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Abstract. Dial-a-Ride problems consist of a 3étof n vertices in a metric space
(denoting travel time between vertices) and a setnobbjects represented as
source-destination pairS(s;, t;) }i~1, where each object requires to be moved
from its source to destination vertex. In thaulti-vehicle Dial-a-Ridgroblem,
there aregy vehicles each having capacikyand where each vehiclg € [g] has

its own depot-vertex; € V. A feasible schedule consists of a capacitated route
for each vehicle (where vehicleoriginates and ends at its depg) that together
move all objects from their sources to destinations. Thegihje is to find a fea-
sible schedule that minimizes the maximum completion tinee fhakespanof
vehicles, where the completion time of vehiglés the time when it returns to
its depotr; at the end of its route. We consider theemptiveversion of multi-
vehicle Dial-a-Ride, where an object may be left at interimdvertices and
transported by more than one vehicle, while being moved fsonrce to des-
tination. Approximation algorithms for the single vehidéal-a-Ride problem

(¢ = 1) have been considered in [3, 10].

Our main results are al(log® n)-approximation algorithm fgpreemptive multi-
vehicle Dial-a-Rideand an improved (log t)-approximation for its special case
when there is no capacity constraint (here€ n is the number of distinct depot-
vertices). There is a‘r?(logl/4 n) hardness of approximation known [9] even for
single vehicle capacitated preemptive Dial-a-Ride. We alstain an improved
constant factor approximation algorithm for the uncagaed multi-vehicle prob-
lem on metrics induced by graphs excluding any fixed minor.

1 Introduction

The multi-vehicle Dial-a-Ridgproblem involves routing a set of objects from their
sources to respective destinations using a set\whicles starting at distinct depot
nodes in am-node metric. Each vehicle hasapacityk which is the maximum number
of objects it can carry at any time. Two versions arise basetvioether or not the
vehicle can use any node in the metric as a preemption (&r&resshipment) point -
we study the less-examingaeemptive versioim this paper. The objective in these
problems is either the total completion time or the makegpaximum completion
time) over theg vehicles, and again we study the more challengirakesparversion
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of the problem. Thus this paper studies the preemptive gii@pad minimum makespan
multi-vehicle Dial-a-Ride problem.

While the multiple qualifications may make the problem appemtrived, this is
exactly the problem that models courier or mail deliveryrowv@lay from several city
depots: preemption is cheap and useful for packages, trareksapacitated and the
makespan reflects the daily working time limit for each trublespite its ubiquity,
this problem has not been as well studied as other Dial-a-Ré&tsions. One reason
from the empirical side is the difficulty in handling the pitrility of preemptions in a
clean mathematical programming model. On the theoretidalwhich is the focus of
this paper, the difficulty of using preemption in a meanithgfay in an approximation
algorithm persists. Itis further compounded by the hardioéthe makespan objective.

The requirement in preemptive Dial-a-Ride, that preenmstare allowed at all ver-
tices, may seem unrealistic. In practice, a sulideff the vertex-seV’ represents the
vertices where preemption is permitted: the two extremeahisfgeneral problem are
non-preemptive Dial-a-Ride{ = ) and preemptive Dial-a-RideX(= V). However
preemptive Dial-a-Ride is more generally applicable: fdly in situations where
the preemption-point® form anetof the underlying metric (i.e. every vertexinhas
a nearby preemption-point). |.e., approximation algonistfor preemptive Dial-a-Ride
imply good approximations even in this general setting, hmethe precise guarantee
depends on how welP coversV.

We note that although our model allows any number of preemptand preemp-
tions at all vertices our algorithms do not use this possjbib its full extent. Our
algorithm for the capacitated case preempts each objeatsttance and our algorithm
for the uncapacitated case only preempts objects at depatese

The preemptive Dial-a-Ride problem has been considerdig¢ieaith a single ve-
hicle, for which anO(log n) approximation [3] and am2(log'/*~n) hardness of ap-
proximation (for any constamt> 0) [9] are known. Note that the completion time and
makespan objectives coincide for this case.

Moving to multiple vehicles, the total completion time otfjee admits a straight-
forwardO(log n) approximation along the lines of the single vehicle probjgmUsing
the FRT tree embedding [7], one can reduce to tree-metridtgedbss of an expected
O(log n) factor, and there is a simple constant approximation fargphoblem on trees.
The maximum completion time or makespan objective, whicltavesider in this paper
turns out to be considerably harder. Due to non-linearityhef makespan objective,
the above reduction to tree-metrics does not hold. Furtbeznthe makespan objective
does not appear easy to solve even on trees.

Unlike in the single-vehicle case, note that an object inthwghicle Dial-a-Ride
may be transported by several vehicles one after the otle@cédit is important for the
vehicle routes to be coordinated so that the objects trali@é paths from respective
sources to destinations. For example, a vehicle may havaitoatva vertex for other
vehicles carrying common objects to arrive. Interestinigg multi-vehicle Dial-a-Ride
problem captures aspects of both machine scheduling andrietlesign problems.

Results and Paper Outline We first consider the special case of multi-vehicle Dial-
a-Ride (ncapacitatednDaR) where the vehicles have no capacity constraints (i.e.
k > m). This problem is interesting in itself, and serves as a ggtading point before



we present the algorithm for the general case. The uncapedibDaR problem itself
highlights differences from the single vehicle case: Famagle, in single vehicle Dial-
a-Ride, preemption plays no role in the absence of capaoitgtcaints; however in
uncapacitateanDaR, an optimal non-preemptive schedule may take /q) longer
than the optimal preemptive schedule (see the full versidheopaper). We prove the
following theorem in Section 2.

Theorem 1 There is anO(log t)-approximation algorithm for uncapacitated preemp-
tive mDaR obtaining a tour where objects are only preempted at depaices.

The above algorithm has two main steps: the first one redheasgtance (at a constant
factor loss in the performance guarantee) to one in whicldethands are between
depots (a “depot-demand” instance). In the second stepsevesparse spannasn the
demand graph to construct routes for moving objects acregstd.

We also obtain an improved guarantee for the following sgdesdass of metrics
using the notion oparse coverm such metrics [14].

Theorem 2 There is anO(1)-approximation algorithm for uncapacitatedDaR on
metrics induced by graphs that exclude any fixed minor.

In Section 3, we study the capacitated preempti@aR problem, and obtain our main
result. Recall that there is af(log'/*~“n) hardness of approximation for even sin-
gle vehicle Dial-a-Ride [9]. A feasible solution to preemptmDaR is said to bel-
preemptivef every object is preempted at most once while being moverth fits source
to destination.

Theorem 3 Thereis arO(log3 n) approximation algorithm for preemptiveDaR ob-
taining a 1-preemptive tour.

This algorithm has four key steps: (1) Weeprocesghe input so that demand points
that are sufficiently far away from each other can be esdgntiacomposed into sep-
arate instances for the algorithm to handle independg@jywe then solve a single-
vehicle instance of the problem that obeys some additionahtded-delay property
(Theorem 6) that we prove; This property combines ideas fitlgarithms foright ap-
proximate shortest path tre¢$3] andcapacitated vehicle routinflL1]. The bounded-
delay property is useful ilmndomly partitioningthe single vehicle solution among the
q vehicles available to share this load. This random paniitig scheme is reminiscent
of the work of Hochbaum-Maass [12], Baker [1] and Klein-RintRao [14], in trying
to average out the effect of the cutting in the objective fiomc (3) The partitioned
segments of the single vehicle tour are assigned to theataivehicles; However, to
check if this assignment is feasible we solve a matchinglprotithat identifies cases
when this load assignment must tebalanced This is perhaps the most interesting
step in the algorithm since it identifies stronger lower bisifor subproblems where
the current load assignment is not balanced. (4) We finishyupdursingon the load
rebalanced subproblem; An interesting feature of the sonris that the fraction of
demands that are processed recursively is not a fixed vasus f@ore common in such
recursive algorithms) but is a carefully chosen functiorih&f number of vehicles on
which these demands have to be served.

Due to lack of space some proofs are omitted from this pages.proofs can be
found in the full version.



Related Work Dial-a-Ride problems form an interesting subclass of MehRouting
Problems that are well studied in the operations reseaesiaiure. Paepe et al. [5] pro-
vide a classification of Dial-a-Ride problems using a notasiimilar to that for schedul-
ing and queuing problems: preemption is one aspect in thisification. Savelsberg
and Sol [18] and Cordeau and Laporte [4] survey several veriaf non-preemptive
Dial-a-Ride problems that have been studied in the liteeatMost Dial-a-Ride prob-
lems arising in practice involve making routing decisiomsrhultiple vehicles.

Dial-a-Ride problems with transshipment (the preempt&sion) have been stud-
ied in [15—-17]. These papers consider a more general modelengreemption is al-
lowed only at a specified subset of vertices. Our model (aatldh[3]) is the special
case when every vertex can serve as a preemption pointlésistbat preemption only
reduces the cost of serving demands: [17] studied the mawiahecrease in the op-
timal cost upon introducing one preemption point. [15, 16panodel time-windows
on the demands, and study heuristics and a column-genetzied approach; they
also describe applications (eg. courier service) thaiaftr preemptions. Théruck
and trailer routing problemhas been studied in [2, 19]. Here a number of capacitated
trucks and trailers are used to deliver all objects. Someoousrs are only accessible
without the trailer. The trailers can be parked at any paioeasible with a trailer and it
is possible to shift demand loads between the truck anddlilertat the parking places.

For single vehicle Dial-a-Ride, the best known approxioratjuarantee for the
preemptive version i (log n) (Charikar and Raghavachari [3]), and@flog'/* ¢ n)
hardness of approximation (for any constant 0) is shown in Ggrtz [9]. The non-
preemptive version appears much harder and the best knopmamation ratio is
min{v'k log n, v/nlog? n} (Charikar and Raghavachari [3], Gupta et al. [10]); however
to the best of our knowledge, APX-hardness is the best lowand. There are known
instances of single vehicle Dial-a-Ride where the ratioveen optimal non-preemptive
and preemptive tours i€(,/n) in general metrics [3], an@(n'/?) in the Euclidean
plane [10]. Al.8-approximation is known for thé = 1 special case of single vehicle
Dial-a-Ride (a.k.astacker-crangoroblem) [8].

The uncapacitated case of preemptivPaR is also a generalization of a problem
callednurse-station-locatiothat was studied in Even et al. [6] (where a 4-approximation
algorithm was given). Nurse-station-location is a specgale of uncapacitatedDaR
when each source-destination pair coincides on a singtexxén this paper, we handle
not only the case with arbitrary pairs (uncapacitatddaR), but also the more general
problem with finite capacity restriction.

Problem Definition and Preliminaries We represent a finite metric 4%, d) where

V is the set of vertices andlis a symmetric distance function satisfying the triangle

inequality. For subsetd, B C V we denote byl( A, B) the minimum distance between

a vertex in4 and another inB, sod(A, B) = min{d(u,v) | v € A,v € B}. For a

subset C (V) of edgesd(E) := Y, d. denotes the total length of edgesfin
Themulti-vehicle Dial-a-Ride probleffmDaR) consists of am-vertex metrid'V, d),

m objects specified as source-destination pgitst; }" ;, ¢ vehicles having respective

depot—vertices{rj}j:l, and a common vehicle capacity A feasible schedule is a

set ofq routes, one for each vehicle (where the route for vehjcle [¢] starts and

ends atr;), such that no vehicle carries more thaobjects at any time and each ob-



ject is moved from its source to destination. The completiore C; of any vehicle

J € [q] is the time when vehiclg returns to its depot; at the end of its route (the
schedule is assumed to start at tib)e The objective inmDaR is to minimize the
makespan, i.emin max;c[q Cj. We denote by := {s; | i € [m]} the set of sources,

T := {t; | i € [m]} the set of destination® := {r; | j € [¢]} the set of distinct depot-
vertices, and := |R| the number of distinct depots. Unless mentioned otherwise,
only consider th@reemptiveversion, where objects may be left at intermediate vertices
while being moved from source to destination.

Single vehicle Dial-a-RideThe following are lower bounds for the single vehicle prob-
lem: the minimum length TSP tour on the depot and all sousstitdation vertices

(Steinedower bound), andwﬂilw (flowlower bound). Charikar and Raghavachari [3]
gave anO(log n) approximation algorithm for this problem based on the abdower
bounds. Gupta et al. [10] showed that the single vehiclerpptige Dial-a-Ride prob-
lem always has a 1-preemptive tour of lenglog” n) times the Steiner and flow
lower-bounds. o

Lower bounds for mDaR. The quantityzl’:#k(“’”) is a lower bound similar to the
flow bound for single vehicle Dial-a-Ride. Analogous to theifer lower bound above,
is the optimal value of an inducetdirse-station-locatiomstance. In the nurse-station-
location problem [6], we are given a met(i¥, d), a set7 of terminals and a multi-
set{r;}7_, of depot-vertices; the goal is to find a collecti¢®;}_, of trees that
collectively contain all terminal§” such that each treg} is rooted at vertex; and
max;?:l d(F};) is minimized. Even et al. [6] gave a 4-approximation aldoritfor this
problem. The optimal value of the nurse-station-locatistance with depotg-; ?:1
(depots of vehicles imDaR) and terminals” = S U T is a lower bound fomDaR.
The following are some lower bounds implied by nurse-stataration: (a)l /¢ times
the minimum length forest that connects every verteXSin T to some depot ver-
tex, (b) max;epm) d(R, s;), and (C)max;epm,) d(R,t;). Finally, it is easy to see that
max;e(m) d(s;,t;) is also a lower bound fanDaR.

2 Uncapacitated PreemptivanDaR

In this section we study the uncapacitated special caseeginpptivemDaR, where
vehicles have no capacity constraints (i.e., capdcity m). We give an algorithm that
achieves a(log t) approximation ratio for this problem (recall< n is the number
of distinct depots). Unlike in the single vehicle case, pipive and non-preemptive
versions ofmDaR are very different even without capacity constraints @exists an
12(,/q) factor gap, wherg is number of vehicles). The algorithm for uncapacitated pre
emptivemDaR proceeds in two stages. Given any instance, it is first redi(atehe loss

of a constant factor) to a depot-demand instance, wherealbhdds are between depot
vertices. Then the depot-demand instance is solved usin@(kr ¢) approximation
algorithm.

Reduction to depot-demand instancedVe definedepot-demand instancas those in-
stances of uncapacitatetdDaR where all demands are between depot vertices. Given
any instanc& of uncapacitatedhDaR, the algorithmUncapMulti (given below) re-
duces’ to a depot-demand instance.



Input: instance 7 of uncapacitated preemptivemDaR.

1. Solve the nurse-station-location instance with depot$i_, and all sources/ des-
tinationsS UT as terminals, using the 4-approximation algorithm [6]. {_E}}jzl
be the resulting trees coverisgu 1" such that each treg; is rooted at depat;.

2. Define a depot-demand instangef uncapacitatechDaR on the same metric and
set of vehicles, where the demandsfe,r;) | s; € Fj & t; € F, 1 <i <m}.
For any object € [m] let thesource depobe the depot; for which s, € F; and
thedestination depabe the depot; for whicht; € F;.

3. Output the following schedule for:

(a) Each vehiclg € [q] traverses tred’; by an Euler tour, picks up all objects
from sources inF; and brings them to their source-depgt

(b) Vehicles implement a schedule fdepot-demand instanc&, and all objects
are moved from their source-depot to destination-depet&setion 2).

(c) Each vehiclej € [q] traverses tred’; by an Euler tour, picks up all objects
having destination-depof and brings them to their destinationshi.

Note that objects only are preempted at depot vertices. We argue that the
reduction inUncapMulti only loses a constant approximation factor. Lietdenote
the optimal makespan of instande Since the optimal value of the nurse-station-
location instance solved in the first step WhcapMulti is a lower bound fofZ, we
havemax{_, d(F;) < 4B.

Claim. The optimal makespan for the depot-demand instghceat mostl75.

Assuming a feasible schedule {gr, it is clear that the schedule returnediycap-
Multi is feasible for the original instancg The first and third rounds ifi’'s schedule
require at mos8B time each. Thus an approximation ratiofor depot-demand in-
stances implies an approximation ratio bf + 16 for general instances. Next we
show anO(log t)-approximation algorithm for depot-demand instancesghés the
number of depots), which implies Theorem 1.

Algorithm for depot-demand instances Let 7 be any depot-demand instance: note
that the instance defined in the second stedrafapMulti is of this form. It suffices to
restrict the algorithm to the induced met(iB, d) on only depot vertices, and use only
one vehicle at each depot iR. Consider an undirected gragh consisting of vertex
set R and edges corresponding to demands: there is an edge beresieesr and

s iff there is an object going froreitherr to s or s to . Note that the metric length
of any edge inH is at most the optimal makespdh of instance7. In the schedule
produced by our algorithm, vehicles will only use edgeg/fofThus in order to obtain
anO(log t) approximation, it suffices to show that each vehicle onlyeraesO(log t)
edges. Based on this, we further redu€éo the following instancé{ of uncapacitated
mDaR: the underlying metric is shortest paths in the grdpt{on verticesR), with
one vehicle at eacR-vertex, and for every edge:, v) € H there is a demand from

to v and one fromv to u. Clearly any schedule fdt having makespag implies one
for J of makesparg - B. The next lemma implies a@(log | R|) approximation for
depot-demand instances.



Lemma 4 There exists a poly-time computable schedulé&faevith makespa® (log t),
wheret = |R|.

Proof: Leta = [lgt] + 1. We first construct @parse spanner of H as follows:
consider edges off in an arbitrary order, and add an edgev) € H to A iff the
shortest path betweenandv using current edges of is more thar2a. It is clear from
this construction that the girth of (length of its shortest cycle) is at le&st, and that
for every edgéu, v) € H, the shortest path betweerandv in A is at mosta.

We now assign each edge dfto one of its end-points such that each vertex is
assigned at most two edges. Repeatedly pick any vertddegree at most two id,
assign its adjacent edgesitpand remove these edges anfflom A. We claim that at
the end of this procedure (when no vertex has degree at mcasit 2piges ofA would
have been removed (i.e. assigned to some vertex). Supposedntradiction that this
is not the case. Let # ¢ be the remaining graph; note thatC A, so the girth ofd is
at leasa. Every vertex in4 has degree at least 3, and there is at least one such vertex
w. Consider performing a breadth-first searchdirirom w. Since the girth ofd is at
least2q, the firsta levels of the breadth-first search is a tree. Furthermoreyextex
has degree at least 3, so each vertex in thedirstl levels has at least 2 children. This
implies thatA has at least + 2%~! > ¢ vertices, which is a contradiction! For each
vertexv € R, let A, denote the edges of assigned ta by the above procedure; we
argued that,cr A, = A, and|A,| < 2forallv € R.

The schedule fof{ involves 2« rounds as follows. In each round, every vehicle
v € R traverses the edges #y, (in both directions) and returns to Since|A4,| < 2
for all verticesv, each round takes 4 units of time; so the makespan of thiglstdes
8a = O(logt). The route followed by each object in this schedule is thetekbpath
from its source to destination in spanné&rnote that the length of any such path is at
most2a. To see that this is indeed feasible, observe that every efigeis traversed
by some vehicle in each round. Hence in each round, evergioti@erses one edge
along its shortest path (unless it is already at its destinptThus afteRa rounds, all
objects are at their destinations. [ ]

Tight example for uncapacitatedmDaR lower bounds. We note that known lower
bounds for uncapacitated preemptmBaR are insufficient to obtain a sub-logarithmic
approximation guarantee. The lower bounds we used in ooridigh are the follow-
iNg: max;e(,, d(ss, t;), and the optimal value of a nurse-station-location instamith
depots{r; };1:1 and terminalsS U T'. We are not aware of any lower bounds stronger
than these two bounds. There exist instances of uncapahit@aR where the optimal

makespan is a factd@(lolgli;t) larger than both the above lower bounds.

3 Preemptive multi-vehicle Dial-a-Ride

In this section we prove our main result: @tlog® m - log n) approximation algorithm
for the preemptivenDaR problem. We first prove a new structure theorem on single-
vehicle Dial-a-Ride tours (Subsection 3.1) that preemath@bject at most once, and
where the total time spent by objects in the vehicle is sn@ttaining such a single
vehicle tour is crucial in our algorithm for preemptimeDaR, which appears in Sec-
tion 3.2. The algorithm fomDaR relies on a partial coverage algorithPartial that,



given subset§) of vehicles and) of demands, outputs a scheduledpof near-optimal
makespan that covers sorinaction of demands irD. Algorithm Partial follows an in-
teresting recursive framework where the fraction of sa&tikfilemands is not a fixed
value but some function of the numbgp| of vehicles (Lemma 7). The main steps
in Partial are as follows(1) Obtain asingle-vehicleour satisfying 1-preemptive and
bounded-delay properties (Theorem &), Randomly partition the single vehicle tour
into |@Q| equally spaced piecef3) Solve a matching problem to assigameof these
pieces to vehicles af that satisfy a subset of demantls(4) A suitable fraction of the
residual demands i are covered recursively by unused vehicleg)of

3.1 Capacitated Vehicle Routing with Bounded Delay

Before we present the structural result on Dial-a-Ride g¢pwe consider the classic
capacitated vehicle routing problefi1] with an additional constraint on object ‘de-
lays'. In the capacitated vehicle routing problem (CVRP)are given a metri¢V, d),
specified depot-vertexe V, andm objects each having soureend respective desti-
nations{t; };c[m]- The goal is to compute a minimum lengtbn-preemptivéour of a
capacityk vehicle originating at that moves all objects fromto their destinations. In
CVRP with bounded delawe are additionally given delay parameteff > 1, and the
goal is to find a minimum length capacitated non-preemptive serving all objects
such that the time spent by each objeet [m] in the vehicle is at most - d(r, ¢;). The
following are natural lower bounds [11], even without theibded delay constraint: (i)
the minimum length TSP tour ofr} U {¢; | i« € [m]} (cf. Steiner lower bound), and
(ii) the quantity% S d(r,t;) (cf. flow lower bound).

Theorem 5 There is a(2.5 + %) approximation algorithm for CVRP with bounded

delay, where3 > 1 is the delay parameter. This guarantee is relative to thnSteand
flow lower bounds.

We now consider theingle vehiclgpreemptive Dial-a-Ride problem given by metric
(V,d), setD of demands, and a vehicle of capadityWe prove the following structural
result which extends a result from [10].

Theorem 6 There is a randomized poly-time computable 1-preemptivertgervicing
D that satisfies the following conditions (whéerB,,,; is the maximum of the Steiner
and flow lower bounds):

1. Total length: d(7) < O(log®n) - LBy
2. Bounded delay:} .., T; < O(logn) > ;. d(si,t;) whereT; is the total time
spent by object € D in the vehicle under the schedule giveny

3.2 Algorithm for preemptive mDaR

The algorithm first guesses the optimal makespaof the given instance of preemptive
mDaR (it suffices to knowB within a constant factor for a polynomial-time algorithm).
Leta=1-— ﬁ. For any subse® C [¢], we abuse the notation and ugdo denote
both the set of vehicle§ and the multi-set of depots corresponding to vehifles

We give an algorithniPartial that takes as input a tupl€), D, B) where@ C [q]
is a subset of vehicled) C [m] a subset of demands aftl € R, with the promise
that vehicles (originating at their respective depots) suffice to conglleserve the



demandsD at a makespan aB. Given such a promisdartial (Q, D, B) returns a
schedule of makespain(log nlogm) - B that serves a good fraction &f. Algorithm
Partial(@, D, B) is given in below. We set parameter= ©(log n log m), the precise
constant in the-notation comes from the analysis.

Input: Vehicles@ C [q], demandsD C [m], boundB > 0 such that) can serveD at
makesparB.

Preprocessing

1. If the minimum spanning tree (MST) on verticE€scontains an edge of length
greater thar3 B, there is a non-trivial partitioRQ1, @2} of Q with d(Q1, Q2) >
3B.Forj € {1,2},letV; = {v € V | d(Q;,v) < B} andD; be all demands
of D induced onV;. Run in parallel the schedules froRartial{(Q., D1, B) and
Partial(Q2, D2, B). Assume there is no such long edge in the following.
Random partitioning

2. Obtain single-vehicle 1-preemptive todusing capacityk and serving demands
D (Theorem 6).

3. Choose a uniformly random offset [0, 2pB] and cut edges of tourat distances
{2ppB+1n|p=1,2,---} along the tour to obtain a s@t of pieces ofr.

4. C" is the set of objects € D such that is carried by the vehicle in over some
edge thatis cutin Step (3); addl := D\ C”. Ignore the cut object§” in the rest
of the algorithm.

Load rebalancing

5. Construct a bipartite grapti with vertex set$? and@ and an edge between piece
P € P and depotf € @ iff d(f,P) < 2B. For any subsetl C P, I'(A) C @
denotes the neighborhood df in graphH. LetS C P be anymaximalset that
satisfiedI'(S)| < '%‘

6. Compute 2-matchingr : P\ S — Q\ I'(S), i.e., afunction such that the number
of pieces mappingtoany € Q \ I'(S) is |7~ (f)| < 2.

Recursion

7. DefineC; :={i € C’ | eithers; € Sort; € S}; andCs := C'\ C.

8. Run in parallel theecursiveschedulePartial(I'(S), C1, B) for C; and the follow-
ing for Cs:

(@) Each vehiclg’ € Q\ I'(S) traverses the pieces !(f), moving allC,-objects
in them from their source to preemption-vertex, and rettonts depot.

(b) Eachvehiclef € Q\I'(S) again traverses the pieces!(f), this time moving
all Cs-objects in them from their preemption-vertex to destimtiand returns
to its depot.

Output: A schedule for vehicle§ of makespari16+416p)- B that serves an's min{|Ql.2m}
fraction of D.

Lemma 7 If there exists a schedule for vehicl€scovering all demand®, having
makespan at mog®, thenPartial invoked on(@, D, B) returns a schedule of vehicles
Q of makespan at mo$t6 + 16p) - B that covers at least an'e # fraction of D (here

z = min{|Q|,2m} < 2m).

The final algorithm invokePartial iteratively until all demands are covered: each time
with the entire selq] of vehicles, all uncovered demands, and boihdf D C [m] is



the set of uncovered demands at any iteration, Lemma 7 ie&Partial([¢], D, B)
returns a schedule of makesp@flog mlogn) - B that serves at leagt| D| demands.
Hence a standard set-cover analysis implies that all demaifibe covered irO (log m)
rounds, resulting in a makespan®flog? mlogn) - B.

It remains to prove Lemma 7. We proceed by induction on thebar@)| of vehi-
cles. The base cag@| = 1 reduces to the single vehicle preemptive Dial-a-Ride, eher
we can servall the demand® in a 1-preemptive fashion at makespatiog® n) - B
using the algorithm from [10]. In the rest of this section, pveve the inductive step.

PreprocessingSuppose Step (1) applies. Note tHéV;, V2) > B and hence there
is no demand with source in one §¥;, V»} and destination in the other. So demands
D, andD, partitionD. Furthermore in the optimal schedule, vehialgs(any;j = 1, 2)
only visit vertices inV; (otherwise the makespan would be greater tBarThus the two
recursive calls tartial satisfy the assumption: there is some schedule of vehigjes
servingD; having makespa#®. Inductively, the schedule returned Bartial for each
j = 1,2 has makespan at mdd6+16p)- B and covers at least® ©.| D;| demands from
Dj, wherec < min{|@Q| — 1,2m} < z. The schedules returned by the two recursive
calls toPartial can clearly be run in parallel and this covers at led$t (| D;| + | Dz|)
demands, i.e. an's # fraction of D. So we have the desired performance in this case.

Random partitioning. The harder part of the analysis is when Step (1) does not
apply: so the MST length ory is at most3|Q| - B. Note that when the depot3
are contracted to a single vertex, the MST on the end-poini3 plus the contracted
depot-vertex has length at md&}| - B (the optimal makespan schedule induces such
a tree). Thus the MST on the dep@}salong with end-points oD has length at most
4|Q| - B. Based on the assumption in Lemma 7 and the flow lower boundave
> icp d(si, ti) < E|Q] - B. It follows that for the single vehicle Dial-a-Ride instanc
solved in Step (2), the Steiner and flow lower-bounds (dehbBg,,,,; in Theorem 6)
areO(1) - |Q|B. Theorem 6 now implies thatis a 1-preemptive tour servicingD,
of length at mosO(log® n)|Q| - B such thad >, , T; < O(logn) - |D|B, whereT;
denotes the total time spent in the vehicle by demiaadD. The bound on the delay
uses the fact thahax!™; d(s;,t;) < B.

Choosing a large enough constant correspondingto@(log n log m), the length
of 7 is upper bounded by|Q| - B (sincen < 2m). So the cutting procedure in Step (3)
results in at mosiQ)| pieces ofr, each of length at mog{pB. The objects € C” (as
defined in Step (4)) are callenlit objectsWe restrict our attention to the other objects
C’ = D\ C” that are not ‘cut’. For each obje¢te C’, the path traced by it (under
single vehicle tour) fromits sources; to preemption-point and the path (unagifrom
its preemption-point te; are each completely contained in piece$ofigure 1 gives
an example of objects i6” andC"”, and the cutting procedure.

Claim. The expected number of objectsi is at mosty_, ;, 5255 < O(177) - [ D).

We can derandomize Step (3) and pick the best offfétere are at most polyno-
mially many combinatorially distinct offsets). Claim 312plies (again choosing large
enough constant ip = ©(lognlogm)) that|C’| > (1 — ﬁ)|D| > «a - |D| de-
mands areot cut From now on we only consider the g€t of uncut demands. L&?
denote the pieces obtained by cuttingis above, recallP| < |Q|. A pieceP € P
is said to be non-trivial if the vehicle in the 1-preemptieait+ carries some’’-

object while traversing”. Note that the number of non-trivial pieces’his at most



2|C'| < 2m: eachC’-object appears in at most 2 pieces, one where it is moved from
source to preemption-vertex and other from preemptiotexdo destination. Retain
only the non-trivial pieces if?; so|P| < min{|Q|,2m} = z. The pieces ifP may not
be one-one assignable to the depots since the algorithnohteken the depot locations
into account. We determine which pieces may be assignedpmtsl®y considering a
matching problem betweeR and the depots in Step (5) and (6).

Load rebalancing. The bipartite graph{ (defined in Step (5)) represents which
pieces and depots may be assigned to each other. Piece? and depotf € @
are assignable iffi(f, P) < 2B, and in this case grapH contains an edgéP, f).
We claim that corresponding to the ‘maximal contracting’ S€defined in Step (5)),

the 2-matchingr (in Step (6)) is guaranteed to exist. Note thA{S)| < @ but
|(T)| > '—g‘ forall 7 > S. ForanyT” C P\ S, let I'(T") denote the neighborhood
of 7" in Q \ I'(S). The maximality ofS implies: for any non-empty” C P\ S,
Bl T 89T | psuT)| = [1(S)| +|D(T")], i-e. |T(T")] > Z1. Hence by
Hall’s condition, there is a 2-matching : P\S — Q\I'(S). The setS and 2-matching

7 can be easily computed in polynomial time.

Solved recursively

The 1-preemptive tour 7 is cut at the dashed lines. P ) )
Object 1 is in ", it is not cut. The bipartite graph H
Object 2 is not in C’, it is a cut object. The 2-matching 7 is shown by dashed edges.

Fig. 1. Cutting and patching steps in algorittPartial.

Recursion.In Step (7), demands’ are further partitioned into two set§; consists
of objects that areither picked-upor dropped-off in some piece df; andCs-objects
are picked-umnddropped-off in pieces oP \ S. The vehicled (S) suffice to serve
all C4 objects, as shown below.

Claim. There exists a schedule of vehiclE&S) servingCy, with makesparB.

In the final schedule, krge fractionof C; demands are served by vehiclgss),
andall the C; demands are served by vehict@s, I'(S). Figure 1 shows an example
of this patrtition.

Serving C; demands.Based on Claim 3.2, the recursive dadirtial (I'(S), Cy, B)
(made in Step (8)) satisfies the assumption required in Lemntince|I'(S)| <

‘—7;‘ < ‘% < |Q|, we obtain inductively thaPartial (I'(S),C:, B) returns a sched-
ule of makespari16 + 16p) - B covering at least'#¥ - |C;| demands of’;, where
y = min{|I"(S)|,2m}. Note thaty < |I'(S)| < |P|/2 < z/2 (as|P]| < z), which
implies that at least's #~!|C, | demands are covered.

Serving C> demands.These are served by vehicl@s\ I'(S) using the 2-matching

m, in two rounds as specified in Step (8). This suffices to selivabgects inC, since



foranyi € Cs, the paths traversed by objeainderr, namelys; ~ p; (its preemption-
point) andp; ~ t; are contained in pieces &f \ S. Furthermore, sincer—*(f)| < 2
forall f € Q\I'(S), the distance traveled by vehigfén one round is at mo&t:2(2B+
2pB). So the time taken by this schedule is at nibst(2B + 2pB) = (16 + 16p) - B.

The schedule of vehicleB(S) (servingC;) and vehicles) \ I'(S) (servingCs)
can clearly be run in parallel. This takes tiifi& + 16p) - B and covers in total at least
|Ca| + al8*71|Cy| > ol8*71|C’| > «'##|D| demands ofD. This proves the inductive
step of Lemma 7.

Using Lemma 7 repeatedly as mentioned earlier, we obtai@®@og” m - logn)
approximation algorithm for capacitated preemptiveaR.
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