Time and Space Efficient Multi-Method
Dispatching

Stephen Alstrup!, Gerth Stglting Brodal®*, Inge Li Ggrtz!, and Theis Rauhe!

! The IT University of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV,
Denmark. E-mail: {stephen,inge,theis}@it-c.dk
2 BRICS (Basic Research in Computer Science), Center of the Danish National
Research Foundation, Department of Computer Science, University of Aarhus, Ny
Munkegade, DK-8000 Arhus C, Denmark. E-mail: gerth@brics.dk.

Abstract. The dispatching problem for object oriented languages is the
problem of determining the most specialized method to invoke for calls at
run-time. This can be a critical component of execution performance. A
number of recent results, including [Muthukrishnan and Miiller SODA’96,
Ferragina and Muthukrishnan ESA’96, Alstrup et al. FOCS’98], have
studied this problem and in particular provided various efficient data
structures for the mono-method dispatching problem. A recent paper of
Ferragina, Muthukrishnan and de Berg [STOC’99] addresses the multi-
method dispatching problem.

Our main result is a linear space data structure for binary dispatching
that supports dispatching in logarithmic time. Using the same query
time as Ferragina et al., this result improves the space bound with a
logarithmic factor.

1 Introduction

The dispatching problem for object oriented languages is the problem of deter-
mining the most specialized method to invoke for a method call. This specializa-
tion depends on the actual arguments of the method call at run-time and can be a
critical component of execution performance in object oriented languages. Most
of the commercial object oriented languages rely on dispatching of methods with
only one argument, the so-called mono-method or unary dispatching problem. A
number of papers, see e.g.,[10,15] (for an extensive list see [11]), have studied
the unary dispatching problem, and Ferragina and Muthukrishnan [10] provide
a linear space data structure that supports unary dispatching in log-logarithmic
time. However, the techniques in these papers do not apply to the more general
multi-method dispatching problem in which more than one method argument
are used for the dispatching. Multi-method dispatching has been identified as
a powerful feature in object oriented languages supporting multi-methods such

* Supported by the Carlsberg Foundation (contract number ANS-0257/20). Partially
supported by the Future and Emerging Technologies programme of the EU under
contract number IST-1999-14186 (ALCOM-FT).

as Cecil [3], CLOS [2], and Dylan [4]. Several recent results have attempted to
deal with d-ary dispatching in practice (see [11] for an extensive list). Ferragina
et al. [11] provided the first non-trivial data structures, and, quoting this paper,
several experimental object oriented languages’ “ultimately success and impact
in practice depends, among other things, on whether multi-method dispatching
can be supported efficiently”.

Our result is a linear space data structure for the binary dispatching problem,
i.e., multi-method dispatching for methods with at most two arguments. Our
data structure uses linear space and supports dispatching in logarithmic time.
Using the same query time as Ferragina et al. [11], this result improves the space
bound with a logarithmic factor. Before we provide a precise formulation of our
result, we will formalize the general d-ary dispatching problem.

Let T be a rooted tree with N nodes. The tree represents a class hierarchy
with nodes representing the classes. T defines a partial order < on the set of
classes: A < B < A is a descendant of B (not necessarily a proper descendant).
Let M be the set of methods and let m denote the number of methods and M
the number of distinct method names in M. Each method takes a number of
classes as arguments. A method invocation is a query of the form s(4y,...,A44)
where s is the name of a method in M and A;,..., Aq are class instances. A
method s(By,...,Bq) is applicable for s(A;,...,Aq) if and only if 4; < B; for
all 4. The most specialized method is the method s(Bi,...,Bg) such that for
every other applicative method s(C4,...,C4) we have B; < C; for all 4. This
might be ambiguous, i.e., we might have two applicative methods s(B, ..., Bg)
and s(Ch,...,Cq4) where B; # C;, B; # Cj, B; < C;, and C; < B; for some
indices 1 < i,j < d. That is, neither method is more specific than the other.
Multi-method dispatching is to find the most specialized applicable method in
M if it exists. If it does not exist or in case of ambiguity, “no applicable method”
resp. “ambiguity” is reported instead.

The d-ary dispatching problem is to construct a data structure that supports
multi-method dispatching with methods having up to d arguments, where M
is static but queries are online. The cases d = 1 and d = 2 are the unary and
binary dispatching problems respectively. In this paper we focus on the binary
dispatching problem which is of “particular interest” quoting Ferragina et al. [11].

The input is the tree T and the set of methods. We assume that the size of T'
is O(m), where m is the number of methods. This is not a necessary restriction
but due to lack of space we will not show how to remove it here.

Results Our main result is a data structure for the binary dispatching problem
using O(m) space and query time O(log m) on a unit-cost RAM with word size
logarithmic in N with O(N + m (loglog m)?) time for preprocessing. By the use
of a reduction to a geometric problem, Ferragina et al. [11], obtain similar time
bounds within space O(mlogm). Furthermore they show how the case d = 2
can be generalized for d > 2 at the cost of factor log® 2 m in the time and space
bounds.

Our result is obtained by a very different approach in which we employ a
dynamic to static transformation technique. To solve the binary dispatching

problem we turn it into a unary dispatching problem — a variant of the marked
ancestor problem as defined in [1], in which we maintain a dynamic set of meth-
ods. The unary problem is then solved persistently. We solve the persistent unary
problem combining the technique by Dietz [5] to make a data structure fully per-
sistent and the technique from [1] to solve the marked ancestor problem. The
technique of using a persistent dynamic one-dimensional data structure to solve
a static two-dimensional problem is a standard technique [17]. What is new in
our technique is that we use the class hierarchy tree to denote the time (give
the order on the versions) to get a fully persistent data structure. This gives
a “branching” notion for time, which is the same as what one has in a fully
persistent data structure where it is called the version tree. This technique is
different from the plane sweep technique where a plane-sweep is used to give a
partially persistent data structure. A top-down tour of the tree corresponds to
a plane-sweep in the partially persistent data structures.

Related and Previous Work For the unary dispatching problem the best
known bound is O(N +m) space and O(loglog N) query time [15,10]. For the d-
ary dispatching, d > 2, the result of Ferragina et al. [11] is a data structure using
space O(m (t log m/log t)?~1) and query time O((log m/log t)¢~tloglog N),
where t is a parameter 2 < t < m. For the case t = 2 they are able to improve
the query time to O(log?~'m) using fractional cascading. They obtain their re-
sults by reducing the dispatching problem to a point-enclosure problem in d
dimensions: Given a point g, check whether there is a smallest rectangle con-
taining ¢. In the context of the geometric problem, Ferragina et al. also present
applications to approximate dictionary matching.

In [9] Eppstein and Muthukrishnan look at a similar problem which they call
packet classification. Here there is a database of m filters available for preprocess-
ing. Each query is a packet P, and the goal is to classify it, that is, to determine
the filter of highest priority that applies to P. This is essentially the same as
the multiple dispatching problem. For d = 2 they give an algorithm using space
O(m'*°W) and query time O(loglogm), or O(m'*¢) and query time O(1). They
reduce the problem to a geometric problem, very similar to the one in [11]. To
solve the problem they use a standard plane-sweep approach to turn the static
two-dimensional rectangle query problem into a dynamic one-dimensional prob-
lem,which is solved persistently such that previous versions can be queried after
the plane sweep has occurred.

2 Preliminaries

In this section we give some basic concepts which are used throughout the paper.

Definition 1 (Trees). Let T be a rooted tree. The set of all nodes in T is
denoted V(T'). The nodes on the unique path from a node v to the root are denoted
w(v), which includes v and the root. The nodes w(v) are called the ancestors of
v. The descendants of a node v are all the nodes u for which v € w(u). If v #u
we say that u is a proper descendant of v. The distance dist(v,w) between two

nodes in T is the number of edges on the unique path between v and w. In the
rest of the paper all trees are rooted trees.

Let C be a set of colors. A labeling [(v) of a node v € V(T) is a subset of C,
i.e., I(v) C C. A labeling 1 : V(T) — 2° of a tree T is a set of labelings for the
nodes in T.

Definition 2 (Persistent data structures). The concept of persistent data
structures was introduced by Driscoll et al. in [8]. A data structure is partially
persistent if all previous versions remain available for queries but only the newest
version can be modified. A data structure is fully persistent if it allows both
queries and updates of previous versions. An update may operate only on a single
version at a time, that is, combining two or more versions of the data structure
to form a new one is not allowed. The versions of a fully persistent data structure
form a tree called the version tree. Each node in the version tree represents the
result of one update operation on a version of the data structure. A persistent
update or query take as an extra argument the version of the data structure to
which the query or update refers.

Known results. Dietz [5] showed how to make any data structure fully persis-
tent on a unit-cost RAM. A data structure with worst case query time O(Q(n))
and update time O(F(n)) making worst case O(U (n)) memory modifications can
be made fully persistent using O(Q(n) loglog n) worst case time per query and
O(F'(n) loglog n) expected amortized time per update using O(U(n) loglog n)
space.

Definition 3 (Tree color problem).

Let T be a rooted tree with n nodes, where we associate a set of colors with
each node of T. The tree color problem is to maintain a data structure with the
following operations:

color(v,c): add c to v’s set of colors, i.e., l(v) < l(v) U{c},

uncolor(v,c): remove ¢ from v’s set of colors, i.e., [(v) < l(v) \ {c},
findfirstcolor(v,c): find the first ancestor of v with color ¢ (this may be v
itself).

The incremental version of this problem does not support uncolor, the decremen-
tal problem does not support color, and the fully dynamic problem supports both
update operations.

Known results. In [1] it is showed how to solve the tree color problem on
a RAM with logarithmic word size in expected update time O(loglog n) for
both color and uncolor, query time O(log n/loglog n), using linear space and
preprocessing time. The expected update time is due to hashing. Thus the ex-
pectation can be removed at the cost of using more space. We need worst case
time when we make the data structure persistent because data structures with
amortized /expected time may perform poorly when made fully persistent, since
expensive operations might be performed many times.

Fig. 1. The solid lines are tree edges and the dashed and dotted lines are bridges of
color ¢ and ¢, respectively. firstcolorbridge(c,v1,v2) returns bs. firstcolorbridge(c’ ,v3,v4)
returns ambiguity since neither b; or b is closer than the other.

Dietz [5] showed how to solve the incremental tree color problem in O(loglogn)
amortized time per operation using linear space, when the nodes are colored top-
down and each node has at most one color.

The unary dispatching problem is the same as the tree color problem if we
let each color represent a method name.

Definition 4. We need a data structure to support insert and predecessor queries
on a set of integers from {1,...,n}. This can be solved in worst case O(loglogn)
time per operation on a RAM using the data structure of van Emde Boas [18]
(VEB). We show how to do modify this data structure such that it only uses
O(1) memory modifications per update.

3 The Bridge Color Problem

The binary dispatching problem (d = 2) can be formulated as the following tree
problem, which we call the bridge color problem.

Definition 5 (Bridge Color Problem). Let Ty and T be two rooted trees.
Between Ty and T> there are a number of bridges of different colors. Let C be the
set of colors. A bridge is a triple (c,v1,v2) € C x V(T1) x V(T3) and is denoted
by c(v1,v2). If v1 € w(uy) and vy € w(uz) we say that c(vy,ve) is a bridge over
(u1,u2). The bridge color problem is to construct a data structure which sup-
ports the query firstcolorbridge(c,v1,v2). Formally, let B be the subset of bridges
c(wy,ws) of color ¢ where wy is an ancestor of v1, and ws an ancestor of vs. If
B = () then firstcolorbridge(c,v1,v2) = NIL. Otherwise, let by = c¢(wy,w]) € B,
such that dist(vi,wy) is minimal and by = c(wh, w2) € B, such that dist(va, w2)
is minimal. If by = by then firstcolorbridge(c,vy,v2)= b1 and we say that by is
the first bridge over (vi,vs), otherwise firstcolorbridge(c,vy,vs) = “ambiguity”.
See Fig. 1.

The binary dispatching problem can be reduced to the bridge color problem
the following way. Let T7 and T» be copies of the tree T in the binary dispatching
problem. For every method s(vi,v2) € M make a bridge of color s between
V1 € V(T1) and vy € V(TQ).

The problem is now to construct a data structure that supports firstcolor-
bridge. The object of the remaining of this paper is show the following theorem:

Theorem 1. Using ezpected O(m (loglogm)?) time for preprocessing and O(m)
space, firstcolorbridge can be supported in worst case time O(log m) per opera-
tion, where m is the number of bridges.

4 A Data Structure for the Bridge Color Problem

Let B be a set of bridges (| B |= m) for which we want to construct a data
structure for the bridge color problem. As mentioned in the introduction we
can assume that the number of nodes in the trees involved in the bridge color
problem is O(m), i.e., |V(T1)| + | V(T2) |= O(m). In this section we present a
data structure that supports firstcolorbridge in O(log m) time per query using
O(m) space for the bridge color problem.

For each node v € V(T1) we define the labeling I, of T» as follows. The
labeling of a node w € V(T») contains color ¢ if w is the endpoint of a bridge
of color ¢ with the other endpoint among ancestors of v. Formally, ¢ € I, (w)
if and only if there exists a node u € w(v) such that ¢(u,w) € B. Similar
define the symmetric labelings for 7;. In addition to each labeling [,, we need
to keep the following extra information stored in a sparse array H(v): For each
pair (w,c) € V(Tz) x C, where l,(w) contains color ¢, we keep the node v' of
maximal depth in 7(v) from which there is a bridge ¢(v’,w) in B. Note that this
set is sparse, i.e., we can use a sparse array to store it.

For each labeling [, of T», where v € V(T}), we will construct a data structure
for the static tree color problem. That is, a data structure that supports the query
findfirstcolor(u,c) which returns the first ancestor of u with color c¢. Using this
data structure we can find the first bridge over (u,w) € V(T1) x V(T2) of color
¢ by the following queries.

In the data structure for the labeling [, of the tree T> we perform the query
findfirstcolor(w,c). If this query reports NIL there is no bridge to report, and
we can simply return NIL. Otherwise let w’' be the reported node. We make
a lookup in H(u) to determine the bridge b such that b = c(u',w') € B. By
definition b is the bridge over (u,w') with minimal distance between w and w'.
But it is possible that there is a bridge (v, w") over (u,w) where dist(u,u") <
dist(u,u'). By a symmetric computation with the data structure for the labeling
I(w) of Ty we can detect this in which case we return “ambiguity”. Otherwise
we simply return the unique first bridge b.

Explicit representation of the tree color data structures for each of the label-
ings I, for nodes v in T} and T» would take up space O(m?). Fortunately, the
data structures overlap a lot: Let v,w € V(T1), u € V(T2), and let v € w(w).
Then I, (u) € ly(u). We take advantage of this in a simple way. We make a fully
persistent version of the dynamic tree color data structure using the technique of
Dietz [5]. The idea is that the above set of O(m) tree color data structures cor-
responds to a persistent, survived version, each created by one of O(m) updates
in total.

Formally, suppose we have generated the data structure for the labeling [,,
for v in T;. Let w be the child of node v in T;. We can then construct the
data structure for the labeling [,, by simply updating the persistent structure
for 1, by inserting the color marks corresponding to all bridges with endpoint
w (including updating H(v)). Since the data structure is fully persistent, we
can repeat this for each child of v, and hence obtain data structures for all the
labelings for children of v. In other words, we can form all the data structures

for the labeling I, for nodes v € V(T1), by updates in the persistent structures
according to a top-down traversal of T7. Another way to see this, is that 77 is
denoting the time (give the order of the versions). That is, the version tree has
the same structure as T;.

Similar we can construct the labelings for 7} by a similar traversal of T>. We
conclude this discussion by the following lemma.

Lemma 1. A static data structure for the bridge color problem can be con-
structed by O(m) updates to a fully persistent version of the dynamic tree color
problem.

4.1 Reducing the Memory Modifications in the Tree Color Problem

The paper [1] gives the following upper bounds for the tree color problem for a
tree of size m. Update time expected O(loglog m) for both color and uncolor,
and query time O(log m/loglogm), with linear space and preprocessing time.

For our purposes we need a slightly stronger result, i.e., updates that only
make worst case O(1) memory modifications. By inspection of the dynamic tree
color algorithm, the bottle-neck in order to achieve this, is the use of the van
Emde Boas predecessor data structure [18] (VEB). Using a standard technique
by Dietz and Raman [6] to implement a fast predecessor structure we get the
following result.

Theorem 2. Insert and predecessor queries on a set of integers from {1,...,n}
can be performed in O(loglogn) worst case time per operation using worst case
O(1) memory modifications per update.

To prove the theorem we first show an amortized result3. The elements in our
predecessor data structure is grouped into buckets Si, . .., Sk, where we maintain
the following invariants:

(1) max S; < min S;11 fori=1,...k—1, and
(2)1/2 log n < |S;| <2 log n for all i.

We have k € O(n/ log n). Each S; is represented by a balanced search tree
with O(1) worst case update time once the position of the inserted or deleted
element is known and query time O(log m), where m is the number of nodes
in the tree [12,13]. This gives us update time O(loglogn) in a bucket, but only
O(1) memory modifications per update. The minimum element s; of each bucket
S; is stored in a VEB.

When a new element z is inserted it is placed in the bucket S; such that
s; < x < Siy1, or in S7 if no such bucket exists. Finding the correct bucket is
done by a predecessor query in the VEB. This takes O(loglog n) time. Inserting
the element in the bucket also takes O(loglog n) time, but only O(1) memory

3 The amortized result (Lemma 2) was already shown in [14], bur in order to make
the deamortization we give another implementation here.

modifications. When a bucket S; becomes to large it is split into two buckets of
half size. This causes a new element to be inserted into the VEB and the binary
trees for the two new buckets have to be build. An insertion into the VEB
takes O(loglog n) time and uses the same number of memory modifications.
Building the binary search trees uses O(log n) time and the same number of
memory modifications. When a bucket is split there must have been at least
log n insertions into this bucket since it last was involved in a split. That is,
splitting and inserting uses O(1) amortized memory modifications per insertion.

Lemma 2. Insert and predecessor queries on a set of integers from {1,...,n}
can be performed in O(loglogn) worst case time for predecessor and O(loglogn)
amortized time for insert using O(1) amortized number of memory modifications
per update.

We can remove this amortization at the cost of making the bucket sizes
O(log’n) by the following technique by Raman [16] called thinning.

Let a > 0 be a sufficiently small constant. Define the criticality of a bucket
to be: p(b) = max{0, size(b) — 1.8 log® n}. A bucket b is called critical if

p(b) > 0. We want to ensure that size(b) < 2 log® n. To maintain the size of
the buckets every a log n updates take the most critical bucket (if there is any)
and move log n elements to a newly created empty adjacent bucket. A bucket
rebalancing uses O(log n) memory modifications and we can thus perform it
with O(1) memory modifications per update spread over no more than « log n
updates.

We now show that the buckets never get too big. The criticality of all buckets
can only increase by 1 between bucket rebalancings. We see that the criticality of
the bucket being rebalanced is decreased, and no other bucket has its criticality
increased by the rebalancing operations. We make use of the following lemma
due to Raman:

1
a log n

Lemma 3 (Raman). Let x1,...,z, be real-valued variables, all initially zero.
Repeatedly do the following:

(1) Choose n non-negative real numbers ay,...,an such that Y ; ,a; =1, and
set x; +— x;+a; for1 <i<n.

(2) Choose an z; such that z; = maz;{z;}, and set x; < maz{z; — c,0} for
some constant ¢ > 1.

Then each x; will always be less than Inn+ 1, even when ¢ = 1.

Apply the lemma as follows: Let the variables of Lemma 3 be the criticalities
of the buckets. The reals a; are the increases in the criticalities between rebal-
ancings and ¢ = 1/a. We see that if a@ < 1 the criticality of a bucket will never
exceed In + 1 = O(log n). Thus for sufficiently small o the size of the buckets
will never exceed 2 log? n. This completes the proof of Theorem 2.

We need worst case update time for color in the tree color problem in order to
make it persistent. The expected update time is due to hashing. The expectation
can be removed at the cost of using more space. We now use Theorem 2 to get
the following lemma.

Lemma 4. Using linear time for preprocessing, we can maintain o tree with
complezity O(loglog n) for color and complezity O(log n/loglogn) for findfirst-
color, using O(1) memory modifications per update, where n is the number of
nodes in the tree.

4.2 Reducing the Space

Using Dietz’ method [5] to make a data structure fully persistent on the data
structure from Lemma 4, we can construct a fully persistent version of the tree
color data structure with complexity O((loglog m)?) for color and uncolor, and
complexity O((log m/loglogm) -loglog m) = O(log m) for findfirstcolor, using
O(m) memory modifications, where m is the number of nodes in the tree.

According to Lemma 1 a data structure for the first bridge problem can
be constructed by O(m) updates to a fully persistent version of the dynamic
tree color problem. We can thus construct a data structure for the bridge color
problem in time O(m (loglog m)?), which has query time O(log m), where m is
the number of bridges.

This data structure might use O(c-m) space, where c¢ is the number of method
names. We can reduce this space usage using the following lemma.

Lemma 5. If there exists an algorithm A constructing o static data structure
D using expected t(n) time for preprocessing and expected m(n) memory mod-
ifications and has query time g(n), then there exists an algorithm constructing
a data structure D' with query time O(q(n)), using expected O(t(n)) time for
preprocessing and space O(m(n)).

Proof. The data structure D’ can be constructed the same way as D using
dynamic perfect hashing [7] to reduce the space. O

Since we only use O(m) memory modifications to construct the data structure
for the bridge color problem, we can construct a data structure with the same
query time using only O(m) space. This completes the proof of Theorem 1.

If we use O(N) time to reduce the class hierarchy tree to size O(m) as
mentioned in the introduction, we get the following corollary to Theorem 1.

Corollary 1. Using O(N + m (loglog m)?) time for preprocessing and O(m)
space, the multiple dispatching problem can be solved in worst case time O(logm)
per query. Here N is the number of classes and m is the number of methods.

References

1. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems (extended ab-
stract). In IEEE Symposium on Foundations of Computer Science (FOCS), pages
534-543, 1998.

2. D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A.
Moon. Common LISP object system specification X3J13 document 88-002R. ACM
SIGPLAN Notices, 23, 1988. Special Issue, September 1988.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann Mad-
sen, editor, ECOOP ’92, European Conference on Object-Oriented Programming,
Utrecht, The Netherlands, volume 615 of Lecture Notes in Computer Science, pages
33-56. Springer-Verlag, New York, NY, 1992.

Inc. Apple Computer. Dylan interim reference manual, 1994.

P. F. Dietz. Fully persistent arrays. In F. Dehne, J.-R. Sack, and N. Santoro, edi-
tors, Proceedings of the Workshop on Algorithms and Data Structures, volume 382
of Lecture Notes in Computer Science, pages 67-74, Berlin, August 1989. Springer-
Verlag.

Paul F. Dietz and Rajeev Raman. Persistence, amortization and randomization. In
Proc. 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78-88,
1991.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. In 29th
Annual Symposium on Foundations of Computer Science (FOCS), pages 524-531.
IEEE Computer Society Press, 1988.

J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data structures
persistent. J. Computer Systems Sci., 38(1):86-124, 1989.

David Eppstein and S. Muthukrishnan. Internet packet filter manegement and
rectangle geometry. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
2001.

P. Ferragina and S. Muthukrishnan. Efficient dynamic method-lookup for object
oriented languages. In European Symposium on Algorithms, volume 1136 of Lecture
Notes in Computer Science, pages 107-120, 1996.

P. Ferragina, S. Muthukrishnan, and M. de Berg. Multi-method dispatching: A
geometric approach with applications to string matching problems. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 483—
491, New York, May 1-4 1999. ACM Press.

R. Fleischer. A simple balanced search tree with O(1) worst-case update time.
International Journal of Foundations of Computer Science, 7:137-149, 1996.

C. Levcopoulos and M. Overmars. A balanced search tree with O(1) worstcase
update time. Acta Informatica, 26:269-277, 1988.

K. Mehlhorn and S. Niher. Bounded ordered dictionaries in O(log log n) time and
O(n) space. Information Processing Letters, 35:183-189, 1990.

S. Muthukrishnan and Martin Miiller. Time and space efficient method-lookup
for object-oriented programs (extended abstract). In Proceedings of the Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 42-51, Atlanta,
Georgia, January 28-30 1996.

R. Raman. FEliminating Amortization: On Data Structures with Guaranteed Re-
sponse Time. PhD thesis, University of Rochester, Computer Science Department,
October 1992. Technical Report TR439.

N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669-679, 1986.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80-82, 1978.

