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Preface

Two areas of functional analysis which have been the subject of extensive study
are operator theory and ordered vector spaces. While these have developed into
flourishing independent areas, each with their own experts, it is the author’s
impression that the theories have a bit more in common than the literature
might suggest. The goal of this thesis is therefore to exhibit connections between
the general theories of C∗-algebras and ordered vector spaces.

Coming into this project, I was already familiar with the theory of C∗-
algebras, but I had little experience with ordered vector spaces. Therefore most
of the theory is motivated from the C∗-algebra point of view. The thesis is built
up in two parts. In the first part, we take ideas and concepts from the theory of
C∗-algebras to ordered vector spaces, leading to concepts such as order ideals,
order semisimplicity, and order unitisations. Conversely, in the second part we
ask questions about the order structure of C∗-algebras, with an emphasis on
the lattice-like structure of a C∗-algebra. Detailed outlines of each of these
parts are given below.

This thesis is written with a reader in mind having roughly the same back-
ground as I had coming into this project. As such, we assume familiarity with
graduate level functional analysis and operator theory, as for instance provided
by the Dutch MasterMath courses Functional Analysis and Operator Algebras.

Concretely, the first part relies heavily on notions such as topological vector
spaces, locally convex spaces, the Hahn–Banach theorems, weak and weak-∗
topologies, and the Krein–Milman theorem.

Most of the second part only requires familiarity with the basic theory of
bounded linear operators on a Hilbert space, and the notion of a C∗-algebra.
Only in Chapter 8 do we use slightly more advanced concepts from the theory of
C∗-algebras, such as irreducible representations, the strong operator topology,
and Kaplansky’s density theorem.

Note that prior knowledge of partially ordered vector spaces is not assumed.
The reason for this is purely circumstantial: no courses on this subject are
taught at the author’s university (or elsewhere in the Netherlands) at the time
of writing. We cannot aim to give a full overview of the theory; the interested
reader is encouraged to consult [AT07].

Overview of the first part

The first part of this thesis aims to build up part of the theory of ordered vector
spaces in a way that most closely resembles the theory of C∗-algebras. We intro-
duce concepts of order ideals, order semisimple spaces, and order unitisations,
each of these being analogous to its algebraic counterpart for Banach algebras.
Apart from that, a technical obstacle has to be overcome: the classical theory
of ordered vector spaces deals exclusively with real vector spaces, whereas the
theory of Banach algebras is by far more successful in the complex setting. To
overcome this, we develop a theory of complex ordered vector spaces parallel
to the real theory. However, we end up proving most of the results for real
ordered vector spaces only, and merely listing modifications to be made in the
complex case at the end of the corresponding chapter.

v



vi Preface

[AT07] has been our main reference for the theory of ordered vector spaces.
It provides a comprehensive overview of the general theory, and indeed goes
much further than we do. However, the authors are motivated by questions
from economics and econometrics, and the book is therefore written for a rela-
tively broad audience. As a result, some (if not most) of the connections with
other areas of mathematics are lost, or at least not pointed out very clearly.
This is unfortunate, as it makes learning the ideas and techniques unnecessar-
ily difficult for students and mathematicians already familiar with functional
analysis and C∗-algebras. The first part of this thesis aims to complement the
treatment in [AT07]. Roughly speaking, the algebraic approach is developed
here, and the geometric intuition and more advanced results can be obtained
from [AT07].

Chapter 1 contains an introduction to the basic theory of ordered vector
spaces. We treat concepts such as real and complex ordered vector spaces, pos-
itive linear maps, generating cones, the Archimedean property, full sets, and
order units. There is nothing new here, except that the theory of complex
ordered vector spaces is non-standard. We mostly follow notation and termi-
nology from [AT07].

Chapter 2 deals with the question of representing an ordered vector space
as a space of functions. This is done by defining the order radical of an ordered
space, which leads to a notion of order semisimple spaces. An important tool
is wedge duality and the bipolar theorem, introduced in Section 2.5. The main
result of this section is Theorem 2.28, showing that a topological ordered vector
space V whose (topological) dual V ∗ separates points is topologically order
semisimple if and only if the weak closure of V + is a cone (as opposed to a
wedge). Finally, towards the end of the chapter we briefly consider the question
of representing an ordered vector space as a space of continuous functions on
a compact Hausdorff space.

In Chapter 3, we attempt to find ways of adjoining an order unit to an
ordered vector space, analogously to the algebraic unitisation of a (Banach)
algebra without unit. After briefly considering a failed construction for general
spaces, we study an Archimedean order unitisation for normed, topologically
order semisimple spaces in Section 3.2. The remainder of the chapter is devoted
to studying the properties of this order unitisation Ṽ . One of the main results,
proved in Section 3.5, is that any continuous positive linear map V →W to an
Archimedean space with an order unit can be extended to a continuous positive
linear map Ṽ →W .

Finally, Chapter 4 contains an assortment of interesting examples and coun-
terexamples regarding the theory from the first three chapters. Some of the
longer examples have been moved here so as not to interrupt the general flow
of ideas in the main text. Additionally, in Section 4.5 we briefly compare the
algebraic and order structure of C0(Ω) spaces (Ω locally compact Hausdorff).

The general approach from this first part of the thesis is considered new,
even if large parts of the theory are not particularly ground-breaking. Some
of the results are also considered to be original; in particular, concepts such
as (topological) order semisimplicity and order unitisations do not seem to be
covered in the literature.
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Overview of the second part

The main objective of the second part is to study the lattice-like structure of
C∗-algebras. It is well-known that every commutative C∗-algebra is isometri-
cally ∗-isomorphic to some C0(Ω) space (Ω locally compact Hausdorff), so in
particular it is lattice-ordered. This leads one to ask whether non-commutative
C∗-algebras are also lattice-ordered.

In this setting, we prove two classical theorems. The first is Kadison’s anti-
lattice theorem, which states that two self-adjoint operators on a Hilbert space
have a supremum (of infimum) if and only if they were comparable to begin
with (in that case the larger of the two clearly is the supremum). The second
main result is Sherman’s theorem, stating that a lattice-ordered C∗-algebra
must necessarily be commutative.

In Chapter 5 we show how to use the Gelfand representation to define a
quasi-supremum (and a quasi-infimum) for every pair of self-adjoint operators
in a C∗-algebra. We show that it is an upper (resp. lower) bound for a and
b, and we show that ∗-homomorphisms preserve the quasi-lattice operations.
Furthermore, it is shown that the quasi-supremum of two trace-class operators
has a special property: it is the unique upper bound of minimal trace.

Chapter 6 aims to prove Kadison’s anti-lattice theorem. Unlike standard
proofs in the literature, the proof does not rely so much on techniques from the
theory of operator algebras, and instead stays much closer to the geometry of
the underlying Hilbert space. Furthermore, our proof does not depend on the
full-blown spectral theorem, and as such constitutes an “elementary” proof.

The study of the anti-lattice theorem is continued in Chapter 7, where we
provide a geometric interpretation of a large class of minimal upper bounds.
We show that the anti-lattice theorem follows from a simple statement about
decompositions of the Hilbert space H into a “positive” and a “negative” part
for a − b. The main results in this chapter are the correspondence between
(certain) minimal upper bounds and subspace decompositions (Theorem 7.17),
and a strengthening of the anti-lattice theorem showing that the set of mini-
mal upper bounds for a pair of incomparable self-adjoint operators is in fact
unbounded in norm (Theorem 7.23).

In Chapter 8 we prove Sherman’s theorem as a corollary to the anti-lattice
theorem. This is done via representation theory of C∗-algebras.

Finally, in Appendix A we treat the theory of complementary subspaces
of a Hilbert space. The results play an important role in Chapter 7, but are
not needed in any of the other chapters. The main result of this appendix is
Corollary A.10, stating that the sum V +W of two closed subspaces V,W ⊆ H
is closed if and only if V ⊥ +W⊥ is closed.

The general approach taken here is new: the main theorems are presented
as part of a single theory, and Sherman’s theorem is deduced from the anti-
lattice theorem via representation theory. Furthermore, both the elementary
proof (Chapter 6) and the subsequent geometric interpretation (Chapter 7) of
Kadison’s anti-lattice theorem are believed to be new.

A similarly coherent study of various commutativity theorems is given in
[Top65], but the method of proof is completely different. (In particular, the
paper does not deal with Kadison’s anti-lattice theorem at all.)
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Notation and terminology

The set N is assumed to contain 0. The set of all (strictly) positive integers will
be denoted by N+ instead.

All vector spaces are over the ground field F, which is either R or C. An
algebra over the field F is an F-vector space A together with an associative
bilinear multiplication map A×A→ A, (a, b) 7→ ab. (In other words, algebras
are assumed to be associative, but not necessarily unital or commutative.)
Regarding Banach and C∗-algebras, we follow terminology from [Mur90].

Inner products (and more generally sesquilinear maps) are assumed to be
linear in the first coordinate and conjugate-linear in the second.

Regarding function spaces (e.g. C(Ω), C0(Ω), Cb(Ω), Cc(Ω), L p(µ), Lp(µ))
and sequence spaces (e.g. `p, c, c0, c00), we follow notation from [Con07].

We shall have no philosophical objections to the axiom of choice (indeed,
large parts of linear algebra and functional analysis collapse without it), so in
particular its use is often not mentioned explicitly. We leave it to the interested
expert to figure out which theorems do and do not require choice.

Small numbers in superscript refer to end notes (as opposed to footnotes).
The end notes for each chapter are collected at the end of the chapter.
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of ordered vector spaces
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1 Ordered vector spaces

This chapter is a brief introduction to the basic concepts from the theory
of ordered vector spaces. We mostly use terminology from [AT07], with the
notable exception that we build a theory of complex ordered vector spaces
parallel to the real theory.

The interested reader is encouraged to consult [AT07] for further reading,
as it paints a clear geometric picture of cones in real vector spaces (contrasting
– and complementing – our more algebraic approach).

1.1 Cones in real vector spaces

Definition 1.1. Let V be a real vector space. A non-empty subset W ⊆ V is
said to be a wedge if it satisfies the following properties:

1. If x, y ∈W , then x+ y ∈W ;

2. If x ∈W and α ∈ R≥0, then αx ∈W .

Furthermore, a wedge W ⊆ V is said to be a cone if it also satisfies the following
additional property:

3. W ∩ −W = {0}.

A word of warning: in other areas of mathematics (such as convex geometry),
what we call wedges and cones are sometimes called cones and pointed cones,
respectively. In keeping with [AT07], we shall make no use of this alternate
terminology.

Note that wedges and cones are convex sets. Furthermore, the intersection
of a non-empty family of wedges in V is again a wedge in V . Since every subset
S ⊆ V is contained in a wedge (namely in V ), it follows that there is a smallest
wedge WS containing S, called the wedge generated by S. Concretely, WS is
the non-negative linear span of S.

There is no such thing as the cone generated by S. One should consider the
wedge generated by S and check whether or not it is a cone.1

Definition 1.2. An pre-ordered vector space is a real vector space V equipped
with a pre-order ≤ satisfying the following properties:

1. If x ≤ y, then x+ z ≤ y + z for all z ∈ V ;

2. If x ≤ y, then αx ≤ αy for all α ∈ R≥0.

If ≤ is a partial order, then V is called an ordered vector space.

If (V,≤) is a pre-ordered vector space, then V + := {x ∈ V : 0 ≤ x} is
a wedge. Conversely, if S ⊆ V is a wedge, then we can define a pre-order ≤
on V by letting x ≤ y if and only if y − x ∈ S. These constructions define
a bijective correspondence between vector space pre-orders and wedges on V .
Furthermore, under this correspondence, the pre-order ≤ is a partial order if
and only if V + is a cone.

In light of the correspondence between vector space orders and positive
cones, we will usually think of an ordered vector space (V,≤) as the vector
space V equipped with the positive cone V +.

3



4 1. Ordered vector spaces

1.2 Cones in complex vector spaces

Most of the literature on ordered vector spaces only deals with cones in real
vector spaces. Of course, a complex vector space can be seen as a real vector
space via restriction of scalars, so we already have a concept of cones in complex
vector spaces. However, in most situations it is undesirable to dispose of the
complex structure altogether. Instead, we shall restrict our attention to spaces
carrying a complex conjugation, as defined below.

Definition 1.3. Let V be a complex vector space. A complex conjugation on
V is a conjugate-linear involution f : V → V . In other words, for all x, y ∈ V
and λ, µ ∈ C we have f(f(x)) = x and f(λx+ µy) = λf(x) + µf(y).

A complex conjugation f is usually written ¯ : V → V , and the conjugate
of an element x ∈ V is written as x.

We say that an element x ∈ V is real or self-conjugate if x = x holds.
The subset consisting of all real elements of V is denoted Re(V ). It is a real
subspace of V , but not a complex one. Every x ∈ V can be uniquely written as
x = y+ iz with y, z ∈ Re(V ); these y and z are given by y = Re(x) := 1

2 (x+x)
and z = Im(x) := 1

2i (x− x).
A subset S ⊆ V is called real if S ⊆ Re(V ) holds, and self-conjugate if

S = S holds. (Note that these two terms are no longer synonymous here.)

Example 1.4. If V is a space of complex functions (e.g. Cn, `∞(S), C(Ω),
L p(Ω,A , µ), etcetera), then the pointwise conjugation map ¯ : f 7→ f defines
a complex conjugation on V . �

Example 1.5. If V is a ∗-algebra, then ∗ is a complex conjugation. Note that
not every complex conjugation on an algebra turns it into a ∗-algebra; for this
it is also required that (ab)∗ = b∗a∗ holds for all a, b ∈ V . �

Example 1.6. The algebra Mn(C) of n × n complex matrices carries two
competing complex conjugations. On the one hand, there is the entry-wise
conjugation ¯ : Mn(C) → Mn(C). It is a ring homomorphism (ab = a b), and
the real part with respect to this conjugation is Mn(R). On the other hand,
there is the C∗-conjugation, taking a to its conjugate transpose a∗. This is
an antihomomorphism ((ab)∗ = b∗a∗), and the real part with respect to this
conjugation is the (real) space of complex self-adjoint n× n matrices. �

Definition 1.7. A complex ordered vector space is a complex vector space V
equipped with a complex conjugation ¯ : V → V and a cone V + ⊆ Re(V ).
While V + also defines a cone in the larger space V , we restrict the notation
a ≤ b to the case where a and b are real. (After all, in the one-dimensional case
we wouldn’t say that i+ 1

2 is larger than i− 1
2 , even though their difference is

a positive real number.)
Since most (if not all) order theory takes place in Re(V ), much of the theory

of real ordered vector spaces can be extended to the complex setting with minor
adjustments. We formulate a few results simultaneously for real and complex
ordered vector spaces; in this case the notation Re(V ) is understood to mean
all of V if the ground field is R.

As mentioned, there is no universally accepted notion of complex ordered
vector spaces in the literature. If we wanted to stay a little closer to terminology
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from operator theory, we could have called spaces like this ∗-ordered spaces,
analogously to Banach ∗-algebras, so that the term complex (pre)-ordered space
could be used for any complex vector space equipped with a cone (or wedge).
However, most interesting examples are of the form defined above, so we will
stick to the chosen terminology. Furthermore, in Remark 2.48 we will see a
compelling reason not to broaden our definition.

Typical examples of complex ordered vector spaces are complex function
spaces (Example 1.4) and C∗-algebras. More generally, if X is a unital Banach
∗-algebra, then it can be shown that the closed wedge generated by all elements
of the form a∗a is a cone if and only if X is ∗-semisimple; see for instance [KV53,
remarks on page 51]. This wedge plays a role for instance in abstract harmonic
analysis (cf. [Fol15, Section 3.3]).

1.3 Positive linear maps

Definition 1.8. Let V,W be ordered vector spaces over the same ground field
F ∈ {R,C}. A linear map f : V →W is called positive if v ≥ 0 implies f(v) ≥ 0.
Similarly, f is called bipositive if one has f(v) ≥ 0 if and only if v ≥ 0. Note that
a linear map is bipositive if and only if V + is the inverse image of W+. Note
furthermore that a bipositive map is automatically injective: for x ∈ ker(f) we
have f(x), f(−x) ≥ 0, hence x,−x ≥ 0, from which it follows that x = 0 holds.

Over the ground field R, an order isomorphism is an invertible linear map
f : V → W such that both f and f−1 are positive. It is clear that the order
isomorphisms are precisely the surjective bipositive maps. More generally, a
bipositive map can be thought of as being an order embedding.

Definition 1.9. Let V be a real or complex ordered vector space, and let V ′
denote its algebraic dual. Then the dual wedge of V is the subset (V +)′ ⊆ V ′

consisting of all positive linear functionals V → F. (If the ground field is C,
then we understand it to be equipped with its standard complex conjugation
and the cone R≥0 ⊆ Re(C) = R.)

While these definitions suffice for the real case, a little more needs to be
said about the complex case.

Definition 1.10. Let V and W be complex vector spaces each equipped with
a complex conjugation, and let L(V,W ) denote the space of all linear maps
V → W . The induced conjugation on L(V,W ) is the map that sends a linear
map f : V → W to the linear map f : V → W given by v 7→ f(v). This is
easily seen to be a well-defined complex conjugation.

The self-conjugate2 elements with respect to the induced conjugation are
precisely the linear maps which preserve conjugation, or equivalently, those
that map real elements to real elements (and imaginary to imaginary).

We say that an order isomorphism of complex ordered vector spaces is a
self-conjugate linear isomorphism f : V → W such that both f and f−1 are
positive, or equivalently, a self-conjugate surjective bipositive map.

Remark 1.11. Note: if we have V = W , so that L(V,W ) is an algebra, then
the induced conjugation does not turn L(V,W ) into a ∗-algebra: it is a ring
homomorphism (ab = a b) rather than an anti-homomorphism ((ab)∗ = b∗a∗).
See also Example 1.6.
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Remark 1.12. If f : V →W is a positive linear map between complex ordered
vector spaces, then it need not be self-conjugate. (For instance, any linear map
(C, {0})→ (C,R≥0) is positive). In general, a linear map f : V →W is positive
if and only if Re(f) is positive and V + ⊆ ker(Im(f)) holds.

Note in particular that the dual wedge (V +)′ is not generally contained
in Re(V ′), so it falls outside our very strict notion of complex (pre-)ordered
spaces. However, if (V +)′ is a cone, then it is contained in Re(V ′). Indeed, if
f : V → C is positive, then Im(f) sends everything in V + to zero, so both
Im(f) and − Im(f) define positive linear functionals. But then we must have
Im(f) = 0, since (V +)′ is a cone, so we conclude that f = Re(f) is self-
conjugate. It follows that the induced conjugation and the dual cone turn V ′

into a complex ordered vector space in this setting.

1.4 Generating cones

Definition 1.13. Let V be a real or complex ordered vector space. The cone
V + is said to be generating if V = span(V +) holds. In this case every v ∈ Re(V )
can be written as v = a− b with a, b ∈ V +. (Note that this is expression is far
from being unique: for any c ∈ V + we also have v = (a+ c)− (b+ c).)

If the ground field is C, then any given v ∈ V can be written as v = x+ iy
with x, y ∈ Re(V ). Consequently, if V + is generating, then v can be written as
v = a− b+ ic− id with a, b, c, d ∈ V +.

In the literature, sometimes the word directed is used to indicate generating
cones. This is because a cone V + is generating if and only if its corresponding
partial order on Re(V ) is directed in the order-theoretic sense (every pair of
elements has an upper bound).

1.5 The Archimedean property

Definition 1.14 ([AT07, Definition 1.10 & Lemma 1.11]). A real or complex
ordered vector space (V, V +) is said to be Archimedean3 if it satisfies any one
(and therefore all) of the following equivalent criteria:

(1) If x ∈ Re(V ), y ∈ V + satisfy nx ≤ y for all n ∈ N+, then one has x ≤ 0.

(2) If x, y ∈ Re(V ) satisfy nx ≤ y for all n ∈ N+, then one has x ≤ 0.

In certain cases the Archimedean property is related to topological properties
of the cone. To that end, let us say that an ordered topological vector space
is a space V which is at the same time an ordered vector space and a topo-
logical vector space, in such a way that, if the ground field is C, the complex
conjugation ¯ : V → V is continuous. Note that we do not require any kind of
compatibility between the positive cone and the topology.

Proposition 1.15 ([AT07, Lemma 2.3]). If W is a closed cone in a topological
vector space (V, τ), then τ is Hausdorff and W is Archimedean.

Proof. We have {0} = W ∩ (−W ), so {0} is closed. Therefore τ is Hausdorff.
Suppose that x, y ∈ Re(V ) satisfy nx ≤ y for all n ∈ N+. Slightly rewriting

this yields 1
ny − x ≥ 0 for all n ∈ N+. Now let n go to infinity; since W is

closed, we find −x ≥ 0. This shows that W is Archimedean. �
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In keeping with much of the functional analysis literature, we will henceforth
assume that all topological vector spaces are Hausdorff. In this setting we have
the following partial converse of Proposition 1.15.

Proposition 1.16 ([AT07, Lemma 2.4]). If (V, τ) is a (Hausdorff) topological
vector space over the reals and W ⊆ V is an Archimedean cone with non-empty
interior, then W is closed.

In general, not every Archimedean cone is closed; see examples 4.1 and
4.10. Things are easier in the finite-dimensional case: there is only one vector
space topology on V (cf. [Rud91, Theorem 1.21]), and in this setting a cone is
Archimedean if and only if it is closed (cf. [AT07, Corollary 3.4]).

1.6 Full sets

Definition 1.17. Let V be a real or complex ordered vector space. For given
x, z ∈ Re(V ), the order interval [x, z] is defined to be the set of all y ∈ Re(V )
satisfying x ≤ y ≤ z. Equivalently, one has [x, z] = (x+ V +)∩ (z− V +). From
the latter expression it is clear that the order interval [x, z] is convex. (Note
that [x, z] is empty unless x ≤ z holds.)

Definition 1.18. Let V be a real or complex ordered vector space. A subset
S ⊆ Re(V ) is called full if x ≤ y ≤ z and x, z ∈ S imply y ∈ S. Equivalently,
for all x, z ∈ S one has [x, z] ⊆ S.

Clearly V is full, and the intersection of a non-empty collection of full sets
is once again full. Consequently, every non-empty set S ⊆ V is contained in a
smallest full set fh(S), the full hull of S. It is easy to see that one has

fh(S) =
⋃

x,z∈S
[x, z] = (S + V +) ∩ (S − V +).

Let us say that a non-empty subset S of a real or complex vector space V
is real balanced if s ∈ S and λ ∈ [−1, 1] imply λs ∈ S. (In other words, S is a
balanced subset of V , viewed as a vector space over R.)

Proposition 1.19. Let V be a real or complex ordered vector space and let
S ⊆ Re(V ) be a subset.

(a) If S is convex, then so is fh(S).

(b) If S is real balanced, then so is fh(S).

Proof.

(a) Since S and V + are convex, the same is true for S + V + and S − V +. It
follows that fh(S) is convex, as it is the intersection of two convex sets.

(b) Let y ∈ fh(S) and λ ∈ [−1, 1] be given. Then we may choose x, z ∈ S
such that x ≤ y ≤ z holds. Since S is real balanced, we have λx, λz ∈ S.
For λ ≥ 0 we find λx ≤ λy ≤ λz, while for λ < 0 we find λz ≤ λy ≤ λx.
Either way, we see that λy lies between two elements of S, so we have
λy ∈ fh(S). �

Note: while order intervals are convex, this is no longer true for full sets in
general. Examples of non-convex full sets are given in [AT07, page 6].
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1.7 Order units

Definition 1.20. Let V be a real or complex vector space, and let S ⊆ V be
a non-empty subset. We say that s ∈ S is an internal point if for each x ∈ V
there exists some λ0 > 0 such that s + λx ∈ S holds for all λ ∈ [0, λ0]. If S is
convex, then this is equivalent to the requirement that for every x ∈ V there
exists some λ0 > 0 such that s+ λ0x ∈ S holds.

If, in addition, V is a topological vector space, then every interior point of
S is automatically an internal point, but the converse is not true.

Definition 1.21 (cf. [AT07, Lemma 1.7]). Let V be a real ordered vector
space. An order unit is an element u ∈ V + satisfying any one (and therefore
all) of the following equivalent criteria:

(1) For every x ∈ V there is some α > 0 such that x ≤ αu holds;

(2) For every x ∈ V there is some α > 0 such that −αu ≤ x ≤ αu holds;

(3) One has V =
⋃
α>0[−αu, αu];

(4) u is an internal point of V +.

If V is a complex ordered vector space, then we say that u ∈ V + is an order
unit if it is an order unit in the real ordered space Re(V ).4

Clearly a cone with order units is automatically generating. The converse
is true if V is finite dimensional (cf. [AT07, Lemma 3.2]), but not in general.
A counterexample is given in Example 4.2.

If V is a real ordered topological vector space, then clearly every interior
point of V + is an order unit. The converse is not true: order units need not
be interior points; see Example 4.3. Remarkably, if the topology is completely
metrisable, then the converse is also true, so the order units are precisely the
interior points of the positive cone (cf. [AT07, Theorem 2.8]).

1.8 Locally full topologies

We examine one way for a cone and a topology to interact.

Definition 1.22. Let V be a real ordered topological vector space. We say
that V is locally full if there is a neighbourhood base of 0 consisting of full sets.

Alternatively, we say that a cone K in a topological vector space (V, T ) is
normal if (V, T ,K) is locally full.

Adhering pedantically to our framework of complex ordered vector spaces,
where all order theory is carried out inside Re(V ), we have no concept of full
sets outside Re(V ). The obstacle is purely notational. However, for our purposes
the real case suffices.

We list some of the basic properties of locally full spaces (without proof).

Theorem 1.23 ([AT07, Corollary 2.21]). Let V be a real ordered topologi-
cal vector space which is locally full. Then there is a neighbourhood base of 0
consisting of balanced, full open sets.

If the topology is also locally convex, then there is a neighbourhood base of
0 consisting of balanced, full, convex open sets.
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Theorem 1.24 ([AT07, Theorem 2.23]). Let V be a real ordered topological
vector space. Then the following are equivalent:

(a) V is locally full;

(b) If {xλ}λ∈Λ, {yλ}λ∈Λ, {zλ}λ∈Λ are nets in V (indexed by the same set)
satisfying xλ ≤ yλ ≤ zλ for all λ ∈ Λ, and if {xλ}λ∈Λ and {zλ}λ∈Λ both
converge to the same v ∈ V , then {yλ}λ∈Λ also converges to v.

Furthermore, if V is metrisable, then the nets can be replaced by sequences.

Theorem 1.25 ([AT07, Corollary 2.24]). Let V be a real or complex topological
vector space, and let K ⊆ V be a normal cone. Then K is a cone (as opposed
to a wedge), and K is once again normal.

Of particular interest are locally full norms.

Definition 1.26. Let V be a real ordered vector space, and let µ : V → R be
a seminorm. We say that µ is

(a) monotone if 0 ≤ y ≤ z implies µ(y) ≤ µ(z);

(b) fully monotone5 if x ≤ y ≤ z implies µ(y) ≤ max(µ(x), µ(z)).

Clearly a fully monotone seminorm is monotone, but the converse is not
true. (Consider V = R2 with the coordinate-wise cone R2

≥0, the `p-norm ‖ · ‖p
for some p ∈ [1,∞), and the vectors x = (0,−1), y = (1,−1), z = (1, 0).)

Furthermore, it is easy to see that a seminorm is fully monotone if and only
if its closed (or open) unit ball is full. This is complemented by the following
result regarding Minkowski functionals.

Proposition 1.27. Let V be a real ordered vector space. Let S ⊆ V be a full,
convex, absorbing and balanced subset, and let µS : V → R be the Minkowski
functional of S. Then µS is a fully monotone seminorm.

Proof. It follows from [Rud91, Theorem 1.35] that µS is a seminorm. Now let
x ≤ y ≤ z be given. Since αS is full for all α > 0, it is clear that x, z ∈ αS
implies y ∈ αS, so we find

{α > 0 : y ∈ αS} ⊇ {α > 0 : x, z ∈ αS}

= {α > 0 : x ∈ αS} ∩ {α > 0 : z ∈ αS}.

Since each of these sets is upwards closed (because S is balanced), it follows
that

µS(y) = inf{α > 0 : y ∈ αS}

≤ inf{α > 0 : x, z ∈ αS}

= inf
(
{α > 0 : x ∈ αS} ∩ {α > 0 : z ∈ αS}

)
= max

(
µS(x), µS(z)

)
. �
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Note that a fully monotone norm is locally full: if B ⊆ V denotes the open
unit ball, then the set { 1

nB : n ∈ N+} is a full neighbourhood base of 0. A well-
known result from the literature is that every locally full norm is equivalent to
a fully monotone norm,

Theorem 1.28 (cf. [AT07, Theorem 2.38]). Let V be a real ordered vector
space. For a norm ‖ · ‖ on V , the following are equivalent:

(1) ‖ · ‖ is locally full;

(2) ‖ · ‖ is equivalent to a monotone norm;

(3) ‖ · ‖ is equivalent to a fully monotone norm.

The implications (3) =⇒ (2) and (3) =⇒ (1) are trivial. The other implications
are proven in [AT07, Theorem 2.38], together with various other equivalent
criteria.6 Furthermore, we give another proof of the implication (1) =⇒ (3) in
Proposition 3.15, as part of the study of order unitisations.

For much more on the theory of normed ordered spaces, the interested
reader is referred to [AT07, Section 2.5].

1.9 The (semi)norm generated by an order unit

In a real ordered vector space V with order unit u ∈ V +, the order interval
[−u, u] is convex, balanced and absorbing, so we may consider its Minkowski
functional µu, given by

µu(x) = inf
{
λ ∈ R>0 : −λu ≤ x ≤ λu

}
.

Then µu defines a seminorm on V (cf. [Rud91, Theorem 1.35]). Furthermore,
since [−u, u] is full, it follows from Proposition 1.27 that µu is fully monotone.
It should be pointed out that µu is not generally a norm; see Example 4.4.

Theorem 1.29 (cf. [Kad51a, Lemma 2.3] and [AT07, Theorem 2.55]). Let V
be a real ordered vector space containing an order unit u ∈ V +. Then:

(a) For every x ∈ V we may define αu(x) := sup{α ∈ R : αu ≤ x} and
ωu(x) := inf{ω ∈ R : x ≤ ωu}; these numbers are well-defined and
satisfy αu(x) ≤ ωu(x);

(b) For x, y ∈ V with x ≤ y one has αu(x) ≤ αu(y) and ωu(x) ≤ ωu(y);

(c) For x ∈ V one has µu(x) = max(−αu(x), ωu(x)) = max(|αu(x)|, |ωu(x)|);

Additionally, assume that V is Archimedean. Then:

(d) For every x ∈ V one has αu(x) · u ≤ x ≤ ωu(x) · u (so the maximum
and the minimum in part (a) are attained);

(e) µu defines a fully monotone norm on V ;

(f) The closed unit ball of µu is precisely the order interval [−u, u];

(g) The positive cone V + is µu-closed.
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Proof.

(a) Since u is an order unit, we may choose λ0 > 0 such that −λ0u ≤ x ≤ λ0u
holds. Note that the set {ω ∈ R : x ≤ ωu} is non-empty (it contains λ0)
and bounded below by −λ0 (after all, if x ≤ ωu holds, then we have
−λ0u ≤ x ≤ ωu, hence −λ0 ≤ ω). It follows that ωu(x) is well-defined.
An analogous argument shows that αu(x) is well-defined.
If αu ≤ x holds, then α is a lower bound for the set {ω ∈ R : x ≤ ωu},
by the preceding argument, so we find α ≤ ωu(x). We see that ωu(x)
is an upper bound for the set {α ∈ R : αu ≤ x}, so it follows that
αu(x) ≤ ωu(x) holds.

(b) Clearly we have {α ∈ R : αu ≤ x} ⊆ {α ∈ R : αu ≤ y}, hence
αu(x) ≤ αu(y). The inequality ωu(x) ≤ ωu(y) follows analogously.

(c) First of all, note that we have

−αu(x) = inf{α ∈ R : −αu ≤ x}.

Secondly, note that we may write{
λ ∈ R : −λu ≤ x ≤ λu

}
=
{
α ∈ R : −αu ≤ x

}
∩
{
ω ∈ R : x ≤ ωu

}
.

Since both sets in the right-hand side are upwards closed, so is their
intersection, and we have

inf
{
λ ∈ R : −λu ≤ x ≤ λu

}
= max

(
−αu(x) , ωu(x)

)
.

Of course the set in the left-hand side does not contain any negative
numbers. Furthermore, possibly removing the least element of an upwards
closed set doesn’t affect the infimum, so we find

µu(x) = max
(
−αu(x) , ωu(x)

)
.

In order to prove the second expression for µu(x), recall from part (a)
that we have αu(x) ≤ ωu(x), and therefore also −αu(x) ≥ −ωu(x). As
such, we find

µu(x) = max
(
−αu(x) , ωu(x)

)
= max

(
αu(x) , −αu(x) , ωu(x) , −ωu(x)

)
= max

(
|αu(x)| , |ωu(x)|

)
.

(d) For all n ∈ N+ we have x ≤ (ωu(x) + 1
n )u, that is, n(x− ωu(x) · u) ≤ u.

By the Archimedean property, we find x− ωu(x) · u ≤ 0, or equivalently:
x ≤ ωu(x) · u. The inequality αu(x) · u ≤ x follows analogously.

(e) It was already established that µu is a fully monotone seminorm. To show
that it is a norm in the present setting, let x ∈ V be given with µu(x) = 0.
By part (c) we have αu(x) = ωu(x) = 0, so now it follows from part (d)
that 0 ≤ x ≤ 0 holds. This shows that x must be zero, so µu is a norm.

(f) For x ∈ [−u, u] we clearly have µu(x) ≤ 1. Conversely, if µu(x) ≤ 1 holds,
then we have −u ≤ x ≤ u by parts (c) and (d).
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(g) Let {xn}∞n=1 be a sequence in V + converging to some x ∈ V . Let n ∈ N+

be given, then we may choose some m ∈ N+ with − 1
nu ≤ x− xm ≤ 1

nu.
Now we have

x = (x− xm) + xm ≥ x− xm ≥ − 1
nu.

Thus, for all n ∈ N+ we have −nx ≤ u. Using the Archimedean property,
we find −x ≤ 0, or equivalently, x ≥ 0. �

Whenever µu is a norm, we usually denote it by ‖ · ‖u instead of µu. One of
the useful properties of this norm (in the Archimedean setting) is that positive
linear maps from (V, ‖ · ‖u) tend to be continuous.

Proposition 1.30. Let V be a real Archimedean ordered vector space contain-
ing an order unit u ∈ V +, let W be a (real) locally full topological ordered vector
space, and let f : V →W be a positive linear map. Then f is continuous.

Proof. Let T ⊆ W be a neighbourhood of 0 in W , then we may choose a full
neighbourhood S ⊆ T of 0. Since every neighbourhood of 0 is absorbing, we
may choose some ε > 0 such that −εf(u), εf(u) ∈ S holds. By positivity of f ,
for all x ∈ [−εu, εu] we have −εf(u) ≤ f(x) ≤ εf(u). Since S is full, it follows
that f(x) ∈ S holds as well. Therefore we find [−εu, εu] ⊆ f−1(S) ⊆ f−1(T ).
Since [−u, u] coincides with the closed unit ball of V , it is clear that f−1(T ) is
a neighbourhood of 0 in V . �

Corollary 1.31. Let V be a real Archimedean ordered vector space contain-
ing an order unit u ∈ V +. Then all positive linear functionals V → R are
continuous.

Remark 1.32. Note that the definition of µu (and ‖ · ‖u) only works in the
real case. In the complex case, the order interval [−u, u] is not absorbing (as
it is a subset of the real subspace Re(V ) ( V ), so an order unit only defines
a seminorm on Re(V ) in this case. There are ways to extend it to a seminorm
on all V , but there is no canonical way to do so.

If V is a complex vector space with a complex conjugation ¯ : V → V and
a norm ‖ · ‖1 on Re(V ), then we say that a norm ‖ · ‖2 defined on all of V is a
reasonable complexification of ‖ · ‖1 if it extends ‖ · ‖1 and furthermore makes
the complex conjugation isometric.

Every norm ‖ · ‖1 on Re(V ) admits a reasonable complexification norm.
All reasonable complexifications of ‖ · ‖1 are equivalent, and each is complete
if and only if ‖ · ‖1 is complete. There is a smallest and a largest reasonable
complexification. The smallest is given by

‖v‖ε := sup
|λ|=1
‖Re(λv)‖1,

and the largest is given as the Minkowski functional of the balanced convex
hull (inside V ) of the open unit ball of ‖ · ‖1.

The theory of reasonable complexification norms has received some atten-
tion in the literature; see for instance [MST99]. The problem can be seen as
a special case of the theory of tensor product norms (cf. [Rya02]), where V is
interpreted as the (algebraic) tensor product Re(V )⊗RC of real vector spaces.
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Complexification norms are considered to be beyond the scope of this thesis,
so we will not say much more about this. (In particular, we do not investigate
what might be the best choice of complexification in certain special cases.) As a
result, some of the theory developed in this thesis is incomplete in the complex
case. This might be a direction for further study.

1.10 End notes

1. (page 3) The intersection of a non-empty family of cones is again a cone,
but the family of cones containing S might be empty. For instance, if the vector
space V is non-zero, then there is no cone containing all of V .

2. (page 5) We avoid the word real in the context of the induced conjugation.
This terminology would introduce ambiguity, because a real linear map V →W
is usually understood to be a map which is R-linear rather than C-linear.
Similarly, we should not call these maps self-adjoint or Hermitian, for this
creates ambiguity in the case where V = W is a finite-dimensional Hilbert space
(so that L(V,W ) ∼= Mn(C) is a C∗-algebra). Indeed, the induced conjugation
on Mn(C) is simply the entry-wise conjugation, so a self-conjugate linear map
need not be self-adjoint (or vice versa).

3. (page 6) A word of warning: while every ordered vector space is in particular
an ordered group, the Archimedean property commonly used in the theory
of ordered groups is a different one! In the setting of ordered groups, it is
usually assumed that the order is linear (that is, total), and the Archimedean
property is that every non-zero element is an order unit. A classical result
in this context is that every Archimedean, linearly ordered, abelian group is
isomorphic (as an ordered group) to a subgroup of (R,R≥0). While this is very
far from our terminology, the content of this classical result is closely related
to Proposition 2.7.

4. (page 8) In the complex setting, note that we have V + ⊆ Re(V ), so V +

cannot contain internal points (relative to all of V ). Instead, we have that u is
an internal point of V + relative to the subspace Re(V ) ⊇ V +.

5. (page 9) Terminology invented by the author (“fully monotone seminorm”).

6. (page 10) The concept of fully monotone norms is not used in [AT07], so
Theorem 1.28 is slightly stronger than [AT07, Theorem 2.38]. However, this
stronger result follows immediately from the proof of [AT07, Theorem 2.38,
implication (1) =⇒ (2)]. It is merely a matter of missing terminology.
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2 Semisimple ordered vector spaces

A common theme in functional analysis is to represent various types of spaces
as a space of (continuous) functions. This entails finding an injective linear map
ψ : V → FΩ (or ψ : V → C(Ω,F) if V is a normed space) preserving some of
the additional structure of V (e.g. multiplication or lattice operations). In this
chapter we examine questions of this type for ordered vector spaces.

The question in this setting is whether or not V admits an injective positive
linear map V → FΩ to some space of functions. Similarly, we ask which spaces
admit a bipositive representation V → FΩ. If V carries a topology, then we
equip FΩ with the product topology, and we restrict our attention to continuous
representations V → FΩ of the aforementioned types (injective and positive, or
bipositive). If V is a normed space admitting such a continuous representation,
then we show how to choose a Hausdorff topological space Ω′ and a continuous
representation V → C(Ω′,F) of the same type as the representation V → FΩ.

Our treatment constitutes an extension of the ideas and techniques from
[Kad51a, Section 2] to a more general setting.

The results are proven only for real ordered vector spaces; the modifications
needed in the complex case are listed in Section 2.9 below.

2.1 Ideals and quotients of ordered vector spaces

Let V be an ordered vector space. An order ideal is a linear subspace I ⊆ V
such that y ∈ I and 0 ≤ x ≤ y imply x ∈ I.1 It is easy to see that the order
ideals are precisely the full subspaces of V . We will simply call these ideals
if no ambiguity can arise (i.e. the space V does not have additional algebraic
structure). The terminology is explained, in part, by Lemma 2.2 below.

Clearly {0} and V are ideals in every ordered vector space. We call these
the trivial ideals, so an ideal I ⊆ V is non-trivial if we have {0} ( I ( V .
Furthermore, an ideal I ⊆ V is called proper if I 6= V holds.

Note that the intersection of a non-empty collection of ideals is once again an
ideal. Thus, for every non-empty set S ⊆ V there is a smallest ideal containing
S (namely the intersection of all ideals containing S). We call this the ideal
generated by S. Ideals generated by a singleton are called principal.

If y ∈ V is incomparable with 0, then the principal ideal generated by y is
simply span(y). If y is positive or negative, then the principal ideal generated
by y is

⋃
α∈R[−αy, αy]. In particular, if dim(V ) > 1 holds, then the principal

ideal generated by y is proper if and only if neither y nor −y is an order unit.2

Proposition 2.1. Let V be a real ordered vector space with positive cone V +,
and let I ⊆ V be an order ideal. Then the image of V + under the natural map
π : V → V/I is a cone (as opposed to a wedge).

Proof. Clearly the image of a wedge under a linear map is again a wedge. We
prove that π(V +) is a cone. Suppose that z ∈ π(V +) ∩−π(V +) holds, that is,
we can write z = π(x) = −π(y) with x, y ∈ V +. Then we have π(x + y) = 0,
hence x + y ∈ I. Furthermore we have 0 ≤ x ≤ x + y and 0 ≤ y ≤ x + y, so
we find x, y ∈ I (since I is an ideal). It follows that z = 0 holds, proving that
π(V +) is a cone. �

15
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It should be pointed out that the linear image of a pointed cone is in general
merely a wedge. In fact, the order ideals are precisely those subspaces I ⊆ V for
which the image of V + under the natural map π : V → V/I is a cone. Indeed, if
0 ≤ x ≤ y are such that y ∈ I and x /∈ I hold, then we have π(x)+π(y−x) = 0,
where both π(x) and π(y − x) are non-zero elements of π(V +), so in this case
the image wedge contains both π(x) and −π(x) = π(y − x).

We can say something stronger: the ideals are precisely the subspaces which
occur as kernels of positive linear maps, which explains their name.

Lemma 2.2. A subset I ⊆ V is an order ideal if and only if I is the kernel of
some positive linear map.

Proof. It is easy to see that the kernel of a positive linear map is an order ideal.
For the converse, let I ⊆ V be an order ideal, and consider the natural map
π : V → V/I. Clearly π is positive as a map (V, V +)→ (π(V ), π(V +)), and we
have I = ker(π). �

If V is an ordered vector space and I is an ideal, we will always understand the
quotient space V/I to be ordered with the quotient cone, that is, the image of
the cone V + under the natural map V → V/I (as in Proposition 2.1).

Some naturally occurring examples of order ideals are given in Section 4.2.
The homomorphism and isomorphism theorems for ordered vector spaces

are not quite as well-behaved as their counterparts for algebras (or rings). The
first isomorphism theorem is weaker in this setting, and the second isomorphism
theorem fails.3 We state the remaining results without proof; they are analogous
to the corresponding statements for vector spaces (or modules, rings, etcetera).

Theorem 2.3 (Homomorphism theorem). Let φ : V →W be a positive linear
map between real ordered vector spaces V and W , and let I ⊆ V be an ideal
with I ⊆ ker(φ). Then there is a unique positive linear map φ̃ : V/I →W such
that φ is equal to the composition

V
π−→ V/I

φ̃−→W.

Theorem 2.4 (First isomorphism theorem). Let φ : V → W be a positive
linear map between real ordered vector spaces V and W . Then the natural linear
isomorphism V/ ker(φ) ∼= ran(φ) defines an order isomorphism

(V/ ker(φ), V +/ ker(φ)) ∼−→ (φ(V ), φ(V +)).

Remark 2.5. Note that we pass to a different cone in ran(φ). We cannot
expect the linear isomorphism V/ ker(φ) ∼= ran(φ) to be bipositive as a map

(V/ ker(φ), V +/ ker(φ))→ (ran(φ),W+ ∩ ran(φ)),

which is perhaps a more straightforward choice of cone in the codomain. This
is because a positive linear isomorphism is not necessarily bipositive: the cone
in the codomain can be larger.

Theorem 2.6 (Third isomorphism theorem). Let V be a real ordered vector
space, and let I, J ⊆ V be ideals with I ⊆ J ⊆ V . Then J/I is an ideal of V/I.
Furthermore, every ideal of V/I is of the form J/I for some ideal I ⊆ J ⊆ V ,
so the ideals of V/I are in bijective correspondence with the ideals I ⊆ J ⊆ V .
Finally, the natural isomorphism (V/I)/(J/I) ∼= V/J is bipositive, that is, an
isomorphism of ordered vector spaces.
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2.2 Maximal ideals and simple ordered spaces

An order ideal I ⊆ V is called maximal if I is proper and there are no ideals
lying strictly between I and V . A real ordered vector space V is called simple
if the zero ideal is maximal, or equivalently: V has exactly two ideals.

Proposition 2.7. A real ordered vector space V is simple if and only if V is
one-dimensional.

Proof. Clearly every one-dimensional ordered vector space (regardless of its
cone) is simple: the only subspaces are {0} and V , which are both ideals. If V
is zero-dimensional, then the zero ideal is not proper and therefore not maximal.
Assume now that V has dimension at least 2. We distinguish two cases:

• If V has an element y ∈ V which is neither positive nor negative, then
span(y) is a non-trivial ideal, so V is not simple.

• Assume that every element of V is either positive or negative, that is,
V is linearly ordered. Choose linearly independent vectors x, y ∈ V with
x ≥ 0 and y ≤ 0. We consider the line segment joining x and y. Since V +

and −V + are convex, there is some α0 ∈ [0, 1] such that αx + (1 − α)y
is positive for all α > α0 and negative for all α < α0. We may assume
without loss of generality that the choice of α = α0 also yields a positive
element (if it is negative, pass to (x′, y′) := (−y,−x) instead). But now
z := α0x+ (1− α0)y is a positive element which is not an internal point
of V +. Consequently, z is not an order unit. Since z is furthermore non-
zero (x and y are linearly independent), it follows that the principal ideal
generated by z is non-trivial. �

Corollary 2.8. An ideal I ⊆ V is maximal if and only if V/I is one-dimensional.

Proof. By Theorem 2.6, the ideals of V/I are in bijective correspondence with
the ideals I ⊆ J ⊆ V , so we see that V/I is simple if and only if I is max-
imal. Consequently, by Proposition 2.7, I is maximal if and only if V/I is
one-dimensional. �

Corollary 2.9. If f : V → R is a non-zero positive linear functional, then
ker(f) is a maximal ideal.

Proof. Clearly ker(f) is an ideal. By the first isomorphism theorem, we have
an isomorphism V/ ker(f) ∼= R of vector spaces. Therefore V/ ker(f) is one-
dimensional, and it follows from Corollary 2.8 that ker(f) is maximal. �

We give a partial converse of Corollary 2.9. Note that there are two non-
isomorphic simple ordered vector spaces: (R, {0}) and (R,R≥0). In general, the
quotient of V by a maximal ideal can be order isomorphic with either. However,
since the identity (R, {0})→ (R,R≥0) is positive, every maximal ideal also gives
rise to a positive linear functional, which is unique up to a scalar.4 Thus, we see
that the maximal ideals are precisely the kernels of positive linear functionals.
Rephrased in terms of convex geometry, we find that the maximal ideals are
precisely the supporting hyperplanes of the positive cone V +.

One particular consequence of the above is worth mentioning: a real ordered
vector space V admits a non-zero positive linear functional V → R if and only
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if there is a maximal order ideal I ⊆ V . We show that this is the case if V has
an order unit.

Proposition 2.10. Let V be a real ordered vector space containing an order
unit u ∈ V +. Then every proper order ideal is contained in a maximal order
ideal.

Proof. Let I ⊆ V be a proper ideal, and consider the set I of all proper ideals
J ⊇ I. We show that every chain in I has an upper bound (in I ). To that
end, let C ⊆ I be a chain. If C is empty, then I ∈ I is an upper bound for C.
Assume that C is non-empty, then we may define M :=

⋃
C. Note that M is

an ideal containing I. In order to see that M is proper, observe that we have
u /∈ M , since u does not belong to any of the proper ideals J ∈ C. It follows
that M ∈ I is an upper bound for C, so we see that every chain in I has an
upper bound in I . Therefore I has a maximal element by Zorn’s lemma. �

Corollary 2.11. Let V be a non-zero real ordered vector space with order unit.
Then V has a maximal order ideal, or equivalently: there is a non-zero positive
linear functional V → R.

Proof. The zero ideal is proper (since V is non-zero), so it is contained in a
maximal ideal. �

The preceding results are analogous to Krull’s theorem for commutative
rings with unit. It should be pointed out that the conclusion fails if V does
not have an order unit; see examples 4.8 and 4.15. A similar situation occurs
in ring theory: a ring without unit does not necessarily have a maximal ideal.

We conclude this section with a simple application of the theory developed
so far, relating the dual wedge (V +)′ to ideals containing V +. Note that the
subspace V + − V + generated by V + is trivially an ideal, so it is also the ideal
generated by V +. In this setting, we have the following.

Theorem 2.12. For a real ordered vector space V , the following are equivalent:

(1) The dual wedge (V +)′ is a cone;

(2) For every maximal ideal I, the quotient V/I is isomorphic with (R,R≥0).

(3) The positive cone V + is not contained in a maximal ideal.

Proof. (1) =⇒ (2). Let I ⊆ V be a maximal ideal, and choose a positive linear
functional f : V → R with kernel I. (Recall that f is determined uniquely by
I, up to a scalar.) Since (V +)′ is a cone, we know that −f is not a positive
linear functional. This is not possible if V/I is isomorphic with (R, {0}), so we
conclude that V/I is isomorphic with (R,R≥0) instead.

(2) =⇒ (3). For any given maximal ideal I ⊆ V , the image of V + under the
natural map V → V/I is non-zero, so in particular V + is not contained in I.

(3) =⇒ (1). Let f : V → R be a non-zero positive linear functional. Then
ker(f) is a maximal ideal, so by assumption we have V + 6⊆ ker(f). It follows
that there exists some v ∈ V + with f(v) > 0, so we see that −f is not positive.
As a consequence, we have (V +)′ ∩ −(V +)′ = {0}. �
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We see that the question posed in Proposition 2.10 is of some interest: it
is useful to know whether or not V + − V + is contained in a maximal ideal.
However, the result of Proposition 2.10 is of no use here: if V has an order unit,
then V + is automatically generating, so the ideal V + − V + generated by V +

is not proper.
The following well-known result follows immediately from Theorem 2.12.

Corollary 2.13 (cf. [AT07, Corollary 2.14]). Let V be a real ordered vector
space with generating cone. Then the dual wedge (V +)′ is a cone.

2.3 The order radical and order semisimplicity

In this section we come to our main question of this chapter: which spaces admit
a positive and injective representation as a space of functions? We characterise
these in terms of the order radical, as defined in Definition 2.14 below.

For an arbitrary index set S, we let RS denote the ordered vector space of
all functions S → R, equipped with the pointwise cone.

Definition 2.14. Let V be a real ordered vector space and let (V +)′ ⊆ V ′ be
the dual wedge. The order radical of V is the set

ora(V ) :=
{
x ∈ V : f(x) = 0 for all f ∈ (V +)′

}
.

Proposition 2.15. The order radical is equal to the intersection of all maximal
order ideals (where the empty intersection is understood to mean all of V ). In
particular, ora(V ) is an ideal.

Proof. In light of the bijective correspondence between maximal order ideals
and positive linear functionals (up to a scalar), we have

ora(V ) =
{
x ∈ V : x ∈ ker(f) for all f ∈ (V +)′

}
=
{
x ∈ V : x ∈ I for every maximal ideal I ⊆ V

}
=

⋂
I⊆V

maximal

I.

The second conclusion follows since the intersection of a (possibly empty)
collection of ideals is once again an ideal. �

Proposition 2.16. Let V be a real ordered vector space. Then the following
are equivalent:

(1) There exists a set S and an injective positive linear map V → RS;

(2) The order radical of V is zero;

(3) The dual wedge (V +)′ ⊆ V ′ separates points.

Proof. (1) =⇒ (2). Let ϕ : V → RS be injective and positive. For every s ∈ S
we get a positive linear functional fs(v) := ϕ(v)s. Since ϕ is injective, we have
fs(v) = 0 for all s ∈ S if and only if v = 0. Therefore we have ora(V ) = {0}.
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(2) =⇒ (3). If x ∈ V is non-zero, then we have x /∈ ora(V ), so there exists
some f ∈ (V +)′ with f(x) 6= 0.

(3) =⇒ (1). Set S := (V +)′, and let ϕ : V → RS be the evaluation map
ϕ(v) := (s 7→ s(v)). If v ∈ V is positive, then so is s(v) for all s ∈ S, so we see
that ϕ is positive. Furthermore, since (V +)′ separates points, it is clear that ϕ
is injective. �

It should be pointed out that the set S in the preceding proposition is far
from being unique. In fact, the proof reveals that choosing a set S and an
injective positive linear map V → RS is the same as choosing a separating
multiset of positive linear functionals.5

An ordered vector space satisfying any (and therefore all) of the criteria
from Proposition 2.16 will be called order semisimple.6 Clearly every subspace
of RS is order semisimple; we will encounter more examples later on.

While the presence of an order unit is enough to ensure that the dual wedge
(V +)′ is non-empty (Corollary 2.11), it does not guarantee that (V +)′ also
separates points. An example of this is the non-Archimedean order unitisation
from Section 3.1 below.

2.4 Topologically order semisimple spaces

Until now we only considered abstract ordered vector spaces without topology.
The next step is to consider what happens when V is at the same time a (real)
ordered vector space and a (real) topological vector space. Recall: we assume
all topological vector spaces to be Hausdorff, and we do not assume any form
of compatibility between the topology and the positive cone.

Where general order ideals are precisely the kernels of positive linear maps
(cf. Lemma 2.2), we have that closed order ideals are precisely the kernels of
continuous positive linear maps.7 In particular, if I ⊆ V is a maximal ideal,
then the positive linear functional V → R determined by I (up to a scalar) is
continuous if and only if I is closed (cf. [Rud91, Theorem 1.18]). We give an
example of a discontinuous positive linear functional in Example 4.9; it follows
that maximal ideals are not necessarily closed. In this context, we mention the
following theorem (without proof).

Theorem 2.17 ([AT07, Corollary 2.34]). Let V be a real topological ordered
vector space. If the topology is completely metrisable and the positive cone is
closed and generating, then every positive linear functional is continuous.

For an arbitrary index set S, let RS be equipped with the (locally convex)
topology of pointwise convergence. Our goal will be to formulate topological
analogues of the theory from Section 2.3, where we restrict our attention to
closed ideals, continuous positive linear functionals, and a continuous positive
and injective representation V → RS . A more general question is to find a
continuous representation V → W to a space of functions W ⊆ RS carrying a
stronger topology; this is addressed in Section 2.7.

Definition 2.18. Let V be a topological ordered vector space and let (V +)∗
be the topological dual wedge, i.e. the set of all continuous positive linear
functionals V → R. The topological order radical of V is the set

tora(V ) :=
{
v ∈ V : f(v) = 0 for all f ∈ (V +)∗

}
.
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Propositions 2.15 and 2.16 have the following topological counterparts.

Proposition 2.19. The topological order radical is equal to the intersection of
all closed maximal order ideals (where the empty intersection is understood to
mean all of V ). In particular, tora(V ) is a closed ideal.

Proposition 2.20. For a topological ordered vector space V the following are
equivalent:

(1) There exists a set S and a continuous, injective and positive linear map
V → RS; where RS is equipped with the product topology (i.e. the topology
of pointwise convergence);

(2) The topological order radical of V is zero;

(3) The topological dual wedge (V +)∗ ⊆ V ∗ separates points.

In the proof of (3) =⇒ (1), one has to use the universal property of the product
topology: a map ϕ : V → RS is continuous if and only if for every s ∈ S the
map ϕs : V → R, v 7→ ϕ(v)s is continuous. Apart from that, the proofs can be
copied verbatim.

Perhaps not surprisingly, we say that a topological ordered vector space
V is topologically order semisimple if it meets any (and therefore all) of the
properties of Proposition 2.20.

Remark 2.21. Just like in the non-topological setting, we have that choosing
a set S and a continuous, injective and positive linear map ϕ : V → RS is the
same as choosing a separating multiset of continuous positive linear functionals
V → R. After removing all superfluous duplicates, we may view S as a subset
of V ∗, so that we can equip S with the relative weak-∗ topology σ(V ∗, V ). For
every v ∈ V , we have that ϕ(v) is the evaluation map v̂ : S → R, s 7→ s(v),
which is continuous as a map (S, σ(V ∗, V )) → R. It follows that ran(ϕ) is
contained in C(S,R), so we automatically get a representation as a space of
continuous functions. We do not pursue this idea any further until Section 2.7.

Remark 2.22. If V is a vector space without topology, then its algebraic dual
V ′ separates points.8 As such, the σ(V, V ′)-topology turns V into a (Hausdorff)
locally convex space whose topological dual V ∗ is equal to the algebraic dual
V ′ (cf. [Rud91, Theorem 3.10]). It follows that a real ordered vector space is
order semisimple if and only if it is topologically order semisimple with respect
to the σ(V, V ′)-topology.

Assume now that we introduce another vector space topology T on an order
semisimple space V . If T is stronger than the σ(V, V ′)-topology (σ(V, V ′) ⊆ T ),
then all linear functionals remain continuous, so V remains topologically order
semisimple. However, if T is weaker than σ(V, V ′), or incomparable, then it
has fewer continuous linear functionals, so the topological dual wedge becomes
smaller. (This is because σ(V, V ′) is the weakest topology making all linear
functionals continuous.) As such, (V +)∗ might fail to separate points, so we
see that V is not necessarily topologically order semisimple. Examples of spaces
like this are given in examples 4.8 and 4.10. Additionally, in Section 4.6 we
exhibit a class of order semisimple spaces which do not admit a topologically
order semisimple norm.
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2.5 Duality and the bipolar theorem for wedges

Now that we have addressed positive injective representations in some detail,
we shift our attention towards bipositive representations. These turn out to be
closely related to duality theory. In this section we state and prove the bipolar
theorem for wedges, which will be used to study bipositive representations in
Section 2.6 below.

Let V and W be real vector spaces. Recall that a dual pairing or duality is
a bilinear map 〈 · , · 〉 : V ×W → R which is both left and right non-degenerate:

(2.23.1) if 〈x0, y〉 = 0 holds for all y ∈W , then x0 = 0;

(2.23.2) if 〈x, y0〉 = 0 holds for all x ∈ V , then y0 = 0.

Everything about the duality is symmetric in V and W , so all the results we
prove have analogues where the roles of V and W are reversed.

Given a duality 〈 · , · 〉 : V ×W → R, we obtain a linear map ψ : W → V ′

which associates with a vector y0 ∈ W the evaluation functional ŷ0 : V → R
given by x 7→ 〈x, y0〉. It follows from (2.23.2) that ψ is injective, so we can
think of W as being a subspace of the (algebraic) dual of V .

Conversely, if W is a separating space of linear functionals on V , then the
bilinear map V ×W → R, (x, f) 7→ f(x) is a dual pairing. After all, (2.23.1)
follows from the assumption that W separates points, and (2.23.2) follows from
what it means for two functions to be different. The following two special cases
are of interest to us:

• If V is a vector space without topology, then its algebraic dual separates
points (by Remark 2.22), so we have a natural dual pairing V × V ′ → R.

• Likewise, if V is a topological vector space whose topological dual V ∗
separates points, then we have a natural dual pairing V × V ∗ → R. The
condition is always met if V is locally convex; this is a consequence of
the Hahn–Banach separation theorems (cf. [Rud91, unnamed corollary
after Theorem 3.4]). For general topological vector spaces, however, the
topological dual V ∗ does not always separate points; see Example 4.8.

Central to our theory of bipositive representations is the wedge analogue of the
(one-sided) bipolar theorem.

Definition 2.24. Let 〈 · , · 〉 : V ×W → R be a dual pairing. For a subset
S ⊆ V , define the polar wedge9 to be the set

S :=
{
y ∈W : 〈s, y〉 ≥ 0 for all s ∈ S

}
.

Similarly, for a subset T ⊆W we define the prepolar wedge to be the set

T :=
{
x ∈ V : 〈x, t〉 ≥ 0 for all t ∈ T

}
.

It is readily verified that every (pre)polar wedge is indeed a wedge, as the name
suggests. Furthermore, if S (resp. T ) is a wedge, then S (resp. T ) coincides
with the dual wedge as defined in [AT07, Section 2.2], and also with the one-
sided polar, as defined, for instance, in [Bou87, page II.44].10 In particular, the
dual wedge (V +)′ of a real ordered vector space (V, V +) is equal to the polar
wedge (V +) obtained from the dual pairing V ×V ′ → R. A similar statement
holds in the topological case (provided that V ∗ separates points).
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It follows from elementary set theory that S1 ⊆ S2 implies S1 ⊇ S2 , and
that every set S ⊆ V satisfies S ⊆ (S ). Analogous statements hold for
subsets T ⊆W .

If S ⊆ V is any set, then by S ⊆ (S ) we also have S ⊇ ( (S )) .
However, for T := S we also have T ⊆ ( T ) , which shows that we have
equality: S = ( (S )) .

We prove that polar wedges are always closed in the σ(W,V )-topology. Note
that we have

S =
⋂
s∈S

ŝ
−1[R≥0],

where ŝ ∈W ′ denotes the evaluation functional y 7→ 〈s, y〉, which is continuous
by the definition of σ(W,V ). Of course, the inverse image of a closed set under
a continuous map is closed, and the intersection of closed sets is closed, so it
follows at once that S is σ(W,V )-closed. Analogously, prepolars are closed in
the σ(V,W )-topology.

The bipolar theorem has a straightforward analogue for polar wedges, which
we prove for the sake of completeness (this is not difficult).

Theorem 2.25 (The bipolar theorem for wedges; cf. [AT07, Theorem 2.13(3)]).
Let 〈 · , · 〉 : V ×W → R be a dual pairing, and let S ⊆ V be an arbitrary subset.
Then (S ) coincides with the σ(V,W )-closed wedge generated by S.

Proof. Let S1 ⊆ V denote the σ(V,W )-closed wedge generated by S. It follows
from the preceding remarks that (S ) is a σ(V,W )-closed wedge containing
S, so we have S1 ⊆ (S ).

For the converse, let x0 ∈ V \ S1 be given. Now S1 and {x0} are disjoint,
closed, convex and non-empty, and {x0} is furthermore compact. Since σ(V,W )
turns V into a locally convex space with topological dual V ∗ = W , it follows
from the Hahn–Banach separation theorems (cf. [Rud91, Theorem 3.4(b)]) that
there exist y0 ∈W and γ1, γ2 ∈ R such that

〈x0, y0〉 < γ1 < γ2 < 〈s, y0〉, (for all s ∈ S1).

We show that y0 ∈ S1 holds. To that end, let s ∈ S1 be given. Since S1 is a
wedge, for all α > 0 we have αs ∈ S1 as well, so we find

α〈s, y0〉 = 〈αs, y0〉 > γ2, (for all α > 0).

In particular, for all n ∈ N+ we have n ·−〈s, y0〉 < −γ2. As such, it follows from
the Archimedean property (of R) that we have −〈s, y0〉 ≤ 0, or equivalently,
〈s, y0〉 ≥ 0. This holds for all s ∈ S1, so we find y0 ∈ S1 , proving our claim.

Since we have 0 ∈ S1, it is clear that 〈x0, y0〉 < γ1 < γ2 < 0 holds, so we find
x0 /∈ (S1 ). But we have S ⊆ S1, hence S ⊇ S1 , and finally, (S ) ⊆ (S1 ),
so we conclude that x0 /∈ (S ) holds. �

Various similar theorems can be found in the literature: the one-sided bipolar
theorem (cf. [Bou87, Theorem 1 on page II.44], or [Sch99, Theorem IV.1.5]), the
absolute bipolar theorem (cf. [Con07, Theorem V.1.8]), and the wedge duality
theorem (cf. [AT07, Theorem 2.13(3)]).

Recall that a convex subset of a locally convex space is weakly closed if and
only if it is originally closed (cf. [Rud91, Theorem 3.12]). In this setting, the
bipolar theorem has the following immediate consequence.
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Corollary 2.26. Let (V, T ) be a (real) locally convex space, and consider the
natural dual pairing V × V ∗ → R. For an arbitrary subset S ⊆ V , the bipolar

(S ) coincides with the T -closed wedge generated by S.

Remark 2.27. It should be noted that this statement is not symmetric in
the dual pair. Even if V is a normed space, so that V ∗ also has an “original”
topology (besides the weak-∗ topology), it is not necessarily true that a convex
subset T ⊆ V ∗ is originally closed if and only if it is weak-∗ closed. This is
because the σ(V ∗, V )-topology need not coincide with the σ(V ∗, V ∗∗)-topology.
Indeed, if V is not reflexive, then there is some continuous linear functional
f ∈ V ∗∗ not of the form x̂ for any x ∈ V . Then, by [Rud91, Theorem 3.10], f
is not weak-∗ continuous, so now it follows from [Rud91, Theorem 1.18] that
ker(f) is not weak-∗ closed. On the other hand, it is clear that ker(f) is convex
and originally closed.

We conclude this section with an application of the bipolar theorem to order
semisimplicity.

Theorem 2.28. Let V be a (real) topological ordered vector space such that
V ∗ separates points. Then V is topologically order semisimple if and only if the
weak closure of V + is a cone (as opposed to a wedge).

Proof. By the bipolar theorem, the weak closure of V + is ((V +) ). Further-
more, we have

tora(V ) =
⋂

f∈(V +)

{v ∈ V : f(v) = 0}

=
⋂

f∈(V +)

(
{v ∈ V : f(v) ≥ 0} ∩ {v ∈ V : f(v) ≤ 0}

)

=

 ⋂
f∈(V +)

{v ∈ V : f(v) ≥ 0}

 ∩
 ⋂
f∈(V +)

{v ∈ V : f(v) ≤ 0}


= ((V +) ) ∩ − ((V +) ).

In particular, we see that ((V +) ) is a cone if and only if V is topologically
order semisimple. �

If V is locally convex, then V ∗ automatically separates points, and the
weak closure of V + coincides with its original closure (because it is convex).
Therefore we have an even simpler conclusion in this case.

Corollary 2.29. Let V be a (real) locally convex ordered vector space. Then
V is topologically order semisimple if and only if V + is a cone (as opposed to
a wedge).

The non-topological variant follows immediately (use Remark 2.22).

Corollary 2.30. Let V be a (real) ordered vector space with algebraic dual V ′.
Then V is order semisimple if and only if the σ(V, V ′)-closure of V + is a cone
(as opposed to a wedge).
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2.6 Bipositive representations

Using the duality theory developed in the previous section, we obtain simple
characterisations of bipositive representations.

Theorem 2.31. Let V be a real ordered vector space, W a real vector space,
and 〈 · , · 〉 : V ×W → R a dual pairing. For any subset T ⊆ W , the following
are equivalent:

(1) T̂ :=
{
t̂ : x 7→ 〈x, t〉 | t ∈ T

}
⊆ V ′ is a separating set of positive linear

functionals and the associated representation V → RT is bipositive;

(2) one has T = V +;

(3) V + is σ(V,W )-closed, and (V +) is the σ(W,V )-closed wedge generated
by T .

Note that V is automatically order semisimple if property (1) holds, so the
theorem is vacuous whenever V is not order semisimple.

Proof. (1) =⇒ (2). Since the representation is bipositive, we have 〈x, t〉 ≥ 0 for
all t ∈ T if and only if x ∈ V + holds. It follows at once that T = V + holds.

(2) =⇒ (1). Consider the natural map ϕ : V → RT , which assigns to v ∈ V
the evaluation map v̂ : T → R, t 7→ 〈v, t〉. By the definition of T , we have
〈v, t〉 ≥ 0 for all t ∈ T if and only if v ∈ T = V + holds. In other words,
the representation ϕ is bipositive. That T separates points follows a posteriori,
since bipositivity implies injectivity.

(2) =⇒ (3). If T = V + holds, then we have (V +) = ( T ) , so it follows
from the bipolar theorem that (V +) is the σ(W,V )-closed wedge generated
by T . Furthermore, V + is σ(V,W )-closed because it is a prepolar.

(3) =⇒ (2). By the second assumption (and the bipolar theorem), we have
( T ) = (V +) , hence T = (( T ) ) = ((V +) ). Since V + is a σ(V,W )-
closed wedge, it follows from the bipolar theorem that ((V +) ) = V + holds,
so we find T = V +. �

If W is an ordered topological vector space, T ⊆W a subset (or a multiset),
and T1 ⊆ W the closed wedge generated by T , then we will find it convenient
to say that T is a topological generating (multi)set for T1.

Corollary 2.32. Let V be a (real) topological ordered vector space such that
V ∗ separates points. Then V admits a continuous bipositive representation as
a space of functions (V → RT for some set T ) if and only if V + is weakly
closed.

If this is the case, then choosing such a representation V → RT is the same
as choosing a weak-∗ topological generating multiset for the dual wedge (V +)∗.

Proof. Consider the natural dual pairing 〈 · , · 〉 : V × V ∗ → R. If V admits
a bipositive continuous representation V → RT , then V + is weakly closed
by Theorem 2.31(3). Conversely, if V + is weakly closed, then the choice of
T := (V +) meets requirement (3) of Theorem 2.31, so it follows that the
associated continuous representation V → RT is bipositive.

The second conclusion also follows immediately from Theorem 2.31. �
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Like before, the conclusion is even simpler if V is locally convex.

Corollary 2.33. Let V be a (real) locally convex ordered vector space. Then
V admits a continuous bipositive representation as a space of functions if and
only if V + is closed.

If this is the case, then choosing such a representation V → RT is the same
as choosing a weak-∗ topological generating multiset for the dual wedge (V +)∗.

Again the non-topological variant follows immediately.

Corollary 2.34. Let V be a (real) ordered vector space with algebraic dual V ′.
Then V admits a bipositive representation as a space of functions if and only
if V + is σ(V, V ′)-closed.

If this is the case, then choosing such a representation V → RT is the same
as choosing a σ(V ′, V )-topological generating multiset for the dual wedge (V +)′.

The results obtained in this section can also be applied to the theory of
injective and positive representations. If V is topologically order semisimple,
then V + is contained in a weakly closed cone K (for instance K := ((V +) ),
but there might be others), and every bipositive representation (V,K) → RT
gives rise to an injective and positive representation (V, V +) → (V,K) → RT .
Conversely, every injective and positive representation V → RT is bipositive for
some weakly closed cone K ⊇ V +, so all injective and positive representations
can be understood through the theory of bipositive representations.

2.7 Representations on C(Ω) spaces

Now that we have addressed questions regarding continuous representations of
V as a space of functions, we focus our attention on representations of V as a
space of continuous functions on some compact Hausdorff space Ω. It turns out
that this is a purely topological question, so we present the results without any
reference to the order structure. Furthermore, as questions regarding injectivity
have been sufficiently addressed in the ordered setting as well, we will not
require injectivity here.

Remark 2.35. Let V be a real or complex topological vector space and let
V ∗ denote its (topological) dual. Unlike before, we no longer require that V ∗
separates points. Since V separates points on V ∗ (two linear functionals are
equal if and only if they take the same value at every x ∈ V ), we can always
equip V ∗ with the weak-∗ topology, and this turns V ∗ into a (Hausdorff) locally
convex topological vector space. If S ⊆ V ∗ is a weak-∗ compact subset, then
we have a natural map ϕ : V → C(S,F), which associates to every v ∈ V its
evaluation function v̂ : s 7→ s(v). (For every v ∈ V , the function v̂ : S → F is
continuous by definition of the weak-∗ topology.)

We claim that the obtained representation ϕ : V → C(S,F) is continuous
if C(S,F) is equipped with the (locally convex) topology of pointwise conver-
gence. Indeed, by the characteristic property of the product topology, it suffices
to check that for each s ∈ S the map ϕs : V → F, v 7→ ϕ(v)s is continuous.
But have ϕ(v)s = v̂(s) = s(v), hence ϕs = s, which is a continuous linear
functional. This proves our claim.
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We prove a converse of this observation in Proposition 2.36. The question
whether ϕ remains continuous if C(S,F) is equipped with the (stronger) norm
topology is addressed in Remark 2.38.

Proposition 2.36. Let V be a real or complex topological vector space, Ω a
compact Hausdorff space, and ψ : V → C(Ω,F) a linear map which is continu-
ous with respect to the topology of pointwise convergence on C(Ω,F). Then the
set S := {fω : v 7→ ψ(v)ω | ω ∈ Ω} ⊆ V ∗ is weak-∗ compact and Hausdorff.

Proof. Note that for every ω ∈ Ω the function fω : v 7→ ψ(v)ω defines a
continuous linear functional on V . Consider the map ψt : Ω → V ∗ given by
ω 7→ fω. We claim that ψt is continuous, where V ∗ is understood to be equipped
with the weak-∗ topology. By the characteristic property of weak topologies,
ψt is continuous if and only if v̂ ◦ψt : Ω→ F is continuous for every v ∈ V . But
we have (v̂ ◦ ψt)(ω) = v̂(fω) = fω(v) = ψ(v)ω, so we see that v̂ ◦ ψt is simply
the function ψ(v) ∈ C(Ω,F). This is of course continuous, so it follows that ψt
is continuous.

It is clear from the definition that S is the image of Ω under the map
ψt : Ω→ V ∗. Since Ω is compact and ψt continuous, it follows that S is weak-∗
compact. Furthermore, S is Hausdorff since it is a subspace of a (Hausdorff)
topological vector space. �

Remark 2.37. In the setting of Proposition 2.36, it is easy to see that ψ
factors as the composition

V
ϕ−→ C(S,F) χ−→ C(Ω,F),

where ϕ : V → C(S,F) is as in Remark 2.35 and χ : C(S,F)→ C(Ω,F) is the
map f 7→ f ◦ψt, with ψt : Ω→ V ∗ as in the proof of Proposition 2.36. (Indeed,
for v ∈ V we have (χ ◦ ϕ)(v) = χ(v̂) = v̂ ◦ ψt = ψ(v), so we find χ ◦ ϕ = ψ.)

Note that χ preserves both pointwise and uniform convergence, and that
both ϕ and χ can be recovered only from the continuous function ψt : Ω→ V ∗.
As such, it follows that choosing a compact Hausdorff space Ω and a linear
map ψ : V → C(Ω,F) which is continuous with respect to the topology of
pointwise convergence is essentially the same as choosing a compact Hausdorff
space Ω and a continuous function ψt : Ω → V ∗. (This continuous function is
the topological analogue of the multisets we encountered before.)

Remark 2.38. In light of Remark 2.37, it is now not so hard to see that
choosing a compact Hausdorff space Ω and a linear map ψ : V → C(Ω,F)
which is continuous with respect to the norm topology is the same as choosing
a compact Hausdorff space Ω and a continuous function ψt : Ω→ V ∗ such that
the set

{x ∈ V : |s(x)| < 1 for all s ∈ ran(ψt)}
is a neighbourhood of 0 in V , or equivalently, has non-empty interior. If V is
such that V ∗ separates points, then the latter criterion is equivalent to the more
concise statement that the absolute prepolar ◦ran(ψt) has non-empty interior.
(If 〈 · , · 〉 : V ×W → F is a dual pairing, then the absolute prepolar of a subset
T ⊆ W is defined as ◦T := {x ∈ V : |〈x, t〉| ≤ 1 for all t ∈ T}; cf. [Sch99,
page 125]. Others call this simply the (pre)polar ; cf. [Con07, Definition V.1.6].)
Yet another way to put this is that ran(ψt) should be an equicontinuous set of
linear functionals (see also [Sch99, remark 5 on page 125]).
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The results from this section can easily be combined with the results from
Section 2.6 to find criteria for injective (bi)positive representations of a (real)
topological ordered vector space as a subspace of a C(Ω,R) space. In particular,
the following theorem is immediate.

Theorem 2.39. Let V be a (real) topological ordered vector space such that
V ∗ separates points. Then the following are equivalent:

(1) there exists a compact Hausdorff space Ω and a continuous bipositive
representation V → C(Ω,R);

(2) there exists a weak-∗ compact subset T ⊆ V ∗ with T = V + such that ◦T
has non-empty interior;

(3) V + is weakly closed and (V +) admits a weak-∗ topological generating
set which is both weak-∗ compact and equicontinuous.

As in Section 2.6, the result can be applied to positive and injective represen-
tations as well, by passing to a weakly closed cone K ⊇ V +.

Comparable results regarding representations as C(Ω) spaces are proven in
theorems 2.44 and 2.45 below.

2.8 Order semisimple normed spaces

We conclude the representation theory of real ordered vector spaces with a
brief investigation of normed ordered spaces.

If V is a normed ordered space, then it follows from Corollary 2.29 that V
is topologically order semisimple if and only if V + is a cone (and not a wedge).
We assume for the remainder of this section that this is the case. Furthermore,
like before, we let 〈 · , · 〉 : V ×V ∗ → R denote the natural dual pairing. We show
that V admits a continuous bipositive representation ϕ : (V, V +) → C(Ω,R)
for some compact Hausdorff space Ω. There are two natural ways of doing so.

Construction 2.40. By the Banach–Alaoglu theorem, the closed unit ball
B ⊆ V ∗ is weak-∗ compact. Furthermore, the polar wedge (V +) is weak-∗
closed, so it follows that T := B∩ (V +) is also weak-∗ compact. Thirdly, note
that ◦B is simply the closed unit ball of V . Since we have T ⊆ B, it follows that
◦T ⊇ ◦B holds, so ◦T has non-empty interior. Finally, since B is absorbing, it
is clear that T is a generating set of (V +) .

All in all, we see that T is a weak-∗ compact equicontinuous generating
set of (V +) . It follows from Theorem 2.39 that the natural representation
V → FT becomes a continuous representation ϕ : V → C(Ω,R).

Continuity of ϕ is also easy to verify directly: for v ∈ V and f ∈ T ⊆ B we
have |f(v)| ≤ ‖f‖‖v‖ ≤ ‖v‖, so we find ‖ϕ(v)‖∞ = supf∈T |f(v)| ≤ ‖v‖. �

Construction 2.41. Let T ⊆ V ∗ be as in Construction 2.40, and let Ω ⊆ T
be the weak-∗ closure of the set of all extreme points of T . Then Ω is weak-∗
compact (a closed subset of a compact set is compact), and it follows from
the Krein–Milman theorem that T is the weak-∗ closed convex hull of Ω. As a
consequence, Ω is a weak-∗ topological generating set of (V +) . Furthermore,
we have Ω ⊆ T , so clearly Ω is equicontinuous as well.

The remainder of Construction 2.40 can be carried out verbatim, and we
get a continuous, bipositive representation ψ : (V, V +)→ C(Ω,R). �
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It should be noted that the set of extreme points of T is not weak-∗ closed in
general, so it really is necessary to take the weak-∗ closure in Construction 2.41.
For instance, in [Gli60, Theorem 2.8] the following is shown: if V is a UHF
algebra (i.e. a certain type of C∗-algebra), then the weak-∗ closure of the set
of extreme points of T is equal to all of T .

We mention one consequence of the preceding results.

Corollary 2.42. Let V be a (real) Archimedean ordered vector space containing
an order unit u ∈ V +. Then there exists a compact Hausdorff space Ω and a
bipositive continuous representation ϕ : V → C(Ω,R).

Proof. Let ‖ · ‖u denote the norm associated with u (cf. Theorem 1.29). Then
V + is closed, so the result follows from constructions 2.40 and 2.41. �

Remark 2.43. While we showed that every topologically order semisimple
normed space can be represented as a C(Ω) space, we did not choose any
particular representation. The most common choice of representation is the
one from Construction 2.41. Similar constructions, using the machinery of the
Hahn–Banach, Banach–Alaoglu and Krein–Milman theorems, occur time and
again in various branches of functional analysis. Examples include the Gelfand
representation for commutative Banach algebras, as well as the Stone–Krein–
Kakutani–Yosida representation theorem for Riesz spaces with an order unit.
In general, the question is to represent a certain class of normed spaces as sub-
spaces of spaces of continuous functions. In a 1951 paper of Richard V. Kadison,
[Kad51a], the relations between many of these theorems are studied in detail. In
this paper, the representation theorem for Archimedean ordered vector spaces
with an order unit is used as a basis for the other representation theorems.

We close this section with the following question: given an order semisimple
space V without any topological structure, when is it possible to equip V with a
norm such that V becomes topologically order semisimple? Using the techniques
from this chapter, the following result is now easy to prove.

Theorem 2.44. Let V be a (real) ordered vector space. Then the following are
equivalent:

(1) there exists a norm ‖ · ‖ on V that turns V into a topologically order
semisimple space;

(2) there exists a norm ‖ · ‖ on V such that V + is a cone (as opposed to a
wedge);

(3) there exists a monotone norm ‖ · ‖ on V ;
(4) there exists a fully monotone norm ‖ · ‖ on V ;
(5) there exists a compact Hausdorff space Ω and an injective and positive

linear map ϕ : V → C(Ω,R).

Proof. (1)⇐⇒ (2). This follows from Corollary 2.29
(1) =⇒ (5). This follows from the constructions from this section.
(5) =⇒ (4). If ϕ : V → C(Ω,R) is positive and injective, then clearly

‖v‖ := ‖ϕ(v)‖∞ defines a fully monotone norm on V .
(4) =⇒ (3). Trivial.
(3) =⇒ (2). This follows from theorems 1.25 and 1.28. �
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Adding closed cones, we get the following bipositive version.

Theorem 2.45. Let V be a (real) ordered vector space. Then the following are
equivalent:

(1) there exists a norm ‖ · ‖ on V such that V + is closed;

(2) there exists a monotone norm ‖ · ‖ on V such that V + is closed;

(3) there exists a fully monotone norm ‖ · ‖ on V such that V + is closed;

(4) there exists a compact Hausdorff space Ω and a bipositive linear map
ϕ : V → C(Ω,R).

Proof. (1) =⇒ (4). This follows from the constructions from this section.
(4) =⇒ (3). If ϕ : V → C(Ω,R) is bipositive, then ‖v‖ := ‖ϕ(v)‖∞ defines

a fully monotone norm on V . Furthermore, since ϕ is bipositive and isometric,
we find that V + = ϕ−1[C(Ω,R)+] is closed.

(3) =⇒ (2) =⇒ (1). Trivial. �

In Section 4.6 we exhibit a class of ordered vector spaces which are order
semisimple but nevertheless fail to meet the criteria of Theorem 2.44 (let alone
Theorem 2.45).

2.9 Modifications for the complex case

So far, all the theory developed in this chapter was developed for real ordered
spaces only. We briefly list the modifications needed to be made in order to
translate the theory to the complex setting.

2.9.1 Ideals in complex ordered spaces
Recall that we require the cone of a complex ordered vector spaces to be real
with respect to some complex conjugation. If we define ideals in a complex
ordered vector space simply as full (complex) subspaces, then some strange
things happen. The following example is instructive.

Example 2.46. Consider V = C2 with the entry-wise conjugation and the
cone R2

≥0 ⊆ R2 = Re(V ). It is easily seen that the subspace I := span{(1, i)}
is full, for it contains no positive elements. Therefore the quotient V/I can be
equipped with the quotient cone (V/I)+. However, V/I is two-dimensional as
a real vector space, and the cone (V/I)+ is not contained in a one-dimensional
real subspace. Consequently, there is no conjugation on V/I that turns it into
a complex ordered vector space. �

In light of the preceding example, we will say that an ideal in a complex
ordered vector space is a self-conjugate full subspace. In this setting, it is easy
to see that the conjugation of V carries over to V/I, so the latter becomes a
complex ordered vector space.

Recall from Remark 1.12 that positive linear maps are not necessarily self-
conjugate. The following example shows that the kernel of a positive linear
map might fail to be an ideal.
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Example 2.47. Let V and I be as in Example 2.46, except that we equip
V with the zero cone this time. Then V/I also carries the zero cone, so the
natural map V → V/I gives rise to a positive linear functional f : V → C. Now
I is the kernel of a positive linear functional, but I is not self-conjugate. �

Therefore it seems that we chose the “wrong” definition of positive linear
maps in the complex case.11 Consequently, we will focus most of our attention
to self-conjugate positive linear maps.

Analogously to Lemma 2.2, we find that ideals of a complex ordered vector
space are precisely the kernels of self-conjugate positive linear maps. Note: this
should not be construed as saying that a positive linear map f : V → W is
self-conjugate if and only if ker(f) is self-conjugate; this is not true.12

In order for the isomorphism theorems to hold in the complex case, they
should be rephrased in terms of self-conjugate positive linear maps.

2.9.2 Maximal ideals in complex ordered spaces
Let V be a complex ordered vector space. Note that a subspace X ⊆ V is
self-conjugate if and only if it is of the form X = Y + iY for some real subspace
Y ⊆ Re(V ). (Concretely, this Y can be found as Y = Re(X) := X ∩ Re(V ).)
In particular, this applies to ideals, so we see that the ideals of V are in bijective
correspondence with the ideals of Re(V ).

It follows at once that an ideal I ⊆ V is maximal if and only if Re(I) is a
maximal ideal in Re(V ). Consequently, we find that V is simple if and only if
Re(V ) is simple, if and only if Re(V ) is one-dimensional (as a real space), if and
only if V is one-dimensional (as a complex space). Like in the real case, we have
exactly two non-isomorphic simple spaces: (C, {0}) and (C,R≥0). Similarly, like
in the real case, every maximal ideal gives rise to a non-zero positive linear
functional V → (C,R≥0) by composing the natural map V → V/I with a
positive linear isomorphism V/I → (C,R≥0).

The remaining results from Section 2.2 hold in the complex case as well;
the required modifications are straightforward.

Remark 2.48. Before we move on to order semisimplicity, we pause for a
moment to point out one of the major reasons for defining complex ordered
vector spaces as we did, with a complex conjugation rather than merely a
cone in a complex vector space. In the latter setting, there are more than two
non-isomorphic simple complex ordered spaces (any cone in C suffices). Some
cones in C are larger than the standard cone R≥0, so the quotient of V by
a maximal ideal cannot always be identified with a non-zero positive linear
functional V → (C,R≥0) (modulo scalar). Indeed, examples like the one given
in Example 2.46 show that larger cones can occur in the quotient of V by a
maximal ideal.

In fact, the situation is much worse: if we define complex ordered vector
spaces without the additional structure provided by the complex conjugation,
then a simple ordered vector space need not be one-dimensional! We give an
example in Example 4.7.

This shows that the complex conjugation and the requirement V + ⊆ Re(V )
serve a clear purpose: to retain the inherently real nature of ordered vector
spaces, and to circumvent strange counterexamples like the one presented in
Example 4.7.
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2.9.3 Order semisimplicity of complex ordered spaces
As a slight modification of what was pointed out in Remark 1.12, note that
f ∈ V ′ is positive if and only if Re(f), Im(f) and − Im(f) are positive. (This
is because v ∈ V + and f ∈ (V +)′ together imply f(v) = f(v) = f(v) = f(v),
hence Re(f)(v) = f(v) and Im(f)(v) = 0.) As such, we may define

ora(V ) :=
{
x ∈ V : f(x) = 0 for all f ∈ (V +)′

}
=
{
x ∈ V : f(x) = 0 for all f ∈ (V +)′ ∩ Re(V ′)

}
,

as these two sets are easily seen to be equal.
The remaining results of Section 2.3 are easily extended to the complex

case. By the above, (V +)′ separates points on V if and only if (V +)′ ∩Re(V ′)
separates points on V . Therefore it is clear that V admits an injective and
positive representation V → CS if and only if it admits a self-conjugate injective
and positive representation V → CT . Like in the real case, choosing such a
representation V → CS is the same as choosing a separating multiset S of
positive linear functionals. Furthermore, the representation V → CS is self-
conjugate if and only if S is real (that is, S ⊆ Re(V ′)).

2.9.4 Topological order semisimplicity of complex ordered
spaces

Let V be a complex topological ordered vector space. Recall that this means
that V is equipped with a continuous complex conjugation ¯ : V → V . Before
extending the notion of order semisimplicity to the complex topological case,
we briefly study questions related to the continuity of the conjugation. First of
all, we show that the induced conjugation on V ′ can be restricted to V ∗.

Proposition 2.49. Let V be a complex topological vector space equipped with
a continuous complex conjugation ¯ : V → V . Then its topological dual V ∗ is
self-conjugate as a subset of the algebraic dual V ′. Consequently, the induced
conjugation on V ′ restricts to a well-defined complex conjugation on V ∗.

Proof. The conjugate of a continuous linear functional f : V → C is once again
continuous, as it can be written as the composition f = ¯◦ f ◦¯ of continuous
functions. Therefore V ∗ is self-conjugate, and we get an induced conjugation
f 7→ ¯◦ f ◦¯ on V ∗. �

Here we see one reason for the requirement that the complex conjugation
should be continuous: this ensures that the induced conjugation is well-defined
on V ∗. The converse is true for weak topologies, as the following result shows.

Proposition 2.50. Let V be a complex vector space equipped with a complex
conjugation ¯ : V → V , and let V ′ be its algebraic dual, equipped with the
induced conjugation. If W ⊆ V ′ is a separating space of linear functionals,
then ¯ : V → V is continuous with respect to the σ(V,W )-topology if and only
if W is self-conjugate (W = W ).

Proof. If ¯ : V → V is continuous with respect to the σ(V,W )-topology, then
it follows from Proposition 2.49 and the fact that the (topological) dual of
(V, σ(V,W )) coincides with W that W is self-conjugate.
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Assume now that W is self-conjugate, and equip V with the σ(V,W )-
topology. From the characteristic property of initial topologies, we know that a
net {xλ}λ∈Λ in V converges to some x ∈ V if and only if {f(xλ)}λ∈Λ converges
to f(x) for all f ∈W . Assume that this is the case, then for all f ∈W we have

lim
λ∈Λ

f (xλ) = lim
λ∈Λ

f (xλ) = lim
λ∈Λ

f(xλ) = f(x) = f(x),

where we used that W is self-conjugate and ¯ : C→ C is continuous. It follows
that {xλ}λ∈Λ converges to x, which shows that ¯ : V → V is continuous. �

Bearing this in mind, it is easy to extend the results from Section 2.4 to the
complex case, in the same way that we extended the results fromSection 2.3 to
the complex case.

In Remark 2.22, we showed how to interpret questions about a bare ordered
vector space V in terms of the analogous topological questions with respect
to the σ(V, V ′)-topology. It follows from Proposition 2.50 that the σ(V, V ′)-
topology makes any complex conjugation on V continuous; therefore we may
use Remark 2.22 in the complex case as well.

2.9.5 The bipolar theorem for wedges in complex spaces
Let V and W be complex vector spaces each carrying a complex conjugation.
We say that a dual pairing 〈 · , · 〉 : V ×W → C is of self-conjugate type if
we have 〈x, y〉 = 〈x, y〉 for all x ∈ V and y ∈ W . This is equivalent to the
requirement that the natural map W ↪→ V ′ is self-conjugate (i.e. conjugation-
preserving). Another equivalent condition is that 〈 · , · 〉 restricts to a dual
pairing Re(V )× Re(W )→ R.

If V is a complex topological vector space carrying a continuous complex
conjugation, then it follows from Proposition 2.49 that V ∗ can be equipped
with the induced conjugation. Clearly the natural dual pairing V × V ∗ → C is
of self-conjugate type. The same holds, of course, for the natural dual pairing
V × V ′ → C in the non-topological setting.

The definition of (pre)polar wedges is a bit different in the complex case.
Consider a dual pairing 〈 · , · 〉 : V ×W → C (not necessarily of self-conjugate
type) and subsets S ⊆ V and T ⊆W , then we define

S :=
{
y ∈W : Re(〈s, y〉) ≥ 0 for all s ∈ S

}
;

T :=
{
x ∈ V : Re(〈x, t〉) ≥ 0 for all t ∈ T

}
.

Note: in case the dual pairing is of self-conjugate type and V + ⊆ Re(V ) is a
cone, then (V +) does not coincide with the dual wedge (V +)′. Indeed, for any
subset S ⊆ Re(V ) and s ∈ S, y ∈W we have 〈s, y〉 = 〈s, y〉 = 〈s, y〉, hence

S =
{
y ∈W : 〈s,Re(y)〉 ≥ 0 for all s ∈ S

}
.

In particular, if we take S = V +, then we find

(V +) =
{
y ∈W : Re(y) ∈ (V +)′

}
=
(
(V +)′ ∩ Re(W )

)
+ iRe(W ).

Of course, this is not generally equal to (V +)′; this already fails in the case
(V, V +) = (C,R≥0).
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The reason for this modification to the definitions of S and T is that
the bipolar theorem fails if we define S and T like in the real case (i.e. with
〈s, y〉 ≥ 0 instead of Re(〈s, y〉) ≥ 0). Consider the following example.

Example 2.51. Consider V = W = C with standard conjugation and the
natural dual pairing 〈x, y〉 := xy, and consider the set S := R = Re(V ). If
y ∈ C is such that xy ≥ 0 holds for all x ∈ S, then in particular we have
1 · y ≥ 0 and −1 · y ≥ 0, so we must have y = 0. Therefore the “naive” polar
wedge of S is zero, and the “naive” bipolar of S is all of C. In particular, it is
larger than the closed wedge generated by S. �

The present definitions of S and T correspond to the common definition
of one-sided polars in the complex case; see for instance [Sch99, page 125].

Complex polar wedges satisfy the same basic properties as in the real case,
and the bipolar theorem remains true here as well. (In fact, the dual pairing
does not have to be of self-conjugate type for this.) The proof of the bipolar
theorem requires only one modification: when applying the complex version of
the Hahn–Banach separation theorem, we get some y0 ∈W such that

Re(〈x0, y0〉) < γ1 < γ2 < Re(〈s, y0〉), (for all s ∈ S1),

and these real parts need to be carried along for the remainder of the proof.
Since the dual wedge (V +)′ and the polar wedge (V +) no longer coincide in

the complex case, the proof of Theorem 2.28 becomes a little trickier. However,
it is still relatively straightforward to prove that one has

tora(V ) =
(

((V +) ) ∩ − ((V +) )
)

+ i
(

((V +) ) ∩ − ((V +) )
)
.

Note: since a dual pairing of self-conjugate type restricts to a dual pairing
Re(V )×Re(W )→ R, the bipolar of a subset S ⊆ Re(V ) can also be computed
with respect to this real dual pairing. The real and complex bipolars coincide:
in both cases it is the σ(V,W )-closed wedge generated by S. (Here we use that
Re(V ) is σ(V,W )-closed, because of continuity of the conjugation.)

2.9.6 Bipositive representations of complex ordered spaces
In attempting to formulate the complex analogue of Theorem 2.31, we run into
trouble. If T ⊆W is a subset such that T = V + holds, then the corresponding
linear functionals t̂ : x 7→ 〈x, t〉 need not be positive: in general we merely have
Re( t̂(v)) ≥ 0 for v ∈ V + and t ∈ T . We solve this by identifying W with a
subspace of V ′, and only considering subsets T ⊆ (V +)′ ∩W .

Theorem 2.52. Let V,W be complex vector spaces each equipped with a com-
plex conjugation, let V + ⊆ Re(V ) be a cone, and let 〈 · , · 〉 : V × W → C
be a dual pairing of self-conjugate type. For any subset T ⊆ (V +)′ ∩W , the
following are equivalent:

(1) T̂ :=
{
t̂ : x 7→ 〈x, t〉 | t ∈ T

}
⊆ (V +)′ is a separating set of positive linear

functionals and the associated representation V → RT is bipositive;

(2) one has (T + iRe(W )) = V +;

(3) V + is σ(V,W )-closed, and (V +) is the σ(W,V )-closed wedge generated
by T + iRe(W ).
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The proof of Theorem 2.52 is analogous to the real case.
In applying Theorem 2.52, recall that the representation V → RT is self-

conjugate if and only if T ⊆ Re(V ′) holds.
The remaining corollaries from Section 2.6 can be translated to the complex

setting with straightforward modifications.

2.9.7 Representations on C(Ω) spaces
Everything in Section 2.7 was already proved for real and complex spaces, so
there is nothing to be done here.

2.9.8 Representations of complex normed spaces
In the complex analogue of Construction 2.40, we set T := B∩(V +) ∩Re(V ∗),
so that the representation V → C(T,C) will be self-conjugate (i.e. conjugation-
preserving). If this choice is carried over to Construction 2.41, then the same
holds for the representation V → C(Ω,C) obtained therein.

If V is a complex Archimedean ordered vector space with an order unit,
then we have to choose a complexification of the order unit norm ‖ · ‖u, and
the obtained representation depends on this choice (see also Remark 1.32).

In the complex versions of theorems 2.44 and 2.45, the representations ϕ :
V → C(Ω,C) can be required to be self-conjugate (i.e. conjugation-preserving).

2.10 End notes

1. (page 15) The term order ideal dates back to [Kad51a, Definition 2.2], and
possibly even further. Other authors refer to these as full (or order-convex)
subspaces.

A word of warning: a different definition of order ideals is given in [vGK08],
but it is not equivalent. The goal of the latter is to generalise the notion of
Riesz ideals to pre-Riesz spaces, so the ideals defined there are precisely the
kernels of Riesz homomorphisms rather than positive linear maps.

2. (page 15) As a matter of convention, order units are commonly required to
be positive, as in Definition 1.21. Our view in terms of ideals suggests that we
should also allow negative elements to be order units, but this is not customary.
We shall therefore stick to our original definition.

3. (page 16) The second isomorphism theorem would read: Let V be a real
ordered vector space, and let W ⊆ V be a subspace and I ⊆ V an ideal. Then
W + I is a subspace of V , W ∩ I is an ideal of W , and the natural linear
isomorphism W/(W ∩ I) ∼= (W + I)/I, w + (W ∩ I) 7→ w + I is bipositive.
Unfortunately, this is not true: all we get is a positive linear isomorphism
W/(W ∩ I)→ (W + I)/I. To see why this is not generally bipositive, consider
V = R2 with a non-zero cone V + ⊆ V , and let W, I ⊆ V be different one-
dimensional subspaces satisfying W ∩ V + = I ∩ V + = {0}. Note that I is
trivially an ideal (there is no y ∈ I with 0 ≤ y, so the situation 0 ≤ x ≤ y
does not occur). However, W/(W ∩ I) is isomorphic with (R, {0}), whereas
(W + I)/I is isomorphic with (R,R≥0).
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4. (page 17) We distinguish two cases. On the one hand, if V/I is isomorphic
with (R, {0}), then the positive linear functional defined by I is unique up to
a non-zero scalar. On the other hand, if V/I is isomorphic with (R,R≥0), then
the positive linear functional defined by I is unique up to a positive scalar.

5. (page 20) Given a representation V → RS , different s1, s2 ∈ S might give
rise to the same linear functional fs1 = fs2 , so we get a multiset instead of a
set. (Of course, we can remove all superfluous duplicates if the situation allows
us to do so.)

6. (page 20) Terminology invented by the author. The term order semisimple
is chosen because the concept is similar in spirit to semisimplicity of Banach
algebras. It should be pointed out, however, that the concept is not directly
analogous to semisimplicity of rings in abstract algebra, but rather to Jacobson
semisimplicity of rings and modules. Perhaps a better name would be order
Jacobson semisimple (or order semiprimitive), to stay closer to the terminology
of rings and algebras, but this terminology will sound alien to most in functional
analysis. (Furthermore, no concept of order semisimplicity exists to date, so the
chosen terminology is not particularly ambiguous.)

7. (page 20) If ϕ : V → W is a continuous linear map to a topological vector
space W , then {0} ⊆ W is closed (we assume topological vector spaces to be
Hausdorff), so ker(ϕ) is closed as well (by continuity). Conversely, if I ⊆ V is a
closed subspace, then the quotient topology turns V/I into a (Hausdorff) topo-
logical vector space; cf. [Rud91, Definition 1.40] or [Con07, Exercise IV.1.16].

8. (page 21) Let x ∈ V be non-zero, then the singleton {x} can be extended
to a basis B. Now there is a unique linear functional ϕ : V → F given by x 7→ 1
and b 7→ 0 for all b ∈ B \ {x}. In particular, now we have ϕ(x) 6= 0. (The set of
functionals derived from the basis B in this way form the dual basis of B, but
it is only a basis of V ′ if V is finite-dimensional.)

9. (page 22) A word of warning: this is not common terminology or notation.

10. (page 22) Some authors define the one-sided polar on the other side; see
e.g. [Sch99, page 125]. Of course, this does not matter much: you just end up
with the same set reflected in the origin.

11. (page 31) The present notion of positive linear maps is commonly used
throughout functional analysis, in particular in the context of positive linear
functionals, so we chose not to deviate too much from existing terminology.

12. (page 31) The kernel of a self-conjugate map is self-conjugate, but the
converse is not true (even for positive linear maps). Indeed, consider a linear
map f : (C, {0})→ (C,R≥0) which is not self-conjugate (i.e. of the form x 7→ λx
for λ /∈ R), then f is positive and ker(f) = {0} is self-conjugate.



3 Order unitisations

A common scenario in abstract algebra and operator theory is that a given
(Banach) algebra does not have an algebraic unit, in which case it might be
desirable to adjoin one. The same happens in ordered vector spaces: we saw
in the previous chapter that having order units presents some advantages. It
is therefore of great interest to determine which spaces admit an “extension”
(more precisely, an injective positive linear map) to a space with order unit,
preferably an Archimedean one.

In this chapter we present two ways of adjoining order units to certain
classes of ordered vector spaces, and we study the properties of these order
unitisations. One of the main results is the extension theorem from Section 3.5.

As in the previous chapter, we build the theory only for real ordered vector
spaces, and we briefly list the modifications needed for the complex case in
Section 3.6 below.

3.1 A non-Archimedean order unitisation

There is one straightforward way to adjoin an order unit to a (real) ordered
vector space V : consider the direct sum V̊ := V ⊕R equipped with the reverse
lexicographic cone

V̊ + := {(v, λ) ∈ V̊ : λ > 0 or (λ = 0 and v ≥ 0)}.

The embedding v 7→ (v, 0) is bipositive, and every element (v, λ) ∈ V̊ with
λ > 0 is an order unit.

We will see that this unitisation is not particularly useful, in that it has
various undesirable properties. First of all, we show that V̊ is far form being
Archimedean.

Proposition 3.1. Let V,W be ordered vector spaces and let φ : V̊ → W be
injective and positive. If V 6= {0}, then W is not Archimedean.

Proof. Since φ is injective and V 6= {0}, the image of V ⊕{0} under φ defines a
non-zero subspace X ⊆W . Since X+ = X ∩W+ is a cone in a non-zero space,
we may choose some x ∈ X \X+. Let v ∈ V be such that φ(v, 0) = x holds.
Note that we have n · (−v, 0) ≤ (0, 1) in V̊ for all n ∈ N+, so by positivity of
φ we also have −nx ≤ φ(0, 1) for all n ∈ N+. However, we have −x 6≤ 0, since
we assumed x /∈ X+, so we find that W is not Archimedean. �

In particular, for V 6= 0 we have that V̊ itself is not Archimedean, and cannot
be extended to an Archimedean space. This shows that the order unitisation
V̊ constructed here is, in a sense, maximally non-Archimedean.

Since V̊ is a non-zero ordered vector space with an order unit, it follows
from Corollary 2.11 that V̊ admits a maximal ideal, and therefore a non-zero
positive linear functional f : V̊ → R. However, we could have noticed that
ourselves: clearly the map (v, λ) 7→ λ is non-zero and positive. In fact, the
situation is much worse: the positive scalar multiples of this map are the only
positive linear functionals!

37
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Proposition 3.2. Let V be a (real) ordered vector space. Then V ⊕{0} is the
unique maximal ideal of V̊ .

Proof. Clearly V ⊕ {0} is a maximal ideal, as it is the kernel of the positive
linear functional (v, λ) 7→ λ.

Now let I ⊆ V̊ be an arbitrary maximal ideal. Since order units (and their
negatives) cannot belong to a proper ideal, we must have I ⊆ V ⊕ {0}. Then,
by maximality of I, we have I = V ⊕ {0}. �

The preceding results show that V̊ has none of the advantages of spaces
with an order unit, so we will not study this unitisation any further.

3.2 An Archimedean order unitisation

If the ordered vector space V is equipped with a sufficiently nice norm ‖ · ‖,
then we can carry out a different construction, which turns out to be more
fruitful. The assumption we make is that V is topologically order semisimple
with respect to ‖ · ‖. By Corollary 2.29, this is equivalent to the requirement
that V + is a cone, as opposed to a wedge.

Definition 3.3. Let V be a (real) normed ordered space which is topologically
order semisimple. Then we define Ṽ to be the space Ṽ := V ⊕R equipped with
the cone

Ṽ + :=
{

(v, λ) ∈ Ṽ : λ ≥ d(v, V +)
}
,

where d(v, V +) := inf
w∈V +

‖v − w‖ denotes the distance between v and V +.

We shall shortly see that Ṽ is indeed an Archimedean unitisation of V .
Furthermore, we prove a fundamental property of this unitisation in Section 3.5.
However, it is not a universal property, so Ṽ is merely an Archimedean order
unitisation of V (see Remark 3.20).

Before proving any additional properties of this unitisation, we first have
to prove that Ṽ is Archimedean, or that Ṽ + even defines a cone at all.

Proposition 3.4. Let V be a (real) normed ordered space which is topologically
order semisimple. Then the set Ṽ + from Definition 3.3 is a cone.

Proof. Since V + is a cone, for v ∈ V and α > 0 we have

d(αv, V +) = inf
x∈V +

‖αv − x‖ = inf
y∈V +

‖αv − αy‖ = αd(v, V +).

Similarly, for v, w ∈ V we have

d(v + w, V +) = inf
x,y∈V +

‖v + w − x− y‖

≤ inf
x,y∈V +

‖v − x‖+ ‖w − y‖

= d(v, V +) + d(w, V +).

From this it easily follows that Ṽ + is a wedge.
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In order to show that Ṽ + is a cone, let (v, λ) ∈ Ṽ + ∩ −Ṽ + be given. Note
that we have λ ≥ d(v, V +) ≥ 0 as well as −λ ≥ d(−v, V +) ≥ 0, so we find
λ = 0 as well as d(v, V +) = d(−v, V +) = 0. From the latter it follows that
v,−v ∈ V + holds. Since V is topologically order semisimple, we know that V +

is a cone, so we must have v = 0. �

Proposition 3.5. Let V be a (real) normed ordered space which is topologically
order semisimple. Then the cone Ṽ + defined in Definition 3.3 is Archimedean,
and (0, 1) ∈ Ṽ + is an order unit.

Proof. Note that the function V → R, v 7→ d(v, V +) is uniformly continuous:
if v, w ∈ V lie distance ε apart, then d(w, V +) is at most d(v, V +) + ε, by the
triangle inequality. Analogously, we have d(v, V +) ≤ d(w, V +) + ε, so we find
|d(v, V +)− d(w, V +)| ≤ ‖v − w‖, proving our claim.

Now equip Ṽ with the norm ‖(v, λ)‖1 := ‖v‖ + |λ|. It follows from the
preceding paragraph that the function f : Ṽ → F, (v, λ) 7→ λ − d(v, V +) is
continuous. Since Ṽ + is the inverse image of R≥0 under f , it follows that Ṽ +

is closed. As a consequence, Ṽ is Archimedean.
In order to show that (0, 1) ∈ Ṽ is an order unit, assume that (v, λ) ∈ Ṽ is

given. We claim that (v, λ) ≤ ‖(v, λ)‖1 · (0, 1) holds. Indeed, note that we have
d(−v, V +) ≤ ‖−v‖ = ‖v‖ (because 0 ∈ V +), hence

‖(v, λ)‖1 − λ = ‖v‖+ |λ| − λ ≥ ‖v‖ ≥ d(−v, V +),

which proves our claim. �

The norm ‖ · ‖1 defined in the proof of Proposition 3.5 is only temporary.
Now that it is established that Ṽ is an Archimedean space with order unit
u = (0, 1) ∈ Ṽ +, we will understand Ṽ to be normed with the norm ‖ · ‖u
corresponding to this order unit (cf. Theorem 1.29).

Proposition 3.6. Let V be a (real) normed ordered space which is topologically
order semisimple. Then the map φ : V → Ṽ , v 7→ (v, 0) is injective, positive,
and norm-decreasing. Furthermore, φ is bipositive as a map (V, V +)→ Ṽ .

Proof. Injectivity of φ is a simple algebraic fact, and positivity follows because
v ∈ V + implies d(v, V +) = 0.

To show that φ is continuous, recall from the proof of Proposition 3.5 that
we have (v, λ) ≤ ‖(v, λ)‖1 ·(0, 1) for all (v, λ) ∈ Ṽ . Replacing (v, λ) by (−v,−λ),
we also find −‖(v, λ)‖1 · (0, 1) ≤ (v, λ), so it follows that ‖(v, λ)‖u ≤ ‖(v, λ)‖1
holds. In particular, for λ = 0 we find ‖(v, 0)‖u ≤ ‖v‖, which shows that φ is
continuous with ‖φ‖ ≤ 1.

Finally, it is clear from the definition that Ṽ + ∩ (V ⊕ {0}) = V + ⊕ {0}
holds, so we see that φ is bipositive as a map (V, V +)→ Ṽ . �

It follows that Ṽ really defines an Archimedean order unitisation of V .
The remainder of this chapter is devoted to studying the properties of this
unitisation.

First of all, we use Theorem 1.29 in order to obtain a simple formula for
the norm of Ṽ .
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Proposition 3.7. Let V be a (real) normed ordered space which is topologically
order semisimple, and let Ṽ be as in Definition 3.3. Now the functions αu, ωu :
Ṽ → R, as defined in Theorem 1.29, are given by

αu
(
(v, λ)

)
= λ− d(v, V +) and ωu

(
(v, λ)

)
= λ+ d(−v, V +).

Consequently, the norm ‖ · ‖u on Ṽ is given by

‖(v, λ)‖u = max
(
d(v, V +)− λ , d(−v, V +) + λ

)
.

Proof. By definition we have

ωu
(
(v, λ)

)
= inf

{
µ ∈ R : (v, λ) ≤ (0, µ)

}
= inf

{
µ ∈ R : (−v, µ− λ) ∈ Ṽ +}

= inf
{
µ ∈ R : µ− λ ≥ d(−v, V +)

}
= λ+ d(−v, V +).

The formula for αu((v, λ)) follows analogously. The formula for ‖ · ‖u follows
immediately from Theorem 1.29(c). �

3.3 Special cases of the construction

Before we proceed to study the general properties of the order unitisation from
Section 3.2, it is helpful to look at two motivating examples, which arise as
special cases of the current order unitisation.

The first example comes from the theory of ordered vector spaces.

Example 3.8. If V is a (real) normed space without order structure, then we
may consider the zero cone {0} in V . It is automatically closed, so it turns
V into a topologically order semisimple normed space. The unitisation of V is
equipped with the cone

Ṽ + :=
{

(v, λ) ∈ Ṽ : λ ≥ ‖v‖
}
.

The cone thus constructed is a special case of the so-called ice cream cones; a
larger class of cones of this type is studied in [AT07, Section 2.6]. �

Another example arises in the theory of C∗-algebras.

Example 3.9. Let A be a non-unital C∗-algebra, and let V be its self-adjoint
part. Then V is a real normed vector space with a closed cone V + = A+.
As such, V is topologically order semisimple, so we may consider its order
unitisation Ṽ . We compare it with the C∗-algebra unitisation of A, defined
as Ã = A ⊕ C and subsequently equipped with a C∗-algebra structure in
such a way that (0, 1) is the (algebraic) unit (cf. [Mur90, Theorem 2.1.6]). We
show that the natural map Ṽ → Ã, (v, λ) 7→ (v, λ) is bipositive, so the order
unitisation of the self-adjoint part of A is equipped simply with the positive
cone of Ã.

Let a ∈ Ãsa be self-adjoint, and let a+, a− ∈ Ã+ denote its positive and
negative parts, respectively. Note that we have

−‖a−‖ = min σ(a) = max{λ ∈ R : a− λ ≥ 0}.
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(The first equality can be seen by taking the Gelfand representation of the
C∗-subalgebra generated by 1 and a, and the second follows from the easy
observation that σ(a+ λ) = σ(a) + λ holds for every λ ∈ C.)

Note furthermore that we have ‖a‖ = max(‖a−‖, ‖a+‖) for any a ∈ Ãsa;
again this follows easily by looking at the Gelfand representation of the C∗-
subalgebra generated by 1 and a.

Let a ∈ Ãsa be given, then for any positive b ∈ Ã+ we have

−‖(a− b)−‖ = max{λ ∈ R : a− b− λ ≥ 0}

≤ max{λ ∈ R : a− λ ≥ 0}

= −‖a−‖,

and therefore ‖a − b‖ ≥ ‖(a − b)−‖ ≥ ‖a−‖. This holds for every b ≥ 0, so it
follows that d(a, Ã+) ≥ ‖a−‖ holds. The choice of b = a+ gives equality, so we
have d(a, Ã+) = ‖a−‖.

Now suppose that a belongs to the C∗-subalgebra A ⊆ Ã, then we clearly
have d(a,A+) ≥ d(a, Ã+) = ‖a−‖. Since a− and a+ also belong to A, we once
again have equality: d(a,A+) = ‖a−‖.

By what was established before, we have a−λ ≥ 0 if and only if λ ≤ −‖a−‖
holds. Equivalently, we have a+λ ≥ 0 if and only if λ ≥ ‖a−‖ = d(a,A+) holds.
This shows that the cones of Ã and Ṽ coincide. �

3.4 The associated fully monotone norm

In this section we use the order unitisation to define a different norm on V , and
we study the properties of this new norm. Throughout this section, V denotes
a (real) normed ordered space which is topologically order semisimple, and Ṽ
denotes the order unitisation that was constructed in Section 3.2.

Since the natural map φ : V → Ṽ is injective, we can define a second norm
‖ · ‖u on V by setting

‖v‖u := ‖φ(v)‖u = ‖(v, 0)‖u.

Since the inclusion φ : V ↪→ Ṽ is positive and ‖ · ‖u is a fully monotone norm
on Ṽ (cf. Theorem 1.29(e)), it is easy to see that ‖ ·‖u defines a fully monotone
norm on V as well. We call this the fully monotone norm associated with ‖ · ‖.1
It follows from Proposition 3.7 that ‖ · ‖u is given by

‖v‖u = max
(
d(v, V +), d(−v, V +)

)
.

Remark 3.10. Like before, let φ : V ↪→ Ṽ denote the natural inclusion.
Recall from the proof of Proposition 3.6 that φ−1[Ṽ +] = V + holds. Since Ṽ +

is closed with respect to ‖·‖u (cf. Theorem 1.29(g)) and φ is isometric as a map
(V, ‖ · ‖u) → Ṽ , it follows that V + is closed not only with respect to ‖ · ‖ but
also with respect to ‖ · ‖u. In particular, it follows that V + and V +u coincide,
and that (V, ‖ · ‖u) is also topologically order semisimple.

For the remainder of this section, we study the relationship between ‖ · ‖u
and ‖ · ‖.

Recall that we have ‖v‖u ≤ ‖v‖ for all v ∈ V . The following proposition
gives a necessary and sufficient condition for these two norms to be equal.
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Proposition 3.11. Let V be a (real) normed ordered space which is topolog-
ically order semisimple. Then the norms ‖ · ‖ and ‖ · ‖u on V coincide if and
only if ‖ · ‖ is fully monotone.

Proof. If ‖ · ‖ and ‖ · ‖u coincide, then clearly ‖ · ‖ is fully monotone.
For the converse, suppose that ‖·‖ is fully monotone, and let v ∈ V be given.

For every choice of x, y ∈ V +, to be determined later, we have v−x ≤ v ≤ v+y,
hence ‖v‖ ≤ max(‖v − x‖, ‖v + y‖).

Now let µ > max(d(v, V +), d(−v, V +)) be given, then we have µ > d(v, V +)
and µ > d(−v, V +), so we may choose x, y ∈ V + with ‖v − x‖, ‖v + y‖ < µ.
By the preceding paragraph, we have ‖v‖ < µ in this case. But this holds for
all µ > max(d(v, V +), d(−v, V +)), so we find

‖v‖ ≤ max
(
d(v, V +), d(−v, V +)

)
= ‖v‖u.

The inequality ‖v‖u ≤ ‖v‖ was already established in the general case, so here
we have equality. �

Remark 3.12. We note an interesting consequence of Proposition 3.11. Let ‖·‖
be a norm making V topologically order semisimple, and let ‖ · ‖u be the fully
monotone norm associated with it. By Remark 3.10, V is also topologically
order semisimple with respect to ‖ · ‖u, so we may take it one step further
and consider the corresponding order unitisation Ṽu and the fully monotone
norm ‖ · ‖uu associated with it. It follows from Proposition 3.11 that ‖ · ‖u
and ‖ · ‖uu are the same! In other words, taking the associated fully monotone
norm is idempotent. We prove a stronger statement in Theorem 3.14: the order
unitisations Ṽ and Ṽu are the same as well.

Proposition 3.13. Let V be a (real) normed ordered space which is topologi-
cally order semisimple. Then the open unit ball of (V, ‖ · ‖u) is equal to the full
hull of the open unit ball of (V, ‖ · ‖).

Proof. For convenience, let B,Bu ⊆ V denote the open unit balls of (V, ‖ · ‖)
and (V, ‖ · ‖u), respectively, and let fh(B) denote the ‖ · ‖-closed full hull of B.

Since we have ‖v‖u ≤ ‖v‖ for all v ∈ V , it follows that B ⊆ Bu holds. Note
that Bu is full, since ‖ · ‖u is fully monotone, so we have B ⊆ fh(B) ⊆ Bu.

Recall from Proposition 1.19 that the full hull of a convex and balanced
set is again convex and balanced. Furthermore, since we have B ⊆ fh(B), it is
clear that fh(B) is absorbing. As such, the Minkowski functional p : V → R≥0
associated with fh(B) defines a seminorm. As we have B ⊆ fh(B) ⊆ Bu, it is
clear that ‖v‖u ≤ p(v) ≤ ‖v‖ holds for all v ∈ V . An immediate consequence
of this is that p is a norm. Furthermore, it follows from Proposition 1.27 that
p is fully monotone.

Now let pu denote the fully monotone norm associated with p. Then, by
Proposition 3.11 we have pu = p. Furthermore, since we have p(v) ≤ ‖v‖, we
also have dp(v, V +) ≤ d‖ · ‖(v, V +), and therefore pu(v) ≤ ‖v‖u. All in all, for
every v ∈ V we have

p(v) = pu(v) ≤ ‖v‖u ≤ p(v),

so we must have equality throughout. It follows from [Rud91, Theorem 1.35(d)]
that Bu ⊆ fh(B) holds. �
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Theorem 3.14. Let V be a (real) normed ordered space which is topologically
order semisimple, and let Ṽ and Ṽu denote the order unitisations of (V, ‖ · ‖)
and (V, ‖ · ‖u), respectively. Then one has Ṽ + = Ṽ +

u .

Proof. Like in the proof of Proposition 3.13, let B,Bu ⊆ V denote the open
unit balls of (V, ‖ · ‖) and (V, ‖ · ‖u), respectively. We prove the following: for
v ∈ V and α > 0, we have (v+αB)∩V + 6= ∅ if and only if (v+αBu)∩V + 6= ∅.

Since we have B ⊆ Bu, it is immediately clear that (v + αB) ∩ V + 6= ∅
implies (v+αBu)∩V + 6= ∅. For the converse, suppose that y ∈ (v+αBu)∩V +

is given. Then we have 1
α (y − v) ∈ Bu. Since Bu is the full hull of B, we may

choose x, z ∈ B with x ≤ 1
α (y−v) ≤ z. In particular, we have v+αz ∈ v+αB,

but also v + αz ≥ y ≥ 0, so it follows that (v + αB) ∩ V + 6= ∅ holds. This
proves our claim.

Now, to prove the theorem, note that we may write

d(v, V +) = inf
{
α > 0 : (v + αB) ∩ V + 6= ∅

}
,

and similarly for ‖·‖u. It follows from our claim that d(v, V +) = du(v, V +) holds
for all v ∈ V . In particular, we have λ ≥ d(v, V +) if and only if λ ≥ du(v, V +),
and the conclusion follows. �

Recall that a locally full norm ‖ · ‖ is always topologically order semisimple
(cf. Theorem 1.25) and equivalent to a fully monotone norm (cf. Theorem 1.28).
This leads one to ask whether ‖ · ‖ and ‖ · ‖u are automatically equivalent in
this case. Perhaps not surprisingly, the answer is yes.

Proposition 3.15. Let V be a (real) ordered vector space equipped with a
locally full norm ‖ · ‖, and let ‖ · ‖u denote its associated fully monotone norm.
Then ‖ · ‖ and ‖ · ‖u are equivalent.

Proof. Like in the proof of Proposition 3.13, let B,Bu ⊆ V denote the open unit
balls of (V, ‖ ·‖) and (V, ‖ ·‖u), respectively. There exists a neighbourhood base
of 0 consisting of full sets, so in particular we may choose a full neighbourhood
F of 0 satisfying F ⊆ B. But now we also have εB ⊆ F for some ε > 0, since F
is a neighbourhood of 0. Therefore we have B ⊆ 1

εF , hence Bu = fh(B) ⊆ 1
εF .

All in all, we have B ⊆ Bu ⊆ 1
εF ⊆

1
εB, so it follows that ε‖v‖ ≤ ‖v‖u ≤ ‖v‖

holds for all v ∈ V . In other words, ‖ · ‖ and ‖ · ‖u are equivalent. �

Corollary 3.16. Let V be a (real) normed ordered space which is topologically
order semisimple. Then the norms ‖ · ‖ and ‖ · ‖u on V are equivalent if and
only if ‖ · ‖ is locally full.

We saw in Theorem 3.14 that ‖ · ‖ and ‖ · ‖u always give rise to exactly the
same order unitisations, even if these two norms are inequivalent. We might ask
whether this holds in certain other cases as well. However, even if we have two
equivalent norms ‖ · ‖a and ‖ · ‖b on a topologically semisimple ordered space,
their order unitisations Ṽ +

a and Ṽ +
b need not be equal. In fact, they might

even fail to be order isomorphic. For instance, if we consider V = R2 with
the coordinate-wise cone R2

≥0, then the `2-norm gives rise to a cone Ṽ +
2 ⊆ R3

with a curved side, whereas the `∞-norm gives rise to a polyhedral (and even
a lattice) cone. In general, the only relation that remains between the cones
Ṽ +
a and Ṽ +

b corresponding to equivalent norms ‖ · ‖a and ‖ · ‖b is that there
are α, ω ∈ R>0 such that αṼa ⊆ Ṽb ⊆ ωṼa holds.
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3.5 Extension of positive linear maps

In this section, we consider the following question: when can a continuous
positive linear map f : V → W be extended to a continuous positive linear
map Ṽ →W? We show that this can be done whenever W is an Archimedean
space with an order unit.

Theorem 3.17. Let V be a (real) normed ordered space which is topologically
order semisimple, and let W be a (real) Archimedean space with an order unit
w ∈W+, equipped with the order unit norm ‖·‖w. If f : V →W is a continuous
positive linear map, then the map f̃ : Ṽ →W given by

f̃(v, λ) := f(v) + λ · ‖f‖ · w.

is a continuous positive linear extension of f satisfying ‖f̃‖ = ‖f‖.

Proof. Let x = (v, λ) ∈ Ṽ be positive, that is, satisfying λ ≥ d(v, V +). Since f
is positive, we have

dw(f(v),W+) = inf
y∈W+

‖f(v)− y‖

≤ inf
x∈V +

‖f(v)− f(x)‖

≤ ‖f‖ · d(v, V +)

≤ ‖f‖ · λ.

Recall that the closed unit ball of ‖·‖w coincides with the order interval [−w,w].
Consequently, for all µ > ‖f‖ · λ we have (f(v) + [−µw, µw]) ∩W+ 6= ∅, and
therefore f(v) + µw ≥ 0. In particular, if we take µ = ‖f‖ · λ + 1

n for some
n ∈ N+, then we find − 1

nw ≤ f(v) + ‖f‖ · λ · w, or equivalently:

n ·
(
−f(v) − ‖f‖ · λ · w

)
≤ w, (for all n ∈ N+).

It follows from the Archimedean property that −f(v) − ‖f‖ · λ · w ≤ 0 holds.
This shows that we have f̃(v, λ) ≥ 0, proving that f̃ is positive.

Clearly f̃ extends f . In order to see that f̃ is continuous, let (v, λ) ∈ Ṽ
be given with ‖(v, λ)‖u ≤ 1, so that we have (0,−1) ≤ (v, λ) ≤ (0, 1). Since
f̃ is positive, it follows that we have −‖f‖w ≤ f̃(v, λ) ≤ ‖f‖w, and therefore
‖f̃(v, λ)‖w ≤ ‖f‖. This shows that f̃ is continuous with ‖f̃‖ ≤ ‖f‖. Plugging
in (v, λ) = (0, 1) shows that we have equality: ‖f̃‖ = ‖f‖. �

It should be noted that the extension f̃ constructed in Theorem 3.17 is
not generally unique; there might be another continuous positive extension
g : Ṽ →W satisfying ‖g‖ = ‖f‖. Consider the following example.

Example 3.18. Set V := (R,R≥0) with the standard norm, W := (R2,R2
≥0)

with the order unit w := (1, 1) ∈W+, and let f : V →W be the isometric order
embedding f(x) := (x, 0). Theorem 3.17 now gives us an extension f̃ : Ṽ →W
satisfying ‖f̃‖ = ‖f‖ = 1, given by (x, λ) 7→ (x+ λ, λ).

On the other hand, we can also take the identity g : V → V , x 7→ x and
extend it to a positive linear map g̃ : Ṽ → V satisfying ‖g̃‖ = ‖g‖ = 1, given
by (x, λ) 7→ x + λ . If this is subsequently composed with the isometric order



3.5. Extension of positive linear maps 45

embedding f : V → W , x 7→ (x, 0), then we get another continuous positive
linear map f ◦ g̃ : Ṽ →W . The latter is given concretely by (x, λ) 7→ (x+λ, 0);
clearly it extends f . Since f is isometric, we have ‖f ◦ g̃‖ = ‖g̃‖ = 1, showing
that the extension is not unique.

Generally speaking, there might be an order unit w′ relative to some sub-
space W ′ ⊆ W containing ran(f). If the order unit norms ‖ · ‖w and ‖ · ‖w′

coincide on W ′, then the extensions Ṽ →W and Ṽ →W ′ ↪→W differ. �

The extension theorem has some interesting consequences. First of all, if W
is a normed space, then we note that a continuous linear map (V, ‖ · ‖u)→W
is also continuous as a map (V, ‖ · ‖) → W , since we have ‖v‖u ≤ ‖v‖ for all
v ∈ V . Let ‖f‖u and ‖f‖ denote the norm of f as a map (V, ‖ · ‖u) → W or
(V, ‖ · ‖)→W , respectively, then we clearly have ‖f‖ ≤ ‖f‖u. Remarkably, for
certain positive continuous linear maps, we have the following converse.

Corollary 3.19. Let V be a (real) normed ordered space which is topologically
order semisimple, and let W be a (real) Archimedean space with an order unit
w ∈W+, equipped with the corresponding order unit norm ‖·‖w. Then a linear
map f : V →W is continuous and positive as a map (V, V +, ‖ · ‖)→W if and
only if it is continuous and positive as a map (V, V +, ‖·‖u)→W . Furthermore,
if this is the case, then one has ‖f‖ = ‖f‖u.

Proof. Since the identity (V, V +, ‖ · ‖) → (V, V +, ‖ · ‖u) is positive and norm-
decreasing, it is clear that a continuous positive linear map (V, V +, ‖·‖u)→W
is also continuous and positive as a map (V, V +, ‖ · ‖) → W . Furthermore, in
this case we clearly have ‖f‖ ≤ ‖f‖u.

Conversely, if f is continuous and positive as a map (V, V +, ‖ · ‖) → W ,
then it follows from Theorem 3.17 that f can be extended to a continuous
positive linear map f̃ : Ṽ → W with ‖f‖ = ‖f̃‖. Since the natural map
φ : V → Ṽ defines a bipositive isometry (V, V +, ‖ · ‖u) → Ṽ , it follows that f
is also continuous and positive as a map (V, V +, ‖ · ‖u)→W , and that we have
‖f‖u = ‖f̃ ◦ φ‖u ≤ ‖f̃‖ = ‖f‖. �

The special case W = R is worth mentioning: we find that (V, V +, ‖ ·‖) and
(V, V +, ‖ · ‖u) have the same continuous positive linear functionals! As such, a
closed maximal order ideal I ⊆ V for the cone V + ⊆ V and the norm ‖ · ‖ is
also full with respect to the larger cone V +, and similarly remains closed for
the smaller (i.e. topologically weaker/coarser) norm ‖ · ‖u.

Remark 3.20. We note that the property from Theorem 3.17 does not con-
stitute a universal property. For this it would be required that Ṽ is uniquely
determined by the property from Theorem 3.17, up to a unique isomorphism.
However, it might happen that the subspace V ⊕ {0} ⊆ Ṽ already contains
an order unit u′ which furthermore induces the same norm ‖ · ‖u′ = ‖ · ‖u on
V ⊕ {0}. If this is the case, then V ⊕ {0} ⊆ Ṽ also satisfies the property from
Theorem 3.17: this follows at once from Corollary 3.19. (Note: as a vector space,
V ⊕ {0} is isomorphic with V , but as a normed ordered space it is understood
to be equipped with the positive cone V + ⊕ {0} and the norm ‖ · ‖u.)

It is easy to come up with examples where this happens: let V be an
Archimedean space with an order unit u ∈ V , equipped with the order unit
norm ‖ · ‖u. Consider a subcone K ⊆ V + whose closure equals V +, then the
space (V,K, ‖ · ‖u) has a smaller Archimedean order unitisation than Ṽ .
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A second consequence of Theorem 3.17 is that continuous positive linear
maps V →W can be extended to continuous positive linear maps Ṽ → W̃ .

Corollary 3.21. Let V and W be (real) normed ordered spaces which are
topologically order semisimple. If f : V → W is a continuous positive linear
map, then the map f̃ : Ṽ → W̃ given by (v, λ) 7→ (f(v), ‖f‖ · λ) is positive and
continuous with ‖f̃‖ = ‖f‖.

Proof. We apply Theorem 3.17 to the composition

V
f−→ (W, ‖ · ‖)

φ
W−→ (W, ‖ · ‖u)

of continuous positive linear maps. It follows at once that f̃ is positive and
continuous with ‖f̃‖ = ‖φW ◦ f‖ ≤ ‖f‖. Since we have f̃(0, 1) = (0, ‖f‖), it is
clear that ‖f̃‖ = ‖f‖ holds. �

3.6 Modifications for the complex case

We briefly list the modifications needed to be made in the complex case.
The unitisations from sections 3.1 and 3.2 can simply be constructed inside

the real part of V . For instance, the complex analogue of Definition 3.3 is to
set Ṽ := V ⊕ C, equipped with the coordinate-wise conjugation and the cone

Ṽ + :=
{

(v, λ) ∈ Re(Ṽ ) : λ ≥ d(v, V +)
}
.

Most interesting properties of this cone can be understood by passing to Re(Ṽ ),
so much of the order unitisation can be understood through the real theory.

There is exactly one obstacle in the complex setting, and it is a major one.
The order unit u ∈ Ṽ + only defines a norm on Re(Ṽ ), and there is no canonical
way to extend it to a norm on all of Ṽ ; see Remark 1.32. Even in the case where
V is a (non-commutative) C∗-algebra (cf. Example 3.9), it is not at all clear
whether the norm of its C∗-algebra unitisation can be derived purely from the
norm of V and the norm of Re(Ṽ ).

Due to the apparent difficulty in choosing an appropriate complexification
norm, the results in this chapter regarding the norm ‖·‖u do not have straight-
forward analogues in the complex case. The study of complexification norms is
considered to be beyond the scope of this thesis; this might be a direction for
further research.

3.7 End notes

1. (page 41) Terminology invented by the author. Another possible name would
be order spectral radius, as it is similar in spirit to the spectral radius from
operator theory. However, this might lead to confusion about the properties of
either of the two, as the similarities are not particularly strong. (For instance,
the spectral radius does not generally define a norm.)



4 Examples and counterexamples

The purpose of this chapter is to collect some motivating examples and counter-
examples relating to the previous chapters. (Some have been moved here so as
not to interrupt the flow of ideas.)

4.1 Basic properties of ordered vector spaces

The following examples relate to the basic theory of Chapter 1.

Example 4.1 (An Archimedean cone which is not closed). Let V := c(N+) be
the space of all convergent sequences with its usual pointwise cone. Consider
the linear map ϕ : c(N+) → c0(N+) given by ϕ(f)(k) = 1

k (f(k) + f(k + 1)).
Note that ϕ is injective and positive; therefore we may define a monotone norm
on V by setting ‖f‖ := ‖ϕ(f)‖∞. Define g, f1, f2, . . . ∈ V by

g(k) :=
{
−1, if k = 1;

1, if k > 1;

fn(k) :=
{

(−1)k+1, if k ≤ n;

0, if k > n.

Note that we have

ϕ(fn)(k) =
{

1
k · (−1)k+1 if k = n;

0, if k 6= n.

Therefore we have ‖fn‖ = 1
n , so the sequence {fn}∞n=1 converges to 0. Note

that fn + g is positive for all n ∈ N+, so {fn + g}∞n=1 is a sequence in V +

converging to g. But g is not positive, so we see that V + is not closed.
Another non-closed Archimedean cone is given in Example 4.10. �

Example 4.2 (A generating cone without order units). Fix some p ∈ [1,∞),
and consider the sequence space V := `p(N+) with its usual pointwise cone.
Clearly the positive cone of V is generating. We claim that V has no order
units. To that end, consider an arbitrary positive element f ∈ V +. Since the
sequence {f(k)}∞k=1 is p-summable, in particular it converges to zero. Therefore
we may choose x1 < x2 < · · · such that f(xn) ≤ 1

n3 holds for all n ∈ N+. Define
g : N+ → R with g(xn) = 1

n2 for all n ∈ N+, and zero elsewhere. Note that we
have g ∈ `p, since

∞∑
k=1
|g(k)|p =

∞∑
n=1

1
n2p = ζ(2p) < +∞.

For every constant λ > 0 we have λf(xn) = λ
n3 as well as g(xn) = 1

n2 for all
n ∈ N+. Therefore it is clear that there is no λ > 0 such that g ≤ λf holds. It
follows that f is not an order unit. But this holds for all positive f ∈ V +, so
we conclude that V has no order units.

Similar arguments can be used to show that spaces such as c0 and C0(R)
have no order units (this is even easier). �

47
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Example 4.3 (An order unit which is not an interior point of the cone).
Consider the space V := C([0, 1],R) with its usual, point-wise cone. Clearly
the constant function 1 : [0, 1]→ R, x 7→ 1 is an order unit. Equip V with the
norm ‖f‖alt := ‖x · f(x)‖∞. Then the closed unit ball of (V, ‖ · ‖alt) contains
arbitrarily large positive functions, such as the sequence {fn}∞n=1 given by

fn(x) :=
{
n, if x < 1

n ;
1
x , if x ≥ 1

n .

Therefore every neighbourhood of 1 contains non-negative functions (e.g. of
the form 1 − εfn for appropriate choices of ε > 0 and n ∈ N+). In particular,
it follows that 1 is not an interior point of V +. �

Example 4.4 (The order unit seminorm µu might not be a norm). Consider
V := R2 with the reverse lexicographic order:

V + :=
{

(x, y) ∈ R2 : y > 0 or (y = 0 and x ≥ 0
}
.

In other words, V is the non-Archimedean order unitisation of (R,R≥0), in the
sense of Section 3.1. Recall that u := (0, 1) is an order unit in this setting.
The order interval [−u, u] contains the entire x-axis, so for all x ∈ R we have
µu((x, 0)) = 0. Therefore µu is not a norm but merely a seminorm. �

4.2 Two natural examples of order ideals

We show that order ideals occur naturally in two well-known settings.

Example 4.5 (The positive cone in Lp spaces). Recall that Lp spaces are
not actually spaces of functions, but rather quotients of spaces of functions.
Specifically, if (Ω,A, µ) is a measure space, then Lp(µ) is defined as the quotient
of L p(µ) by the subspace N of functions which are a.e. equal to zero. Note
that N is an ideal: we have g ∈ N if and only if g ∈ N (in the complex case),
and if 0 ≤ f ≤ g holds with g a.e. equal to zero, then f is a.e. equal to zero as
well. Hence it follows that Lp(µ) is an ordered vector space (as opposed to a
pre-ordered space).

Since Lp(µ)+ is a closed cone in a locally convex space, it is clear that Lp(µ)
is topologically order semisimple (cf. Corollary 2.29). We will see in Example 4.8
that a quotient of a space of functions might fail to be order semisimple. �

Example 4.6 (Hereditary C∗-subalgebras). Let A be a C∗-algebra. Recall
that a C∗-subalgebra B ⊆ A is said to be hereditary if 0 ≤ a ≤ b and b ∈ B
imply a ∈ B (cf. [Mur90, Section 3.2]). Since C∗-subalgebras are self-adjoint,
it follows that every hereditary subalgebra is an order ideal.

It can be shown ([Mur90, Theorem 3.1.2 and Corollary 3.2.3]) that every
closed ideal in a C∗-algebra is a hereditary subalgebra. It follows that a closed
ideal is automatically an order ideal. (Then again, this is not very surprising,
since the natural map A → A/I is a ∗-homomorphism, and therefore positive.)

We will see in Example 4.11 that a self-adjoint algebra ideal (not necessarily
closed) in a C∗-algebra might fail to be an order ideal. �
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4.3 A note on complex ordered vector spaces

Recall from Remark 2.48 that a major reason for our definition of complex
ordered spaces (with a complex conjugation) is to ensure that every simple
space V admits a positive linear isomorphism V → (C,R≥0), so that every
maximal ideal I ⊆ V gives rise to a positive linear functional V → (C,R≥0).

For this section only, let us assume that a complex ordered vector space is
defined simply as a complex vector space V equipped with a cone V + ⊆ V ,
and that an ideal is simply a full subspace of V . To show just how strange the
theory becomes in this setting, we show that there are simple ordered spaces
of dimension larger than one.

Example 4.7. Let n ∈ N+ be a positive integer, and consider R2n with the
lexicographic cone K ⊆ R2n:

K :=




x1

x2
...
x2n

 ∈ R2n

∣∣∣∣∣∣∣∣∣∣
x1 > 0, or

(x1 = 0 and x2 > 0), or
... or

(x1 = . . . = x2n−1 = 0 and x2n ≥ 0)

 .

Identify R2n with Cn via the real linear isomorphism ψ : R2n ∼−→ Cn given by

(x1, x2, . . . , x2n) 7→
(
x1 + ixn+1 , x2 + ixn+2 , . . . , xn + ix2n

)
.

Now ψ(K) defines a cone in C2. We prove that {0} and Cn are the only full
complex subspaces. Suppose that I ⊆ Cn is a non-zero full subspace, then
I contains some non-zero vector y = (y1, . . . , yn) ∈ I as well as all complex
multiples of y. Polarising with respect to some non-zero coefficient yi gives
a vector λy ∈ I with at least one coordinate yi in R>0. Consequently, the
corresponding real coefficient xi of λy is strictly positive. Therefore it is clear
that the real ideal generated by λy (i.e. the full hull of spanR{λy}) must contain
the standard basis vectors ej ∈ R2n for all j > i. In particular, I contains each
of the vectors (i, 0, . . . , 0), (0, i, 0, . . . , 0), . . . , (0, . . . , 0, i). Since I is a (complex)
subspace, it follows that I = Cn must hold, proving that the space is simple. �

4.4 Discontinuous positive linear functionals

We show various examples relating to discontinuous positive linear functionals.

Example 4.8 (A space with no continuous linear functionals). Let p ∈ (0, 1)
be fixed, and consider the space V := Lp[0, 1] with its usual topology, that is,
the topology given by the metric

d(f, g) =
∫ 1

0
|f(t)− g(t)|p dt.

(Note that we do not take the p-th root, as in the spaces Lp for p ≥ 1, for this
would violate the triangle inequality.1) This topology turns V into a topological
vector space which does not admit any non-zero continuous linear map to a
locally convex space; cf. [Rud91, Example 1.47]. In particular, there are no
non-zero continuous linear functionals.
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It follows that V fails to be topologically order semisimple for every possible
choice of a positive cone V + ⊆ V . If we choose an order semisimple cone
V + ⊆ V (for instance, the zero cone suffices), then there are plenty of positive
linear functionals (enough to separate the points), none of which is continuous.
Similarly, there are many maximal order ideals, but none of these is closed.

It is interesting to note that the standard cone Lp[0, 1]+ fails to be order
semisimple in this case. We outline a proof of this statement. It can be shown
that the metric d is complete and that the positive cone is closed, analogously
to the familiar case p ≥ 1. But then it follows from Theorem 2.17 that every
positive linear functional is continuous, so the only positive linear functional is
the zero functional. In conclusion: Lp[0, 1] fails to be order semisimple for all
p ∈ (0, 1). This reminds us once again that Lp[0, 1] is not a space of functions
but a quotient of a space of functions. �

While the preceding example borders on the pathological, the following
examples exhibit discontinuous positive linear functionals on normed ordered
spaces with Archimedean and generating cones.

Example 4.9 (Another discontinuous positive linear functional). Consider the
algebra V := R[X] of real-valued polynomials in one variable. Equip V with the
norm obtained from the inclusion R[X] ↪→ C[0, 1] and the coefficient-wise cone,
that is, the cone obtained from the natural linear isomorphism R[X] ∼= c00. For
a positive polynomial f(X) ∈ V + we have ‖f‖ = f(1), from which it follows
that the norm is monotone. Now it follows from theorems 1.25 and 1.28 that V
is topologically order semisimple. This could also be seen directly: clearly the
point evaluations {ω̂ : f 7→ f(ω) | ω ∈ [0, 1]} are continuous and positive.

Now fix some ` ∈ N+ and let π` : V → R be the linear map that extracts
the `-th coefficient, that is, π`(α0 + α1X + · · · + αnX

n) = α`. Clearly π` is
positive. We show that π` is discontinuous. Note that we have ‖1 − X‖ = 1,
and more generally ‖(1 −X)n‖ = 1 for all n ∈ N+. However, by the binomial
theorem, we have

(1−X)n =
n∑
k=0

(
n

k

)
· (−X)k,

hence ∣∣π`((1−X)n)
∣∣ =

(
n

`

)
.

Since we assumed ` ≥ 1, it follows that π` is unbounded. �

Example 4.10 (Order semisimple but not topologically order semisimple).
Once again, consider the algebra V := R[X] of real-valued polynomials in one
variable. Now let a, b ∈ R be real numbers satisfying 1 ≤ a < b, and equip V
with the positive cone obtained from the inclusion R[X] ↪→ C[a, b]. Clearly this
turns V into an Archimedean and semisimple ordered vector space.

Suppose that V is equipped with the coefficient-wise supremum norm ‖·‖00
(i.e. the norm obtained from the natural linear isomorphism R[X] ∼= c00 ⊆ c0).
We show that V is not topologically order semisimple in this case. In fact, we
prove something stronger: V + is dense in V . Note that it follows from this
that V does not admit a non-zero continuous positive linear functional; this
can either be seen as a consequence of (the proof of) Theorem 2.28, or directly
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by noting that the inverse image of R≥0 under a continuous positive linear
functional is a closed set containing V +, and therefore must be all of V .

To prove our claim, let g ∈ V be any polynomial, and let ‖g‖[a,b] denote
the maximum of |g| on the interval [a, b]. Suppose that ε > 0 is given. Since we
assumed a ≥ 1, the series

∑∞
n=0 a

n diverges, so we may choose someN ∈ N such
that

∑N
n=0 a

n >
‖g‖[a,b]

ε holds. By monotonicity we have
∑N
n=0 x

n >
‖g‖[a,b]

ε for
all x ∈ [a, b], so it follows that the polynomial g + ε

∑N
n=0 x

n is positive. This
shows that we have d(g, V +) ≤ ε, where the distance is taken with respect to
the ‖ · ‖00-norm on V . As this holds for every ε > 0, it follows that g ∈ V +

holds. We conclude that V + is dense in V , which proves our claim. �

4.5 Algebra versus order ideals in C0(Ω)

Central to our theory are C(Ω,F) spaces, i.e. spaces of continuous functions
from a compact Hausdorff space Ω to the ground field F ∈ {R,C}. Here the
connections between operator theory and ordered vector spaces are at their
clearest. For instance, the representation theorem for normed, topologically
order semisimple spaces obtained in Section 2.8 is very similar to the Gelfand
representation for commutative Banach algebras.

More generally, for a locally compact Hausdorff space Ω, the space C0(Ω,F)
is a normed space naturally equipped with order and algebra structure. In this
section we briefly compare these structures, though admittedly there is much
more to be said. We focus on the comparison between order ideals and algebra
ideals.

It is well-known that every closed algebra ideal I ⊆ C0(Ω) is of the form
I = {f ∈ C0(Ω) : f(ω′) = 0 for all ω′ ∈ Ω′} for some closed subspace Ω′ ⊆ Ω
(for instance, see [Con07, Exercise VII.8.8]). As such, it is easy to see that every
closed algebra ideal is also an order ideal. (More generally, a closed algebra ideal
in an arbitrary C∗-algebra is automatically an order ideal; see Example 4.6.)
The following example shows that a non-closed algebra ideal need not be an
order ideal.

Example 4.11. Consider Ω := [0, 1] and let I ⊆ C(Ω,F) be the principal
ideal generated by the inclusion function ι : Ω → F, ω 7→ ω. More concretely,
I is the set of all functions of the form x · f(x) for some f ∈ C(Ω,F). Now
consider g(x) := x · sin( 1

x ). Then g is continuous, self-adjoint, and satisfies
−ι ≤ g ≤ ι. However, g cannot belong to I: if f ∈ C(Ω) is any function such that
g(x) = x · f(x) holds for all x ∈ [0, 1], then we must have f(x) = g(x)

x = sin( 1
x )

for all x ∈ (0, 1], but no such (continuous) function f exists. �

Conversely, we show that a closed order ideal need not be an algebra ideal.

Example 4.12. Once again, we consider Ω := [0, 1]. Now let ϕ : C(Ω,F)→ F
be the (self-conjugate) continuous positive linear functional f 7→

∫ 1
0 f(t) dt.

Then the set I := ker(ϕ) is a closed maximal order ideal. On the other hand,
I is clearly not an algebra ideal, or even a subalgebra: for instance, we have
sin(2πx) ∈ I, but sin2(2πx) /∈ I.

This example occurs because the characters of a commutative C∗-algebra
are precisely the pure states, that is, the extreme points of the state space. The
functional ϕ in this example defines a non-pure state. �
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However, if the order ideal contains sufficiently many positive elements,
then it turns out also to be an algebra ideal.

Proposition 4.13. Let Ω be a locally compact Hausdorff space and let I ⊆
C0(Ω,F) be a (self-conjugate) order ideal such that I+ = I ∩ C0(Ω,F)+ is
generating in I (i.e. I = span(I+)). Then I is an algebra ideal.

Proof. First of all, let f ∈ C0(Ω,F) and g ∈ I+ be given. Note that we have
−‖f‖∞ ≤ f ≤ ‖f‖∞. Since multiplying by a non-negative constant preserves
order, it is easy to see that −‖f‖∞ · g(ω) ≤ f · g(ω) ≤ ‖f‖∞ · g(ω) holds for
every ω ∈ Ω. As such, we find −‖f‖∞ · g ≤ fg ≤ ‖f‖∞ · g. Since I is an order
ideal, it follows that fg ∈ I holds.

Now let f ∈ C0(Ω,F) and g ∈ I be arbitrary, then we may write g = g1−g2
or g = g1−g2 + ig3− ig4, depending on the base field F, with g1, g2, g3, g4 ∈ I+.
By the preceding, we have fg1, fg2, fg3, fg4 ∈ I, so it follows that fg ∈ I holds
as well. �

An example of a non-closed ideal of this form is Cc(Ω,F) ⊆ C0(Ω,F). Indeed,
it is easy to see that this is both an order ideal and an algebra ideal. It is proper
if and only if Ω is not compact, and in this case it fails to be closed (in fact, it
is dense in C0(Ω,F); cf. [Con07, Exercise III.1.13]).

Note that the boundedness of functions in C0(Ω,F) was used in a crucial
way in the proof of Proposition 4.13. Indeed, the following example shows that
a similar result does not hold in spaces of unbounded functions.

Example 4.14. Let Ω be a topological space such that C(Ω,F) contains un-
bounded functions (so in particular Ω is not compact). Then the subspace
Cb(Ω,F) ⊆ C(Ω,F) is an order ideal with a generating cone, but it is not an
algebra ideal. (In a sense, this is because the constant function 1 : ω 7→ 1 is an
algebraic unit but not an order unit in this setting.) �

To conclude this section, we mention the following example regarding the
existence of maximal ideals in an ordered vector space without order units.
Recall from Proposition 2.10 and Corollary 2.11 that every proper order ideal
in a space containing an order unit is contained in a maximal order ideal, so
in particular a space with an order unit has at least one maximal ideal. The
following example shows that this fails if the space does not have an order unit.

Example 4.15 (A non-zero ordered vector space with no maximal ideals). Let
Ω be a locally compact Hausdorff space which is not compact (e.g. Ω = Rn or
Ω = Zn, but there are many others). Then Cc(Ω,F) ⊆ C0(Ω,F) is a proper
order ideal, so the quotient V := C0(Ω,F)/Cc(Ω,F) defines a non-zero ordered
vector space.

We note that every positive linear functional on C0(Ω,F) is continuous; this
follows either from the well-known fact that positive linear functionals on a C∗-
algebra are continuous (cf. [Mur90, Theorem 3.3.1]), or from the more general
statement for complete ordered vector spaces with a closed and generating
cone (cf. Theorem 2.17). Either way, it follows that every maximal order ideal
of C0(Ω,F) is closed. However, Cc(Ω,F) is dense in C0(Ω,F), so none of the
maximal order ideals of C0(Ω,F) contains Cc(Ω,F). It follows that the proper
order ideal Cc(Ω,F) is not contained in any maximal order ideal. Consequently,
the quotient V = C0(Ω,F)/Cc(Ω,F) does not have a maximal order ideal. �
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4.6 Spaces of unbounded functions

Recall that an ordered vector space is order semisimple if it can be represented
(injectively and positively) as a space of functions. By Remark 2.22, every
order semisimple space admits a locally convex vector space topology making
it topologically order semisimple. Finally, recall from abstract algebra that every
real or complex vector space admits a norm.2

The goal of this section is to show that an order semisimple space does not
always admit a norm making it topologically order semisimple. This is done by
looking at certain spaces of unbounded functions. Spaces in this class include
certain C(Ω) spaces (Ω not necessarily compact or Hausdorff), as well as certain
L∞ spaces.

We know from Theorem 2.44 that an ordered vector space can be equipped
with a norm making it topologically order semisimple if and only if it admits
a monotone norm. This turns out to be a convenient condition to check.

For an arbitrary set S, we let FS denote the vector space of all functions
S → F, equipped with pointwise complex conjugation ¯ : f 7→ f and the
pointwise cone

(FS)+ := {f : S → F : f(s) ≥ 0 for all s ∈ S},

which is both Archimedean and generating. We prove the following result.

Theorem 4.16. Let V be a subspace of FS, equipped with the positive cone
V + := V ∩ (FS)+. Suppose that V satisfies the following two properties:

i. For every f ∈ V we also have |f | ∈ V ;

ii. If f ∈ V is real-valued and g : R→ R is piecewise linear, then g ◦ f ∈ V .

Then V admits a monotone norm if and only if every function in V is bounded.

Note: the first assumption is needed only in the complex case; in the real
case this follows directly from the second assumption.

Proof. If every function in V is bounded, then V can be normed with the
supremum norm ‖ · ‖∞, which is monotone. For the converse, assume that
‖ · ‖ : V → R≥0 is a monotone norm. Suppose, for the sake of contradiction,
that there exists an unbounded function f ∈ V . By assumption we also have
|f | ∈ V , so let us assume without loss of generality that f is positive and
unbounded. Define piecewise linear functions gn : R→ R by

gn(x) := ((x− n+ 1) ∨ 0) ∧ 1 =


0, if x < n− 1;

x− n+ 1, if n− 1 ≤ x ≤ n;

1, if x > n.

By assumption, we have gn ◦ f ∈ V for all n ∈ N+. Furthermore, we have
gn ◦ f ≥ 0, and gn ◦ f 6= 0 since f is unbounded. Define {αn}∞n=1 in R>0 by

αn := n

‖gn ◦ f‖
.
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Note that, for every fixed x ∈ R, at most finitely many gn take a non-zero value
at x. Hence we may define g∞ : R→ R by

g∞(x) := max
n∈N+

αngn(x).

The situation is illustrated in the following figure.

α1g1

α2g2

α3g3

α4g4

α5g5

g∞

This function g∞ is again piecewise linear, so by assumption we have g∞◦f ∈ V .
But for all n ∈ N+ we have 0 ≤ αngn ◦ f ≤ g∞ ◦ f , hence

‖g∞ ◦ f‖ ≥ ‖αngn ◦ f‖ = n.

This is a contradiction, so we conclude that every f ∈ V must be bounded. �

We discuss a few consequences of the above theorem. First of all, let us
say that a topological space Ω is pseudocompact if every continuous function
Ω → R is bounded. Clearly every compact topological space is pseudocom-
pact, but there are non-compact spaces which are nevertheless pseudocompact.
(Well-known examples include the least uncountable ordinal ω1 equipped with
the order topology, or R equipped with the left order topology.) Using this
terminology, we have the following immediate consequence of Theorem 4.16.

Corollary 4.17. Let Ω be a topological space. Then C(Ω,F) admits a monotone
norm if and only if Ω is pseudocompact.

For a second application, note first that Theorem 4.16 does not apply to L p

spaces for 1 ≤ p <∞: the composition g◦f is again measurable, but there is no
guarantee that it remains integrable. Indeed, there exist L p spaces containing
unbounded functions which nevertheless admit a monotone norm. For instance,
consider the measure space (N+,P(N+), µ), where µ is the weighted counting
measure given by µ({n}) := 1

4n . Now there are no non-empty null sets, so we
have L p(µ) = Lp(µ), and the L p seminorm ‖ · ‖p is in fact a (monotone)
norm. But this function space nevertheless contains unbounded functions, for
instance f(n) = 2n/p.

Although the theorem does not apply to L p spaces in general, it does apply
to all L∞ spaces: if f is almost everywhere bounded, then so is g ◦ f for any
piecewise linear map g : R→ R. As a consequence, we find that L∞[0, 1] does
not admit a monotone norm, since it contains unbounded functions. (Of course,
it does admit a monotone seminorm: the essential supremum seminorm.)
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4.7 End notes

1. (page 49) Let f and g be the indicator functions for the intervals [0, 1
2 ) and

[ 1
2 , 1], respectively. Then we have

(∫ 1

0
|f(t) + g(t)|p dt

) 1
p

= 1;

(∫ 1

0
|f(t)|p dt

) 1
p

+
(∫ 1

0
|g(t)| dt

) 1
p

=
( 1

2
) 1

p +
( 1

2
) 1

p = 21− 1
p < 1.

2. (page 53) Let V be a real or complex vector space. Choose a basis B, then
we have an isomorphism ϕ : V → F⊕B to the space of all functions B → F
of finite support. The latter can be equipped for instance with the supremum
norm.
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5 The quasi-lattice operations in a C∗-algebra

In this chapter we introduce the basic setting for the second part of this thesis:
the lattice-like structure of C∗-algebras.

In Section 5.1 we briefly recall the relevant properties of C∗-algebra, as well
as some basic order theory. In Section 5.2, we show how the Gelfand represen-
tation and functional calculus give rise to natural non-commutative analogues
of the lattice operations in a commutative C∗-algebra. The remaining sections
study some of the basic properties of these so-called quasi-lattice operations.

The quasi-lattice operations are studied in additional detail in the next
chapters. In Chapter 6 we prove that the quasi-lattice operations might fail to
be lattice operations, by proving that the self-adjoint part of B(H) is in fact
an anti-lattice. In Chapter 7 we dive a little deeper into this problem, resulting
in a geometric understanding of the anti-lattice theorem. Finally, in Chapter 8
we show that a C∗-algebra is a lattice if and only if it is commutative.

5.1 Prerequisites

5.1.1 Order theory
We assume familiarity with the concept of partial orders, as well as the basics
of ordered vector spaces (cf. Chapter 1). The following concepts are sufficiently
important for the remainder of this thesis that we briefly recall their definitions.

Definition 5.1. Let (P,�) be a partially ordered set, and let S ⊆ P be a
non-empty subset. Then, for elements s ∈ S, p ∈ P we say that

• s is a minimal element of S if for all s′ ∈ S, s′ � s implies s′ = s;

• s is a maximal element of S if for all s′ ∈ S, s � s′ implies s′ = s;

• s is the least element of S if for every s′ ∈ S one has s � s′;

• s is the greatest element of S if for every s′ ∈ S one has s′ � s;

• p is a lower bound of S if for every s ∈ S one has p � s;

• p is an upper bound of S if for every s ∈ S one has s � p;

• p is the infimum of S if p is the greatest lower bound of S;

• p is the supremum of S if p is the least upper bound of S.

Note the subtle (but substantial) difference between minimal and least ele-
ments. For instance, if the partial order is not total, then we may choose two
incomparable elements p, q ∈ P . Consequently, each of p and q is a minimal
element of {p, q}, but neither is a least element.

If the set S has a least element, then it is necessarily unique, so it is justified
that we speak of the least element (and similarly the greatest element, the
infimum, the supremum). Furthermore, clearly a least element of S is the unique
minimal element of S. The converse is not true; a unique minimal element need
not be a least element.1

59
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Definition 5.2. A lattice is a partially ordered set (P,�) satisfying any one
(and therefore all) of the following equivalent properties:

(1) Every non-empty finite subset S ⊆ P has a supremum and an infimum;

(2) Every two-element subset S ⊆ P has a supremum and an infimum.

Definition 5.3. A real ordered vector space V which is lattice-ordered is called
a Riesz space (or vector lattice). If V is a complex ordered vector space, then we
say that V is a complex Riesz space if Re(V ) is a Riesz space and for each v ∈ V
the set {Re(λv) : |λ| = 1} ⊆ Re(V ) has a supremum (cf. [Zaa97, Chapter 6]).

A typical example of a complex Riesz space is C0(Ω,C), where Ω is any
locally compact Hausdorff space (cf. [Zaa97, examples 13.1 and 13.2]). Since
any commutative C∗-algebra is isometrically ∗-isomorphic (and therefore also
order isomorphic) to such a space, it follows that any commutative C∗-algebra
is a complex Riesz space.

5.1.2 Positive square roots in a C∗-algebra
It is well-known that every positive element a in a C∗-algebra A has a positive
square root; this follows at once by considering the Gelfand representation of
the C∗-subalgebra C∗(a) ⊆ A generated by a. (This subalgebra may not be
unital, so we use the fact that

√
is continuous with

√
0 = 0, so that the square

root of a function vanishing at infinity also vanishes at infinity.)
The existence of positive square roots is important to our study, but equally

important is its uniqueness. This is also a well-known result (see for instance
[Mur90, Theorem 2.2.1]), but it is so important for what follows that we remind
the reader of the underlying argument.

Proposition 5.4. Let A be a C∗-algebra, let a ∈ A+ be positive, and let
b ∈ C∗(a)+ be the positive square root of a constructed inside C∗(a). Suppose
that c ∈ A+ is any positive square root of a, then one has b = c.

Proof. Consider the C∗-subalgebra C∗(c) ⊆ A generated by c. Note that C∗(c)
contains a = c2, so we have C∗(a) ⊆ C∗(c). It follows that b ∈ C∗(c) holds,
so b and c are positive square roots of a in the commutative C∗-algebra C∗(c).
However, it is clear from the Gelfand representation that positive square roots
in commutative C∗-algebras are unique, so we must have b = c. �

5.1.3 Self-adjoint operators on a real Hilbert space
In chapters 6 and 7 we shall also be interested in operators on a real Hilbert
space H, but of course B(H) does not form a C∗-algebra in this setting. While
there is a theory of real C∗-algebras (cf. [Ing64, Pal70]), this is beyond the scope
of this thesis. For our purposes it suffices that we have the following form of
functional calculus.

Theorem 5.5. Let H be a real Hilbert space and let a ∈ B(H) be self-adjoint
(i.e. real symmetric). Then there is a unital, isometric, bipositive algebra homo-
morphism ϕa : C(σ(a),R) → B(H) satisfying ϕa(ι) = a, where ι : σ(a) → R
denotes the inclusion z 7→ z. The range of ϕa is the closed subalgebra generated
by 1 and a, that is, the closed linear span of {1, a, a2, . . .}.
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There are multiple ways to prove this. One is to pass to the complexification of
H and show that the functional calculus can be restricted to the real operators
to yield the above. A more direct proof, which settles the real and complex
case simultaneously, is given in [Lan93, Chapter XVIII, §4].

From this theorem it is clear that a self-adjoint operator on a real Hilbert
space also has a positive square root: consider b := ϕa(

√
). Furthermore, in

this setting positive square roots are once again unique; the proof of this is
analogous to the complex case.

5.2 The quasi-lattice operations

Let A be a C∗-algebra (or B(H) for a real Hilbert spaceH). For any self-adjoint
element a ∈ Asa, we have that a2 is positive, so we may define |a| to be the
unique positive square root of a2. We furthermore define a+ := 1

2 (|a|+ a) and
a− := 1

2 (|a| − a). Then it is easy to see from the Gelfand representation (or
Theorem 5.5) that a+ and a− are positive elements satisfying a = a+ − a−,
|a| = a+ + a− and a+a− = a−a+ = 0.

Note that |a| is an upper bound for a and −a, since we have |a| = a+ 2a−
as well as |a| = −a+ 2a+. Now the crucial observation is this: since the vector
space order of A is translation-invariant, we can use the modulus to define
upper bounds for arbitrary pairs of self-adjoint elements a, b ∈ Asa! This leads
to the following definition.

Definition 5.6. Let A be a C∗-algebra (or B(H) for a real Hilbert space H).
For a, b ∈ Asa we define the quasi-supremum ag b and quasi-infimum af b by

ag b := 1
2 (a+ b+ |a− b|),

af b := 1
2 (a+ b− |a− b|).

It is easy to see that ag b is an upper bound for a and b, for we have

(ag b)− a = 1
2
(
b− a+ |a− b|

)
= (a− b)− ≥ 0;

(ag b)− b = 1
2
(
a− b+ |a− b|

)
= (a− b)+ ≥ 0.

Similarly, one can prove that af b is a lower bound for a and b. Furthermore,
we have the following properties:

• af b = a ⇐⇒ ag b = b ⇐⇒ a ≤ b;

• a+ b = (ag b) + (af b);

• |a− b| = (ag b)− (af b);

• ag b = bg a and af b = bf a;

• ag b = −(−af−b);

• (ag b) + c = (a+ c)g (b+ c) and (af b) + c = (a+ c)f (b+ c);

• ag (−a) = |a| and af (−a) = −|a|;

• a+ g a− = |a| and a+ f a− = 0;

• a+ = ag 0 and a− = (−a)g 0.

Each of these facts follows easily from the definition.
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Note that the quasi-lattice operations coincide with the lattice operations
if A is commutative. We will show in Chapter 8 that ag b remains a minimal
upper bound for a and b in the non-commutative case, but not necessarily a
least upper bound. In fact, if ag b is a supremum for a and b for every pair of
elements a, b ∈ Asa, then A must be commutative (cf. Theorem 8.15).

5.3 ∗-homomorphisms and the quasi-lattice operations

We show that ∗-homomorphisms preserve much of the order structure, includ-
ing the quasi-lattice operations.

Proposition 5.7. Let A,B be C∗-algebras, and let ϕ : A → B be a ∗-homo-
morphism. Then:

(a) For a ∈ A we have ϕ(Re(a)) = Re(ϕ(a)) and ϕ(Im(a)) = Im(ϕ(a));

(b) For a ∈ A+ we have ϕ(a) ∈ B+;

(c) For a ∈ A+ we have ϕ(a1/2) = ϕ(a)1/2;

(d) For a ∈ Asa we have ϕ(|a|) = |ϕ(a)|;

(e) For a, b ∈ Asa we have ϕ(agb) = ϕ(a)gϕ(b) and ϕ(afb) = ϕ(a)fϕ(b);

(f) For a ∈ A+ we have ϕ(a+) = ϕ(a)+ and ϕ(a−) = ϕ(a)−;

(g) For b ∈ ϕ[A]+ there exists some a ∈ A+ with ϕ(a) = b;

(h) If ϕ is injective, then we have ϕ(c) ∈ B+ if and only if c ∈ A+.

Proof.

(a) We have ϕ(Re(a)) = ϕ( 1
2a + 1

2a
∗) = 1

2ϕ(a) + 1
2ϕ(a)∗ = Re(ϕ(a)), and

analogously for Im(a).

(b) Write a = a1/2a1/2, then we have ϕ(a) = ϕ(a1/2a1/2) = ϕ(a1/2)ϕ(a1/2) =
ϕ(a1/2)2 and we know that squares of self-adjoint elements are positive.

(c) It follows from part (b) that ϕ(a1/2) is a positive square root of ϕ(a). By
the uniqueness of positive square roots, we have ϕ(a1/2) = ϕ(a)1/2.

(d) We have ϕ(|a|) = ϕ((a2)1/2) = ϕ(a2)1/2 = (ϕ(a)2)1/2 = |ϕ(a)|.

(e) This follows from (d) and linearity.

(f) We have ϕ(a+) = ϕ
( 1

2 |a|+
1
2a
)

= 1
2 |ϕ(a)| + 1

2ϕ(a) = ϕ(a)+, and analo-
gously for a−.

(g) There is some c ∈ A such that ϕ(c) = b holds. Now set a := (Re(c))+,
then we have

ϕ(a) = ϕ(Re(c)+) = ϕ(Re(c))+ = (Re(ϕ(c)))+ = (Re(b))+ = b+ = b.

(h) For c ∈ A+ we have ϕ(c) ≥ 0 by part (b). Conversely, suppose that c ∈ A
is given such that ϕ(c) ∈ B+ holds. By (g) there is some a ∈ A+ such
that ϕ(a) = ϕ(c) holds. By injectivity we have a = c, hence c ∈ A+. �
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5.4 Disjointness of positive operators on a Hilbert space

One topic of special interest in the theory of Riesz spaces is disjointness. It is
said that two positive elements a, b ∈ V + in a (real) Riesz space V are disjoint
if a ∧ b = 0 holds. The quasi-lattice operations allows us to define a similar
notion for positive operators on a real or complex Hilbert space. We could also
extend this to arbitrary C∗-algebras, but we shall have no use for that.

The following result is an extension of [Top65, Lemma 2].

Proposition 5.8. Let H be a real or complex Hilbert space. Then, for positive
operators a, b ∈ B(H)+, the following are equivalent:

(1) af b = 0;

(2) ag b = a+ b;

(3) |a− b| = a+ b;

(4) there exists a self-adjoint operator c ∈ B(H) with a = c+ and b = c−;

(5) ab = 0;

(6) ba = 0;

(7) ran(a) ⊥ ran(b);

(8) ran(a) ⊥ ran(b);

(9) ab = −ba.

Proof. The equivalences (1)⇐⇒ (3) and (2)⇐⇒ (3) follow immediately from
the definition of the quasi-lattice operations.

(3) =⇒ (4). Choose c := a − b, then we have c+ = 1
2 (|c| + c) = a as well as

c− = 1
2 (|c| − c) = b.

(4) =⇒ (5). For arbitrary c ∈ B(H)sa we have c+c− = 0.

(5) =⇒ (6). We have ba = b∗a∗ = (ab)∗ = 0∗ = 0.

(6) =⇒ (7). For all x ∈ H we have ax ∈ ker(b), so we find ran(a) ⊆ ker(b).
Since the latter is closed, we also have ran(a) ⊆ ker(b). In general
we have ker(b)⊥ = ran(b), so it follows that ran(a) ⊥ ran(b) holds.

(7)⇐⇒ (8). Trivial.

(8) =⇒ (9). For all x ∈ H we have ‖abx‖2 = 〈abx, abx〉 = 〈bx, a2bx〉 = 0,
since we have bx ∈ ran(b) and a2bx ∈ ran(a). It follows that
ab = 0 holds. Analogously, we have ba = 0, so in particular we
find ab = −ba.

(9) =⇒ (3). We have ab+ ba = 0, hence

(a− b)2 = a2 − ab− ba+ b2 = a2 + ab+ ba+ b2 = (a+ b)2.

We see that a+ b is a positive square root of (a− b)2. Seeing as
positive square roots are unique, we have |a− b| = a+ b. �
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Definition 5.9. Let H be a real or complex Hilbert space. We say that two
positive operators a, b ∈ B(H)+ are disjoint2 if they satisfy any (and therefore
all) of the conditions from Proposition 5.8.

Note that it follows from property (4) that c+ and c− are disjoint for every
self-adjoint operator c.

The present notion of disjointness will be used in Corollary 6.10 to prove a
characterising property of the quasi-supremum ag b.

5.5 The quasi-supremum has minimal trace

Let A be a C∗-algebra (or B(H) for a real Hilbert space H). While we do not
know whether or not agb actually defines a supremum for a and b, it does have
some special properties that sets it apart from other upper bounds for a and b.
For one, it coincides with the lattice supremum if A is commutative. But even
in the non-commutative case, if B ⊆ A is a C∗-subalgebra containing a and b,
then it also contains a − b and |a − b|, and therefore a g b and a f b. Finally,
we saw in Proposition 5.7 that ∗-homomorphisms automatically preserve the
quasi-lattice operations.

We close this chapter by showing one more special property of the quasi-
supremum, further reinforcing the notion that agb really is a natural choice of
upper bound for a and b. Specifically, we show that the quasi-supremum ag b
of two trace-class operators has minimal trace among all upper bounds for a
and b. Basic familiarity with the theory of trace-class operators is assumed; see
for instance [Mur90, Section 2.4]. (Much more on trace-class operators can be
found in [Sch60] or [Rin71].)

In keeping with [Mur90, Section 2.4], let L1(H) ⊆ B(H) denote the set of
trace-class operators. We recall that L1(H) is a subspace (even an ideal), and
that one has a ∈ L1(H) if and only if |a| ∈ L1(H). Consequently, if a and b are
trace-class, then so is ag b.

Remark 5.10. Note that an upper bound of two trace-class operators is not
necessarily trace-class itself (for instance, a sufficiently large multiple of the
identity is always an upper bound for a and b). However, we claim that an
upper bound c for two (or even one) trace-class operators is quasi-trace-class,
in the sense that c− is trace-class.

To prove this claim, suppose that a, c ∈ B(H)sa are given with a ≤ c
and a ∈ L1(H). Let p be the orthogonal projection onto ran(c−), then we
have pcp = −c−. Therefore we find pap ≤ pcp = −c− ≤ 0, or equivalently,
0 ≤ c− ≤ −pap. Since L1(H) is an ideal, we have −pap ∈ L1(H). Now it is
clear that c− ∈ L1(H) holds as well: for any orthonormal basis E of H we have

‖c−‖1 =
∑
x∈E
〈c−x, x〉 ≤

∑
x∈E
〈−papx, x〉 = ‖−pap‖1 < ∞.

Thus, any upper bound of two trace-class operators is quasi-trace-class, and as
such has a well-defined trace in R ∪ {+∞}.

Before we get to the main result of this section, we need the following
satellite result. Its (simple) proof is postponed to Section 6.1, for the result is
heavily used in that chapter.
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Proposition 5.11. Let H be a real or complex Hilbert space. For a positive
operator a ∈ B(H)+ one has

ker(a) = ker(a1/2) = {x ∈ H : 〈ax, x〉 = 0}.

Proof. See Proposition 6.1 below. �

We now come to the main result of this section.

Theorem 5.12. Let H be a real or complex Hilbert space. For arbitrary self-
adjoint trace-class operators a, b ∈ L1(H)sa the quasi-supremum a g b is the
unique upper bound of minimal trace for a and b.

Proof. Recall that we have (a g b)− a = (a− b)− and (a g b)− b = (a− b)+,
and that these two operators have orthogonal range (cf. Proposition 5.8). As
such, it follows that ran((a − b)−) ⊆ ran((a − b)+)⊥ = ker((a − b)+) holds.
Consequently, the choice of V := ker((a−b)−) and W := ran((a−b)−) gives us
a decomposition H = V ⊕W , where V and W are orthogonal closed subspaces
satisfying V ⊆ ker((a− b)−) and W ⊆ ker((a− b)+).

Now choose disjoint index sets I and J and orthonormal bases {xi}i∈I and
{xj}j∈J for V and W , respectively. We combine these to form an orthonormal
basis {xi}i∈I∪J of H. We will compute all traces with respect to this basis.

Since we have V ⊆ ker((a g b) − a), it follows from Proposition 5.11 that
v ∈ V implies 〈((ag b)− a)v, v〉 = 0, and therefore

〈av, v〉 = 〈(ag b)v, v〉 ≥ 〈bv, v〉. (5.13)

Similarly, for all w ∈W we have

〈bw,w〉 = 〈(ag b)w,w〉 ≥ 〈aw,w〉. (5.14)

We summarise these results as follows: since every element of our orthonormal
basis {xi}i∈I∪J belongs to either V or W , for all i ∈ I ∪ J we have

〈(ag b)xi, xi〉 = max
(
〈axi, xi〉, 〈bxi, xi〉

)
.

As the trace is independent of the choice of orthonormal basis, we find

tr(ag b) =
∑
i∈I∪J

〈(ag b)xi, xi〉 =
∑
i∈I∪J

max
(
〈axi, xi〉, 〈bxi, xi〉

)
.

Now let c ∈ B(H)sa be another upper bound for a and b. If c is not trace-
class, then we have tr(c) = +∞ > tr(ag b), and we are done. Assume (for the
remainder of this proof) that c is trace-class. Clearly we have 〈cx, x〉 ≥ 〈ax, x〉
and 〈cx, x〉 ≥ 〈bx, x〉 for all x ∈ H, so we find

tr(c) =
∑
i∈I∪J

〈cxi, xi〉 ≥
∑
i∈I∪J

max
(
〈axi, xi〉, 〈bxi, xi〉

)
= tr(ag b).

This shows that a g b has minimal trace. Suppose now that equality holds,
then we must have 〈cxi, xi〉 = max(〈axi, xi〉, 〈bxi, xi〉) for all i ∈ I ∪ J . In fact,
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by (5.13) and (5.14) we have 〈axi, xi〉 ≥ 〈bxi, xi〉 for all i ∈ I, and similarly
〈bxj , xj〉 ≥ 〈axj , xj〉 for all j ∈ J , so we find

〈cxi, xi〉 =
{
〈axi, xi〉, if i ∈ I;

〈bxi, xi〉, if i ∈ J.

Since c−a and c− b are positive, it follows from Proposition 5.11 that we have
{xi}i∈I ⊆ ker(c − a) and {xj}j∈J ⊆ ker(c − b). In particular, for all i ∈ I we
have cxi = axi, but also axi = (agb)xi (since xi ∈ V ⊆ ker((agb)−a)), hence
cxi = (ag b)xi. Analogously, for all j ∈ J we have cxj = (ag b)xj . We see that
c and ag b coincide on an orthonormal basis, so they must be equal. �

We note the following immediate consequence.

Corollary 5.15. Let H be a real or complex Hilbert space, and let a, b ∈
L1(H)sa be self-adjoint trace-class operators. Then a g b is a minimal upper
bound for a and b.

Proof. Let c ∈ B(H)sa be an upper bound for a and b with c ≤ ag b. It follows
from Remark 5.10 that c− is trace-class (because c ≥ a), but also that c+ is
trace-class (because c ≤ a g b ∈ L1(H)), so we see that c itself must be trace-
class. For all x ∈ H we have 〈cx, x〉 ≤ 〈(a g b)x, x〉, so in particular for any
orthonormal basis E of H we have

tr(c) =
∑
x∈E
〈cx, x〉 ≤

∑
x∈E
〈(ag b)x, x〉 = tr(ag b).

We see that c is an upper bound for a and b with tr(c) ≤ tr(a g b). It follows
from Theorem 5.12 that c = a g b must hold. We conclude that a g b is a
minimal upper bound for a and b. �

This result will be extended to arbitrary self-adjoint operators a, b ∈ B(H)sa

in Corollary 6.10.

5.6 End notes

1. (page 59) Consider P := R2 with the coordinate-wise partial order, that
is, (x1, y1) � (x2, y2) ⇐⇒ (x1 � x2 and y1 � y2). Furthermore, consider the
subset S := {(0,−1)} ∪ {(x, 0) : x ∈ R} ⊆ P . Then (0,−1) is the unique
minimal element of S, but it is not the least element of S.

2. (page 64) The reader should be warned that the notion of disjointness in
Riesz spaces was generalised to ordered vector spaces in [vGK06]. However,
this notion is incompatible with Definition 5.9, due to the anti-lattice theorem,
so the two concepts should not be confused!



6 Kadison’s anti-lattice theorem

In the previous chapter, we defined the so-called quasi-lattice operations in an
arbitrary C∗-algebra. If the C∗-algebra is commutative, then it is isometrically
∗-isomorphic to some C0(Ω) space, and the quasi-lattice operations coincide
with the lattice operations in C0(Ω). The next step is to study the class of
operator spaces B(H), which are in a sense maximally non-commutative. We
will see that the quasi-supremum a g b remains a minimal upper bound in
this setting, but it will not generally be a least upper bound. (Recall that an
element x of a partially ordered set (S,�) is minimal if s � x implies s = x
and least if x � s holds for all s ∈ S. These two notions are generally different:
a minimal element can be incomparable with some of the other elements in S.)
Seeing as a supremum is defined as a least upper bound, we find that a g b is
not generally a supremum for a and b.

The main result of this chapter is the anti-lattice theorem (Theorem 6.13),
due to Richard V. Kadison [Kad51b]. The theorem states that two self-adjoint
operators a, b ∈ B(H) have a supremum if and only if a and b were comparable
to begin with (in that case the larger of the two is clearly the supremum).

The proof we give is a bit different from the proofs in the literature. Most
proofs rely on results from operator theory to reduce the question to the two-
dimensional case (see e.g. [Kad51b], or [LZ71, Theorem 58.4]), but we choose
to present a proof which draws more from the geometry of the underlying
Hilbert space. It does not rely on the spectral theorem or other advanced tools,
and as such qualifies as an “elementary” proof. Furthermore, it is hoped that
the geometric approach helps towards a better understanding of the anti-lattice
theorem. This approach is taken much further in the next chapter, where we use
the results from this chapter to give a geometric classification of a large class
of minimal upper bounds for a pair of (incomparable) self-adjoint operators
a, b ∈ B(H)sa.

The proofs in this chapter work equally well if H is a real Hilbert space,
so we prove everything for an arbitrary Hilbert space over the ground field
F ∈ {R,C}. A word of warning: we have to be a bit careful with positivity
if H is real: we must check that an operator a ∈ B(H) is self-adjoint before
concluding that a might be positive, as the condition 〈ax, x〉 ≥ 0 (for all x ∈ H)
is no longer sufficient in this case. Indeed, matrices such as

a1 =
(

0 −1
1 0

)
, a2 =

(
2 0
2 2

)
satisfy 〈aix, x〉 ≥ 0 for all x ∈ R2, but fail to be positive semidefinite (since
they are not symmetric).

6.1 Kernel and range of positive operators

Proposition 6.1. For a positive operator a ∈ B(H) one has

ker(a) = ker(a1/2) = {x ∈ H : 〈ax, x〉 = 0}.

Proof. First of all, for x ∈ ker(a1/2) we have ax = a1/2a1/2x = a1/20 = 0,
hence x ∈ ker(a). Secondly, for y ∈ ker(a) we have 〈ay, y〉 = 〈0, y〉 = 0. Finally,

67
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let z ∈ H be given such that 〈az, z〉 = 0 holds. Then we have

‖a1/2z‖2 = 〈a1/2z, a1/2z〉 = 〈az, z〉 = 0,

hence a1/2z = 0. �

Proposition 6.2. Let a, b ∈ B(H) be positive operators with 0 ≤ a ≤ b. Then
one has ker(a) ⊇ ker(b) and ran(a) ⊆ ran(b).

Proof. For x ∈ H we have 0 ≤ 〈ax, x〉 ≤ 〈bx, x〉, so by Proposition 6.1 we have
ker(a) ⊇ ker(b). Taking orthogonal complements yields ran(a) ⊆ ran(b). �

It should be pointed out that the stronger inequality ran(a) ⊆ ran(b) does
not hold in general. The following example will be of importance in Chapter 7
as well.

Example 6.3. Let H be infinite-dimensional and let a ∈ B(H) be positive
and injective, but not surjective. (Such operators exist: let {xn}∞n=1 be an
orthonormal sequence in H, let {αn}∞n=1 be a sequence in R>0 converging
to zero, and let a be the operator given by xn 7→ αnxn, and w 7→ w for all
w ⊥ {xn}∞n=1.) Now choose some y /∈ ran(a) and let p ∈ B(H) be the orthogonal
projection onto span(y). Clearly we have 0 ≤ p ≤ a+p and y ∈ ran(p). Suppose
that y ∈ ran(a+ p) were to hold, then we could choose some z ∈ H such that
(a+ p)z = y holds. Note that we must have z 6= 0, since y cannot be zero. But
now we have az = y − pz ∈ span(y), and az is non-zero since a is injective.
This contradicts our assumption that y /∈ ran(a) holds. We conclude that
y /∈ ran(a + p) holds, so we have ran(p) 6⊆ ran(a + p). All we can say with
certainty is that ran(p) ⊆ ran(p) ⊆ ran(a+ p) holds. �

We do however have the following result, which is a special case of Douglas’
lemma (cf. [Dou66, Theorem 1]).

Lemma 6.4. Let a, b ∈ B(H) be positive operators with 0 ≤ a ≤ b. Then one
has ran(a1/2) ⊆ ran(b1/2).

Proof. By propositions 6.1 and 6.2 we have ker(b1/2) ⊆ ker(a1/2), so the linear
map c′ : ran(b1/2) → ran(a1/2) given by b1/2x 7→ a1/2x is well-defined. Note
that c′ is bounded, since we have

‖a1/2x‖2 = 〈a1/2x, a1/2x〉 = 〈ax, x〉 ≤ 〈bx, x〉 = 〈b1/2x, b1/2x〉 = ‖b1/2x‖2.

Therefore c′ has a unique continuous extension ran(b1/2)→ ran(a1/2). We may
further extend it to an operator c ∈ B(H) with x 7→ 0 for all x ⊥ ran(b1/2).

Now we have a1/2 = cb1/2. Since a1/2 and b1/2 are self-adjoint, we may
rewrite this as a1/2 = (cb1/2)∗ = b1/2c∗. Consequently, if y = a1/2x ∈ ran(a1/2)
is given, then we may write y = b1/2(c∗x) ∈ ran(b1/2). The result follows. �

A similar result is that 0 ≤ a ≤ b implies 0 ≤ a1/2 ≤ b1/2 (cf. [Mur90,
Theorem 2.2.6]), but we will not need this. Note that the converse does not
hold: in Example 6.3 we have 0 ≤ p ≤ a+p, but ran(p) 6⊆ ran(a+p), so it follows
from Lemma 6.4 that we cannot have 0 ≤ p2 ≤ (a+p)2. In fact, in Theorem 8.16
we show that a C∗-algebra A where the implication 0 ≤ a ≤ b =⇒ a2 ≤ b2

holds for all a, b ∈ A+ must necessarily be commutative.



6.2. The projective range 69

6.2 The projective range

In keeping with [Mur90, Section 2.4], for x, y ∈ H we let x⊗ y ∈ B(H) denote
the operator z 7→ 〈z, y〉x.1 It is readily verified that one has ‖x⊗ y‖ = ‖x‖‖y‖
and (x ⊗ y)∗ = y ⊗ x. Furthermore, note that x ⊗ x is positive, since we have
(x⊗ x)∗ = x⊗ x and〈

(x⊗ x)z, z
〉

=
〈
〈z, x〉x, z

〉
= 〈z, x〉〈x, z〉 = |〈z, x〉|2 ≥ 0. (6.5)

The operator x ⊗ x is a projection if and only if x is a unit vector, and all
projections of rank 1 are of this form. More generally, every rank 1 operator in
B(H) can be written as x⊗y for some x, y ∈ H (cf. [Mur90, remarks preceding
Theorem 2.4.6]).

Note that the map H×H → B(H), (x, y) 7→ x⊗y is sesquilinear, in that we
have (x1 +x2)⊗ y = (x1⊗ y) + (x2⊗ y) and x⊗ (y1 + y2) = (x⊗ y1) + (x⊗ y2),
as well as λ(x⊗ y) = (λx)⊗ y = x⊗ (λy). It follows from the latter expression
that x⊗ x is a positive multiple of the orthogonal projection onto span(x), for
we have (λx)⊗ (λx) = |λ|2(x⊗ x).

Definition 6.6. For a positive operator a ∈ B(H), we define the projective
range2 pran(a) ⊆ H as follows:

pran(a) := {x ∈ H : ε(x⊗ x) ≤ a for some ε > 0}.

In other words, pran(a) is the set of all x ∈ H so that some positive multiple
of the orthogonal projection onto span(x) can be squeezed in between 0 and a.
(Note that it does not make sense to extend this definition to operators which
are not positive.)

Theorem 6.7. For any a ∈ B(H)+ we have pran(a) = ran(a1/2). In particu-
lar, pran(a) is a linear subspace and satisfies

ran(a) ⊆ pran(a) ⊆ ran(a).

Proof. Let y ∈ ran(a1/2) be given. For y = 0 we clearly have y ∈ pran(a), so
assume y 6= 0. Choose some x ∈ H such that a1/2x = y holds. By (6.5) and the
Cauchy–Schwarz inequality, for all z ∈ H we have

〈(y ⊗ y)z, z〉 =
∣∣〈z, a1/2x

〉∣∣2
=
∣∣〈a1/2z, x

〉∣∣2
≤
〈
a1/2z, a1/2z

〉
· 〈x, x〉

= 〈az, z〉 · 〈x, x〉.

Since we assumed y 6= 0, we have x /∈ ker(a1/2), so in particular x 6= 0. It
follows that 〈x, x〉 > 0 holds. Therefore we may define ε := 1

〈x,x〉 . For all z ∈ H
we have 〈ε(y ⊗ y)z, z〉 ≤ 〈az, z〉, by the above, so it follows that ε(y ⊗ y) ≤ a
holds. This proves the inclusion ran(a1/2) ⊆ pran(a).

Conversely, let y ∈ pran(a) be given. For y = 0 it is clear that y ∈ ran(a1/2)
holds, so assume without loss of generality that y is a unit vector. Furthermore,
choose ε > 0 such that ε(y⊗y) ≤ a holds. Note that the square root of ε(y⊗y)
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is
√
ε(y⊗ y), so by Lemma 6.4 we have span(y) = ran(

√
ε(y⊗ y)) ⊆ ran(a1/2).

This proves the reverse inclusion pran(a) ⊆ ran(a1/2), so we have equality.
Clearly ran(a1/2) is a linear subspace. Furthermore, if y = ax ∈ ran(a) is

given, then we may write y = a1/2(a1/2x) ∈ ran(a1/2), proving the inclusion
ran(a) ⊆ ran(a1/2). Finally, by Proposition 6.1 we have ker(a1/2) = ker(a), so
by taking orthogonal complements we find ran(a1/2) ⊆ ran(a1/2) = ran(a). �

We note three consequences of Theorem 6.7. Fist of all, note that we have
pran(a) = ran(a) for any positive operator a ∈ B(H).

Secondly, consider the setting where we have positive operators 0 ≤ a ≤ b.
While the inclusion ran(a) ⊆ ran(b) from Proposition 6.2 cannot be extended to
the stronger inclusion ran(a) ⊆ ran(b) (cf. Example 6.3), it can be strengthened
to pran(a) ⊆ pran(b). (This should be clear from the definition.) Then again,
we knew this already from Lemma 6.4.

Thirdly, if ran(a) is closed, then we know exactly what pran(a) is! However,
in general pran(a) can be different from both ran(a) and ran(a), and it is easy
to come up with such examples (e.g. choose a positive, compact multiplication
operator of infinite rank on `2). The following example shows a case where the
first inclusion from Theorem 6.7 is strict, even though it is not at all clear what
the square root is.

Example 6.8. Let H, a, y and p be as in Example 6.3. Recall that we have
y /∈ ran(a+ p) in this setting. Note that y ⊗ y is (a positive multiple of) p, so
clearly we do have y ∈ pran(a + p). So even though it is not at all clear what
(a+ p)1/2 is, we nonetheless showed that y ∈ ran((a+ p)1/2) holds. �

6.3 Minimal upper bounds

Using the projective range, it is relatively easy to recognise minimal upper
bounds for a finite set of self-adjoint operators.

Proposition 6.9. Let S ⊆ B(H)sa be a non-empty and finite set of self-adjoint
operators, and suppose that c ∈ B(H)sa is an upper bound of S. Then c is a
minimal upper bound of S if and only if⋂

s∈S
pran(c− s) = {0}.

Proof. Suppose first that there is some non-zero x ∈
⋂
s∈S pran(c− s). Choose

ε > 0 sufficiently small such that ε(x⊗ x) ≤ c− s holds for all s ∈ S (here we
use that S is finite). Now we have s ≤ c− ε(x⊗ x) for all s ∈ S, so we see that
c − ε(x ⊗ x) is an upper bound for S as well. Since we have ε > 0 and x 6= 0,
we find c− ε(x⊗ x) < c. In other words: c is not a minimal upper bound.

Conversely, assume that c is not a minimal upper bound, then there is some
upper bound d of S with d < c. For all s ∈ S we have 0 < c− d ≤ c− s, hence
ran(c− d) ⊆ pran(c− d) ⊆ pran(c− s). It follows that

ran(c− d) ⊆
⋂
s∈S

pran(c− s).

Since we have c 6= d, we see that ran(c− d) is a non-zero subspace. �
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Corollary 6.10. If a, b ∈ B(H) are arbitrary self-adjoint operators, then ag b
is a minimal upper bound for a and b. Furthermore, it is the unique upper
bound c of a and b satisfying pran(c− a) ⊥ pran(c− b).

Proof. Recall that we have (agb)−a = (a−b)− and (agb)−b = (a−b)+, and
that agb is therefore an upper bound for a and b. It follows from Proposition 5.8
that (a−b)+ and (a−b)− are disjoint, so we have ran((a−b)+) ⊥ ran((a−b)−).
By Theorem 6.7 we also have pran((a− b)+) ⊥ pran((a− b)−), so in particular
we find

pran((ag b)− a) ∩ pran((ag b)− b) = {0}.
It follows from Proposition 6.9 that a g b is a minimal upper bound for a
and b. Now suppose that c is an arbitrary upper bound of a and b satisfying
pran(c− a) ⊥ pran(c− b). Then c− a and c− b are disjoint, so property (3) of
Proposition 5.8 gives us |a− b| = 2c− a− b. Equivalently:

c = 1
2
(
a+ b+ |a− b|

)
= ag b. �

Corollary 6.11 (cf. [Top65, Proposition 3]). Let H be a real or complex Hilbert
space, and let V ⊆ B(H)sa be a space of self-adjoint operators with the property
that a ∈ V implies |a| ∈ V . If a, b ∈ V have a supremum c relative to V , then
one necessarily has c = ag b.

Proof. The assumption assures us that a g b ∈ V holds. By the supremum
property of c we have c ≤ ag b. Then, by minimality of ag b (Corollary 6.10)
we must have c = ag b. �

An important special case of the preceding corollary occurs when H is
complex and V = Asa is the self-adjoint part of a C∗-subalgebra A ⊆ B(H).
We will use this in Chapter 8 as a step towards Sherman’s theorem.

6.4 Kadison’s anti-lattice theorem

At this time we are ready to prove the main result of this chapter. We first
sketch the proof by giving a simple example, and then show that the general
case is no harder than this example.

Example 6.12. Let H be the two-dimensional Hilbert space F2 with the stan-
dard inner product, and let a, b ∈ B(H)sa be the projections onto the first and
second coordinate, respectively. Now we have

a =
(

1 0
0 0

)
, b =

(
0 0
0 1

)
, ag b =

(
1 0
0 1

)
.

We know that ag b is a minimal upper bound, but there might be other upper
bounds which are incomparable with ag b. Indeed, let d ∈ B(H) be given by

d :=
(

2
√

2√
2 2

)
,

then we have

d− a =
(

1
√

2√
2 2

)
, d− b =

(
2
√

2√
2 1

)
, d− (ag b) =

(
1
√

2√
2 1

)
.
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Note that a real symmetric 2× 2 matrix is positive if and only if both its trace
and its determinant are non-negative. Hence it is clear that d− a and d− b are
positive, but neither d− (ag b) nor (ag b)− d is positive. In other words, d is
an upper bound for a and b which is incomparable with a g b. It follows from
Corollary 6.11 that a and b do not have a supremum. �

Theorem 6.13 (Kadison’s anti-lattice theorem). Let H be a real or complex
Hilbert space. Then B(H)sa is an anti-lattice.

Proof. Let a, b ∈ B(H)sa be incomparable. We show that a and b do not have
a supremum. In light of Corollary 6.11, it suffices to show that ag b is not the
supremum of a and b. It is already a minimal upper bound, so the task at hand
is to exhibit another upper bound for a and b which is incomparable with agb.

For convenience, let us write c := a g b. The assumption that a and b are
incomparable tells us that both c− a and c− b are non-zero, so we may choose
unit vectors x ∈ pran(c− a) and y ∈ pran(c− b), and choose ε > 0 so that we
have ε(x⊗ x) ≤ c− a as well as ε(y⊗ y) ≤ c− b. It follows from Corollary 6.10
that we have x ⊥ y.

Now let d ∈ B(H) be the operator

d := x⊗ x +
√

2(x⊗ y) +
√

2(y ⊗ x) + y ⊗ y

= 1 +
√

2
2 (x+ y)⊗ (x+ y) + 1−

√
2

2 (x− y)⊗ (x− y)

= (
√

2x+ y)⊗ (
√

2x+ y) − x⊗ x

= (x+
√

2y)⊗ (x+
√

2y) − y ⊗ y.

Analogously to Example 6.12, we will show that c+ εd is an upper bound of a
and b which is incomparable with c.

In order to show that c+ εd is incomparable with c, it suffices to show that
neither d nor −d is positive. Since x and y are orthogonal unit vectors, we have

〈x+ y, x− y〉 = 〈x, x〉 − 〈x, y〉+ 〈y, x〉 − 〈y, y〉 = 1− 0 + 0− 1 = 0,

so we see that x+y and x−y are orthogonal as well. The second expression for
d shows, therefore, that x+y and x−y are eigenvectors of d. The corresponding
eigenvalues are

1 +
√

2
2 · ‖x+ y‖2 = 1 +

√
2, and 1−

√
2

2 · ‖x− y‖2 = 1−
√

2.

We see that d has a positive and a negative eigenvalue, which proves our claim
that neither d nor −d is positive.

In order to see that c+ εd is an upper bound for a and b, note that we have

c− a+ εd ≥ ε(x⊗ x) + εd = ε
(
(
√

2x+ y)⊗ (
√

2x+ y)
)
≥ 0;

c− b+ εd ≥ ε(y ⊗ y) + εd = ε
(
(x+

√
2y)⊗ (x+

√
2y)
)
≥ 0.

In conclusion: not every upper bound for a and b is comparable with c = ag b,
so the latter is not the supremum of a and b. It follows from Corollary 6.11
that a and b do not have a supremum at all. �
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6.5 End notes

1. (page 69) The notation x⊗y is related to tensor products of Hilbert spaces.
(Beware: the tensor product of Hilbert spaces does not satisfy the same uni-
versal property as the tensor product in abstract algebra!) There is a natural
isomorphism H⊗H∗ ∼= L2(H) from the tensor product of H with its dual H∗
to the Hilbert space L2(H) consisting of all so-called Hilbert–Schmidt operators
H → H. Identifying y with the linear functional z 7→ 〈z, y〉 it determines, the
pure tensor x ⊗ y ∈ H ⊗ H∗ corresponds with the Hilbert–Schmidt operator
z 7→ 〈z, y〉x. More on tensor products of Hilbert spaces can be found in [KR97a,
Section 2.6].

2. (page 69) The term projective range was invented by the author. It seems
plausible that the concept already exist in some form in the literature, though
we are not aware of a common name for it. In the given proof of the equality
pran(a) = ran(a1/2), we only used a small part of Douglas’ lemma (since we
derived the inclusion ran(a1/2) ⊆ pran(a) from a simple application of the
Cauchy–Schwarz inequality), but in fact the entire result follows immediately
from the full version of Douglas’ lemma.
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7 Geometric classification of minimal upper
bounds in B(H)

In the previous chapter we gave a (somewhat) geometric proof of Kadison’s
anti-lattice theorem, though the main argument turned out to be rather ad
hoc. Many questions are left unanswered; in particular one might wonder if
incomparable self-adjoint operators a, b ∈ B(H)sa have more than one minimal
upper bound. In this chapter we shall answer the preceding question through
a rigorous study of the minimal upper bounds for a and b.

We start out with a geometric interpretation of the two-dimensional (real)
case in Section 7.1. While this section does not really add anything in terms
of results, it provides us with the necessary geometric intuition we need before
digging a little deeper.

In Section 7.2 we study additional properties enjoyed by minimal upper
bounds. After that, we select a subclass of the minimal upper bounds (we
call these of complementary type) for further investigation, and the succeeding
sections give a complete geometric characterisation of these upper bounds.
While not all minimal upper bounds are of this type, there will be sufficiently
many to give another proof of Kadison’s anti-lattice theorem. In fact, we prove
the following strengthening: if a, b ∈ B(H)sa are incomparable, then the set of
minimal upper bounds for a and b is unbounded (Theorem 7.23).

The main results of this chapter are Theorem 7.17 (classification of minimal
upper bounds of complementary type), and the aforementioned Theorem 7.23
(the set of minimal upper bounds is unbounded).

While many of the proofs in this chapter would have been much simpler
in the finite-dimensional case, we chose to prove everything more generally in
arbitrary Hilbert spaces. The upshot is that the classification leads to a purely
geometric proof of Kadison’s anti-lattice theorem in the general case, but the
downside is that the entire classification becomes an exercise in dealing with
some of the peculiarities of infinite-dimensional Hilbert spaces (and later on,
even some incomplete inner product spaces).

Throughout this chapter, H denotes a Hilbert space over the ground field
F ∈ {R,C}. We use the following geometric properties of H.

Fact 7.1. Let H be a real or complex Hilbert space and let V,W ⊆ H be
subspaces. Then one has (V +W )⊥ = V ⊥∩W⊥. Furthermore, if V and W are
closed, then one also has (V ∩W )⊥ = V ⊥ +W⊥, but this is not necessarily
equal to V ⊥ +W⊥. In fact, V ⊥ +W⊥ is closed if and only if V +W is closed.

Proof. See Proposition A.1, Proposition A.2, Example A.3, and Corollary A.10
(in Appendix A below). �

7.1 Geometric interpretation of upper bounds

Before we attempt to obtain a geometric classification of minimal upper bounds,
it is instructive to paint the geometric picture in the real two-dimensional case.
We follow [LZ71, Chapter 5, §58 (closing remarks)]. Let H = R2 be the two-
dimensional Euclidean space with standard inner product. In keeping with
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[LZ71], we define the indicatrix of a positive operator a ∈ B(H) to be the set

Ia :=
{
x ∈ H : 〈ax, x〉 ≤ 1

}
.

Geometrically, the indicatrix is either an ellipsoidal disk (if a is invertible),
the region between two parallel lines (if rank(a) = 1), or all of R2 (if a = 0).
Furthermore, for a, c ≥ 0 we have a ≤ c if and only if Ia ⊇ Ic.

We study the upper bounds for a, b ∈ B(H)sa in terms of their indicatrices.
Let 1 ∈ B(H) denote the identity, and assume without loss of generality that
a, b ≥ 1 holds (by performing a suitable translation). Then Ia and Ib are
ellipsoidal disks contained in the unit disk of R2. The indicatrix of an upper
bound c ≥ a, b is an ellipsoidal disk contained in both Ia and Ib. If a and b
are incomparable, then Ia and Ib are incomparable (under inclusion), and it
follows from Kadison’s anti-lattice theorem that there is no greatest indicatrix
Ic ⊆ Ia∩Ib. We can however find a variety of maximal indicatrices Ic ⊆ Ia∩Ib,
as the following example shows.

Example 7.2. As in the preceding paragraph, let H = R2 be two-dimensional
Euclidean space. Further, let a, b, d ∈ B(H) be the matrices from Example 6.12,
except all translated by 1, so that we have

a =
(

2 0
0 1

)
, b =

(
1 0
0 2

)
, ag b =

(
2 0
0 2

)
, d =

(
3
√

2√
2 3

)
.

We draw the indicatrices of ag b and d on top of Ia and Ib.

Ia

Ib

−1 1

−1

1

Iagb

Ia

Ib

−1 1

−1

1

Id

It is clear from the picture that ag b and d are incomparable upper bounds for
a and b (as we proved in Example 6.12). Furthermore, we already proved that
ag b is always a minimal upper bound; the corresponding geometric statement
is that there is no indicatrix Ic satisfying Iagb ( Ic ⊆ Ia ∩ Ib. The image
moreover suggests that d is a minimal upper bound as well, and this turns out
to be true. (We do not prove this, but in light of Proposition 6.9 it is clear how
to verify this: show that ran(d− a) ∩ ran(d− b) = {0} holds.) �

The disks Iagb and Id in the previous example are maximal: they cannot
be extended to a larger ellipsoidal disk in Ia ∩ Ib. We might wonder which
indicatrices Ic ⊆ Ia ∩ Ib have the same property. We know how to recognise
minimal upper bounds (Proposition 6.9), but so far we do not know how to
construct them. That will be the goal for this chapter.
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For c to be a minimal upper bound, it seems that the boundary of Ic must
touch each of the boundaries of Ia and Ib. But it seems unlikely that we can just
specify a point where ∂Ic touches ∂Ia and a point where ∂Ic touches ∂Ib, and
then construct an upper bound c with these properties. Furthermore, in the
higher-dimensional case the indicatrices might in principle touch in a curve or
(hyper)surface instead of a point. And how do we even think about ellipsoidal
geometry in an infinite-dimensional Hilbert space?

We translate these questions back to linear algebra. To that end, we make
the following observation: in the finite-dimensional case, the condition for an
upper bound c to be minimal, namely that ran(c−a)∩ ran(c− b) = {0} should
hold, is equivalent to the condition ker(c − a) + ker(c − b) = H, simply by
taking orthogonal complements (cf. Fact 7.1). Furthermore, since c is an upper
bound for a and b, it follows from Proposition 6.1 that ker(c−a) is precisely the
subspace where ∂Ia and ∂Ic touch! So our geometric questions about touching
ellipses are easily turned into questions about kernels and ranges.

The remainder of our studies will be carried out in the setting of linear
algebra and functional analysis, so we will not be doing much more geometry.
Nevertheless, the geometric intuition obtained in this section should be kept in
the back of our minds at all times, as it motivates many of the results to come.

7.2 Kernels and ranges of minimal upper bounds

We proceed with our study of minimal upper bounds of operators a, b ∈ B(H)sa.
This is done in the general setting, so H is an arbitrary real or complex Hilbert
space (not necessarily finite-dimensional). We will shortly see that matters are
a little more complicated here, but we will find ways around this.

Recall from Proposition 6.9 that a minimal upper bound c for a and b
satisfies pran(c−a)∩pran(c− b) = {0}. In light of Theorem 6.7, it follows that
ran(c− a) ∩ ran(c− b) = {0} holds, but we cannot say with certainty whether
or not ran(c − a) ∩ ran(c − b) = {0} holds. The following example shows that
the latter equality might fail in general.

Example 7.3. Let H be infinite-dimensional, and let a ∈ B(H) be a positive
operator such that pran(a) 6= ran(a) holds. Choose some z ∈ ran(a) \ pran(a),
and let p := z ⊗ z be (a positive multiple of) the orthogonal projection onto
span(z). Now we have ran(p) = pran(p) = ran(p) = span(z), so it is clear that
a+p is a minimal upper bound for a and p (we have pran(p)∩pran(a) = {0}).
However, at the same time we have {0} ( span(z) ⊆ ran(p) ∩ ran(a). �

The property ran(c− a) ∩ ran(c− b) = {0} has the following consequence.

Proposition 7.4. Let a, b, c ∈ B(H)sa be self-adjoint operators such that c is
a minimal upper bound for a and b. If x ∈ H is such that ax = bx holds, then
cx is also equal to this common value. Consequently, one has

ker(a− b) = ker(c− a) ∩ ker(c− b).

Proof. If ax = bx holds, then we have

(c− a)x = (c− b)x ∈ ran(c− a) ∩ ran(c− b) = {0},

hence cx = ax = bx. This proves the inclusion ker(a−b) ⊆ ker(c−a)∩ ker(c−b).
The reverse inclusion is trivial: if cx = ax and cx = bx, then ax = bx. �
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Corollary 7.5. Let a, b, c ∈ B(H)sa be self-adjoint operators such that c is a
minimal upper bound for a and b. Then one has

ran(a− b) ⊆ ran(c− a) + ran(c− b) ⊆ ran(c− a) + ran(c− b) ⊆ ran(a− b).

Proof. If y ∈ ran(a−b) is given, then we may choose x ∈ H so that y = (a−b)x
holds, and then we have

y = (a− c)x+ (c− b)x ∈ ran(c− a) + ran(c− b). (7.6)

This proves the inclusion ran(a− b) ⊆ ran(c− a) + ran(c− b).
The second inclusion is clear.
Thirdly, we prove the inclusion ran(c−a)+ran(c−b) ⊆ ran(a−b). It follows

from Fact 7.1 and Proposition 7.4 that(
ran(c− a) + ran(c− b)

)⊥ = ran(c− a)⊥ ∩ ran(c− b)⊥

= ker(c− a) ∩ ker(c− b)

= ker(a− b).

Taking orthogonal complements, we find

ran(c− a) + ran(c− b) = ran(a− b),

which proves the inclusion ran(c− a) + ran(c− b) ⊆ ran(a− b).
For the third and final inclusion, note that ran(a− b) is a closed subspace

containing ran(c − a), so it also contains ran(c − a). Analogously, it contains
ran(c− b), so it follows that ran(c− a) + ran(c− b) ⊆ ran(a− b) holds. �

Note that it follows from these results that the study of minimal upper bounds
of a and b on H is no harder than their study on the support of a− b, that is,
on ran(a − b). It follows, for instance, that all minimal upper bounds of two
finite rank operators a, b ∈ B(H)sa are finite rank as well, so their properties
can be understood completely in the setting where H is finite-dimensional.

The following example shows that the final inclusion from Corollary 7.5
might be strict.

Example 7.7. Choose a Hilbert space H and closed subspaces V,W ⊆ H
with V ∩W = {0} such that V +W is not closed (a class of subspaces of this
type is given in Example A.3). Let p, q ∈ B(H) be the orthogonal projections
onto V and W , respectively. Clearly p+ q is an upper bound for p and q, and
it is minimal because we have ran(q) ∩ ran(p) = W ∩ V = {0}. However, by
assumption the sum ran(q) + ran(p) is not closed. �

7.3 Minimal upper bounds of complementary type

In light of the preceding results (Example 7.3, Corollary 7.5, and Example 7.7),
we make the following definition.

Definition 7.8. We say that a minimal upper bound c for a, b ∈ B(H)sa is of
complementary type1 if we have

ran(c− a) ∩ ran(c− b) = {0};

ran(c− a) + ran(c− b) = ran(a− b).
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In other words, ran(c − a) and ran(c − b) are complementary subspaces of
ran(a− b); see Appendix A.

In light of Corollary 7.5, the second condition is equivalent to the assertion
that ran(c− a) + ran(c− b) is closed.

Note that we do not require ran(c − a) and ran(c − b) to be closed; this
would unnecessarily restrict us in the classification ahead.

We saw in examples 7.3 and 7.7 that both equalities from Definition 7.8
might fail. Despite these counterexamples, the following results show that a
large class of minimal upper bounds are of complementary type.

Proposition 7.9. The quasi-supremum ag b is of complementary type.

Proof. For convenience, write c := agb. Recall that we have c−a = (a−b)− and
c − b = (a − b)+. By Proposition 5.8, we have ran((a − b)−) ⊥ ran((a − b)+).
It follows immediately that ran(c − a) ∩ ran(c − b) = {0} holds, and that
ran(c−a)+ran(c−b) is closed (cf. Corollary A.8). It follows from Corollary 7.5
that we have ran(c− a) + ran(c− b) = ran(a− b). �

Proposition 7.10. Suppose that ran(a− b) is closed, and that c is a minimal
upper bound for a and b. Then ran(c−a) and ran(c− b) are closed as well, and
c is of complementary type.

Proof. Since ran(a− b) is closed, we have equality throughout in Corollary 7.5,
so we find ran(c−a)+ran(c− b) = ran(a− b). Recall furthermore that we have
ran(c − a) ∩ ran(c − b) = {0}. As such, every y ∈ ran(a − b) can be written
uniquely as y = ya + yb with ya ∈ ran(c− a) and yb ∈ ran(c− b). Consider the
map πa : ran(a− b)→ ran(a− b) given by y 7→ ya. Note that (7.6) gives us an
explicit formula for πa now: the map is given by (a− b)x 7→ (a− c)x. We prove
that πa is continuous.

Since a − b is a self-adjoint operator with closed range, it restricts to an
invertible operator d := (a − b)|ran(a−b) : ran(a − b) → ran(a − b). (Here
we use some form of the open mapping theorem.) Now πa is obtained as the
composition (a− c) ◦ d−1, so in particular it is continuous, as promised.2

Note that we have ker(πa) = ran(c− b), so it follows from the continuity of
πa that ran(c − b) is closed. An analogous argument shows that ran(c − a) is
closed as well. Since we already established ran(c−a) + ran(c− b) = ran(a− b)
and ran(c−a) ∩ ran(c−b) = {0}, it follows that c is of complementary type. �

We note some of the applications of Proposition 7.10. If H is finite-dimensional,
then all minimal upper bounds are of complementary type. More generally, if H
is arbitrary but a and b have finite rank, then all minimal upper bounds of a and
b are of complementary type (and have finite rank as well). Furthermore, if a−b
is invertible, then all minimal upper bounds for a and b are of complementary
type as well.

In a way, the existence of contrived counterexamples like the one presented
in Example 7.3 (where we had ran(c − a) ∩ ran(c − b) 6= {0}) stems from the
fact that the projective range of a positive operator sits somewhere between
the range and its closure. Since the projective range is the correct tool in
Proposition 6.9, it is not surprising that minimal upper bounds are much more
well-behaved if the ranges in question are closed.
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7.4 From minimal upper bounds to subspace triples

In this section we show that a minimal upper bound of complementary type
gives rise to a special kind of decomposition of the underlying Hilbert space H.
These decompositions play an important role in the construction of minimal
upper bounds in Section 7.5 below.

Recall that a sesquilinear form on a Hilbert space H is a map g : H2 → F
which is linear in the first coordinate and conjugate-linear in the second. We say
that g is bounded if there is a positive constant γ such that |g(x, y)| ≤ γ‖x‖‖y‖
holds for all x, y ∈ H, and g is Hermitian if we have g(x, y) = g(y, x)∗ for all
x, y ∈ H. (In the case F = C the latter is equivalent with g(x, x) ∈ R for all
x ∈ H. Clearly this is no longer true in the case F = R.)

For a ∈ B(H), the function ga(x, y) := 〈ax, y〉 = 〈x, a∗y〉 defines a bounded
sesquilinear form. Conversely, for every bounded sesquilinear form g there exists
a unique operator a ∈ B(H) such that g = ga holds (cf. [Mur90, Theorem
2.3.6]). Furthermore, ga is Hermitian if and only if a is Hermitian.

If g is a sesquilinear form and S, T ⊆ H are subsets, then we say that S
and T are orthogonal with respect to g if g(s, t) = 0 holds for all s ∈ S, t ∈ T .

For the remainder of this chapter, we understand the term Hermitian form
to mean “bounded Hermitian sesquilinear form”.

The Hermitian form of our interest is the form corresponding with a − b,
that is, the form given by g(x, y) := 〈(a− b)x, y〉 = 〈x, (a− b)y〉. The following
simple observations form the core of our classification programme.

Proposition 7.11. Let c be an upper bound for a, b ∈ B(H)sa. Then:

(a) For all x ∈ ker(c− a) \ ker(a− b) one has 〈ax, x〉 > 〈bx, x〉;

(b) For all x ∈ ker(c− b) \ ker(a− b) one has 〈ax, x〉 < 〈bx, x〉;

(c) The subspaces ker(c− a) and ker(c− b) are orthogonal with respect to the
Hermitian form g(x, y) = 〈(a− b)x, y〉 = 〈x, (a− b)y〉;

(d) We have ker(c − a) + ker(c − b) = H if and only if c is minimal and of
complementary type.

Proof.

(a) For x ∈ ker(c−a)\ker(a−b) we have cx = ax 6= bx, hence x /∈ ker(c−b).
Since c − a and c − b are positive, it follows from Proposition 6.1 that
we have 〈(c− a)x, x〉 = 0 and 〈(c− b)x, x〉 > 0. In other words, we have
〈ax, x〉 = 〈cx, x〉 > 〈bx, x〉.

(b) Analogous.

(c) For x ∈ ker(c−a) and y ∈ ker(c− b) we have ax = cx and by = cy, hence

g(x, y) = 〈(a− b)x, y〉 = 〈(c− b)x, y〉 = 〈x, (c− b)y〉 = 〈x, 0〉 = 0.

(d) By Fact 7.1, we have that ker(c−a) + ker(c− b) is dense in H if and only
if ran(c− a)∩ ran(c− b) = {0} holds. Moreover, ker(c− a) + ker(c− b) is
closed if and only if ran(c−a) + ran(c− b) is closed, and by Corollary 7.5
this is true if and only if ran(c− a) + ran(c− b) = ran(a− b) holds. �
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It should be noted that Hermitian forms are not quite as well-behaved as the
usual inner product. In particular, ker(c − a) and ker(c − b) are orthogonal
with respect to g, but might nonetheless have non-trivial intersection! This is
because the kernel (in this case, both the left and the right kernel) of g is equal
to ker(a − b), so in fact ker(a − b) is orthogonal to all of H! (For much more
on Hermitian forms, including notions like left and right kernels, the interested
reader is referred to [Lan02, Chapter XV].)

Using the preceding proposition, we show that a minimal upper bound of
complementary type gives rise to a decomposition of H as the (internal) direct
sum of a subspace where a and b are equal, a subspace where “a is larger”, and
a subspace where “b is larger”. This is made precise in the following corollary.

Corollary 7.12. Let c be a minimal upper bound of complementary type for
a, b ∈ B(H)sa. Then the spaces U := ker(a− b), V := ker(c− a) ∩ ker(a− b)⊥
and W := ker(c− b) ∩ ker(a− b)⊥ satisfy the following properties:

(a) U , V and W are closed linear subspaces of H;

(b) We have V ∩W = {0} and V +W = U⊥, and therefore H = U ⊕V ⊕W ;

(c) U , V and W are pairwise orthogonal with respect to the Hermitian form
g(x, y) = 〈(a− b)x, y〉 = 〈x, (a− b)y〉;

(d) For all x ∈ U we have ax = bx, and therefore 〈ax, x〉 = 〈bx, x〉;

(e) For all x ∈ V \ {0} we have 〈ax, x〉 > 〈bx, x〉;

(f) For all x ∈W \ {0} we have 〈ax, x〉 < 〈bx, x〉.

Before proceeding with the proof of Corollary 7.12, we pause to discuss the
meaning of the expression H = U ⊕ V ⊕W , for the notation is ambiguous. We
use it to mean that U , V and W are closed subspaces such that every x ∈ H
can be written uniquely as x = u + v + w with u ∈ U , v ∈ V , w ∈ W in such
a way that the projections u+ v + w 7→ u (or v, or w) are continuous. In this
case we say that H is equal to the internal direct sum of U , V and W . This is
equivalent to the assertion thatH is linearly isomorphic with the external direct
sum of the subspaces U , V and W , each of which is a Hilbert space in its own
right. With a little work, one can show that this isomorphism is an invertible
bounded linear map. (It is not necessarily a Hilbert space isomorphism – this
happens if and only if U , V and W are orthogonal.) We do not prove these
claims; the interested reader is referred to [Con07, Section III.13].

It should be pointed out that even in the finite-dimensional case (where the
topological requirements are automatically met), the statementH = U⊕V ⊕W
is stronger than U + V +W = H and U ∩ V = U ∩W = V ∩W = {0}. Simply
take three different one-dimensional subspaces of a two-dimensional space to
see why. In order for H = U ⊕ V ⊕W to hold, we must have H = U + V +W ,
but we require a stronger disjointness criterion: any one (and therefore all) of
the following equivalent conditions must be met: V ∩W = U ∩ (V +W ) = {0},
or U ∩W = V ∩ (U +W ) = {0}, or U ∩ V = W ∩ (U + V ) = {0}. This can be
generalised to finite internal direct sums; see [Lan02, Chapter I, §7].

Of course, the situation is relatively easy in Corollary 7.12(b): we have
V ∩W = {0} and V +W = U⊥, so the condition V ∩W = U ∩ (V +W ) = {0}
is evidently met in this case.
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Proof of Corollary 7.12.

(a) Trivial.

(b) By Proposition 7.4 we have ker(c− a) ∩ ker(c− b) = ker(a− b), hence
V ∩W = ker(c− a) ∩ ker(c− b) ∩ ker(a− b)⊥

= ker(a− b) ∩ ker(a− b)⊥

= {0}.

Next, let p : H → H denote the orthogonal projection onto ker(a − b)⊥,
and let ρ denote its restriction to a map H → ker(a−b)⊥. Since ker(a−b)
is a subspace of ker(c−a) and ker(c−b), it follows from Proposition A.7(b)
that we have V = ρ(ker(c−a)) and W = ρ(ker(c−b)). Therefore we have

V +W = ρ(ker(c− a)) + ρ(ker(c− b))

= ρ
(

ker(c− a) + ker(c− b)
)

= ρ(H)

= ker(a− b)⊥,

so we find V + W = U⊥. Now the coordinate projections U⊥ → V and
U⊥ → W are automatically continuous (cf. Theorem A.4), so we have
U⊥ = V ⊕W , and therefore H = U ⊕ U⊥ = U ⊕ V ⊕W .

(c) It follows from Proposition 7.11(c) that V and W are orthogonal with
respect to g. Furthermore, we note that U is the kernel of g, so it is
orthogonal to everything (with respect to g).

(d) Trivial.

(e) We have V \{0} ⊆ ker(c−a)\ker(a−b), so the result follows immediately
from Proposition 7.11(a).

(f) Analogous. �

We close this section with the following satellite lemmas.

Lemma 7.13. Let c be a minimal upper bound of complementary type for
a, b ∈ B(H)sa, and let U, V,W ⊆ H be as in Corollary 7.12. Then one has
ker(c− a) = U + V and ker(c− b) = U +W .

Proof. This follows immediately from parts (b) and (c) of Proposition A.7. �

Lemma 7.14. Let c be a minimal upper bound of complementary type for
a, b ∈ B(H)sa, and let U, V,W ⊆ H be as in Corollary 7.12. Then one has
V = {0} if and only if a ≤ b, and similarly W = {0} if and only if a ≥ b.

Proof. If V = {0} holds, then we have W = U⊥, hence ker(c−b) = U+W = H.
It follows that b = c ≥ a holds.

Conversely, if we have b ≥ a, then we must necessarily have b = c (it is the
only minimal upper bound), hence V = ker(b− a) ∩ ker(b− a)⊥ = {0}.

This proves that we have V = {0} if and only if a ≤ b. Analogously, we
have W = {0} if and only if a ≥ b. �
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7.5 From subspace triples to minimal upper bounds

In the previous section, we took a minimal upper bound c of complementary
type, and assigned to it a triple (U, V,W ) of subspaces with the properties
described in Corollary 7.12. Observe that all of these properties of U , V and
W are formulated purely in terms of a and b, with no mention of c. As such, we
might wonder which triples (U, V,W ) satisfying these properties can actually
be obtained for some appropriate choice of c. In this section it will be shown
that every such triple can be obtained, and that the assignment c 7→ (U, V,W )
from Corollary 7.12 defines a bijective correspondence between minimal upper
bounds of complementary type and triples (U, V,W ) satisfying the conditions
of Corollary 7.12.

The first step is to show that the assignment c 7→ (U, V,W ) is injective.

Proposition 7.15. Let c, c′ be minimal upper bounds of complementary type
for a, b ∈ B(H)sa, and let (U, V,W ), (U ′, V ′,W ′) be the corresponding triples
of subspaces (as in Corollary 7.12). If (U, V,W ) = (U ′, V ′,W ′), then c = c′.

Proof. Let x ∈ H be given, and write x = u + v + w with u ∈ U , v ∈ V
and w ∈ V . Note that we have U, V ⊆ ker(c − a) and W ⊆ ker(c − b), by
construction, so we find cx = cu + cv + cw = au + av + bw. Analogously, we
also have c′x = au+ av + bw, so we find cx = c′x for all x ∈ H. �

In short, because we have ker(c−a)+ker(c−b) = H, these two kernels provide
enough information to reconstruct c uniquely from a and b. It is clear from
this argument that there is only one possible candidate for c once we are given
the triple (U, V,W ). Our goal is to show that this candidate always defines a
minimal upper bound of complementary type for a and b.

Theorem 7.16. Let a, b ∈ B(H)sa be given self-adjoint operators on H, and
let U, V,W ⊆ H be subspaces satisfying the properties of Corollary 7.12. Then
the map c : H → H given by u + v + w 7→ au + av + bw is linear, bounded,
self-adjoint, and a minimal upper bound of complementary type for a and b.
Furthermore, if (U ′, V ′,W ′) denotes the triple of subspaces obtained from c via
Corollary 7.12, then we have (U, V,W ) = (U ′, V ′,W ′).

Proof. Let p ∈ B(H) be the orthogonal projection onto U⊥, and let q′ ∈ B(U⊥)
denote the idempotent w + v 7→ w corresponding to the complementary pair
W,V ⊆ U⊥ (in the sense of Theorem A.4). Extend q′ to an operator q ∈ B(H)
with q(u) = 0 for all u ∈ U . Now the decomposition map H → U ⊕ V ⊕W is
given by x 7→ (1− p)x⊕ (p− q)x⊕ qx. Consequently, c can be written as

c = a(1− p) + a(p− q) + bq = a(1− q) + bq,

from which it is clear that c is a bounded linear operator.
In order to show that c is self-adjoint, note that U and V , and therefore

U + V , are orthogonal to W with respect to the Hermitian form g. For all
x, y ∈ H we have qx ∈W and (1− q)y ∈ U + V hence〈

(1− q∗)(b− a)qx, y
〉

=
〈
(b− a)qx, (1− q)y

〉
= −g

(
qx, (1− q)y

)
= 0.

As this holds for all x, y ∈ H, we find (1 − q∗)(b − a)q = 0. By taking the
adjoint, we also find q∗(b− a)(1− q) = 0, which we will need later.
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Now we may write

c = a+ (b− a)q

= a+ (b− a)q − (1− q∗)(b− a)q

= a+ q∗(b− a)q,

from which it is clear that c is self-adjoint.
Thirdly, we show that c is an upper bound for a and b. For all x ∈ H we

have qx ∈W , so by assumption (f) we have〈
(c− a)x, x

〉
=
〈
q∗(b− a)qx, x

〉
=
〈
(b− a)qx, qx

〉
≥ 0.

In fact, the inequality is strict whenever qx 6= 0 holds, and we will need this
later on. For now, the argument already shows that c ≥ a holds. While the
inequality c ≥ b follows by symmetry (simultaneously interchanging a with b
and V with W ), we choose to write this out in the present setting, since this
will give us another expression for c which we need later. Note that we have

c = b+ (a− b)(1− q)

= b+ (a− b)(1− q)− q∗(a− b)(1− q)

= b+ (1− q∗)(a− b)(1− q).

By assumption (d) we have U ⊆ ker(a−b). Since p is the orthogonal projection
onto U⊥ ⊇ ran(a − b), we have a − b = p(a − b) = (a − b)p = p(a − b)p. It
follows that c can be written as

c = b+ (p− q∗)(a− b)(p− q).

Now it is clear that c ≥ b holds: for all x ∈ H we have (p− q)x ∈ V , hence〈
(c− b)x, x

〉
=
〈
(a− b)(p− q)x, (p− q)x

〉
≥ 0,

and the inequality is strict whenever (p − q)x 6= 0 holds. (Note: here we used
that p is always self-adjoint, unlike q.) We conclude that c is an upper bound
for a and b, as promised.

Using our knowledge of when the preceding inequalities are strict, it follows
from Proposition 6.1 that we have

ker(c− a) =
{
x ∈ H : 〈(b− a)qx, qx〉 = 0

}
= ker(q) = U + V ;

ker(c− b) =
{
x ∈ H : 〈(b− a)(p− q)x, (p− q)x〉 = 0

}
= ker(p− q) = U +W.

In particular, we have ker(c − a) + ker(c − b) = H, so c is minimal and of
complementary type (by Proposition 7.11(d)).

Since expressions of the form x = u+ v+w with u ∈ U , v ∈ V and w ∈W
are unique, it is clear that (U + V ) ∩ (U + W ) = U holds. Now it follows
from Proposition 7.4 that we have ker(a − b) = ker(c − a) ∩ ker(c − b) = U .
Furthermore, since U and V are orthogonal, we have V = (V + U) ∩ U⊥
(cf. Proposition A.7), that is: V = ker(c − a) ∩ ker(a − b)⊥. Analogously we
have W = ker(c− b)∩ ker(a− b)⊥, so we see that (U, V,W ) coincides with the
triple of subspaces obtained from c via Corollary 7.12. �
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In summary, we have the following:

Theorem 7.17. The constructions from Corollary 7.12 and Theorem 7.16
define a bijective correspondence between the minimal upper bounds of comple-
mentary type for a and b, and the triples (U, V,W ) of subspaces satisfying the
conditions from Corollary 7.12. �

7.6 Finding additional subspace triples

We know from Proposition 7.9 that a minimal upper bound of complementary
type exists, namely the quasi-supremum a g b. The corresponding subspace
decomposition is (ker(a−b), ran((a−b)+), ran((a−b)−)). For our second proof
of the anti-lattice theorem, we show that this is not the only one (unless a and
b are comparable).

In order to find additional triples (U, V,W ) satisfying the conditions of
Corollary 7.12, it helps to understand the behaviour of Hermitian forms. While
they share some properties with the usual inner product, we will see that
their behaviour can at times be counterintuitive. We start with the following
proposition, which is nothing out of the ordinary.

Proposition 7.18. Let g(x, y) = 〈(a− b)x, y〉 = 〈x, (a− b)y〉 be the Hermitian
form from before. For a non-empty subset X ⊆ H, the orthogonal complement
of X with respect to g is given by X⊥g = ((a − b)X)⊥ = (a − b)−1(X⊥). In
particular, X⊥g is a closed subspace.

Proof. By definition we have

X⊥g =
{
y ∈ H : 〈(a− b)x, y〉 = 0 for all x ∈ X

}
=
{
y ∈ H : 〈z, y〉 = 0 for all z ∈ (a− b)X

}
= ((a− b)X)⊥;

X⊥g =
{
y ∈ H : 〈x, (a− b)y〉 = 0 for all x ∈ X

}
=
{
y ∈ H : (a− b)y ∈ X⊥

}
= (a− b)−1(X⊥).

It follows from either of these expressions that X⊥g is a closed subspace. �

The following example shows some of the stranger things that can happen.

Example 7.19. Consider an injective positive operator a ∈ B(H) with dense
range such that pran(b) 6= H holds. Choose some vector z /∈ pran(a), and let
p := z ⊗ z be (a positive multiple of) the orthogonal projection onto span(z).
By the remarks in Example 7.3, in this setting we have that a+ p is a minimal
upper bound for a and p. Furthermore, in light of Proposition 7.11(c), the
subspaces V := ker(p) = {z}⊥ and W := ker(a) = {0} are orthogonal with
respect to g(x, y) = 〈(a− p)x, y〉.

We prove that V ⊥g = {0} holds. In light of Proposition 7.18, we have
V ⊥g = (a − p)−1 span(z). Thus, for x ∈ V ⊥g we have (a − p)x ∈ span(z).
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Now we also have ax ∈ span(z) (since px ∈ span(z)), hence ax = 0 (because
z /∈ pran(a) ⊇ ran(a)), and therefore x = 0 (since a is injective), proving our
claim that V ⊥g = {0} holds.

In this example we have V + V ⊥g 6= H. Note furthermore that we have
W⊥g = H, so additionally we find (V ⊥g )⊥g = W⊥g = H 6= V . �

At the very least, the preceding example shows that we need to construct V
and W simultaneously. We cannot simply construct one of the two, say V , and
set W := V ⊥g . (Not only would our construction of V have to make sure that
properties (e) and (f) of Corollary 7.12 hold; additional care would have to be
taken to show that V + V ⊥g = U⊥ even holds for the chosen construction!) It
seems that this approach is doomed.

The approach we take instead is to make slight modifications to an existing
solution. If the triple (U, V,W ) satisfies the properties of Corollary 7.12, then
g defines an inner product on V , and similarly −g defines an inner product on
W . While inner product spaces are not quite as well-behaved as Hilbert spaces
(e.g. they do not always have an orthonormal basis), we do have the following
tool at our disposal.

Proposition 7.20. Let (X, 〈 · , · 〉) be an inner product space, and let Y ⊆ X
be a finite-dimensional subspace. Then one has Y ∩Y ⊥ = {0} and Y +Y ⊥ = X.

Proof. The equality Y ∩ Y ⊥ = {0} is clear, since 〈x, x〉 = 0 implies x = 0.
Note that Y is complete, since it is finite-dimensional, so we see that Y is a

Hilbert space. Choose some orthonormal basis b1, . . . , bn for Y . Let x ∈ X be
given and set x′ := x −

∑n
k=1〈x, bk〉bk. A straightforward computation shows

that x′ ⊥ {b1, . . . , bn} holds, so we have x′ ∈ Y ⊥ and x ∈ Y + Y ⊥. �

In particular, by passing to the inner product spaces (V, g) and (W,−g), we
find the following corollary.

Corollary 7.21. Let U, V,W ⊆ H be subspaces satisfying the properties of
Corollary 7.12. If Y ⊆ V and Z ⊆ W are finite-dimensional subspaces, then
one has V = Y ⊕ (V ∩ Y ⊥g ) and W = Z ⊕ (W ∩ Z⊥g ).

Proof. Note that V ∩ Y ⊥g is precisely the orthogonal complement of Y in the
inner product space (V, g), so the result follows from propositions 7.20 and
7.18. (We are working in a Hilbert space now, so the notation ⊕ is reserved
for closed subspaces.) For (W,−g) the argument is analogous, where we note
that the orthogonal complement with respect to −g is equal to the orthogonal
complement with respect to g. �

This leads to the following construction.

Construction 7.22. Let a and b be incomparable, and let (U, V,W ) be a
triple satisfying the properties of Corollary 7.12. Then by Lemma 7.14 we have
V 6= {0} and W 6= {0}, so we may choose one-dimensional subspaces Y ⊆ V ,
Z ⊆W . By Corollary 7.21 we have U⊥ = Y ⊕Z⊕ (V ∩Y ⊥g )⊕ (W ∩Z⊥g ), and
the four summands are pairwise orthogonal with respect to g. We shall make
a modification in Y ⊕ Z and leave (V ∩ Y ⊥g )⊕ (W ∩ Z⊥g ) invariant.

Since g and −g define inner products on V and W , respectively, we may
choose unit vectors y ∈ Y and z ∈ Z with respect to these inner products. In
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other words, we normalise the generators of Y and Z so that we have g(y, y) = 1
and g(z, z) = −1. Now choose some arbitrary α ∈ (0, 1

2 ), and define

Y ′ := span
(
(1− α)y + αz

)
, and Z ′ := span

(
αy + (1− α)z

)
.

Clearly we have Y ′ ∩ Z ′ = {0} and Y ′ + Z ′ = Y + Z, so we find a second
decomposition U⊥ = Y ′⊕Z ′⊕(V ∩Y ⊥g )⊕(W∩Z⊥g ). We claim that (U, V ′,W ′)
is another triple satisfying the properties of Corollary 7.12, where V ′ and W ′

are given by

V ′ := Y ′ + (V ∩ Y ⊥g ), and W ′ := Z ′ + (W ∩ Z⊥g ).

To see that V ′ and W ′ are closed, recall that the sum of a closed subspace
and a finite-dimensional subspace is again closed (cf. [Rud91, Theorem 1.42]).
Furthermore, U is unchanged and we have U⊥ = V ′ ⊕ W ′, so we see that
properties (a), (b) and (d) are satisfied.

In order to see that V ′ and W ′ are orthogonal with respect to g, write
y′ = (1− α)y + αz ∈ Y ′ and z′ = αy + (1− α)z ∈ Z ′, and note that we have

g(y′, z′) = (1− α)α · g(y, y) + (1− α)2g(y, z) + α2g(z, y) + α(1− α) · g(z, z)

= (1− α)α · 1 + 0 + 0 + α(1− α) · −1

= 0.

As such we have Y ′ ⊥g Z ′. Moreover, the three summands in the decomposition
U⊥ = (Y ⊕Z)⊕ (V ∩Y ⊥g )⊕ (W ∩Z⊥g ) = (Y ′⊕Z ′)⊕ (V ∩Y ⊥g )⊕ (W ∩Z⊥g )
were orthogonal to begin with, so it follows that the four summands in the
decomposition U⊥ = Y ′⊕Z ′⊕ (V ∩Y ⊥g )⊕ (W ∩Z⊥g ) are pairwise orthogonal
with respect to g. In particular we have V ′ ⊥g W ′, and property (c) is satisfied.

In order to see that g is positive definite on V ′ and negative definite on W ′,
note that we have

g(y′, y′) = (1− α)2 · g(y, y) + (1− α)αg(y, z) + α(1− α)g(z, y) + α2 · g(z, z)

= (1− α)2 · 1 + 0 + 0 + α2 · −1

= 1− 2α;

g(z′, z′) = α2 · g(y, y) + α(1− α)g(y, z) + (1− α)αg(z, y) + (1− α)2 · g(z, z)

= α2 · 1 + 0 + 0 + (1− α)2 · −1

= 2α− 1.

Since we assumed α < 1
2 , we find that g is positive definite on Y ′ and negative

definite on Z ′. Now we note that V ′ is defined as the sum of two g-orthogonal
subspaces and that g is positive definite on each of the two summands. From
this it follows that g is positive definite on all of V ′. Analogously, g is negative
definite on W ′, so we see that properties (e) and (f) are satisfied.

Finally, note that the obtained decomposition (U, V ′,W ′) is different from
the original, since we have y′ ∈ V ′ but y′ /∈ V . (After all, y′ ∈ V would imply
z ∈ V ∩W = {0}, but z is non-zero by assumption.) In fact, we note that,
by the same argument, different choices of α ∈ (0, 1

2 ) give rise to different
decompositions (U, V ′,W ′). �
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At this time we can give our “geometric” proof of the anti-lattice theorem.

Second proof of the anti-lattice theorem. Let a, b ∈ B(H)sa be incomparable.
There is at least one triple (U, V,W ) satisfying the properties of Corollary 7.12
(namely the triple corresponding to ag b), so it follows from Construction 7.22
that there are infinitely many such triples (corresponding to different choices of
α ∈ (0, 1

2 )). Therefore a and b admit infinitely many minimal upper bounds of
complementary type. On the other hand, if a and b were to have a supremum,
then there would be exactly one minimal upper bound. �

In fact, Construction 7.22 gives us the following strengthening of the anti-lattice
theorem.

Theorem 7.23. Let a, b ∈ B(H)sa be incomparable, then the set of all minimal
upper bounds of complementary type for a and b is unbounded.

Proof. Let U, V,W ⊆ H be subspaces satisfying the properties of Corollary 7.12.
Furthermore, let α ∈ (0, 1

2 ) and Y,Z, Y ′, Z ′ ⊆ H and y, z, y′, z′ ∈ H be as in
Construction 7.22. We will vary the value of α at a later point. (The spaces
Y ′ and Z ′ and the elements y′ ∈ Y ′ and z′ ∈ Z ′ depend on α, so these will be
understood to change accordingly.)

Now let q ∈ B(H)sa be the idempotent u + v′ + w′ 7→ w′ for the triple
(U, V ′,W ′), as in the proof of Theorem 7.16. As established in the proof of said
theorem, for all x ∈ H we have 〈(c′ − a)x, x〉 = 〈(b − a)qx, qx〉 = −g(qx, qx),
where c′ ∈ B(H) denotes the minimal upper bound corresponding to the new
triple of subspaces (U, V ′,W ′).

We write our “old” vector z ∈ Z from the construction in terms of the
“new” vectors y′ ∈ Y ′ and z′ ∈ Z ′. A direct computation shows that we have

z = 1
1− 2α

(
− αy′ + (1− α)z′

)
.

In particular, it follows that qz = 1−α
1−2αz

′ holds, so we have

〈
(c′ − a)z, z

〉
= −g

(
1− α
1− 2αz

′,
1− α
1− 2αz

′
)

=
(

1− α
1− 2α

)2
· −g(z′, z′)

=
(

1− α
1− 2α

)2
· (1− 2α)

= (1− α)2

1− 2α .

Letting α increase to 1
2 , we find that 〈(c′−a)z, z〉 goes to infinity. Consequently,

‖c′ − a‖ goes to infinity, so the minimal upper bounds obtained from this
construction are unbounded in norm. �

Example 7.24. To illustrate the conclusion of Theorem 7.23, we once again
consider the setting from Example 7.2:

a =
(

2 0
0 1

)
, b =

(
1 0
0 2

)
, a− b =

(
1 0
0 −1

)
.
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The standard subspace triple for this example is

(U, V,W ) =
(

ker(a− b), ran((a− b)+), ran((a− b)−)
)

=
(
{0}, span{(1, 0)}, span{(0, 1)}

)
.

Let us carry out Construction 7.22 with respect to this triple. Then we see that
the one-dimensional subspaces Y ⊆ V and Z ⊆W from Construction 7.22 are
unique. For the normalised generators of Y and Z, let us choose y = (1, 0) and
z = (0, 1). (Indeed, we have 〈(a − b)y, y〉 = 1 and 〈(a − b)z, z〉 = −1, so these
vector are normalised with respect to g.) Choose some α ∈ (0, 1

2 ), then the
construction gives us

y′ =
(

1− α
α

)
, z′ =

(
α

1− α

)
.

In this setting, the new subspace decomposition is given simply by

(U, V ′,W ′) =
(
{0}, span{y′}, span(z′)

)
.

The corresponding minimal upper bound for a and b is given by mapping y′ to
ay′ and z′ to bz′. Concretely, this is given by the matrix

c =
(

2− 2α α

α 2− 2α

)
·

(
1− α α

α 1− α

)−1

= 1
1− 2α

(
α2 − 4α+ 2 α2 − α
α2 − α α2 − 4α+ 2

)
.

Letting α increase to 1
2 , this “converges” (or rather, diverges) to

1
+∞

(
1
4 − 1

4
− 1

4
1
4

)
,

so indeed we see that the entries of the minimal upper bounds of a and b are
unbounded.

In terms of our geometric view of Example 7.2, the result is that the maximal
ellipsoidal disks in Ia∩Ib can become arbitrarily thin, as illustrated in the figure
below.

Ia

Ib

−1 1

−1

1

Ic

α = 0.49

Ia

Ib

−1 1

−1

1

Ic

α = 0.499
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The boundary of the indicatrix Ic of c touches ∂Ia and ∂Ib in some multiple
of y′ and z′, respectively. These directions get arbitrarily close together as α
increases to 1

2 . As a result, the indicatrix Ic becomes arbitrarily thin, reflecting
the fact that one the eigenvalues of c becomes arbitrarily large. �

7.7 Constructions in the finite-dimensional case

In the infinite-dimensional case it was not so clear how to construct additional
subspace triples, except by making tiny adjustments to an existing triple. The
situation is different if H is finite-dimensional. The results are well understood
in this setting, and form part of the standard theory of symmetric bilinear
forms (which can easily be extended to results on Hermitian forms for the
complex case). The theory can be found in many textbooks in linear algebra. We
paraphrase results from [Lan02, Chapter XV, §1–§5].3 (Note: in the literature
it is customary to make a distinction between Hermitian sesquilinear forms on
a complex vector space and symmetric bilinear forms on a real vector space,
but we have put these two together under the name Hermitian forms. For our
purposes they are the same.)

In our subspace decompositions we always have U = ker(a − b), so this
part is uninteresting. Therefore, let us assume without loss of generality that
U = {0} holds, so that the operator a− b is invertible and the Hermitian form
g is non-degenerate. Here we have the following tools at our disposal.

Proposition 7.25. Let H be a finite-dimensional real or complex vector space,
and let g : H2 → F be a Hermitian form. Then:

(a) If {b1, . . . , bn} is a g-orthogonal basis of H, then we have g(bi, bi) 6= 0 for
all i ∈ {1, . . . , n} if and only if g is non-degenerate on H.

Assume furthermore that g is non-degenerate. Then:

(b) If V ⊆ H is a subspace, then one has dim(V ) + dim(V ⊥g ) = dim(H) and
(V ⊥g )⊥g = V . As a consequence, the following are equivalent:

(1) g is non-degenerate on V ;

(2) g is non-degenerate on V ⊥g ;

(3) V + V ⊥g = H.

(c) If dim(H) ≥ 1 holds, then there exist vectors x ∈ H with g(x, x) 6= 0.

(d) Every finite g-orthogonal set {b1, . . . , bk} satisfying g(bi, bi) 6= 0 for all
i ∈ {1, . . . , k} can be extended to a g-orthogonal basis of H.

(e) H admits a g-orthogonal decomposition H = H+ ⊕ H− such that g is
positive definite on H+ and negative definite on H−. The dimension of
H+ (or H−) is the same in all such decompositions.

Complete proofs of these claims can be found in [Lan02, Chapter XV, §1–§5].
We sketch the most important techniques.
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Proof (outline).

(a) If g(x, bj) = 0 holds for all j ∈ {1, . . . , n}, then we have x ⊥g H. Thus,
if g is non-degenerate, then we must have g(bi, bi) 6= 0, for otherwise we
would have bi ⊥g H.
Conversely, assume that g is degenerate, and choose some non-zero vector
x ⊥g H. Write x = λ1b1 + . . . + λnbn, and choose some i ∈ {1, . . . , n}
such that λi 6= 0 holds. Then we have g(x, bi) = λig(bi, bi), by the g-
orthogonality of {b1, . . . , bn}. But we also have g(x, bi) = 0, since we
assumed x ⊥g H. We conclude that g(bi, bi) = 0 must hold.

(b) We have V ⊥g = (a−b)−1(V ⊥), by Proposition 7.18, and a−b is invertible
by assumption. Hence it is clear that dim(V )+dim(V ⊥g ) = dim(H) holds.
Furthermore, by Proposition 7.18 and invertibility of a− b we have

(V ⊥g )⊥g = ((a− b)V ⊥g )⊥ = ((a− b)(a− b)−1(V ⊥))⊥ = V ⊥⊥ = V.

The g-orthogonal complement of V within V is given by V ∩V ⊥g , so it is
clear that g is non-degenerate on V if and only if V ∩ V ⊥g = {0} holds.
By a dimension argument, this happens if and only if V +V ⊥g = H holds.
This proves the equivalence (1) ⇐⇒ (3). Since we have (V ⊥g )⊥g = V ,
the equivalence (3)⇐⇒ (2) follows immediately.

(c) This follows from the real and complex polarisation identities:

4g(x, y) =


g(x+ y, x+ y)− g(x− y, x− y) if F = R;

3∑
k=0

ikg(x+ iky, x+ iky) if F = C.

Consequently, if g(x, x) = 0 holds for all x ∈ H, then we have g(x, y) = 0
for all x, y ∈ H, so we must have H = {0} (since g is assumed to be
non-degenerate).

(d) First we prove that {b1, . . . , bk} is linearly independent. To that end, let
x = λ1b1 + · · · + λkbk be a linear combination, not all coefficients equal
to zero. Fix some i ∈ {1, . . . , k} with λi 6= 0. Then, by g-orthogonality
of {b1, . . . , bk}, we have g(x, bi) = λig(bi, bi) 6= 0. In particular, it follows
that x 6= 0 holds, proving that {b1, . . . , bk} is linearly independent.
Now consider V := span(b1, . . . , bk). Then {b1, . . . , bk} is a g-orthogonal
basis for V . Since we have g(bi, bi) 6= 0 for all i ∈ {1, . . . , k}, it follows from
part (a) that g is non-degenerate on V . Consequently, by part (b) we have
V +V ⊥g = H, and g is non-degenerate on V ⊥g . Choose some bk+1 ∈ V ⊥g

with g(bk+1, bk+1) 6= 0, using part (c), and proceed by induction.

(e) It follows from parts (c) and (d) that we can choose a g-orthogonal basis
{b1, . . . , bn} of H. Then, by part (a), for all i we have g(bi, bi) 6= 0. Let
H+ be the span of all bi with g(bi, bi) > 0 and H− the span of all bj with
g(bj , bj) < 0. From the g-orthogonality of {b1, . . . , bn} it is clear that g is
positive definite on H+ and negative definite on H−.
The invariance of dim(H+) and dim(H−) is an equivalent form of what is
known as Sylvester’s law of inertia. (Cf. [Lan02, Theorem XV.4.1].) �
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In particular, parts (d) and (e) tell us how to construct many more subspace
decompositions (and therefore minimal upper bounds) in this setting: simply
choose a vector x ∈ H with g(x, x) 6= 0, extend it to an orthogonal basis for H,
and construct H+ and H− as in the proof of Proposition 7.25(e). In terms of
our geometric interpretation from Section 7.1, this means that we can choose
a point which lies on the boundary of ∂Ia and in the interior of Ib (or vice
versa) and construct a minimal upper bound c ≥ a, b such that ∂Ic touches the
respective boundary in the chosen point. (More generally, any g-orthogonal set
of such touching points can be specified.)

To summarise: the results from this chapter show that the finite-dimensional
version of Kadison’s anti-lattice theorem is equivalent to the following state-
ment.

Fact 7.26. Let H be a finite-dimensional real or complex vector space, and
let g : H2 → F be a non-degenerate Hermitian form. Then the g-orthogonal
decomposition H = H+⊕H− from Proposition 7.25(e) (with the property that
g is positive definite on H+ and negative definite on H−) is unique if and only
if g is either positive definite or negative definite.

(Actually, we only showed that this fact implies the anti-lattice theorem,
and not the other way around. For the reverse implication we still have to prove
the following: if there is a unique minimal upper bound c for a and b, then c
is the supremum of a and b. We prove this using a compactness argument. Let
c be the unique minimal upper bound and let d be an arbitrary upper bound
for a and b. Since H is finite-dimensional, the intersection of order intervals
[a, d]∩ [b, d] is compact, so there exists an element c′ ∈ [a, d]∩ [b, d] of minimal
trace. Since the trace defines a strictly positive linear map, it is clear that c′ is
a minimal upper bound. By uniqueness we must have c = c′, so we find c ≤ d.
We conclude that c is the supremum of a and b.)

7.8 End notes

1. (page 78) This terminology (minimal upper bound of complementary type)
was invented by the author.

2. (page 79) There is a slight abuse of notation here. While both d and πa are
maps ran(a− b)→ ran(a− b), the operator a− c is still a map H → H. Strictly
speaking we should note that ran(a− b) is a reducing subspace for a− c, and
write πa = e◦d−1, where e := (a− c)|ran(a−b) denotes the restriction of a− c to
a map ran(a− b)→ ran(a− b). The argument still stands: πa is a composition
of continuous operators, and as such it continuous as well.

3. (page 90) The treatment of symmetric and Hermitian forms in [Lan02] is
rather terse. A more detailed discussion can be found in, for instance, [Gre75,
Chapter IX]. Then again, any textbook on (advanced) linear algebra is likely
to contain the results we claim in Section 7.7 (look for the theory of symmetric
bilinear forms.)



8 Sherman’s theorem

In this chapter we prove one of the main theorems relating order to algebraic
structure: the positive cone in a C∗-algebra A is a lattice cone if and only if A
is commutative. We proceed via representation theory in order to deduce this
from Kadison’s anti-lattice theorem.

Throughout this chapter, H denotes a complex Hilbert space.

8.1 ∗-homomorphisms preserve lattice structure

Recall from Section 5.3 that ∗-homomorphisms are positive and preserve the
quasi-lattice operations. The following two lemmas show that, under certain
circumstances, even suprema and infima are preserved by ∗-homomorphisms.

Proposition 8.1. Let A be a C∗-algebra and let a, b ∈ Asa be arbitrary self-
adjoint elements. Then ag b is a minimal upper bound for a and b.

Proof. Choose a faithful representation ϕ : A → B(H), so that we may identify
A with the C∗-subalgebra ϕ[A] ⊆ B(H). Since ϕ(a) g ϕ(b) = ϕ(a g b) is a
minimal upper bound for ϕ(a) and ϕ(b) relative to all of B(H)sa, it certainly
is a minimal upper bound relative to the C∗-subalgebra ϕ[A] ⊆ B(H). The
result follows since ϕ defines an isomorphism A ∼= ϕ[A] of C∗-algebras. �

Corollary 8.2 (cf. Corollary 6.11). Let A be a C∗-algebra. If a, b ∈ Asa have
a supremum c, then one necessarily has c = ag b.

Proof. By the supremum property of c we have c ≤ ag b. Then, by minimality
of ag b (Proposition 8.1) we must have c = ag b. �

This is complemented by the following lemma.

Lemma 8.3. Let ϕ : A → B be a surjective ∗-homomorphism between the
C∗-algebras A and B. If a, b ∈ Asa are given such that a g b is the supremum
of a and b, then ϕ(a)g ϕ(b) is the supremum of ϕ(a) and ϕ(b).

Proof. Let c ∈ A be given such that ϕ(c) is self-adjoint with ϕ(c) ≥ ϕ(a) and
ϕ(c) ≥ ϕ(b). Now define d := Re(c), so that we have d ∈ Asa and

ϕ(d) = ϕ( 1
2c+ 1

2c
∗) = 1

2ϕ(c) + 1
2ϕ(c)∗ = ϕ(c).

Furthermore, define e := d+ (d− a)− + (d− b)−. Then, by Proposition 5.7(f)
we have

ϕ(e) = ϕ(d) +
(
ϕ(d)− ϕ(a)

)− +
(
ϕ(d)− ϕ(b)

)−
= ϕ(c) +

(
ϕ(c)− ϕ(a)

)− +
(
ϕ(c)− ϕ(b)

)−
= ϕ(c) + 0 + 0 = ϕ(c),

as well as
e− a = d− a+ (d− a)− + (d− b)− = (d− a)+ + (d− b)− ≥ 0;

e− b = d− b+ (d− a)− + (d− b)− = (d− a)− + (d− b)+ ≥ 0.
Therefore we have e ≥ ag b. Since ϕ is positive and preserves the quasi-lattice
operations, we find ϕ(c) = ϕ(e) ≥ ϕ(ag b) = ϕ(a)g ϕ(b). �
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8.2 The anti-lattice theorem for strongly dense
C∗-subalgebras

In this section, Kadison’s anti-lattice theorem is extended to strongly dense
C∗-subalgebras of B(H).

Before we proceed, we establish a bit of notation. If A is unital, a ∈ A is
self-adjoint, and f : R → C is continuous, then we write f(a) for the element
ϕ(f), where ϕ : C(σ(a)) → A is the continuous functional calculus at a. This
can be thought of as a generalisation of polynomial expressions in a. Indeed,
the two notions coincide if p happens to be a polynomial. (In general, the
functional calculus boils down to using polynomials to uniformly approximate
a general continuous function applied to a.)

Remark 8.4. If A is unital, then the positive square root a1/2 of a positive
element and the absolute value |a| of a self-adjoint element a ∈ A are special
cases of the functional calculus. However, the functional calculus requires A
to be unital, while a1/2 and |a| also exist in non-unital C∗-algebras. More
generally, in non-unital C∗-algebras we have a functional calculus precisely for
those continuous functions f : R → C satisfying f(0) = 0. However, we will
not need that, since we will do most of our work in B(H).

We recall the following topology from the theory of C∗-algebras (and von
Neumann algebras).

Definition 8.5 (cf. [Mur90, page 113]). For x ∈ H we define the seminorm
px : B(H) → R≥0 by a 7→ ‖a(x)‖. The Hausdorff locally convex topology on
B(H) generated by the family of seminorms {px : x ∈ H} is called the strong
operator topology (SOT). Thus, a net {aλ}λ∈Λ in B(H) converges strongly to
a ∈ B(H) if and only if a(x) = limλ∈Λ aλ(x) holds for all x ∈ H.

Proposition 8.6. The positive cone B(H)+ is strongly closed.

Proof. Let {aλ}λ∈Λ be a net in B(H)+ that converges strongly to some a ∈
B(H). For fixed x ∈ H we have lim

λ∈Λ
aλx = ax, hence

〈ax, x〉 =
〈

lim
λ∈Λ

aλx, x

〉
= lim
λ∈Λ

〈
aλx, x

〉
.

We see that 〈ax, x〉 is the limit of a net in R≥0. Since R≥0 is closed, it follows
that 〈ax, x〉 ∈ R≥0 holds as well. This holds for all x ∈ H, so we have a ≥ 0. �

Proposition 8.7. The set B(H)sa of self-adjoint operators is strongly closed.

Proof. Analogous to Proposition 8.6. �

We furthermore recall the Kaplansky density theorem. To formulate this,
we use on the following notion.

Definition 8.8. A continuous function f : R → C is said to be strongly
continuous if for every Hilbert spaceH and for every net {aλ}λ∈Λ of self-adjoint
operators on H converging strongly to a ∈ B(H) we also have limλ∈Λ f(aλ) = a
in the strong operator topology.
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In the special case where {aλ}λ∈Λ is a sequence, the situation is illustrated
in the following figure.

f ∈ C(R)

f
∣∣
σ(a1) ∈ C(σ(a1))

f
∣∣
σ(a2) ∈ C(σ(a2))

f
∣∣
σ(a3) ∈ C(σ(a3))

...

f
∣∣
σ(a) ∈ C(σ(a))

f(a1) ∈ B(H)

f(a2) ∈ B(H)

f(a3) ∈ B(H)

f(a) ∈ B(H)

SOT
convergence

functional
calculus

Theorem 8.9 (Kaplansky). Let f : R→ C be a bounded continuous function.
Then f is strongly continuous.

Proof. See [Mur90, Theorem 4.3.2]. �

Corollary 8.10. Let f : R → C be continuous, but not necessarily bounded,
and let H be a Hilbert space. If {aλ}λ∈Λ is a norm-bounded net of self-adjoint
operators converging strongly to a, then {f(aλ)}λ∈Λ converges strongly to f(a).

Proof. Since the net {aλ}λ∈Λ is norm-bounded, there is some M ∈ R>0 with

‖a‖ ≤M and ‖aλ‖ ≤M, for all λ ∈ Λ.

Therefore we have σ(a) ⊆ [−M,M ] and σ(aλ) ⊆ [−M,M ] for all λ ∈ Λ.
Thus, the value of f outside the compact interval [−M,M ] is irrelevant. Define
g : R→ C by

g(x) =


f(x), if x ∈ [−M,M ];

f(−M), if x < −M ;

f(M), if x > M.

Now g is a bounded continuous function and we have g(a) = f(a) as well as
g(aλ) = f(aλ) for all λ ∈ Λ. The result now follows from Theorem 8.9. �

Theorem 8.11 (Kaplansky’s density theorem). Let A ⊆ B(H) be a C∗-
subalgebra with strong closure B. Then the following results hold:

(a) B is a C∗-subalgebra of B(H),

(b) Asa is strongly dense in Bsa,

(c) ball(Asa) is strongly dense in ball(Bsa),

(d) ball(A) is strongly dense in ball(B).

(e) ball(A+) is strongly dense in ball(B+),

For (a)–(d), see [Mur90, Theorem 4.3.3]. For (e), see [KR97a, Corollary 5.3.6].
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We now have all the necessary tools to get to business. The main result of
this section is contained in the following theorem. We use Kaplansky’s density
theorem in order to extend Kadison’s anti-lattice theorem to strongly dense
C∗-subalgebras of B(H). Informally, this is because the quasi-lattice operations
are strongly continuous on bounded sets, by Corollary 8.10.

Theorem 8.12. Let A ⊆ B(H) be a C∗-subalgebra with strong closure B. If
a, b ∈ Asa have a supremum relative to A, then this is also the supremum for
a and b relative to B.

Proof. Recall from Corollary 8.2 that the supremum of a and b relative to A
can only be ag b. Thus, our goal is to show that ag b remains the supremum
relative to the larger C∗-subalgebra B.

Since we have B+ = B ∩ B(H)+, it follows from Proposition 8.6 that B+

is strongly closed. The vector space operations are strongly continuous, so for
every e ∈ Bsa the translate B+ + e is strongly closed as well.

Suppose now that c ∈ Bsa is any upper bound for a and b, that is, we
have c ∈ (B+ + a) ∩ (B+ + b). By Theorem 8.11(e) (Kaplansky’s density
theorem), we can approximate c in the strong operator topology by a norm-
bounded net {aλ}λ∈Λ in A+ +a, as well as by a norm-bounded net {bµ}µ∈M in
A+ + b. Since the vector space operations are strongly continuous, we see that
{aλ− bµ}(λ,µ)∈Λ×M is a norm-bounded net of self-adjoint operators converging
strongly to 0. Consequently, by Corollary 8.10, the net {|aλ − bµ|}(λ,µ)∈Λ×M
converges strongly to 0 as well. Therefore we have

lim
(λ,µ)∈Λ×M

aλ g bµ = lim
(λ,µ)∈Λ×M

1
2
(
aλ + bµ + |aλ − bµ|

)
= 1

2 (c+ c+ 0) = c.

For all (λ, µ) ∈ Λ×M we have aλ g bµ ∈ Asa as well as

aλ g bµ ≥ aλ ≥ a and aλ g bµ ≥ bµ ≥ b.

It follows that aλ g bµ ≥ a g b holds for all (λ, µ) ∈ Λ ×M (because a g b is
the supremum of a and b relative to A).

We see that c can be approximated in the strong operator topology by a
net of elements in A+ + (ag b) ⊆ B+ + (ag b). Since B+ + (ag b) is strongly
closed, we have c ∈ B+ + (a g b), or equivalently: c ≥ a g b. This proves that
ag b is the supremum for a and b relative to B as well. �

Corollary 8.13. Let A ⊆ B(H) be a strongly dense C∗-subalgebra. Then Asa

is an anti-lattice.

Proof. Suppose that a, b ∈ Asa have a supremum relative to A, then this is
also a supremum relative to B(H) by Theorem 8.12. It follows from Kadison’s
anti-lattice theorem (Theorem 6.13) that a and b must be comparable. �

8.3 Sherman’s theorem

We are now in the position to prove Sherman’s theorem, as well as a stronger
theorem concerning suprema in arbitrary C∗-algebras. Before we do this, recall
that the universal atomic representation of a C∗-algebra A is the direct sum
of the GNS representations ϕτ : A → B(Hτ ), where the sum is taken over
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all pure states τ on A. The universal atomic representation is faithful. (See
[Tak79, Definition 6.35], or [KR97b, Proposition 10.3.10].)

Recall that faithful representations are bipositive (cf. Proposition 5.7(h)),
so for arbitrary a, b ∈ Asa we have a ≤ b if and only if ϕ(a) ≤ ϕ(b) holds for
every irreducible representation ϕ : A → B(H). This leads us to the following
characterisation of suprema and infima in a C∗-algebra.

Theorem 8.14. Let A be a C∗-algebra. Then a, b ∈ Asa have a supremum
(or infimum) if and only if ϕ(a) and ϕ(b) are comparable for every irreducible
representation ϕ : A → B(H).

Proof. First suppose that a and b have a supremum, and let ϕ : A → B(H) be
an irreducible representation. By Lemma 8.3, ϕ(a) and ϕ(b) have a supremum
relative to the C∗-subalgebra ϕ[A] ⊆ B(H). But ϕ[A] is strongly dense in
B(H), since the representation is irreducible, so it follows from Corollary 8.13
that ϕ(a) and ϕ(b) must be comparable.

Conversely, suppose that ϕ(a) and ϕ(b) are comparable for every irreducible
representation. For a fixed irreducible representation ϕ : A → B(H), we know
that ϕ(a) and ϕ(b) are comparable, so clearly ϕ(a)gϕ(b) is equal to the larger of
the two. As such, ϕ(a)gϕ(b) is the supremum of ϕ(a) and ϕ(b) relative to ϕ[A]
(and even to B(H), but we don’t need that). Now, for any upper bound c ≥ a, b
we have ϕ(c) ≥ ϕ(a) and ϕ(c) ≥ ϕ(b), hence ϕ(c) ≥ ϕ(a) g ϕ(b) = ϕ(a g b).
Note that this holds for every irreducible representation ϕ : A → B(H). Thus,
passing to the universal atomic representation, we find that c ≥ a g b must
hold, showing that ag b is the supremum of a and b. �

The main theorem of this chapter follows easily.

Theorem 8.15 (Sherman). Let A be a C∗-algebra. Then Asa is a lattice if
and only if A is commutative.

Proof. If A is commutative, then it is clear from the Gelfand representation
that Asa is a lattice.

Conversely, suppose that Asa is a lattice, and let ϕ : A → B(H) be an
arbitrary irreducible representation. We show that H must be one-dimensional.
Let c = ϕ(b) ∈ ϕ[A]sa be given, then we may choose a ∈ Asa such that ϕ(a) = c
holds (set a := Re(b)). By assumption, 0 and a have a supremum in Asa, so it
follows from Theorem 8.14 that 0 and c are comparable in B(H). We see that
every element of ϕ[A]sa is either positive or negative:

ϕ[A]sa ⊆ B(H)+ ∪ (−B(H)+).

Since B(H)+ ∪ (−B(H)+) and B(H)sa are strongly closed (by propositions 8.6
and 8.7), it follows from Theorem 8.11(b) (Kaplansky’s density theorem) that

B(H)sa = ϕ[A]sa
s
⊆ B(H)+ ∪ (−B(H)+).

We see that every self-adjoint operator on H is either positive or negative. It
follows that H is one-dimensional.

We have that every irreducible representation is one-dimensional, so it is
clear from the universal atomic representation that A is commutative. �
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Note that it is easy to come up with examples of C∗-algebras where some
pairs of self-adjoint elements have a supremum and others don’t. For instance,
consider the algebra A := B(C2) ⊕ B(C2) of 4 × 4 complex matrices in block
diagonal form

a =
(
a1 0
0 a2

)
(a1, a2 ∈ B(C2)).

Then two self-adjoint operators a = a1 ⊕ a2 and b = b1 ⊕ b2 have a supremum
if and only if ai and bi are comparable for i ∈ {1, 2}. Now, for instance, the
operators I ⊕ 0 and 0⊕ I have a supremum, despite being incomparable.

8.4 Ogasawara’s theorem

Using the general strategy taken in this chapter, we can prove various other
commutativity theorems with little extra effort. As an example we show how
the techniques can be used to prove Ogasawara’s theorem.

Theorem 8.16 (Ogasawara). Let A be a C∗-algebra with the property that
0 ≤ a ≤ b implies 0 ≤ a2 ≤ b2. Then A must be commutative.

Proof. First of all, if H is a (complex) Hilbert space with dim(H) > 1, then it
is easy to come up with examples of positive operators a, b ∈ B(H)+ satisfying
0 ≤ a ≤ b but a2 6≤ b2. For instance, a straightforward computation shows that
the following choice suffices:

a :=
(

1 1
1 1

)
, b :=

(
1 1
1 2

)
.

(These are 2× 2 matrices, but they can of course be extended to operators in
B(H) by choosing a 2-dimensional subspace V ⊆ H for a and b to act on, and
setting ax = bx = 0 for all x ∈ V ⊥.)

Secondly, suppose that B ⊆ B(H) is a strongly dense C∗-subalgebra. Let
a, b ∈ B(H)+ be such that 0 ≤ a ≤ b holds but a2 6≤ b2. By Theorem 8.11(e)
(Kaplansky’s density theorem) we may choose norm-bounded nets {aλ}λ∈Λ
and {bµ}µ∈M in B+ converging strongly to a and b− a, respectively. Then, for
all (λ, µ) ∈ Λ×M we have 0 ≤ aλ ≤ aλ + bµ, and furthermore we have

a = lim
λ∈Λ

aλ, and b = lim
(λ,µ)∈Λ×M

aλ + bµ.

Hence, by Corollary 8.10 we have

a2 = lim
λ∈Λ

a2
λ, and b2 = lim

(λ,µ)∈Λ×M
(aλ + bµ)2,

and therefore

lim
(λ,µ)∈Λ×M

(aλ + bµ)2 − a2
λ = b2 − a2 /∈ B(H)+.

Since B(H)+ is strongly closed (by Proposition 8.6), there must be some choice
of (λ, µ) ∈ Λ ×M such that (aλ + bµ)2 − a2

λ /∈ B(H)+ holds. In other words,
the strongly dense C∗-subalgebra B ⊆ B(H) also contains positive operators
c, d ∈ B+ satisfying 0 ≤ c ≤ d but c2 6≤ d2 (namely c := aλ, d := aλ + bµ).
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Thirdly, suppose for the sake of contradiction that A admits an irreducible
representation ϕ : A → B(H) with dim(H) > 1. Then, by the above, there
exist a, b ∈ A with 0 ≤ ϕ(a) ≤ ϕ(b) but ϕ(a)2 6≤ ϕ(b)2. By Proposition 5.7(g),
we may assume without loss of generality that 0 ≤ a ≤ b holds. But then, by
assumption, we also have a2 ≤ b2, hence ϕ(a)2 ≤ ϕ(b)2. This is a contradiction,
so we conclude that all irreducible representations of A are one-dimensional.

By looking at the universal atomic representation, we see that A must be
commutative. �

In the proof of Theorem 8.16, we used that a 7→ a2 is strongly continuous
on bounded sets (as a consequence of Corollary 8.10). It is well-known that
multiplication B(H)×B(H)→ B(H) is not strongly continuous if H is infinite-
dimensional; see for instance [Mur90, Exercise 4.3]. However, it can be shown
that multiplication is strongly continuous on S ×B(H) whenever S ⊆ B(H) is
bounded; see [Mur90, Remark 4.3.1].

Finally, we point out that there is a different way to deduce Ogasawara’s
theorem (and many other commutativity theorems) directly from Sherman’s
theorem. This is the approach taken in [Top65].
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A Complementary subspaces

In this appendix, we cover some well-known and some not so well-known results
regarding complementary subspaces in a real or complex Hilbert space H.

Recall that subspaces V,W of a vector spaceX are said to be complementary
if one has V ∩W = {0} and V +W = X. In the case where X is a Banach space
(or more generally a topological vector space), it is customary to require both V
and W to be closed subspaces (cf. [Rud91, Definition 4.20], and [Con07, Section
III.13]). In this setting, a closed subspace V ⊆ X is said to be complemented if
there exists a closed subspace W ⊆ X such that V and W are complementary.
In general it is not true that every closed subspace of a Banach space X is
complemented, but this is true if X is a Hilbert space (given a closed subspace
V ⊆ X, set W := V ⊥). It should be noted, however, that the complement W
is generally far from being unique, even in the finite-dimensional case.

This appendix serves to study complementary pairs in Hilbert spaces, their
properties, and how to recognise them. The results and techniques developed
here are used extensively towards the end of Chapter 6.

A.1 Orthogonal complements of sums and intersections

We briefly recall how orthogonal complements behave under sums and inter-
sections. While the results presented here are basic exercises in undergraduate
level functional analysis, they are sufficiently important to our investigation to
warrant treatment in some detail.

Proposition A.1. Let H be a real or complex Hilbert space, and let V,W ⊆ H
be subspaces. Then one has (V +W )⊥ = V ⊥ ∩W⊥.

Proof. On the one hand, since we have V ⊆ V +W , we find V ⊥ ⊇ (V +W )⊥.
Analogously we have W⊥ ⊇ (V + W )⊥, so we find (V + W )⊥ ⊆ V ⊥ ∩W⊥.
Conversely, for all v ∈ V , w ∈W and y ∈ V ⊥ ∩W⊥ we have

〈v + w, y〉 = 〈v, y〉+ 〈w, y〉 = 0 + 0 = 0,

so we see that V + W and V ⊥ ∩ W⊥ are orthogonal. The reverse inclusion
V ⊥ ∩W⊥ ⊆ (V +W )⊥ follows. �

For closed subspaces, we have the following partial converse.

Proposition A.2. Let H be a real or complex Hilbert space, and let V,W ⊆ H
be closed subspaces. Then one has (V ∩W )⊥ = V ⊥ +W⊥.

Proof. Set X := V ⊥ and Y := W⊥, so that we have V = V = V ⊥⊥ = X⊥,
and similarly W = Y ⊥. By Proposition A.1 we have (X + Y )⊥ = X⊥ ∩ Y ⊥.
Taking orthogonal complements yields

V ⊥ +W⊥ = X + Y = (X + Y )⊥⊥ = (X⊥ ∩ Y ⊥)⊥ = (V ∩W )⊥. �
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It should be noted that the stronger equality (V ∩W )⊥ = V ⊥ + W⊥ fails
in general, even though V and W are closed subspaces (which we expect to
be rather well-behaved). This is because the sum of two closed subspaces of a
Hilbert space is not necessarily closed, as the following example shows.

Example A.3 ([Con07, Exercises II.3.9 & II.3.10]). Let H be an infinite-
dimensional Hilbert space and let a : H → H be an injective operator with
dense range which nonetheless fails to be surjective. Define X,Y ⊆ H ⊕H by
setting X := graph(a) and Y := H ⊕ {0}. It is routinely verified that X and
Y are closed subspaces with X ∩ Y = {0}, and that X + Y is dense in H⊕H
with X + Y 6= H ⊕H. Consequently, if we set V := X⊥ and W := Y ⊥, then
we have

(V ∩W )⊥ = V ⊥ +W⊥ = X + Y = H⊕H,
whereas V ⊥ +W⊥ = X + Y fails to be closed. �

The main result of this appendix is that the closure in Proposition A.2 is
superfluous if (and only if) V +W is closed.

A.2 Complementary subspaces and idempotents

We now turn our attention to complementary subspaces. Recall from before
that two subspaces V and W of a Hilbert space H are complementary if V and
W are closed, V ∩W = {0}, and V +W = H.

If V,W ⊆ H are complementary subspaces, then every x ∈ H can be
uniquely written as x = xv + xw with xv ∈ V and xw ∈ W . It is routinely
verified that the maps x 7→ xv and x 7→ xw are linear. It turns out that these
maps give rise to an equivalent algebraic characterisation of complementary
subspaces. We state and prove the following theorem for Hilbert spaces, but
the result can be generalised to Banach spaces ([Con07, Theorem III.13.2]), or
even Fréchet spaces ([Rud91, Theorem 5.16]), with identical proof.

Theorem A.4. Let H be a real or complex Hilbert space.

(a) If V,W ⊆ H are complementary subspaces and e : H → H is defined by
e(v +w) := v for all v ∈ V and all w ∈W , then e is a continuous linear
operator such that e2 = e, ran(e) = V , and ker(e) = W .

(b) If e ∈ B(H) and e2 = e, then ran(e) and ker(e) are complementary
subspaces of H.

Proof.

(a) Clearly we have e2 = e, ran(e) = V and ker(e) = W . We show that e is
continuous, using the closed graph theorem. To that end, suppose that
{(vn +wn)⊕ vn}∞n=1 is a sequence in graph(e) ⊆ H⊕H which converges
to some x⊕ y ∈ H⊕H. Projecting onto the first and second coordinates,
we find

lim
n→∞

vn + wn = x and lim
n→∞

vn = y.

Consequently, we also have

lim
n→∞

wn = lim
n→∞

(wn + vn)− vn = x− y.
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Since V and W are closed, we have y ∈ V and x− y ∈W , so we find

e(x) = e
(
y + x− y

)
= y,

showing that x⊕ y ∈ graph(e) holds. Indeed, the graph of e is closed, so
it follows from the closed graph theorem that e is continuous.

(b) For convenience, let us write V := ran(e) and W := ker(e). Note that we
have ker(1− e) = V :

• Let y ∈ ran(e) be given. Then we may choose x ∈ H with ex = y,
so that we have ey = e2x = ex = y, hence (1− e)y = 0.

• For y /∈ ran(e), we have ey ∈ ran(e), so in particular ey 6= y. In this
case we find (1− e)y 6= 0.

Note furthermore that we have (1 − e)2 = 1 − 2e + e2 = 1 − e, so the
preceding proof also shows that we have W = ran(1− e).
Since e and 1 − e are continuous, clearly the subspaces V = ker(1 − e)
and W = ker(e) are closed.
For x ∈ V ∩W we have ex = 0 as well as (1 − e)x = 0, hence 1x = 0.
This shows that we have V ∩W = {0}.
Finally, note that any x ∈ H can be written as x = ex+ (1− e)x, where
we have ex ∈ ran(e) = V and (1 − e)x ∈ ran(1 − e) = W . This shows
that V and W are complementary subspaces of H. �

In abstract algebra, an element e of a ring (or algebra) satisfying e2 = e is
called an idempotent. In operator theory, the term projection is sometimes
used, though usually projections are also required to be self-adjoint. It can be
shown that an idempotent e ∈ B(H) is self-adjoint if and only if ker(e) and
ran(e) are orthogonal; cf. [Con07, Proposition II.3.3].

The preceding theorem shows that complementary pairs (V,W ) of subspaces
of H are in bijective correspondence with idempotents of B(H). Furthermore,
the proof reveals that interchanging the spaces V and W corresponds with
passing from e to 1− e, which is again an idempotent.

A.3 Orthogonal complements of complementary pairs

Using the characterisation of complementary subspaces in terms of idempotents
(Theorem A.4), it is relatively easy to show that taking orthogonal complements
preserves complementary pairs.

Theorem A.5. Let H be a real or complex Hilbert space, and let V,W ⊆ H
be complementary subspaces. Then V ⊥ and W⊥ are complementary as well.

Proof. Let e ∈ B(H) be the idempotent corresponding with the pair (V,W ),
that is: e(v + w) = v. Now consider its adjoint e∗ ∈ B(H). Note that we have
(e∗)2 = (e2)∗ = e∗, so e∗ is an idempotent as well. Furthermore, we have

ker(e∗) = ran(e)⊥ = V ⊥;

ran(e∗) = ker(1− e∗) = ran(1− e)⊥ = W⊥.

This shows that V ⊥ and W⊥ are complementary. �
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This result can be generalised to closed subspaces V,W ⊆ H with the
property that V + W is closed, by passing to the appropriate quotient space.
We will prove this in some detail. In this setting the result is the following.

Theorem A.6. Let H be a real or complex Hilbert space, and let V,W ⊆ H be
closed subspaces such that V +W is closed. Then V ⊥ +W⊥ is closed as well.
Consequently, one has (V ∩W )⊥ = V ⊥ +W⊥.

Before giving the proof of Theorem A.6, we recall part of the theory of
quotient spaces of a Hilbert space. Let H be a Hilbert space, let X ⊆ H be a
closed subspace, and let π : H → H/X denote the natural map v 7→ v + X.
Seeing as H/X is the quotient of a normed space by a closed subspace, it
becomes a normed space with the quotient norm. Using basic properties of the
orthogonal decomposition H = X ⊕ X⊥, it is readily verified that π restricts
to an isometric isomorphism ϕ : X⊥ → H/X. Concretely, this isomorphism is
given by ϕ(v) = v + X and ϕ−1(v + X) = pv, where p ∈ B(H) denotes the
orthogonal projection onto X⊥. It follows that H/X is a Hilbert space as well,
with inner product given by 〈v +X,w +X〉 = 〈pv, pw〉.

While parts of the proof of Theorem A.6 are perhaps easier understood in
terms of quotient spaces, we choose to work within the “internal” quotients of
the form X⊥ ∼= H/X, for this simplifies the notation. The following proposition
casts familiar properties of the natural map π in terms of this internal quotient.

Proposition A.7. Let H be a real or complex Hilbert space, X ⊆ H a closed
subspace, p : H → H the orthogonal projection onto X⊥, and ρ the restriction
of p to a map H → X⊥. Then:

(a) The linear map ρ : H → X⊥ is surjective with ker(ρ) = X;

(b) For a subspace X ⊆ Y ⊆ H we have ρ(Y ) = Y ∩X⊥ and ρ−1(ρ(Y )) = Y ;

(c) For a subspace Y ′ ⊆ X⊥ we have ρ−1(Y ′) = Y ′+X and ρ(ρ−1(Y ′)) = Y ′;

(d) The formulas Y 7→ ρ(Y ) and Y ′ 7→ ρ−1(Y ′) define a bijective correspon-
dence between subspaces X ⊆ Y ⊆ H and subspaces Y ′ ⊆ X⊥;

(e) Under the aforementioned correspondence, the subspace Y is closed if and
only if its corresponding subspace Y ′ is closed.

Proof.

(a) Clearly ρ is surjective, as it is defined of the restriction of p to a map
H → ran(p). Furthermore, p is precisely the idempotent corresponding
to the complementary pair (X⊥, X), in the sense of Theorem A.4, so we
have ker(ρ) = ker(p) = ran(1− p) = X.

(b) For v ∈ Y ∩ X⊥ we have ρ(v) = v (because v ∈ X⊥), hence v ∈ ρ(Y )
(because v ∈ Y ). This proves the inclusion Y ∩X⊥ ⊆ ρ(Y ).
Conversely, let y ∈ Y be given. Write y as its orthogonal decomposition
with respect to (X⊥, X), that is, write y = v + w with v ∈ X⊥ and
w ∈ X. Note that we have v = ρ(y). Furthermore, since we assumed
X ⊆ Y , we have ρ(y) = v = y − w ∈ Y , so we find ρ(y) ∈ Y ∩X⊥. This
proves the reverse inclusion ρ(Y ) ⊆ Y ∩X⊥.
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Finally, we have Y ⊆ ρ−1(ρ(Y )) by elementary set theory. For the reverse
inclusion, let v ∈ ρ−1(ρ(Y )) be given, and choose some y ∈ Y such
that ρ(v) = ρ(y) holds. Then we have v − y ∈ ker(ρ) = X ⊆ Y , hence
v = (v − y) + y ∈ Y . This proves the reverse inclusion ρ−1(ρ(Y )) ⊆ Y .

(c) Let y ∈ Y ′ be given, then we have ρ(y) = y. Consequently, if v ∈ H
is such that ρ(v) = y holds, then we have v − y ∈ ker(ρ) = X, hence
v ∈ Y ′ +X. This proves the inclusion ρ−1(Y ′) ⊆ Y ′ +X.
Conversely, for v = y+x ∈ Y ′+X we have ρ(v) = ρ(y)+ρ(x) = y+0 ∈ Y ′,
proving the reverse inclusion Y ′ +X ⊆ ρ−1(Y ′).
Finally, we have ρ(ρ−1(Y ′)) ⊆ Y ′ by elementary set theory, with equality
because ρ is surjective.

(d) This is immediate, for we have ρ−1(ρ(Y )) = Y and ρ(ρ−1(Y ′)) = Y ′.

(e) If Y is closed subspace containing X, then ρ(Y ) = Y ∩X⊥ is closed as
well. Conversely, if Y ′ is closed, then ρ−1(Y ′) is closed as well, because
it is the inverse image of a closed set under a continuous map. �

It should be noted that the equality ρ(S) = S∩X⊥ does not hold for arbitrary
subsets S ⊆ H, or even arbitrary subspaces (which we no longer require to
contain X). Furthermore, ρ is typically not a closed mapping. One can show,
however, that ρ is an open mapping, either by invoking the open mapping
theorem, or with a much more elementary proof using the fact that the quotient
map π is an open mapping; cf. [Rud91, Theorem 1.41(a)].

We deduce the following well-known fact as a corollary of Proposition A.7.

Corollary A.8. Let H be a real or complex Hilbert space, and let V,W ⊆ H
be orthogonal closed subspaces. Then V +W is closed as well.

Proof. Let p ∈ B(H) denote the orthogonal projection onto V ⊥, and let ρ
denote its restriction to a map H → V ⊥. Since V and W are orthogonal,
we have W ⊆ V ⊥. It follows from parts (c) and (e) of Proposition A.7 that
ρ−1(W ) = V +W is closed. �

Now that we know how to deal with quotients, we briefly look at quotients of
subspaces. Suppose that X,Z ⊆ H are closed subspaces with X ⊆ Z. In this
setting, Z is a Hilbert space in its own right, so the quotient Z/X is naturally
isomorphic with the orthogonal complement of X in Z, that is, with Z ∩X⊥.
The crucial observation is this: because we have X ⊆ Z, we also have Z⊥ ⊆ X⊥,
and by the same argument the quotient X⊥/Z⊥ is naturally isomorphic with
X⊥ ∩ (Z⊥)⊥ = X⊥ ∩ Z: the same space as before! As such, we get a natural
isomorphism Z/X ∼= Z ∩X⊥ ∼= X⊥/Z⊥, which we use to prove Theorem A.6.
Before we do so, we must find a way to describe orthogonal complements in
either of these spaces.

Proposition A.9. Let H be a real or complex Hilbert space and let X ⊆ Y ⊆ Z
be closed subspaces of H. Let φ : Z/X → Z ∩X⊥ and ψ : X⊥/Z⊥ → Z ∩X⊥
denote the natural isomorphisms. Then we have φ(Y/X)⊥ = ψ(Y ⊥/Z⊥).

Note that the orthogonal complement φ(Y/X)⊥ is taken inside Z ∩X⊥. In the
larger space H the statement would be φ(Y/X)⊥ ∩ Z ∩X⊥ = ψ(Y ⊥/Z⊥).
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Proof of Proposition A.9. For convenience, let us write V := φ(Y/X) and
W := ψ(Y ⊥/Z⊥). Furthermore, let ρ : Z → Z ∩ X⊥ and σ : X⊥ → Z ∩ X⊥
denote the internal quotient maps (as in Proposition A.7), so that the following
diagram commutes.

Z

Z/X Z ∩X⊥

π

φ

ρ

X⊥

X⊥/Z⊥

π′

ψ

σ

Now we have V = ρ(Y ) and W = σ(Y ⊥). By Proposition A.7(b) we have
V = Y ∩X⊥ and W = Y ⊥ ∩ Z.

Since we have X ⊆ Y , we see that X and Y ⊥ are orthogonal, so we have
Y ⊥ +X = Y ⊥ +X by Corollary A.8. Hence the orthogonal complement of V
inside Z ∩X⊥ is given by

V ⊥ ∩ Z ∩X⊥ = (Y ∩X⊥)⊥ ∩X⊥ ∩ Z

= Y ⊥ +X ∩X⊥ ∩ Z

= (Y ⊥ +X) ∩X⊥ ∩ Z

= ρ(Y ⊥ +X) ∩ Z

= ρ(ρ−1(Y ⊥)) ∩ Z

= Y ⊥ ∩ Z,

using parts (b) and (c) of Proposition A.7. (In order to see that the equality
ρ(Y ⊥ +X) = (Y ⊥ +X) ∩X⊥ holds, note that we have X ⊆ Y ⊥ +X.) �

At this time we are ready to prove the main theorem.

Proof of Theorem A.6. Let V,W ⊆ H be closed subspaces such that V + W
is closed. Set X := V ∩ W and Z := V + W , and let ρ : Z → Z ∩ X⊥
and σ : X⊥ → Z ∩X⊥ be as in the proof of Proposition A.9. The situation is
described by the following commutative diagram, an adaptation of the diagram
in the proof of Proposition A.9 to the current situation.

V +W

(V +W )/(V ∩W ) (V +W ) ∩ (V ∩W )⊥

π

φ

ρ

(V ∩W )⊥

(V ∩W )⊥/(V +W )⊥

π′

ψ

σ

Now we have ρ(V ) = V ∩ (V ∩W )⊥ and ρ(W ) = W ∩ (V ∩W )⊥. Note that
these are complementary subspaces of (V +W ) ∩ (V ∩W )⊥, for we have

ρ(V ) ∩ ρ(W ) = V ∩W ∩ (V ∩W )⊥ = {0};

ρ(V ) + ρ(W ) = ρ(V +W ) = (V +W ) ∩ (V ∩W )⊥.
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Consequently, it follows from Theorem A.5 that the orthogonal complements of
ρ(V ) and ρ(W ) inside (V +W )∩ (V ∩W )⊥ form a complementary pair as well.
We know from (the proof of) Proposition A.9 that these relative orthogonal
complements are given by ρ(V )⊥ = σ(V ⊥) and ρ(W )⊥ = σ(W⊥). But now we
have

V ⊥ +W⊥ = σ−1(σ(V ⊥ +W⊥))

= σ−1(σ(V ⊥) + σ(W⊥))

= σ−1(Z ∩X⊥)

= X⊥ = (V ∩W )⊥.

(To see that we may apply Proposition A.7(b) in the first step, we must again
be careful to check that we have ker(σ) ⊆ V ⊥ +W⊥, but this is the case since
we have ker(σ) = (V +W )⊥ = V ⊥ ∩W⊥.)

In particular, we conclude that V ⊥ +W⊥ is closed. �

Due to the self-dual nature of orthogonal complements, we immediately get the
following corollary.

Corollary A.10. Let H be a real or complex Hilbert space and let V,W ⊆ H
be closed subspaces. Then V + W is closed if and only if V ⊥ + W⊥ is closed.
If this is the case, then one has (V ∩W )⊥ = V ⊥ +W⊥.
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