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Abstract. Dial-a-Ride problems consist of a setV of n vertices in a metric space
(denoting travel time between vertices) and a set ofm objects represented as
source-destination pairs{(si, ti)}

m
i=1, where each object requires to be moved

from its source to destination vertex. In themulti-vehicle Dial-a-Rideproblem,
there areq vehicles each having capacityk and where each vehiclej ∈ [q] has
its own depot-vertexrj ∈ V . A feasible schedule consists of a capacitated route
for each vehicle (where vehiclej originates and ends at its depotrj) that together
move all objects from their sources to destinations. The objective is to find a fea-
sible schedule that minimizes the maximum completion time (i.e. makespan) of
vehicles, where the completion time of vehiclej is the time when it returns to
its depotrj at the end of its route. We consider thepreemptiveversion of multi-
vehicle Dial-a-Ride, where an object may be left at intermediate vertices and
transported by more than one vehicle, while being moved fromsource to des-
tination. Approximation algorithms for the single vehicleDial-a-Ride problem
(q = 1) have been considered in [3, 10].

Our main results are anO(log3 n)-approximation algorithm forpreemptive multi-
vehicle Dial-a-Ride, and an improvedO(log t)-approximation for its special case
when there is no capacity constraint (heret ≤ n is the number of distinct depot-
vertices). There is anΩ(log1/4 n) hardness of approximation known [9] even for
single vehicle capacitated preemptive Dial-a-Ride. We also obtain an improved
constant factor approximation algorithm for the uncapacitated multi-vehicle prob-
lem on metrics induced by graphs excluding any fixed minor.

1 Introduction

Themulti-vehicle Dial-a-Rideproblem involves routing a set ofm objects from their
sources to respective destinations using a set ofq vehicles starting att distinct depot
nodes in ann-node metric. Each vehicle has acapacityk which is the maximum number
of objects it can carry at any time. Two versions arise based on whether or not the
vehicle can use any node in the metric as a preemption (a.k.a.transshipment) point -
we study the less-examinedpreemptive versionin this paper. The objective in these
problems is either the total completion time or the makespan(maximum completion
time) over theq vehicles, and again we study the more challengingmakespanversion
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of the problem. Thus this paper studies the preemptive, capacitated minimum makespan
multi-vehicle Dial-a-Ride problem.

While the multiple qualifications may make the problem appear contrived, this is
exactly the problem that models courier or mail delivery over a day from several city
depots: preemption is cheap and useful for packages, trucksare capacitated and the
makespan reflects the daily working time limit for each truck. Despite its ubiquity,
this problem has not been as well studied as other Dial-a-Ride versions. One reason
from the empirical side is the difficulty in handling the possibility of preemptions in a
clean mathematical programming model. On the theoretical side which is the focus of
this paper, the difficulty of using preemption in a meaningful way in an approximation
algorithm persists. It is further compounded by the hardness of the makespan objective.

The requirement in preemptive Dial-a-Ride, that preemptions are allowed at all ver-
tices, may seem unrealistic. In practice, a subsetP of the vertex-setV represents the
vertices where preemption is permitted: the two extremes ofthis general problem are
non-preemptive Dial-a-Ride (P = ∅) and preemptive Dial-a-Ride (P = V ). However
preemptive Dial-a-Ride is more generally applicable: specifically in situations where
the preemption-pointsP form anetof the underlying metric (i.e. every vertex inV has
a nearby preemption-point). I.e., approximation algorithms for preemptive Dial-a-Ride
imply good approximations even in this general setting, wherein the precise guarantee
depends on how wellP coversV .

We note that although our model allows any number of preemptions and preemp-
tions at all vertices our algorithms do not use this possibility to its full extent. Our
algorithm for the capacitated case preempts each object at most once and our algorithm
for the uncapacitated case only preempts objects at depot vertices.

The preemptive Dial-a-Ride problem has been considered earlier with a single ve-
hicle, for which anO(log n) approximation [3] and anΩ(log1/4−ǫ n) hardness of ap-
proximation (for any constantǫ > 0) [9] are known. Note that the completion time and
makespan objectives coincide for this case.

Moving to multiple vehicles, the total completion time objective admits a straight-
forwardO(log n) approximation along the lines of the single vehicle problem[3]: Using
the FRT tree embedding [7], one can reduce to tree-metrics atthe loss of an expected
O(log n) factor, and there is a simple constant approximation for this problem on trees.
The maximum completion time or makespan objective, which weconsider in this paper
turns out to be considerably harder. Due to non-linearity ofthe makespan objective,
the above reduction to tree-metrics does not hold. Furthermore, the makespan objective
does not appear easy to solve even on trees.

Unlike in the single-vehicle case, note that an object in multi-vehicle Dial-a-Ride
may be transported by several vehicles one after the other. Hence it is important for the
vehicle routes to be coordinated so that the objects trace valid paths from respective
sources to destinations. For example, a vehicle may have to wait at a vertex for other
vehicles carrying common objects to arrive. Interestingly, the multi-vehicle Dial-a-Ride
problem captures aspects of both machine scheduling and network design problems.

Results and Paper Outline We first consider the special case of multi-vehicle Dial-
a-Ride (uncapacitatedmDaR) where the vehicles have no capacity constraints (i.e.
k ≥ m). This problem is interesting in itself, and serves as a goodstarting point before



we present the algorithm for the general case. The uncapacitatedmDaR problem itself
highlights differences from the single vehicle case: For example, in single vehicle Dial-
a-Ride, preemption plays no role in the absence of capacity constraints; however in
uncapacitatedmDaR, an optimal non-preemptive schedule may takeΩ(

√
q) longer

than the optimal preemptive schedule (see the full version of the paper). We prove the
following theorem in Section 2.

Theorem 1 There is anO(log t)-approximation algorithm for uncapacitated preemp-
tive mDaR obtaining a tour where objects are only preempted at depot vertices.

The above algorithm has two main steps: the first one reduces the instance (at a constant
factor loss in the performance guarantee) to one in which alldemands are between
depots (a “depot-demand” instance). In the second step, we use asparse spanneron the
demand graph to construct routes for moving objects across depots.

We also obtain an improved guarantee for the following special class of metrics
using the notion ofsparse coversin such metrics [14].

Theorem 2 There is anO(1)-approximation algorithm for uncapacitatedmDaR on
metrics induced by graphs that exclude any fixed minor.

In Section 3, we study the capacitated preemptivemDaR problem, and obtain our main
result. Recall that there is anΩ(log1/4−ǫ n) hardness of approximation for even sin-
gle vehicle Dial-a-Ride [9]. A feasible solution to preemptive mDaR is said to be1-
preemptiveif every object is preempted at most once while being moved from its source
to destination.

Theorem 3 There is anO(log3 n) approximation algorithm for preemptivemDaR ob-
taining a 1-preemptive tour.

This algorithm has four key steps: (1) Wepreprocessthe input so that demand points
that are sufficiently far away from each other can be essentially decomposed into sep-
arate instances for the algorithm to handle independently.(2) We then solve a single-
vehicle instance of the problem that obeys some additional bounded-delay property
(Theorem 6) that we prove; This property combines ideas fromalgorithms forlight ap-
proximate shortest path trees[13] andcapacitated vehicle routing[11]. The bounded-
delay property is useful inrandomly partitioningthe single vehicle solution among the
q vehicles available to share this load. This random partitioning scheme is reminiscent
of the work of Hochbaum-Maass [12], Baker [1] and Klein-Plotkin-Rao [14], in trying
to average out the effect of the cutting in the objective function. (3) The partitioned
segments of the single vehicle tour are assigned to the available vehicles; However, to
check if this assignment is feasible we solve a matching problem that identifies cases
when this load assignment must berebalanced. This is perhaps the most interesting
step in the algorithm since it identifies stronger lower bounds for subproblems where
the current load assignment is not balanced. (4) We finish up by recursingon the load
rebalanced subproblem; An interesting feature of the recursion is that the fraction of
demands that are processed recursively is not a fixed value (as is more common in such
recursive algorithms) but is a carefully chosen function ofthe number of vehicles on
which these demands have to be served.

Due to lack of space some proofs are omitted from this paper. The proofs can be
found in the full version.



Related Work Dial-a-Ride problems form an interesting subclass of Vehicle Routing
Problems that are well studied in the operations research literature. Paepe et al. [5] pro-
vide a classification of Dial-a-Ride problems using a notation similar to that for schedul-
ing and queuing problems: preemption is one aspect in this classification. Savelsberg
and Sol [18] and Cordeau and Laporte [4] survey several variants of non-preemptive
Dial-a-Ride problems that have been studied in the literature. Most Dial-a-Ride prob-
lems arising in practice involve making routing decisions for multiple vehicles.

Dial-a-Ride problems with transshipment (the preemptive version) have been stud-
ied in [15–17]. These papers consider a more general model where preemption is al-
lowed only at a specified subset of vertices. Our model (and that of [3]) is the special
case when every vertex can serve as a preemption point. It is clear that preemption only
reduces the cost of serving demands: [17] studied the maximum decrease in the op-
timal cost upon introducing one preemption point. [15, 16] also model time-windows
on the demands, and study heuristics and a column-generation based approach; they
also describe applications (eg. courier service) that allow for preemptions. Thetruck
and trailer routing problemhas been studied in [2, 19]. Here a number of capacitated
trucks and trailers are used to deliver all objects. Some customers are only accessible
without the trailer. The trailers can be parked at any point accessible with a trailer and it
is possible to shift demand loads between the truck and the trailer at the parking places.

For single vehicle Dial-a-Ride, the best known approximation guarantee for the
preemptive version isO(log n) (Charikar and Raghavachari [3]), and anΩ(log1/4−ǫ n)
hardness of approximation (for any constantǫ > 0) is shown in Gørtz [9]. The non-
preemptive version appears much harder and the best known approximation ratio is
min{

√
k log n,

√
n log2 n} (Charikar and Raghavachari [3], Gupta et al. [10]); however

to the best of our knowledge, APX-hardness is the best lower bound. There are known
instances of single vehicle Dial-a-Ride where the ratio between optimal non-preemptive
and preemptive tours isΩ(

√
n) in general metrics [3], and̃Ω(n1/8) in the Euclidean

plane [10]. A1.8-approximation is known for thek = 1 special case of single vehicle
Dial-a-Ride (a.k.a.stacker-craneproblem) [8].

The uncapacitated case of preemptivemDaR is also a generalization of a problem
callednurse-station-locationthat was studied in Even et al. [6] (where a 4-approximation
algorithm was given). Nurse-station-location is a specialcase of uncapacitatedmDaR
when each source-destination pair coincides on a single vertex. In this paper, we handle
not only the case with arbitrary pairs (uncapacitatedmDaR), but also the more general
problem with finite capacity restriction.

Problem Definition and Preliminaries We represent a finite metric as(V, d) where
V is the set of vertices andd is a symmetric distance function satisfying the triangle
inequality. For subsetsA, B ⊆ V we denote byd(A, B) the minimum distance between
a vertex inA and another inB, sod(A, B) = min{d(u, v) | u ∈ A, v ∈ B}. For a
subsetE ⊆

(

V
2

)

of edges,d(E) :=
∑

e∈E de denotes the total length of edges inE.
Themulti-vehicle Dial-a-Ride problem(mDaR) consists of ann-vertex metric(V, d),

m objects specified as source-destination pairs{si, ti}m
i=1, q vehicles having respective

depot-vertices{rj}q
j=1, and a common vehicle capacityk. A feasible schedule is a

set ofq routes, one for each vehicle (where the route for vehiclej ∈ [q] starts and
ends atrj ), such that no vehicle carries more thank objects at any time and each ob-



ject is moved from its source to destination. The completiontime Cj of any vehicle
j ∈ [q] is the time when vehiclej returns to its depotrj at the end of its route (the
schedule is assumed to start at time0). The objective inmDaR is to minimize the
makespan, i.e.,min maxj∈[q] Cj . We denote byS := {si | i ∈ [m]} the set of sources,
T := {ti | i ∈ [m]} the set of destinations,R := {rj | j ∈ [q]} the set of distinct depot-
vertices, andt := |R| the number of distinct depots. Unless mentioned otherwise,we
only consider thepreemptiveversion, where objects may be left at intermediate vertices
while being moved from source to destination.
Single vehicle Dial-a-Ride.The following are lower bounds for the single vehicle prob-
lem: the minimum length TSP tour on the depot and all source/destination vertices
(Steinerlower bound), and

P

m

i=1
d(si,ti)

k (flowlower bound). Charikar and Raghavachari [3]
gave anO(log n) approximation algorithm for this problem based on the abovelower
bounds. Gupta et al. [10] showed that the single vehicle preemptive Dial-a-Ride prob-
lem always has a 1-preemptive tour of lengthO(log2 n) times the Steiner and flow
lower-bounds.
Lower bounds for mDaR. The quantity

P

m

i=1
d(si,ti)

qk is a lower bound similar to the
flow bound for single vehicle Dial-a-Ride. Analogous to the Steiner lower bound above,
is the optimal value of an inducednurse-station-locationinstance. In the nurse-station-
location problem [6], we are given a metric(V, d), a setT of terminals and a multi-
set {rj}q

j=1 of depot-vertices; the goal is to find a collection{Fj}q
j=1 of trees that

collectively contain all terminalsT such that each treeFj is rooted at vertexrj and
maxq

j=1 d(Fj) is minimized. Even et al. [6] gave a 4-approximation algorithm for this
problem. The optimal value of the nurse-station-location instance with depots{rj}q

j=1

(depots of vehicles inmDaR) and terminalsT = S ∪ T is a lower bound formDaR.
The following are some lower bounds implied by nurse-station-location: (a)1/q times
the minimum length forest that connects every vertex inS ∪ T to some depot ver-
tex, (b) maxi∈[m] d(R, si), and (c)maxi∈[m] d(R, ti). Finally, it is easy to see that
maxi∈[m] d(si, ti) is also a lower bound formDaR.

2 Uncapacitated PreemptivemDaR

In this section we study the uncapacitated special case of preemptivemDaR, where
vehicles have no capacity constraints (i.e., capacityk ≥ m). We give an algorithm that
achieves anO(log t) approximation ratio for this problem (recallt ≤ n is the number
of distinct depots). Unlike in the single vehicle case, preemptive and non-preemptive
versions ofmDaR are very different even without capacity constraints (there exists an
Ω(

√
q) factor gap, whereq is number of vehicles). The algorithm for uncapacitated pre-

emptivemDaR proceeds in two stages. Given any instance, it is first reduced (at the loss
of a constant factor) to a depot-demand instance, where all demands are between depot
vertices. Then the depot-demand instance is solved using anO(log t) approximation
algorithm.

Reduction to depot-demand instancesWe definedepot-demand instancesas those in-
stances of uncapacitatedmDaR where all demands are between depot vertices. Given
any instanceI of uncapacitatedmDaR, the algorithmUncapMulti (given below) re-
ducesI to a depot-demand instance.



Input: instance I of uncapacitated preemptivemDaR.

1. Solve the nurse-station-location instance with depots{rj}q
j=1 and all sources/ des-

tinationsS∪T as terminals, using the 4-approximation algorithm [6]. Let{Fj}q
j=1

be the resulting trees coveringS ∪ T such that each treeFj is rooted at depotrj .
2. Define a depot-demand instanceJ of uncapacitatedmDaR on the same metric and

set of vehicles, where the demands are{(rj , rl) | si ∈ Fj & ti ∈ Fl, 1 ≤ i ≤ m}.
For any objecti ∈ [m] let thesource depotbe the depotrj for which si ∈ Fj and
thedestination depotbe the depotrl for which ti ∈ Fl.

3. Output the following schedule forI:
(a) Each vehiclej ∈ [q] traverses treeFj by an Euler tour, picks up all objects

from sources inFj and brings them to their source-depotrj .
(b) Vehicles implement a schedule fordepot-demand instanceJ , and all objects

are moved from their source-depot to destination-depot (see Section 2).
(c) Each vehiclej ∈ [q] traverses treeFj by an Euler tour, picks up all objects

having destination-depotrj and brings them to their destinations inFj .

Note that objects only are preempted at depot vertices. We now argue that the
reduction inUncapMulti only loses a constant approximation factor. LetB denote
the optimal makespan of instanceI. Since the optimal value of the nurse-station-
location instance solved in the first step ofUncapMulti is a lower bound forI, we
havemaxq

j=1 d(Fj) ≤ 4B.

Claim. The optimal makespan for the depot-demand instanceJ is at most17B.

Assuming a feasible schedule forJ , it is clear that the schedule returned byUncap-
Multi is feasible for the original instanceI. The first and third rounds inI ’s schedule
require at most8B time each. Thus an approximation ratioα for depot-demand in-
stances implies an approximation ratio of17α + 16 for general instances. Next we
show anO(log t)-approximation algorithm for depot-demand instances (here t is the
number of depots), which implies Theorem 1.

Algorithm for depot-demand instances Let J be any depot-demand instance: note
that the instance defined in the second step ofUncapMulti is of this form. It suffices to
restrict the algorithm to the induced metric(R, d) on only depot vertices, and use only
one vehicle at each depot inR. Consider an undirected graphH consisting of vertex
setR and edges corresponding to demands: there is an edge betweenverticesr and
s iff there is an object going fromeither r to s or s to r. Note that the metric length
of any edge inH is at most the optimal makespañB of instanceJ . In the schedule
produced by our algorithm, vehicles will only use edges ofH . Thus in order to obtain
anO(log t) approximation, it suffices to show that each vehicle only traversesO(log t)
edges. Based on this, we further reduceJ to the following instanceH of uncapacitated
mDaR: the underlying metric is shortest paths in the graphH (on verticesR), with
one vehicle at eachR-vertex, and for every edge(u, v) ∈ H there is a demand fromu
to v and one fromv to u. Clearly any schedule forH having makespanβ implies one
for J of makespanβ · B̃. The next lemma implies anO(log |R|) approximation for
depot-demand instances.



Lemma 4 There exists a poly-time computable schedule forH with makespanO(log t),
wheret = |R|.

Proof: Let α = ⌈lg t⌉ + 1. We first construct asparse spannerA of H as follows:
consider edges ofH in an arbitrary order, and add an edge(u, v) ∈ H to A iff the
shortest path betweenu andv using current edges ofA is more than2α. It is clear from
this construction that the girth ofA (length of its shortest cycle) is at least2α, and that
for every edge(u, v) ∈ H , the shortest path betweenu andv in A is at most2α.

We now assign each edge ofA to one of its end-points such that each vertex is
assigned at most two edges. Repeatedly pick any vertexv of degree at most two inA,
assign its adjacent edges tov, and remove these edges andv from A. We claim that at
the end of this procedure (when no vertex has degree at most 2), all edges ofA would
have been removed (i.e. assigned to some vertex). Suppose for a contradiction that this
is not the case. Let̃A 6= φ be the remaining graph; note thatÃ ⊆ A, so the girth ofÃ is
at least2α. Every vertex inÃ has degree at least 3, and there is at least one such vertex
w. Consider performing a breadth-first search inÃ from w. Since the girth ofÃ is at
least2α, the firstα levels of the breadth-first search is a tree. Furthermore every vertex
has degree at least 3, so each vertex in the firstα− 1 levels has at least 2 children. This
implies thatÃ has at least1 + 2α−1 > t vertices, which is a contradiction! For each
vertexv ∈ R, let Av denote the edges ofA assigned tov by the above procedure; we
argued that∪v∈RAv = A, and|Av| ≤ 2 for all v ∈ R.

The schedule forH involves2α rounds as follows. In each round, every vehicle
v ∈ R traverses the edges inAv (in both directions) and returns tov. Since|Av| ≤ 2
for all verticesv, each round takes 4 units of time; so the makespan of this schedule is
8α = O(log t). The route followed by each object in this schedule is the shortest path
from its source to destination in spannerA; note that the length of any such path is at
most2α. To see that this is indeed feasible, observe that every edgeof A is traversed
by some vehicle in each round. Hence in each round, every object traverses one edge
along its shortest path (unless it is already at its destination). Thus after2α rounds, all
objects are at their destinations.

Tight example for uncapacitatedmDaR lower bounds.We note that known lower
bounds for uncapacitated preemptivemDaR are insufficient to obtain a sub-logarithmic
approximation guarantee. The lower bounds we used in our algorithm are the follow-
ing: maxi∈[m] d(si, ti), and the optimal value of a nurse-station-location instance with
depots{rj}q

j=1 and terminalsS ∪ T . We are not aware of any lower bounds stronger
than these two bounds. There exist instances of uncapacitatedmDaR where the optimal
makespan is a factorΩ( log t

loglog t ) larger than both the above lower bounds.

3 Preemptive multi-vehicle Dial-a-Ride

In this section we prove our main result: anO(log2 m · log n) approximation algorithm
for the preemptivemDaR problem. We first prove a new structure theorem on single-
vehicle Dial-a-Ride tours (Subsection 3.1) that preempts each object at most once, and
where the total time spent by objects in the vehicle is small.Obtaining such a single
vehicle tour is crucial in our algorithm for preemptivemDaR, which appears in Sec-
tion 3.2. The algorithm formDaR relies on a partial coverage algorithmPartial that,



given subsetsQ of vehicles andD of demands, outputs a schedule forQ of near-optimal
makespan that covers somefractionof demands inD. AlgorithmPartial follows an in-
teresting recursive framework where the fraction of satisfied demands is not a fixed
value but some function of the number|Q| of vehicles (Lemma 7). The main steps
in Partial are as follows.(1) Obtain asingle-vehicletour satisfying 1-preemptive and
bounded-delay properties (Theorem 6),(2) Randomly partition the single vehicle tour
into |Q| equally spaced pieces,(3) Solve a matching problem to assignsomeof these
pieces to vehicles ofQ that satisfy a subset of demandsD, (4) A suitable fraction of the
residual demands inD are covered recursively by unused vehicles ofQ.

3.1 Capacitated Vehicle Routing with Bounded Delay
Before we present the structural result on Dial-a-Ride tours, we consider the classic
capacitated vehicle routing problem[11] with an additional constraint on object ‘de-
lays’. In the capacitated vehicle routing problem (CVRP) weare given a metric(V, d),
specified depot-vertexr ∈ V , andm objects each having sourcer and respective desti-
nations{ti}i∈[m]. The goal is to compute a minimum lengthnon-preemptivetour of a
capacityk vehicle originating atr that moves all objects fromr to their destinations. In
CVRP with bounded delay, we are additionally given adelay parameterβ > 1, and the
goal is to find a minimum length capacitated non-preemptive tour serving all objects
such that the time spent by each objecti ∈ [m] in the vehicle is at mostβ · d(r, ti). The
following are natural lower bounds [11], even without the bounded delay constraint: (i)
the minimum length TSP tour on{r} ∪ {ti | i ∈ [m]} (cf. Steiner lower bound), and
(ii) the quantity2

k

∑m
i=1 d(r, ti) (cf. flow lower bound).

Theorem 5 There is a(2.5 + 3
β−1) approximation algorithm for CVRP with bounded

delay, whereβ > 1 is the delay parameter. This guarantee is relative to the Steiner and
flow lower bounds.

We now consider thesingle vehiclepreemptive Dial-a-Ride problem given by metric
(V, d), setD of demands, and a vehicle of capacityk. We prove the following structural
result which extends a result from [10].

Theorem 6 There is a randomized poly-time computable 1-preemptive tour τ servicing
D that satisfies the following conditions (whereLBpmt is the maximum of the Steiner
and flow lower bounds):

1. Total length: d(τ) ≤ O(log2 n) · LBpmt.
2. Bounded delay:

∑

i∈D Ti ≤ O(log n)
∑

i∈D d(si, ti) whereTi is the total time
spent by objecti ∈ D in the vehicle under the schedule given byτ .

3.2 Algorithm for preemptive mDaR

The algorithm first guesses the optimal makespanB of the given instance of preemptive
mDaR (it suffices to knowB within a constant factor for a polynomial-time algorithm).
Let α = 1− 1

1+lg m . For any subsetQ ⊆ [q], we abuse the notation and useQ to denote
both the set of vehiclesQ and the multi-set of depots corresponding to vehiclesQ.

We give an algorithmPartial that takes as input a tuple〈Q, D, B〉 whereQ ⊆ [q]
is a subset of vehicles,D ⊆ [m] a subset of demands andB ∈ R+, with thepromise
that vehiclesQ (originating at their respective depots) suffice to completely serve the



demandsD at a makespan ofB. Given such a promise,Partial 〈Q, D, B〉 returns a
schedule of makespanO(log n log m) · B that serves a good fraction ofD. Algorithm
Partial〈Q, D, B〉 is given in below. We set parameterρ = Θ(log n log m), the precise
constant in theΘ-notation comes from the analysis.

Input: VehiclesQ ⊆ [q], demandsD ⊆ [m], boundB ≥ 0 such thatQ can serveD at
makespanB.

Preprocessing
1. If the minimum spanning tree (MST) on verticesQ contains an edge of length

greater than3B, there is a non-trivial partition{Q1, Q2} of Q with d(Q1, Q2) >
3B. For j ∈ {1, 2}, let Vj = {v ∈ V | d(Qj , v) ≤ B} andDj be all demands
of D induced onVj . Run in parallel the schedules fromPartial〈Q1, D1, B〉 and
Partial〈Q2, D2, B〉. Assume there is no such long edge in the following.
Random partitioning

2. Obtain single-vehicle 1-preemptive tourτ using capacityk and serving demands
D (Theorem 6).

3. Choose a uniformly random offsetη ∈ [0, 2ρB] and cut edges of tourτ at distances
{2pρB + η | p = 1, 2, · · · } along the tour to obtain a setP of pieces ofτ .

4. C′′ is the set of objectsi ∈ D such thati is carried by the vehicle inτ over some
edge that is cut in Step (3); andC′ := D \C′′. Ignore the cut objectsC′′ in the rest
of the algorithm.
Load rebalancing

5. Construct a bipartite graphH with vertex setsP andQ and an edge between piece
P ∈ P and depotf ∈ Q iff d(f, P ) ≤ 2B. For any subsetA ⊆ P , Γ (A) ⊆ Q
denotes the neighborhood ofA in graphH . Let S ⊆ P be anymaximalset that
satisfies|Γ (S)| ≤ |S|

2 .
6. Compute a2-matchingπ : P \S → Q\Γ (S), i.e., a function such that the number

of pieces mapping to anyf ∈ Q \ Γ (S) is |π−1(f)| ≤ 2.
Recursion

7. DefineC1 := {i ∈ C′ | eithersi ∈ S or ti ∈ S}; andC2 := C′ \ C1.
8. Run in parallel therecursiveschedulePartial〈Γ (S), C1, B〉 for C1 and the follow-

ing for C2:
(a) Each vehiclef ∈ Q\Γ (S) traverses the piecesπ−1(f), moving allC2-objects

in them from their source to preemption-vertex, and returnsto its depot.
(b) Each vehiclef ∈ Q\Γ (S) again traverses the piecesπ−1(f), this time moving

all C2-objects in them from their preemption-vertex to destination, and returns
to its depot.

Output: A schedule for vehiclesQ of makespan(16+16ρ)·B that serves anαlg min{|Q|,2m}

fraction ofD.

Lemma 7 If there exists a schedule for vehiclesQ covering all demandsD, having
makespan at mostB, thenPartial invoked on〈Q, D, B〉 returns a schedule of vehicles
Q of makespan at most(16 + 16ρ) · B that covers at least anαlg z fraction ofD (here
z := min{|Q|, 2m} ≤ 2m).

The final algorithm invokesPartial iteratively until all demands are covered: each time
with the entire set[q] of vehicles, all uncovered demands, and boundB. If D ⊆ [m] is



the set of uncovered demands at any iteration, Lemma 7 implies thatPartial〈[q], D, B〉
returns a schedule of makespanO(log m log n) · B that serves at least14 |D| demands.
Hence a standard set-cover analysis implies that all demands will be covered inO(log m)
rounds, resulting in a makespan ofO(log2 m log n) · B.

It remains to prove Lemma 7. We proceed by induction on the number|Q| of vehi-
cles. The base case|Q| = 1 reduces to the single vehicle preemptive Dial-a-Ride, where
we can serveall the demandsD in a 1-preemptive fashion at makespanO(log2 n) · B
using the algorithm from [10]. In the rest of this section, weprove the inductive step.

Preprocessing.Suppose Step (1) applies. Note thatd(V1, V2) > B and hence there
is no demand with source in one of{V1, V2} and destination in the other. So demands
D1 andD2 partitionD. Furthermore in the optimal schedule, vehiclesQj (anyj = 1, 2)
only visit vertices inVj (otherwise the makespan would be greater thanB). Thus the two
recursive calls toPartial satisfy the assumption: there is some schedule of vehiclesQj

servingDj having makespanB. Inductively, the schedule returned byPartial for each
j = 1, 2 has makespan at most(16+16ρ)·B and covers at leastαlg c·|Dj | demands from
Dj , wherec ≤ min{|Q| − 1, 2m} ≤ z. The schedules returned by the two recursive
calls toPartial can clearly be run in parallel and this covers at leastαlg z(|D1| + |D2|)
demands, i.e. anαlg z fraction ofD. So we have the desired performance in this case.

Random partitioning. The harder part of the analysis is when Step (1) does not
apply: so the MST length onQ is at most3|Q| · B. Note that when the depotsQ
are contracted to a single vertex, the MST on the end-points of D plus the contracted
depot-vertex has length at most|Q| · B (the optimal makespan schedule induces such
a tree). Thus the MST on the depotsQ along with end-points ofD has length at most
4|Q| · B. Based on the assumption in Lemma 7 and the flow lower bound, wehave
∑

i∈D d(si, ti) ≤ k|Q| · B. It follows that for the single vehicle Dial-a-Ride instance
solved in Step (2), the Steiner and flow lower-bounds (denoted LBpmt in Theorem 6)
areO(1) · |Q|B. Theorem 6 now implies thatτ is a 1-preemptive tourτ servicingD,
of length at mostO(log2 n)|Q| · B such that

∑

i∈D Ti ≤ O(log n) · |D|B, whereTi

denotes the total time spent in the vehicle by demandi ∈ D. The bound on the delay
uses the fact thatmaxm

i=1 d(si, ti) ≤ B.
Choosing a large enough constant corresponding toρ = Θ(log n log m), the length

of τ is upper bounded byρ|Q| ·B (sincen ≤ 2m). So the cutting procedure in Step (3)
results in at most|Q| pieces ofτ , each of length at most2ρB. The objectsi ∈ C′′ (as
defined in Step (4)) are calledcut objects. We restrict our attention to the other objects
C′ = D \ C′′ that are not ‘cut’. For each objecti ∈ C′, the path traced by it (under
single vehicle tourτ ) from its sourcesi to preemption-point and the path (underτ ) from
its preemption-point toti are each completely contained in pieces ofP . Figure 1 gives
an example of objects inC′ andC′′, and the cutting procedure.

Claim. The expected number of objects inC′′ is at most
∑

i∈D
Ti

2ρB ≤ O( 1
log m ) · |D|.

We can derandomize Step (3) and pick the best offsetη (there are at most polyno-
mially many combinatorially distinct offsets). Claim 3.2 implies (again choosing large
enough constant inρ = Θ(log n log m)) that |C′| ≥ (1 − 1

2 lg m )|D| ≥ α · |D| de-
mands arenot cut. From now on we only consider the setC′ of uncut demands. LetP
denote the pieces obtained by cuttingτ as above, recall|P| ≤ |Q|. A pieceP ∈ P
is said to be non-trivial if the vehicle in the 1-preemptive tour τ carries someC′-
object while traversingP . Note that the number of non-trivial pieces inP is at most



2|C′| ≤ 2m: eachC′-object appears in at most 2 pieces, one where it is moved from
source to preemption-vertex and other from preemption-vertex to destination. Retain
only the non-trivial pieces inP ; so|P| ≤ min{|Q|, 2m} = z. The pieces inP may not
be one-one assignable to the depots since the algorithm has not taken the depot locations
into account. We determine which pieces may be assigned to depots by considering a
matching problem betweenP and the depots in Step (5) and (6).

Load rebalancing. The bipartite graphH (defined in Step (5)) represents which
pieces and depots may be assigned to each other. PieceP ∈ P and depotf ∈ Q
are assignable iffd(f, P ) ≤ 2B, and in this case graphH contains an edge(P, f).
We claim that corresponding to the ‘maximal contracting’ set S (defined in Step (5)),
the 2-matchingπ (in Step (6)) is guaranteed to exist. Note that|Γ (S)| ≤ |S|

2 , but

|Γ (T )| > |T |
2 for all T ⊃ S. For anyT ′ ⊆ P \ S, let Γ̃ (T ′) denote the neighborhood

of T ′ in Q \ Γ (S). The maximality ofS implies: for any non-emptyT ′ ⊆ P \ S,
|S|
2 + |T ′|

2 = |S∪T ′|
2 < |Γ (S ∪ T ′)| = |Γ (S)|+ |Γ̃ (T ′)|, i.e. |Γ̃ (T ′)| ≥ |T ′|

2 . Hence by
Hall’s condition, there is a 2-matchingπ : P\S → Q\Γ (S). The setS and 2-matching
π can be easily computed in polynomial time.

Tour τ
p1

s1

t2
p2

t1

p1

p2

The 1-preemptive tour τ is cut at the dashed lines.

Object 1 is in C ′, it is not cut.

Object 2 is not in C ′, it is a cut object.

s2

S

Γ(S)

P Q

The bipartite graph H

The 2-matching π is shown by dashed edges.

Solved recursively

Fig. 1. Cutting and patching steps in algorithmPartial.

Recursion.In Step (7), demandsC′ are further partitioned into two sets:C1 consists
of objects that areeitherpicked-upor dropped-off in some piece ofS; andC2-objects
are picked-upanddropped-off in pieces ofP \ S. The vehiclesΓ (S) suffice to serve
all C1 objects, as shown below.

Claim. There exists a schedule of vehiclesΓ (S) servingC1, with makespanB.

In the final schedule, alarge fractionof C1 demands are served by vehiclesΓ (S),
andall theC2 demands are served by vehiclesQ \ Γ (S). Figure 1 shows an example
of this partition.

ServingC1 demands.Based on Claim 3.2, the recursive callPartial 〈Γ (S), C1, B〉
(made in Step (8)) satisfies the assumption required in Lemma7. Since|Γ (S)| ≤
|P|
2 ≤ |Q|

2 < |Q|, we obtain inductively thatPartial 〈Γ (S), C1, B〉 returns a sched-
ule of makespan(16 + 16ρ) · B covering at leastαlg y · |C1| demands ofC1, where
y = min{|Γ (S)|, 2m}. Note thaty ≤ |Γ (S)| ≤ |P|/2 ≤ z/2 (as |P| ≤ z), which
implies that at leastαlg z−1|C1| demands are covered.

ServingC2 demands.These are served by vehiclesQ\Γ (S) using the 2-matching
π, in two rounds as specified in Step (8). This suffices to serve all objects inC2 since



for anyi ∈ C2, the paths traversed by objecti underτ , namelysi  pi (its preemption-
point) andpi  ti are contained in pieces ofP \ S. Furthermore, since|π−1(f)| ≤ 2
for all f ∈ Q\Γ (S), the distance traveled by vehiclef in one round is at most2·2(2B+
2ρB). So the time taken by this schedule is at most2 · 4(2B + 2ρB) = (16 + 16ρ) ·B.

The schedule of vehiclesΓ (S) (servingC1) and vehiclesQ \ Γ (S) (servingC2)
can clearly be run in parallel. This takes time(16 + 16ρ) ·B and covers in total at least
|C2| + αlg z−1|C1| ≥ αlg z−1|C′| ≥ αlg z |D| demands ofD. This proves the inductive
step of Lemma 7.

Using Lemma 7 repeatedly as mentioned earlier, we obtain anO(log2 m · log n)
approximation algorithm for capacitated preemptivemDaR.
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