] then x ∈ Xc
1 . We need to

show parent(x) 6∈ Xp
1 [y]. This will imply x ∈ Xc

2 , since the only nodes removed
from Xc

1 when computing Xc
2 are the nodes with a parent in Xp

1 [y]. Since y is
unique it follows from the implementation of Down that parent(x) ∈ Xp

1 implies
x ∈ Xc[label(y)].

Let x be a node in Xp. Since y is unique we have x ∈ Xp[y′] for some
y′ 6= y. It follows immediately from the implementation of Up and Down that
Xp[y′] = Xp

1 [y′] = Xp
2 [y′], when y′ 6= y, and thus Xp = Xp

2 .
We will now show x ∈ Up(Down(Xz , y), y) ⇒ x ∈ Xz. Let x be a node

in Xc
2 . There are two cases. If x 6∈ Xc

1 then it follows from the implementation
of Up that x ∈ Xp

1 [y]. By the implementation of Down, x ∈ Xp
1 [y] implies

x ∈ Xc[label(y)], i.e., x ∈ Xc. If x ∈ Xc
1 then by the implementation of Up,

x ∈ Xc
2 implies parent(x) 6∈ xp

1[y]. It follows from the implementation of Down

that x ∈ Xc. Finally, let x be a node in Xp
2 . As argued above Xp = Xp

2 , and
thus x ∈ Xp. ⊓⊔

From the current state Xy = (Xc, Xp) the next state Xz is computed as follows:

Xz =

{

Down(Xy, z) if y = parent(z),

Up(Xy, y) if z = parent(y).

The correctness of the algorithm follows from Lemma 2 and Lemma 4. We will
now analyze the running time of the algorithm. The procedures Down and Up

uses time linear in the size of the current state and the state computed. By
Lemma 3 the size of each state is O(lP ). Each step in the depth-first traversal
thus takes time O(lP ), which gives a total running time of O(lP nT ). On the
other hand consider a path t in T . We will argue that the computation of all the
states along the path takes total time O(nP + nt), where nT is the number of
nodes in t. To show this we need the following lemma.



Lemma 5. Let t be a path in T . During the computation of the states along the

path t, any node x ∈ V (P ) is inserted into Xc at most once.

Proof. Since t is a path we only need to consider the Down computations. The
only way a node x ∈ V (P ) can be inserted into Xc is if parent(x) ∈ Xc. It thus
follows from Lemma 3 that x can be inserted into Xc at most once. ⊓⊔

It follows from Lemma 5 that the computations of the all states when T is
a path takes time O(nP + nT ). Consider a path-decomposition of T . A path-
decomposition of T is a decomposition of T into disjoint paths. We can make
such a path-decomposition of the tree T consisting of lT paths. Since the running
time of Up and Down both are linear in the size of the current and computed
state it follows from Lemma 4 that we only need to consider the total cost
of the Down computations on the paths in the path-decompostion. Thus, the
algorithm uses time at most

∑

t∈T O(np + nt) = O(nP lT + nT ).
Next we consider the space used by the algorithm. Lemma 3 implies that

|Xc| ≤ lP . Now consider the size of Xp. A node is inserted into Xp when it
is removed from Xc. It is removed again when inserted into Xc again. Thus
Lemma 5 implies |Xp| ≤ nP at any time. The total space usage is thus O(nP +
nT ). To summarize we have shown,

Theorem 2. For trees P and T the tree path subsequence problem can be solved

in O(min(lP nT , nP lT + nT )) time and O(nP + nT ) space.

4 A Worst-Case Efficient Algorithm

In this section we consider the worst-case complexity of TPS and present an
algorithm using subquadratic running time and linear space. The new algorithm
works within our framework but does not use the Up procedure or the node
dictionaries from the previous section.

Recall that using a simple linked list to represent the states we immedi-
ately get an algorithm using O(nP nT ) time and space. We first show how to
modify the traversal of T and discard states along the way such that at most
O(log nT ) states are stored at any step in the traversal. This improves the space
to O(nP log nT ). Secondly, we decompose P into small subtrees, called micro

trees, of size O(log nT ). Each micro tree can be represented in a single word of
memory and this way we can represent a state using only O( nP

log nT
) space. In to-

tal the space used to represent the O(log nT ) states is O( nP

log nT
·log nT ) = O(nP ).

Finally, we show how to preprocess P in linear time and space such that com-
puting the new state can be done in constant time per micro tree. Intuitively,
this achieves the O(log nT ) speedup.

Heavy Path Traversal In this section we present the modified traversal of T .
We first partition T into disjoint paths as follows. For each node y ∈ V (T ) let
size(y) = |V (T (y))|. We classify each node as either heavy or light as follows.
The root is light. For each internal node y we pick a child z of y of maximum



size among the children of y and classify z as heavy. The remaining children are
light. An edge to a light child is a light edge, and an edge to a heavy child is a
heavy edge. The heavy child of a node y is denoted heavy(y). Let lightdepth(y)
denote the number of light edges on the path from y to root(T ).

Lemma 6 (Harel and Tarjan [7]). For any tree T and node y ∈ V (T ),
lightdepth(y) ≤ log nT + O(1).

Removing the light edges, T is partitioned into heavy paths. We traverse T ac-
cording to the heavy paths using the following procedure. For node y ∈ V (T )
define:

Visit(y): 1. If y is a leaf report all leaves in Xy and return.
2. Else let y1, . . . , yk be the light children of y and let z = heavy(y).
3. For i := 1 to k do:

(a) Compute Xyi
:= Down(Xy, yi)

(b) Compute Visit(yi).
4. Compute Xz := Down(Xy, z).
5. Discard Xy and compute Visit(z).

The procedure is called on the root node of T with the initial state {root(P )}.
The traversal resembles a depth first traversal, however, at each step the light
children are visited before the heavy child. We therefore call this a heavy path

traversal. Furthermore, after the heavy child (and therefore all children) has
been visited we discard Xy. At any step we have that before calling Visit(y)
the state Xy is availiable, and therefore the procedure is correct. We have the
following property:

Lemma 7. For any tree T the heavy path traversal stores at most log nT +O(1)
states.

Proof. At any node y ∈ V (T ) we store at most one state for each of the light
nodes on the path from y to root(T ). Hence, by Lemma 6 the result follows. ⊓⊔

Using the heavy-path traversal immediately gives an O(nP log nT ) space and
O(nP nT ) time algorithm. In the following section we improve the time and
space by an additional O(log nT ) factor.

Micro Tree Decomposition A micro tree is a connected subgraph of P . A set
of micro trees MS is a micro tree decomposition iff V (P ) = ∪M∈MSV (M) and
for any M, M ′ ∈ MS, (V (M)\{root(M)}) ∩ (V (M ′)\{root(M ′)}) = ∅. Hence,
two micro trees in a decomposition share at most one node and this node must
be the root in at least one of the micro trees. If root(M ′) ∈ V (M) then M is
the parent of M ′ and M ′ is the child of M . A micro tree with no children is a
leaf and a micro tree with no parent is a root. Note that we may have several
root micro trees since they can overlap at the node root(P ). We decompose P
according to the following classic result:

Lemma 8 (Gabow and Tarjan [5]). For any tree P and parameter s > 1, it

is possible to build a micro tree decomposition MS of P in linear time such that

|MS| = O(nP /s) and |V (M)| ≤ s for any M ∈ MS



Implementing the Algorithm First decompose P according to Lemma 8 for
a parameter s to be chosen later. Hence, each micro tree has at most s nodes
and |MS| = O(nP /s). We represent the state X compactly using a bit vector
for each micro tree. Specifically, for any micro tree M we store a bit vector
XM = [b1, . . . , bs], such that XM [i] = 1 iff the ith node in a preorder traversal
of M is in X . If |V (M)| < s we leave the remaining values undefined. Later we
choose s = Θ(log nT ) such that each bit vector can be represented in a single
word and the space used by the array is O(nP / log nT ).

Next we define a DownM procedure on each micro tree M ∈ MS. Due
to the overlap between micro trees the DownM procedure takes a bit b which
will be used to propagate information between micro trees. For each micro tree
M ∈ MS, bit vector XM , bit b, and y ∈ V (T ) define:

DownM (XM , b, y): Compute the state X ′

M := Child({x ∈ XM | label(x) =
label(y)})∪{x ∈ XM | label(x) 6= label(y)}. If b = 0, return
X ′

M , else return X ′

M ∪ {root(M)}.

Later we will show how to implemenent DownM in constant time for s =
Θ(log nT ). First we show how to use DownM to simulate Down on P . We
define a recursive procedure Down which traverse the hiearchy of micro trees.
For micro tree M , state X , bit b, and y ∈ V (T ) define:

Down(X, M, b, y): Let M1, . . . , Mk be the children of M .
1. Compute XM := DownM (XM , b, y).
2. For i := 1 to k do:

(a) Compute Down(X, Mi, bi, y), where bi = 1 iff
root(Mi) ∈ XM .

Intuitively, the Down procedure works in a top-down fashion using the b bit to
propagate the new state of the root of micro tree. To solve the problem within
our framework we initially construct the state representing {root(P )}. Then, at
each step we call Down(Rj , 0, y) on each root micro tree Rj .

Lemma 9. The above algorithm correctly simulates the Down procedure on P .

Proof. Let X be the state and let X ′ := Down(X, y). For simplicity, assume
that there is only one root micro tree R. Since the root micro trees can only
overlap at root(P ) it is straightforward to generalize the result to any number
of roots. We show that if X is represented by bit vectors at each micro tree then
calling Down(R, 0, y) correctly produces the new state X ′.

If R is the only micro tree then only line 1 is executed. Since b = 0 this
produces the correct state by definition of DownM . Otherwise, consider a micro
tree M with children M1, . . . , Mk and assume that b = 1 iff root(M) ∈ X ′.
Line 1 computes and stores the new state returned by DownM . If b = 0 the
correctness follows immediately. If b = 1 observe that DownM first computes
the new state and then adds root(M). Hence, in both cases the state of M is
correctly computed. Line 2 recursively computes the new state of the children
of M . ⊓⊔



If each micro tree has size at most s and DownM can be computed in
constant time it follows that the above algorithm solves TPS in O(nP /s) time. In
the following section we show how to do this for s = Θ(log nT ), while maintaining
linear space.

Representing Micro Trees In this section we show how to preprocess all
micro trees M ∈ MS such that DownM can be computed in constant time.
This preprocessing may be viewed as a “four russian trick” [1]. To achieve this
in linear space we need the following auxiliary procedures on micro trees. For
each micro tree M , bit vector XM , and α ∈ Σ define:

ChildM (XM ): Return the bit vector of nodes in M that are children of nodes
in XM .

EqM (α): Return the bit vector of nodes in M labeled α.

By definition it follows that:

DownM (XM , b, y) =



















ChildM (XM ∩ EqM (label(y))) ∪

(XM\(XM ∩EqM (label(y))) if b = 0,

ChildM (XM ∩ EqM (label(y))) ∪

(XM\(XM ∩EqM (label(y))) ∪ {root(M)} if b = 1.

Recall that the bit vectors are represented in a single word. Hence, given ChildM

and EqM we can compute DownM using standard bit-operations in constant
time.

Next we show how to efficiently implement the operations. For each micro
tree M ∈ MS we store the value EqM (α) in a hash table indexed by α. Since the
total number of different characters in any M ∈ MS is at most s, the hash table
EqM contains at most s entries. Hence, the total number of entries in all hash
tables is O(nP ). Using perfect hashing we can thus represent EqM for all micro
trees, M ∈ MS, in O(nP /s ·s) = O(nP ) space and O(1) worst-case lookup time.
The preprocessing time is expected O(nP ) w.h.p.. To get a worst-case bound
we use the deterministic dictionary of Hagerup et. al. [6] with O(nP log nP )
worst-case preprocessing time.

Next consider implementing ChildM . Since this procedure is independent of
the labeling of M it suffices to precompute it for all structurally different rooted
trees of size at most s. The total number of such trees is less than 22s and the
number of different states in each tree is at most 2s. Therefore ChildM has to be
computed for a total of 22s ·2s = 23s different inputs. For any given tree and any
given state, the value of ChildM can be computed and encoded in O(s) time.
In total we can precompute all values of ChildM in O(s23s) time. Choosing the
largest s such that 3s + log s ≤ nT (hence s = Θ(log nT )) this uses O(nT ) time
and space. Each of the inputs to ChildM are encoded in a single word such that
we can look them up in constant time.

Finally, note that we also need to report the leaves of a state efficiently since
this is needed in line 1 in the Visit-procedure. To do this compute the state L



corresponding to all leaves in P . Clearly, the leaves of a state X can be computed
by performing a bitwise AND of each pair of bit vectors in L and X . Computing
L uses O(nP ) time and the bitwise AND operation uses O(nT /s) time.

Combining the results, we decompose P , for s as described above, and com-
pute all values of EqM and ChildM .

Then, we solve TPS using the heavy-path traversal. Since s = Θ(log nT ) and
from Lemmas 7 and 8 we have the following theorem:

Theorem 3. For trees P and T the tree path subsequence problem can be solved

in O( nP nT

log nT
+ nP log nP ) time and O(nP + nT ) space.

Combining the results of Theorems 2 and 3 this proves Theorem 1.
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