Fast Arc-Annotated Subsequence Matching in
Linear Space

Philip Bille and Inge Li Gortz

Technical University of Denmark. E-mail: {phbi, ilg}@imm.dtu.dk

Abstract. An arc-annotated string is a string of characters, called bases,
augmented with a set of pairs, called arcs, each connecting two bases.
Given arc-annotated strings P and () the arc-preserving subsequence
problem is to determine if P can be obtained from @ by deleting bases
from @. Whenever a base is deleted any arc with an endpoint in that
base is also deleted. Arc-annotated strings where the arcs are “nested”
are a natural model of RNA molecules that captures both the primary
and secondary structure of these. The arc-preserving subsequence prob-
lem for nested arc-annotated strings is basic primitive for investigating
the function of RNA molecules. Gramm et al. [ACM Trans. Algorithms
2006] gave an algorithm for this problem using O(nm) time and space,
where m and n are the lengths of P and @), respectively. In this paper we
present a new algorithm using O(nm) time and O(n +m) space, thereby
matching the previous time bound while significantly reducing the space
from a quadratic term to linear. This is essential to process large RNA
molecules where the space is a likely to be a bottleneck. To obtain our
result we introduce several novel ideas which may be of independent
interest for related problems on arc-annotated strings.

1 Introduction

An arc-annotated string S is a string augmented with an arc set Ag. Each
character in S is called a base and the arc set Ag is a set of pairs of positions in
S connecting two distinct bases. We say that S is a nested arc-annotated string
if no two arcs in Ag share an endpoint and no two arcs cross each other, i.e.,
for all (i, i), (i],i.) € As we have that 4y < ij < 4, iff 4 < i} < 4,. Given
arc-annotated strings P and @) we say that P is a arc-preserving subsequence
(APS) of @, denoted P C @, if P can be obtained from @ by deleting 0 or more
bases from (). Whenever a base is deleted any arc with an endpoint in that base
is also deleted. The arc-preserving subsequence problem (APS) is to determine if
P C Q. If Pand @ are both nested arc-annotated strings we refer to the problem
as the nested arc-preserving subsequence problem (NAPS). Fig. 1(a) shows an
example of nested arc-annotated strings.

Ribonucleic acid (RNA) molecules are often modeled as nested arc-annotated
strings. Here, the string consists of bases from the 4-letter alphabet {A, U, C, G},
called the primary structure, and an arc set consisting of pairings between bases,
called the secondary structure. RNA molecules are central for many biological

P \A\A\G\A\C\C\A\U\U\
23456789

Q \A\A\G\U\G\A\C\C\A\U\U\
34567891011

(a)

Fig. 1. (a) Nested arc-annotated strings P and Q. Here, P and @ contain arcs con-
necting their first and last bases. (b) The corresponding trees Tp and T induced by
the arcs.

functions and NAPS is a basic primitive for investigating the precise functionality
of RNA molecules. The key idea is to model a specific function of RNA molecules
as an arc-annotated string F'. Given a RNA molecule R we can then determine
(to some extent) if R performs the same function by computing if F' C R.

Building on earlier work in a related model of RNA molecules by Vialette [16],
Gramm et al. [10] introduced and gave an algorithm for NAPS using O(nm) time
and space, where m and n are the lengths of P and @, respectively. Kida [12]
presented an experimental study of this algorithm and Damaschke [8] considered
a special restricted case of the problem.

Results We assume a standard unit-cost RAM model with word size ©(logn)
and a standard instruction set including arithmetic operations, bitwise boolean
operations, and shifts. The space complexity is the number of words used by
the algorithm. All of the previous results are in same model of computation.
Throughout the paper P and (Q are nested arc-annotated strings of lengths m
and n, respectively. In this paper we present a new algorithm with the following
complexities.

Theorem 1. Given nested arc-annotated strings P and @ of lengths m and n,
respectively, we can solve the nested arc-preserving subsequence problem in time
O(nm) and space O(n +m).

Hence, we match the running time of the currently fastest known algorithm and
at the same time we improve the space from O(nm) to O(n + m). This space
improvement is critical for processing large RNA molecules. In particular, an
algorithm using O(nm) space quickly becomes infeasible, even for moderate sizes
of RNA molecules, due to costly accesses to external memory. An algorithm using
O(m++n) space is much more scalable and allows us to handle significantly larger
RNA molecules. Furthermore, we note that obtaining an algorithm using O(nm)
time and o(nm) space is mentioned as an open problem in Gramm et al. [10].
Compared to the previous work by Gramm et al. [10] our algorithm is not
only more space-efficient but also simpler. Our algorithm is based on a single
unified dynamic programming recurrence, whereas the algorithm by Gramm et
al. requires computing and tabulating auxiliary information in multiple phases

mixed with dynamic programming. Our approach allows us to better expose the
features of NAPS and is essential for obtaining a linear space algorithm.

Techniques As mentioned above, our algorithm is based on a new dynamic pro-
gramming recurrence. Essentially, the recursion expresses for any pair of sub-
strings P’ and @’ of P and @, respectively, the longest prefix of P’ which is an
arc-preserving subsequence of Q' in term of smaller substrings of P’ and Q'. We
combine several new ideas with well-known techniques to convert our recurrence
into an efficient algorithm.

First, we organize the dynamic programming recurrence into I" sequences. A
I" sequence for a given substring @’ of @ is a simple O(m) space representation
of the longest arc-preserving subsequences of each prefix of P in Q’. We show
how to efficiently manipulate I" sequences to get new I" sequences using a small
set of simple operations, called the primitive operations. Secondly, we organize
the computation of I' sequences using a recursive algorithm that traverses the
tree structure of the arcs in Q). The algorithm computes the I" sequence for each
arc in () using the primitive operations. To avoid storing too many I" sequences
during the traversal we direct the computation according to the well-known
heavy-path decomposition of the tree. This leads to an algorithm that stores at
most O(log |Ag|) I" sequences. Since each I" sequence uses O(m) space the total
space becomes O(mlog|Ag|+ n).

Finally, to achieve linear space we exploit a structural property of I se-
quences to compress them efficiently. We obtain a new representation of I" se-
quences that only requires O(m) bits. Plugging in the new representation into
our algorithm the total space becomes O(n + m) as desired. However, the re-
sulting algorithm requires many costly compressions and decompressions of I’
sequences at each arc in the traversal. As a practical and more elegant solution
we show how to augment the compressed representation of I sequences using
standard rank/select indices to obtain constant time random access to elements
in I" sequences. This allows us to compress each I" sequence only once and avoid
decompression entirely without affecting the complexity of the algorithm.

Related Work Arc-annotated strings are a natural model of RNA molecules that
captures both the primary and secondary structure of these. Consequently, a
wide range of pattern matching problems for them have been studied, see e.g., [1-
3,6,9,10,14]. Among these, NAPS is one of the most basic and fundamental
problems.

The NAPS problem generalizes the tree inclusion problem for ordered trees [4,
7,13]. Here, the goal is to determine if a tree can be obtained from another tree by
deleting nodes. This is equivalent to NAPS where all bases in both strings have
an incident arc. The authors have shown how to solve the tree inclusion problem
in time O(nm/logn+nlogn) and space O(n+m) [4]. Compared to our current
result for NAPS the space complexity is the same but the time complexity for
tree inclusion is a factor O(logn) better for most values of m and n. Though
our obtained complexities for the tree inclusion problem and NAPS are very
similar, the ideas and techniques behind the results differ significantly. While

the definition of the two problems seems very similar it appears that the more
general NAPS is significantly more complicated. We leave it as an interesting
research direction to determine the precise relationship between NAPS and the
tree inclusion problem.

Several generalizations of NAPS have also been studied relaxing the require-
ment that arcs should be nested [5,9,10]. In nearly all cases the resulting problem
becomes NP-complete.

Due to lack of space some of the proof are omitted from this extended ab-
stract. They can be found in the full version of the paper.

2 Preliminaries and Notation

Let S be an arc-annotated string with arc set Ag. The length of S is the number
of bases in S and is denoted |S|. We will assume that our input strings P and
@ have the arcs (1,|P]) and (1,|Q]), respectively. If this is not the case we may
always add additional connected bases to the start and end of P and) without
affecting the solution or complexity of the problem. We do this only to ensure
that the nesting of the arcs form a tree (rather than a forest) which simplifies
the presentation of our algorithm.

The arc-annotated substring Sli1,i2], 1 < i1,i2 < |S|, is the string of bases
starting at i1 and ending at i5. The arc set associated with S[i1, 5] is the subset
of Ag of arcs with both endpoints in [i1,i2]. We define S[i1] = Sli1,41] and
Sli1,i2] = € (the empty string) if i; > is. Note the arc set of an arc-annotated
string of length < 1 is also empty. A split of S is a partition of S into two
substrings S[1,4] and S[i + 1, S]], for some i, 0 < ¢ < |S|. The split is an arc-
preserving split if no arcs in Ag cross i, i.e., all arcs either have both endpoints
in S[1,1] or S[i + 1,|S]]. We say that the index i induces a (arc-preserving) split
of S.

An embedding of P in @ is an injective function f : {1,...,m} — {1,...,n}
such that

1. for all j € {1,...,m}, P[j] = Q[f(4)]. (base match condition)

2. for all indices i jr € {1...,m}> (i) € Ap & (F(0), (1)) € Ag. (arc
match condition)

3. forall j € {1,...,m}, i <j < f(i) < f(j). (order condition)

If f(j) =i we say that j is matched to i in the embedding. From the definition
of arc-preserving subsequences we have that P C @ iff there is an embedding of
Pin Q.

3 The Dynamic Programming Recurrence

In this section we give our dynamic programming recurrence for the NAPS
problem. Essentially, the recursion expresses for any pair of substrings P’ and
Q' of P and Q, respectively, the longest prefix of P’ which is an arc-preserving
subsequence of @’ in terms of smaller substrings of P’ and Q’.

We show the following key properties of arc-preserving splits.

Lemma 1 (Splitting Lemma). Let P’ and Q' be arc-annotated substrings of
P and Q, respectively, and let (Q1,Q2) be any arc-preserving split of Q’.

(i) If P' C Q' then there exists an arc-preserving split (P1, Ps) of P' such that
Py C Q1 and P, C Q.

(ii) Let (Py, P2) be an arc-preserving split of P'. Then P C Q1 and P, C Qo =
PrCQ.

For 1 <j; <m,le€{1,2} and 1 < iy < iy < n define y(j1, Ja, i1, 42) to be the
largest integer k such that P[ji1, k] C Q[i1,42] and k induces an arc-preserving
split of P[j1, ja]. It follows that v(1,m,1,n) = m if and only if P C Q.

The Splitting Lemma gives us a very useful property of v: The requirement
that k induces an arc-preserving split of P[j,j2] in the definition of v implies
that if there exists an embedding f of P[k + 1, jo] in Qliz, 4] for some ¢ then
by the Splitting Lemma the embedding of P[j1, k| in Q[i1,i2] (which exists by
the definition of) can be extended with f to get an embedding of P[ji, j2] in
Q[i1, 7). This would not be true if we dropped the requirement that k& induces an
arc-preserving split of P[j1, j2]. Formally,

Corollary 1. Let i be an index inducing an arc-preserving split of Q[i1,is2].
Th’en; 7(j17j27i177;2) = A/(/Y(jlaj?aihi) + 17j27i + 17i2)'

Intuitively, the corollary says that to compute the largest prefix of P that can
be embedded in @) we can greedily match the bases and right endpoints of arcs
of P as much to the left in @) as possible. The dynamic programming recurrence
for v is as follows.

Base cases. v(j1, jo, 1, 2) is equal to

Ji—1 ifj1 > jo, 1)
1 if i1 = 42 and P[j1] = Q[i1] and

(J1,Jr) & Ap for all g, < ja, (2a)
jl -1 lf ’il = ’iz and (P[_h] 75 Q[h] or

(j1,J4r) € Ap for some j, < j2). (20)

Recursive cases. i1 < i2 and j1 < ja.

If (’i1, ZT) € AQ for all ir S iz then ’Y(jl,jg,’il, ZQ) is equal to

Y1 + 1, g2,41 + 1,42) if (ji,jr) € Ap for all jr < jo and P[j1] = Q[i1], (3)
v(j1, g2, 4 + 1, 42) if (j1,4r) € Ap for some j, < j2 or Plj1] # Q[i1], (4)

If (i1,ir) € Ag for some i, < i2, then v(j1, j2,11,%2) is equal to

V(ry(jhj?ail»i?‘)+17j27i7‘+17iz) (5)

Case 3 Case 4

P[] [P [[1] []
n J2) Ir J2
Case 5
Q [[l @ [[]
i in i1 Qo
Case 6 Cases 7 and 8 Q ﬁ:ﬂ
11 i 22
P[] [J P [1] []
3! 72 n Jr 72
Q [] [Q [1]

Fig. 2. The main cases from the recurrence relation. Case (3): Neither P or @Q starts
with an arc. Case (4): P starts with an arc, @ does not. Case (5): @ starts with an
arc not spanning Q). We split @ after the arc and compute ~ first in the first half and
then continue the computation in the other. Case (6): @ starts with an arc, P does
not. Case (7)-(8): Both P and @ starts with an arc.

If (i1,i2) € Ag then (41, j2,41,72) is equal to

max{7y(j1, j2, i1 + 1,42),
(1, J2y i1, iz — 1)} if (ji,4r) & Ap for all jr < ja, (6)
’y(jl,jg,il + 1,12) if (j1,jr) € Ap for some j, < ja, (7)
and P[j1] # Q[i1] or P[jr] # Q[i2],
max{¢,v(j1,j2,41 + 1,42)} if (j1,jr) € Ap for some j, < jo, (8)
Plj1] = Q[i1] and Pljr] = Q[iz],

where

_ jT‘ lf’}/(]1+17.77‘_177/1+17z2_1):]T_l
j1 — 1 otherwise.

The cases are visualized in Fig. 2.

The base cases (1) — (2) cover the cases where P[j1, jo] is the empty string
(j2 > j1) or Qli1,i2] is a single base (i1 = i2). Let k = v(j1, jo, 11,92). Case
(3) and (5) follows directly from Corollary 1. In case (4) and (7) the base Q[i1]
cannot be part of an embedding of P[j1, k] in Q[i1,i2] and thus v(j1, jo,i1,12) =
v(j1, J2, i1 + 1,42). In case (6) either Q[i1] or Q[éi2], but not both, can be part of
an embedding of P[j1, k] in Q[i1, 42]. Thus, v(j1, j2, %1, i2) = max{y(j1, ja, 1, t2—
1),v(Jj1, Jo, 41 + 1,42)}. Case (8) is the most complicated one. Both Q[i1, 2] and
Plj1,j2] starts with an arc and the bases of the arcs match. An embedding of
PJj1, k] into Q[i1, 2] either (i) matches the two arcs, (ii) matches the arc (j1, ji)
and the rest of P[j1, k] in Q[i1+1, 2] or (iii) matches nothing (k = j1 —1). In case
(ii) v(41, Jo, i1, 42) = ¥(J1, j2, %1 + 1,i2). Case (i) requires that P[j; + 1,7, — 1] C
Qi1 +1,i2 — 1]. We express this in the recurrence by using an auxiliary function
¢ which is j, if v(j1 + 1,4, — 1,41 +1,i2 — 1) = 4. — 1 and j; — 1 otherwise, since

in the last case the arc (ji,j,) cannot be matched to the arc (i1,42). Since we
want the largest match we take the maximum of the two cases (i) and (ii) (case
(iii) is covered by these two).

In the next sections we show how to transform the recurrence into a space
efficient algorithm for NAPS.

4 The Algorithm

We now present an algorithm to solve NAPS in O(nm) time and O(mlog |Ag|+
n) space. In the next section we show how to further reduce the space to O(n+m)
to get Theorem 1. The result relies on a well-known path decomposition for
trees applied to arc-annotated strings combined with a new idea to organize the
dynamic programming recurrence computation.

Heavy-Path Decomposition of Arc-Annotated Sequences Let S be a nested arc-
annotated string containing the arc (1,]S]) (recall that we assume that both P
and @ have this arc). The arcs in Ag induce a rooted and ordered tree T rooted
at the arc (1,|S]) as shown in Fig. 1(b). We use standard tree terminology for
the relationship between arcs in Tg. Let (i;,i,) be an arc in Ag. The depth of
(i1,4,) is the number of edges on the path from (i,4,) to the root in Tg. An
arc with no children is a leaf arc and otherwise an internal arc. Define Ts(i;, i)
to be the subtree of Ts rooted at (i,4,) and let size(i;,i,) be the number of
arcs in T(iz,4,). Note that size(1,|S|) = |Ag|. If (i],4.) is an arc in Ts (i, ir)
then (i, ,) is an ancestor of (i},4,.) and if also (i},4,.) # (i1,4,) then (i, 4,) is a
proper ancestor of (i),1,). If (i,4,) is a (proper) ancestor of (i,4,.) then (i],1,.)
is a (proper) descendant of (i,).

As in [11] we partition T into disjoint paths. We classify each arc as either
heavy or light. The root is light. For each internal arc (i;,4,) we pick a child
(il',i") of maximum size and classify it as heavy. The remaining children are
light. An edge to a light child is a light edge and an edge to a heavy child is a
heavy edge. Let lightdepth(i;, i,.) denote the number of light edges on the path
from (i, i,) to the root of Ts. We use the following well-known bound for trees

restated for nested arc-annotated sequences.

Lemma 2 (Harel and Tarjan [11]). Let S be a nested arc-annotated string
containing the arc (1,]S|). For any arc (i1,4,) € Ag, lightdepth (i, i,) < log|Ag|+
O(1).

Removing the light edges we partition Ts into heavy paths.

Manipulating I Sequences For positions i1 and is in @, 71 < io, define the I”
sequence for 71 and iy as

F(ilviQ) = ’Y(mvmvilalé)v’y(m - 1amai1»1’2)7 s 77(17m7i1ai2)'

Thus, I'(i1,12) is the sequence of endpoints of the longest prefixes of each suffix of
P that is an arc-preserving subsequence of Q[i1, i2]. We can efficiently manipulate
I sequences as suggested by the following lemma.

Extend Combine Meld

Fig. 3. The extend, combine, and meld operations, respectively. For each operation the
substring range(s) below the string indicate the endpoints of the input I" sequence(s)
needed in the operation to compute the I" sequence for the entire string.

Lemma 3. For any positions i1 and iz in Q, i1 < ia, we can compute in O(m)
time

(i) I'(ia,is).

(i1) I'(i1,i2) from I'(i1 + 1,12) if (i1,%,) & Ag for any i, < is.
(i11) I'(i1,i2) from I'(i1,4,) and I'(iy + 1,42) if (i1,4,) € Ag for some i, < is.
(z'v) F(il,ig) from F(il,ig—l), F(i1+1,i2), and F(i1+1,i2—1) if(il,ig) € AQ.

Proof. All the cases follow directly from the dynamic programming recurrence.
Case (i) follows from case (2) of the recurrence, Case (ii) from case (3) and (4)
of the recurrence, Case (iii) from case (5) of the recurrence and Case (iv) from
case (6)—(8) of the recurrence. O

We will use each of 4 cases in Lemma 3 as primitive operations in our algorithm
and we refer to (i), (ii), (iii), and (iv) as an initialize, an extend, a combine, and
a meld operation, respectively. Fig. 3 illustrates the extend, combine, and meld
operations. An extend operation from I'(iy + k,i2) to I'(i1,i2), for some k > 1,
is defined to be the sequence of k extend operations needed to compute I'(i1,i2)
from I'(iy + k,i2).

The Algorithm We now present our main algorithm. Initially, we construct T
with a heavy path decomposition in O(n) time and space. Then, we recursively
compute I" sequences for each arc (i, i,) € Ag in a top-down traversal of T. The
I" sequence for the root contains the value v(1,m,1,n) and hence this suffices
to solve NAPS. At an arc (i;,4,) € Ag in the traversal there are two cases to
consider:

Case 1: (ig,ir) is a leaf arc. We compute I'(ij,,) as follows.

1. Initialize I"(iy,i,) and I'(i, — 1,4, — 1).

2. Extend I'(iy,i,) and ['(iy — 1,3, — 1) to get T'(iy + 1,4,), T'(iz,ir — 1), and
Ty + iy — 1).

3. Meld I'(iy + 1,i,), [(ir, iy — 1), and I'(i + 1,4, — 1) to get I'(iz,).

Case 2: (i1,i,) is an internal arc. Let (i},i}),...,(i;,i5) be the childen arcs
of (if,4,) in left-to-right order. To simplify the algorithm we set i0 = i;. We
compute I'(i,1,) as follows.

— — = — =
(a) (b) ()

I — I — 01 — I
— i o]

Fig. 4. Snapshot of the I' sequences computed at an internal arc. The ranges below
the arc-annotated sequences represent I" sequence endpoints. (a) After the recursive
call to the heavy child in line 1. (b) After the extend operations in line 3. (c) After the
recursive call in line 4(a) (d) After the combine operations in line 4(b). (e) Before the
meld operation in line 6. (f) After the meld operation.

h
r

), where (i, ih

1. Recursively compute Ry, := I'(i}', i
(i1, ir).
2. Initialize I'(iy,1,) and I'(i, — 1,4, — 1).
Extend I'(iy,i,) and I'(i, — 1,4, — 1) to get I'(i +1,4,) and (i +1,7, — 1).
4. For k := s down to 1 do:
(a) If k # h recursively compute Ry, := I'(iF,iF).
(b) Combine Ry, with I'(é¥ +1,4,) and with I'(i¥ + 1,4, — 1) to get I'(i¥,i,)
and I'(i¥ i, —1).
(c) Extend I'(if,i,) and I'(i¥ i, — 1) to get I'(i*~ + 1,4,) and I'(i*~1 +
i, —1).
5. Extend I'(i; + 1,4, — 1) to get I'(iy, i, — 1).
6. Meld I'(i; + 1,4,.), I'(i,4» — 1), and I'(i; + 1,4, — 1) to get I'(4y,4,).

) is the heavy child arc of

@

The computation in case 2 is illustrated in Fig. 4. Note that when k = 1 in the
loop in line 4, line 4(c) computes I'(i%+1,4,.) = I'(i;+1,i,) and I'(i0+1,4,—1) =
I'(iy + 1,4 — 1). In both cases above the algorithm computes several local I'
sequences of the form I'(7,4,) and I'(¢,4, — 1), for some ¢ < ¢,.. These sequences
are computed in order of decreasing values of ¢ and each sequence only depends
on the previous one and recursively computed I" sequences. Hence, we only need
to store a constant number of local sequences during the computation at (i, i,.).

Analysis We first consider the time complexity of the algorithm. To do so we
bound the total number of primitive operations. For each arc in Ag there is
1 initialize and 1 meld operation and for each internal arc there is 1 combine
operation. Hence, the total number of initialize, meld, and combine operations
is O(|Ag|). To count the number of extend operations we first define for any arc
(t1,4r) € Ag the set spaces(i;,i,) as the set of positions inside (4;,¢,) but not
inside any child arc of (¢, 1,), that is,

spaces(iy, iy) = {i | i; < i < i, but not iy <i <i¥ for any child (if,4¥) of (i;,4,)}.

For example, spaces(1,11) for @ in Fig. 1(a) is {1,2,11}. The spaces sets for all
arcs is a partition of the positions in @ and thus Z(i“meAQ spaces(ig, i) = n.
At an arc (i, 4,) the algorithm performs O(spaces(i, i,)) extend operations and
hence the total number of extend operations is O(n). By Lemma 3 each primitive
operation takes O(m) time and therefore the total running time of the algorithm
is O(|Ag|m + nm) = O(nm).

For the space complexity we bound the number of I" sequences stored by the
algorithm. When the algorithm visits an arc (i;,,) we are currently processing
a nested sequence of recursive calls corresponding to a path p in Ty from the
root to (i, 4,). The number of I' sequences stored at each of these recursive calls
is the total number of I" sequences stored. Consider an edge e in p from a parent
(i7,4,.) to a child (¢/,4!). If e is heavy the recursive call to (i/,4) is done in
line 1 of case 2 in the algorithm immediately at the start of the visit to (i}, 1).).
Therefore, no I' sequence at (i,4,.) is stored. If e is light the recursive call to

s
(4),4!) is done in line 4(a). The algorithm stores at most 3 I" sequences, namely

(i +1,i), T(i"” +1,i.—1), and I'(i!’ i""), where (i, i"") is the heavy child of
(i},4,.). By Lemma 2 there are at most log|Ag| + O(1) light ancestors of (i, i,)
in T and therefore the total space for stored I" sequences is O(mlog|Ag|). The

additional space used by the algorithm is O(n). We have,

Lemma 4. Given nested arc-annotated strings P and @ of lengths m and n,
respectively, we can solve the nested arc-preserving subsequence problem in time
O(nm) and space O(mlog|Ag| +n).

5 Squeezing into Linear Space

We now show how to compress I sequence into a compact representation using
O(m) bits. Plugging the new representation into our algorithm the total space
becomes O(n + m) as desired for Theorem 1.

Our compression scheme for I" sequences relies on the following key property
of the values of ~.

Lemma 5. For any integers ji,j2,%1,%2, 1 < j1 < joa <m, 1 <i3 <9 < n,
J1 =1 <90, g2, i1,02) < (1 + 1, j2,41,42) <m

Proof. Adding another base in front of the substring P[j; 41, j2] cannot increase
the endpoint of an embedding of P[j; +1, j] in Q and therefore y(j1, jo, i1, 2) <
(4141, j2, 41, i2). Furthermore, for any substring P[j1, j2] we can embed at most
j1 — jo bases and at least 0 bases in) implying the remaining inequalities. 0O

Let 41,42 be indices in @) such that 71 < iy and consider the sequence
F(ila 22) = ’y(mvmvihiZ)u e 77(1u mui17i2> = TYmy---5 71

By Lemma 5 we have that ~,,,...,71 is a non-increasing and non-negative se-
quence where 7, is either m or m — 1. We encode the sequence efficiently using

two bit strings V and U defined as follows. The string V is formed by the con-
catenation of m bit strings s,,,...,s1, that is, V = s, - s;p—1 - s1, where -
denotes concatenation. The string s, is the single bit s,, = m — v, and sy,
1 <k < m, is given by

0 if Ypp1 = =0
Sk = 1---1 if’7k+1*’}/k>0

Vk+1—"7k times

Let Dy denote the sum of bits in string s, ---sg. We have that m — D,,, =
m — Sy = 7Ym and inductively m — Dy = 7,. The string U is the bit string
of length |V| consisting of a 1 in each position where a substring in V ends.
Given V and U we can therefore uniquely recover v,,,...,v1. Since vy, ..., 71
can decrease by at most m + 1 the total number of 1s in V is at most m + 1.
The total number of Os is at most m and therefore |V| < 2m + 1. Hence, our
representation uses O(m) bits. We can compress v, ...,71 into V and U in a
single scan in O(m) time. Reversing the process we can also decompress in O(m)
time. Hence, we have the following result.

Lemma 6. We represent any I' sequence using O(m) bits. Compression and
decompression takes O(m) time.

We modify our algorithm from Section 4 to take advantage of Lemma 6. Let
(i1,97) be an internal arc in Ag. Immediately before a recursive call to a light
child (iF,4*) of (i;,i,) we compress the at most 3 I' sequences maintained at
(1,4), namely I'(il',i"), where (i, i?) is the heavy child, I'(i*+1,4,), and I'(i*+
1,7, — 1)). Immediately after returning from the recursive call we decompress
the sequences again.

The total number of compressions and decompressions is O(n). Hence, by
Lemma 6 the additional time used is O(nm) and therefore the total running
time of the algorithm remains O(nm). The space for storing the O(log |[Ag|) I’
sequences becomes O(mlog|Ag|) = O(mlogn) bits. Hence, the total space is

O(n + m). In conclusion, we have shown Theorem 1.

Awvoiding Decompression The above algorithm requires O(n) decompressions.
We briefly describe how one can these by augmenting the representation of I’
sequences slightly. A rank/select index for a bit string B supports the opera-
tions RANK(B, k) that returns the number of 1 in B[1, k] and SELECT(B, k) that
returns the position of the kth 1 in S. We can construct a rank/select index
in O(|B]) time that uses o(|B|) bits and supports both operations in constant
time [15]. We add a rank/select index to the bit strings V' and U in our com-
pressed representation. Since these use o(m) bits this does not affect the space
complexity. Let 7v,,,...,71 be a I' sequence compressed into bit strings V' and
U augmented with a rank/select index. For any k, 1 < k < m we can compute
the element 7, in constant time as

m — RANK(V, SELECT(U,m + 1 — k))

To see the correctness, first note that SELECT(U, m + 1 — k) is end position of
the m + 1 — kth substring in V. Therefore, RANK(V, SELECT(U, m + 1 — k)) is
the sum of the bits in the first m + 1 — k substrings of V. This is Dy and since
vx = m — Dy the computation returns 7. In summary, we have the following
result.

Lemma 7. We can represent any I' sequence in O(m) bits while allowing con-
stant time access to any element.

The algorithm now only needs to compress I' sequences once. Whenever, we
need an element of a compressed I' sequence we extract it in constant time as
above. Hence, the asymptotic complexities of the algorithm remains the same.

References

1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of two
sequences with nested arc annotations. Theor. Comput. Sci., 312(2-3):337-358,
2004.

2. R. Backofen, G. M. Landau, M. Mohl, D. Tsur, and O. Weimann. Fast RNA
structure alignment for crossing input structures. In Proc. 20th CPM, 2009.

3. V. Bafna, S. Muthukrishnan, and R. Ravi. Computing similarity between RNA
strings. In Proc. 6th CPM, LNCS, volume 937, pages 1-16, 1995.

4. P. Bille and I. L. Ggrtz. The tree inclusion problem: In optimal space and faster.
In Proc. 32nd ICALP, LNCS, volume 3580, pages 66—77, 2005.

5. G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What makes the ARC-PRESERVING
SUBSEQUENCE PROBLEM hard? In Proc. 5th ICCS, pages 860—-868, 2005.

6. G. Blin and H. Touzet. How to compare arc-annotated sequences: The alignment
hierarchy. In Proc. 13th SPIRE, LNCS, pages 291-303, 2006.

7. W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms, 26:370—
385, 1998.

8. P. Damaschke. A remark on the subsequence problem for arc-annotated sequences
with pairwise nested arcs. Inf. Process. Lett., 100(2):64-68, 2006.

9. P. Evans. Algorithms and Complezity for Annotated Sequence Analysis. PhD thesis,
University of Victoria, 1999.

10. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated se-
quences. ACM Trans. Algorithms, 2(1):44-65, 2006. Announced at FSTTCS 2002.

11. D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM J. Comput., 13(2):338-355, 1984.

12. T. Kida. Faster pattern matching algorithm for arc-annotated sequences. In Fed-
eration over the Web, LNCS, volume 3847, pages 25-39, 2006.

13. P. Kilpeldinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J.
Comput., 24:340-356, 1995.

14. G. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence prob-
lem for sequences with nested arc annotations. J. Comput. Syst. Sci., 65(3):465—
480, 2002.

15. I. Munro. Tables. In Proc. 16th FSTTCS, LNCS, volume 1180, pages 3742, 1996.

16. S. Vialette. On the computational complexity of 2-interval pattern matching prob-
lems. Theor. Comput. Sci., 312(2-3):223-249, 2004. Announced at CPM 2002.

