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Chapter 1
Introduction

This dissertation consists of three parts, each of which discusses a separate topic. The
parts are not directly related to one another, but the overarching theme is that all
parts involve aspects of combinatorics, geometry, and algebra:

• In the first part, we study divisorial gonality of graphs. This relatively new graph
parameter has its roots in algebraic geometry, though we will mostly focus on
combinatorial aspects.

• In the second part, we study a problem on the interface of arithmetic combina-
torics and finite geometry, on avoiding affine configurations in subsets of Fnq . For
this we use an application of the slice rank polynomial method.

• In the third part, we study tensor products of convex cones in real vector spaces.
This problem mostly involves linear algebra and convex geometry (and some
functional analysis), but a little bit of combinatorics does come into play when
studying the face structure of the minimal/maximal cone in the tensor product.

In this chapter, we give a brief overview of the scope of each of the three parts.
More detailed introductions will be given in the respective chapters.

1.1 Part I: Divisorial gonality of graphs

Since the 1980s, mathematicians have been studying a family of games known collec-
tively as chip-firing games. In a chip-firing game, every node of a graph is endowed with
a number of chips, which may be redistributed according to certain firing rules. The
original motivation for studying these games comes from sandpile models in physics,
but later variations of the game bear little resemblance of such real-world phenomena.

The simplest chip-firing game is known as the dollar game. In this game, the
number of chips (or dollars) on a node is also allowed to be negative, in which case
the node is said to be in debt. The objective of the game is to get all nodes out of debt
via a sequence of firing moves, where the player chooses a single node and decreases
the number of chips on that node by giving chips to all neighbours of that node, one
chip for each edge. Whether or not it is possible to get all nodes out of debt depends
on the graph and on the initial chip configuration.
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2 1. Introduction

Around 2007, Baker and Norine showed that the dollar game is closely related
to questions in algebraic geometry. In their seminal 2007 paper [BN07], they proved
a graph-theoretic analogue of the Riemann–Roch theorem from algebraic geometry,
and they showed that it admits an equivalent formulation in terms of chip-firing
games on graphs. This was further strengthened in another paper by Baker [Bak08],
which provides a concrete way to translate between curves and graphs. These two
papers marked the beginning of a period of fruitful cross-pollination between algebraic
geometry, tropical geometry, and graph theory, which is still going strong today. An
overview of recent developments in this field can be found in the survey [BJ16] and
the expository articles [DV21b, Jen21].

The theory developed by Baker and Norine has led to many new concepts and
problems in graph theory. One of these is a new graph parameter, called the (divisorial)
gonality, defined as the graph-theoretic analogue of the gonality of an algebraic curve.
This graph parameter has attracted attention from researchers in algebraic geometry,
graph theory, and theoretical computer science, and will be the focus of Part I of this
dissertation.

Our main contributions to this field are twofold. First, it was proved in 2014 that
gonality is lower bounded by a well-known graph parameter called treewidth, but the
original proof was non-constructive [DG20]. In Chapter 3, we give a constructive proof
of that same fact, by providing a polynomial time algorithm that turns a positive rank
divisor of degree k into a tree decomposition of width at most k.

Second, in [BN07], Baker and Norine proved combinatorial analogues of many
fundamental properties of algebraic curves, such as the Riemann–Roch theorem,
Clifford’s theorem, and Abel–Jacobi theory. One important algebro-geometric result
of which they were not able to prove a combinatorial analogue is the Brill–Noether
theorem. This motivated Baker to formulate the Brill–Noether conjecture for graphs
[Bak08, Conj. 3.9(1)], which is currently one of the main open problems in the field.
In Chapter 4, we make partial progress on this problem, by showing that Baker’s
subdivision conjecture, which implies the Brill–Noether conjecture, is not true. This
rules out the most obvious approach towards a proof of the Brill–Noether conjecture
for graphs, and makes it unclear whether or not the latter is plausible at all.

1.2 Part II: The slice rank polynomial method

Arithmetic combinatorics is the area of mathematics that deals with questions about
sizes of sets subject to certain arithmetic conditions. Well-known topics in this field
include sumset estimates, where one wishes to bound the size of the sumset A+B in
terms of the sizes of A and B (in some discrete abelian group G), and sets without
k-term arithmetic progressions. We focus on the latter.

Let G be an abelian group. A k-term arithmetic progression in G is a sequence of
the form P = (a, a+ b, a+ 2b, . . . , a+ (k − 1)b), for some a, b ∈ G. We say that P is
non-trivial if b 6= 0, and proper if all entries of P are different, and we say that a subset
A ⊆ G contains P if A contains all entries of P . Further, we write N1 = {1, 2, 3, . . .}
and [n] = {1, 2, . . . , n}.



1.2. Part II: The slice rank polynomial method 3

An important problem in arithmetic combinatorics is to bound the maximum size
of a set A ⊆ G which does not contain a proper k-term arithmetic progression. The
first results in this direction were obtained over the integers (G = Z), starting with
van der Waerden’s theorem from 1927.

Van der Waerden’s Theorem ([Wae27]). For all integers r, k ≥ 2 there is an integer
Nr,k such that, for all n ≥ Nr,k and for every partition of [n] = X1 ∪ · · · ∪Xr into r
classes, at least one of the partition classes Xi contains a proper k-term arithmetic
progression.

This was subsequently strengthened by Roth [Rot52, Rot53] (for k = 3) and
Szemerédi [Sze69, Sze75] (for k ≥ 4) to show that, for large enough n, every set
A ⊆ [n] of fixed positive density δ contains proper k-term arithmetic progressions.

Szemerédi’s Theorem ([Rot52, Sze69, Sze75]). For every k ∈ N1 and every δ ∈
(0, 1], there is a positive integer Nk,δ such that, for all n ≥ Nk,δ, every subset A ⊆ [n]
of size |A| ≥ δn contains a proper k-term arithmetic progression.

Szemerédi’s theorem is one of the cornerstones of arithmetic combinatorics, and is
continuously being refined and extended. By now, several fundamentally different proofs
of Szemerédi’s theorem are known. In addition to Szemerédi’s original combinatorial
proof, the most notable are Furstenberg’s proof using ergodic theory [Fur77, FKO82],
Gowers’ Fourier-analytic proof [Gow98, Gow01], and a proof using a regularity lemma
for hypergraphs by Rödl, Nagle, Schacht and Skokan [NRS06, RS04, RS06] and
(independently) Gowers [Gow07].

It is believed that these results can still be improved, and an important open
problem is the following.

Erdős–Turán Conjecture. Every subset A ⊆ N1 with
∑
n∈A

1
n = ∞ contains

arbitrarily long proper arithmetic progressions.

A special case of this conjecture, where A is the set of all prime numbers, was
settled by the celebrated Green–Tao theorem [GT08]. For general sets, a recent preprint
of Bloom and Sisask [BS20] proves the conjecture for arithmetic progressions of length
3, but for longer progressions the conjecture is still wide open.

In an attempt to develop new techniques that can be used over the integers,
mathematicians have also studied the similar problem where G = Fnp is a vector space
over the finite field Fp for some prime number p. In this setting, we are interested
in the asymptotic behaviour as p is fixed and n goes to infinity. Here we have the
following problem:

Problem (Avoiding k-term arithmetic progressions in subsets of Fnp ). Given a prime
number p and an integer k satisfying 3 ≤ k ≤ p, is there a constant Cp,k < p such
that, for all n ∈ N, every set A ⊆ Fnp of size at least (Cp,k)n contains a proper k-term
arithmetic progression?

The simplest case, when p = k = 3, is known as the cap set problem. This problem
has drawn considerable attention in the past, not only because it forms a finite model
for problems about avoiding arithmetic progressions over the integers, but also because
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it is closely related to other prominent open problems in discrete mathematics, such as
the sunflower conjecture and the computational complexity of matrix multiplication
[ASU13].

In a quick series of events in May 2016, the cap set problem was suddenly solved
by Ellenberg and Gijswijt [EG17], building on a new technique developed earlier that
month by Croot, Lev and Pach [CLP17]. Their proof uses a new variation of the
polynomial method, a collection of techniques for solving problems in combinatorics by
encoding them with polynomials.

The Ellenberg–Gijswijt proof was subsequently recast by Tao [Tao16] in terms
of a new rank function for tensors, called slice rank, and this has since become the
dominant terminology. This new set of techniques, known as the slice rank polynomial
method, is now being applied to related problems, such as the aforementioned prob-
lems on sunflowers-free sets [NS17, Nas22] and fast matrix multiplication [BCC+17].
Furthermore, it has led to the study of several other rank functions, their relation to
slice rank, and their applications, including the analytic rank [GW11, Lov19], partition
rank [Nas20b], G-stable rank [Der22], geometric rank [KMZ20], and asymptotic slice
rank [Zui18, §4.6].

Although the cap set problem has been solved, the aforementioned Problem
(avoiding k-term arithmetic progressions in subsets of Fnp ) remains wide open for k ≥ 4.
This problem is believed to be beyond the reach of current (slice rank) methods.

Nonetheless, progress is being made on the broader problem of avoiding affine
configurations in subsets of Fnq . This will be the main topic of Part II of this dissertation.
Here, instead of avoiding a k-term arithmetic progression, we seek to avoid non-
trivial solutions to a system of balanced linear equations, where a linear equation
b1x1 + · · ·+ bkxk = 0 (with b1, . . . , bk ∈ Fq and x1, . . . ,xk ∈ Fnq ) is called balanced if
b1 + · · ·+ bk = 0. This contains the problem of avoiding k-term arithmetic progressions
as a special case, because a k-term arithmetic progressions can be encoded by a
balanced linear system with k variables and k−2 equations (for instance, the equations
xi − 2xi+1 + xi+2 = 0 for i ∈ [k − 2]).

Consider a balanced linear system
a11x1 + · · ·+ a1kxk = 0,

...
am1x1 + · · ·+ amkxk = 0;

(?)

consisting of m equations in the variables x1, . . . ,xk ∈ Fnq . Note that the variables
are not taken from Fq, but from Fnq as n→∞.

If k ≥ 2m+1, then a straightforward application of the slice rank method shows that
there is a constant Cq,m,k < q such that every subset A ⊆ Fnq of size |A| ≥ (Cq,m,k)n
contains a solution (x1, . . . ,xk) ∈ Ak of (?) where the xi are not all equal. This
was strengthened by Mimura and Tokushige [MT19a, MT19b, MT20] and Sauermann
[Sau22], who showed that, for certain specific classes of balanced linear systems, one
can even find a solution (x1, . . . ,xk) ∈ Ak of (?) where the xi are pairwise distinct.

In Chapter 6, we study similar problems. Our main contributions are twofold. First,
we extend the aforementioned results of Mimura and Tokushige [MT19a, MT19b,
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MT20] to a much larger class of balanced linear systems, thereby also bringing their
results together under a single proof. Second, we extend this problem further to show
that, for certain systems, one can even find a solution (x1, . . . ,xk) ∈ Ak of (?) that is
maximally affinely independent, in the sense that the vectors x1, . . . ,xk do not satisfy
any balanced linear equation that is not a linear combination of the equations in (?).

The class of linear systems that we study in Chapter 6 contains all systems studied
by Mimura and Tokushige [MT19a, MT19b, MT20], but is disjoint from the class of
linear systems studied by Sauermann [Sau22]. These results have since been superseded
by a stronger result of Gijswijt [Gij21], which simultaneously contains the results from
Chapter 6 and [Sau22] as special cases.

1.3 Part III: Tensor products of convex cones

A convex cone is a subset of a real vector space which contains 0 and is closed under
addition and multiplication by positive scalars. Convex cones have applications in all
areas of mathematics, ranging from algebraic geometry to optimization, as well as in
other areas of science, ranging from quantum physics to economics.

In these applications, one frequently has to find a way to somehow carry the cone
along when the containing vector space is modified. Therefore it is important to match
common operations on vector spaces with appropriate operations on the convex cones
contained in them. Examples of such operations are duals, projections, direct sums,
and tensor products. In each of these, there is a straightforward (and canonical) way
of carrying along the convex cone, except in the case of tensor products. Here there is
not a single canonical candidate, but rather many “reasonable” candidates. For this
reason, tensor products of convex cones are more involved, but also more interesting
than most other operations on convex cones. They have been studied by many authors,
and will also be the main topic of Part III of this dissertation.

Although much has already been said about tensor products of convex cones, many
basic properties have so far gone unnoticed, and several basic questions remained
unanswered. We aim to address these in Part III.

Our main contributions are threefold. First, our manuscript is one of the first to
study the problem in full generality. Most of the existing literature either focuses on
Archimedean lattice cones (in the functional analysis literature) or on closed, proper
and generating cones in finite-dimensional spaces (in linear algebra and in applications
in other fields). This means that many cones are not covered by either regime, including
even some standard cones such as an infinite-dimensional positive semidefinite cone or
a lexicographical cone. For general cones, results are few and far between, and even
some basic questions remain unanswered. We address this by developing the theory of
tensor products of convex cones in full generality, for arbitrary cones in arbitrary real
vector spaces.

Second, apart from extending several known results to the infinite-dimensional
setting, we prove many results which are altogether new. For instance, we show that
the projective and injective cone satisfy mapping properties which are analogous to
the mapping properties of the projective and injective norm, we give a direct formula
for the lineality space of the projective or injective cone, we give precise necessary
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and sufficient conditions for the projective or injective cone to be semisimple, and we
exhibit new ways of constructing faces of the projective or injective cone from faces of
the base cones. Furthermore, as an application of our results, we show that the tensor
product of symmetric convex sets preserves proper faces, a result which we believe was
only known for extreme points (and only under additional topological assumptions).

Third, we give many examples where the projective cone is not dense in the injective
cone. This question has been studied by various authors throughout the years, and has
seen a lot of progress in recent years thanks to interest from researchers in operator
theory and theoretical physics (we discuss these connections in a bit more detail in
§7.1). For a large class of closed, proper and generating cones in finite-dimensional
spaces, we prove that the projective cone is closed and strictly contained in the
injective cone, thereby confirming a conjecture of Barker for nearly all cones. However,
as the manuscript upon which Part III is based was being written, our results were
superseded by simultaneous work of Aubrun, Lami, Palazuelos and Plávala [ALPP21],
who independently proved Barker’s conjecture in full generality. We recover their result
for nearly all cones, using completely different techniques.

A detailed outline of Part III will be given in Chapter 7.
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Divisorial gonality of graphs
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Chapter 2
Divisors, chip-firing games, and

gonality

In algebraic geometry, gonality is an invariant that measures the complexity
of an algebraic curve. In [Bak08], Matt Baker defined a combinatorial analogue
of this invariant, the divisorial gonality of a graph, which is the main topic of
Part I of this dissertation. In this introductory chapter, we cover the basics of
gonality theory for graphs.

This chapter is based in part on the preliminaries of the papers [BDGS22]
and [DSW22].

Introduction

In Part I, we focus on a graph parameter called gonality. This parameter has its origins
in algebraic geometry, where the gonality of an algebraic curve is an invariant which
measures the complexity of the curve. By viewing graphs as discrete analogues of
algebraic curves, several authors have defined analogous notions for graphs. However,
there are several different (inequivalent) notions of gonality for graphs, which stem
from different (equivalent) definitions of the gonality of a curve. In this dissertation,
we focus on divisorial gonality, which was the first notion of gonality to be defined for
graphs (see [Bak08, §3]). For an overview of other notions of gonality of graphs, see
for instance [CKK15, Appendix A].

In this chapter, we define all the relevant concepts behind divisorial gonality, and
we prove the basic properties that we will use in the next chapters.

2.1 Graphs

Throughout this dissertation, by a graph we mean a finite, loopless, undirected multi-
graph. In other words, parallel edges are allowed, but self-loops are not. Furthermore,
throughout this dissertation, we assume that all graphs are connected. The set of
vertices of a graph G is denoted V (G) and the set of edges is denoted E(G). If there
is exactly one edge between u and v, then we denote it by uv.

Let G be a graph. For (not necessarily disjoint) vertex sets U,W ⊆ V (G), we denote
by E(U,W ) the set of edges having one endpoint in U and the opposite endpoint in W .

9



10 2. Divisors, chip-firing games, and gonality

We use the shorthand notation E(u,W ) := E({u},W ) and δ(U) := E(U, V (G) \ U).
By N(U) we denote the set of vertices in V (G) \ U that have a neighbour in U .

The degree of a vertex v ∈ V (G) is deg(v) := |δ(v)|. Given a subset U ⊆ V (G)
and a vertex v ∈ U , the out-degree of v with respect to U is defined as outdegU (v) :=
|E(v, V (G) \ U)|.

The Laplacian of a graph G is the matrix LG ∈ QV (G)×V (G) given by

(LG)uv =
{

deg(u), if u = v;

−|E(u, v)|, if u 6= v.

Since we assume all graphs to be connected, the null space of LG contains only the
multiples of the all-ones vector 1.

2.2 Divisors on graphs

A divisor on a graph G is an element of the free abelian group on G. In other words,
a divisor is a formal sum

∑
v∈V (G) avv, where av ∈ Z for all v. If D is a divisor on G

and if w ∈ V (G), then we use the notation D(w) to denote the coefficient aw of w in
D. The support supp(D) of a divisor D is the set of all v ∈ V (G) for which D(v) 6= 0.

For two divisors D and D′, we write D ≥ D′ if D(v) ≥ D′(v) for all v. A divisor
D is called effective if D ≥ 0. The sets of all divisors and all effective divisors on G
are denoted by Div(G) and Div+(G), respectively.

The degree of a divisor is the sum of its coefficients: deg(D) :=
∑
v∈V (G)D(v). The

set of all effective divisors of degree d on G is denoted Divd+(G).
The Laplacian matrix LG of G defines a map ZV (G) → Div(G), x 7→ LGx. Divisors

in the image of this map are called principal divisors. Two divisors D,D′ ∈ Div(G)
are equivalent, written D ∼ D′, if D − D′ is a principal divisor. This defines an
equivalence relation, and the equivalence classes coincide with the cosets of the
subgroup Prin(G) ⊆ Div(G) of principal divisors. Equivalent divisors have the same
degree, because 1TLG = 0.

Let D and D′ be equivalent divisors. Then D′ = D − LGx for some x ∈ ZV (G),
but x is not unique. Since ker(LG) = span(1), there is exactly one such x with
the additional property that x ≥ 0 and xv = 0 for at least one v ∈ V (G). We
denote this x by script(D,D′) and write dist(D,D′) = max{xv | v ∈ V (G)}. Note
that if t = dist(D,D′), then script(D′, D) = t1 − x, so dist(D′, D) = dist(D,D′).
Furthermore, if D ∼ D′ ∼ D′′, then we have the triangle inequality dist(D,D′′) ≤
dist(D,D′)+dist(D′, D′′), because script(D,D′′) = script(D,D′)+script(D′, D′′)−c1
for some integer c ≥ 0.

The rank of a divisor D ∈ Div(G) is defined as

rank(D) := max{k ∈ Z | D−E is equivalent to an effective divisor for all E ∈ Divk+(G)}.

We have rank(D) = −1 if and only if D is not equivalent to an effective divisor.
Given a graph G and an integer r ≥ 1, the r-th divisorial gonality dgonr(G) of G

is the minimum degree of a rank r divisor on G. For r = 1, this is simply called the
divisorial gonality of G, written dgon(G) := dgon1(G).
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2.3 The chip-firing game

Equivalence of divisors can also be described in terms of a “chip-firing game”. In this
game, we interpret the divisor D as a distribution of chips over the vertices of G,
where D(v) is the number of chips on the vertex v. A vertex with a negative number
of chips is said to be in debt.

In a vertex firing move, a vertex v ∈ V (G) sends chips to its neighbours, one along
each incident edge. This turns D into the divisor D′ = D − LG1v, where 1v is the
characteristic vector of v. In a subset firing move, we simultaneously fire all vertices
in the vertex set U ⊆ V (G).1 Edges with both endpoints in U see two chips going in
opposite direction along the edge, so these cancel out. Therefore the net effect of firing
U is that one chip is moved along each edge in the cut E(U, V (G) \ U), from U to
V (G)\U . The resulting divisor is D′ = D−LG1U , where 1U denotes the characteristic
vector of U . Since LG1 = 0, firing U can be undone by firing V (G) \ U , and we call
this inverse firing U .

When studying divisorial gonality, we often restrict our attention to effective
divisors. If D is an effective divisor, we say that a subset U ⊆ V (G) is valid (or can be
fired) with respect to D if D(v) ≥ outdegU (v) for all v ∈ U . It is easy to see that U is
valid if and only if D − LG1U is effective, so that firing U does not push any vertices
in debt.

The following proposition shows that it is possible to move between every pair of
equivalent effective divisors by subset firing moves without ever going into debt.

Proposition 2.1 ([DG20, Lem. 2.3]). Let D,D′ be equivalent effective divisors. Then
there is a unique increasing sequence ∅ ( U1 ⊆ U2 ⊆ · · · ⊆ Ut ( V (G) of vertex sets
such that subsequently firing U1, . . . , Ut (in that order) turns D into D′ without ever
going into debt.

Proof. Let x = script(D,D′) and t = dist(D,D′) = max{xv | v ∈ V (G)}. Let
U1 ⊆ U2 ⊆ · · · ⊆ Ut be the reverse level set decomposition of x; that is:

Ui := {v ∈ V (G) : xv ≥ t+ 1− i}, for all i ∈ [t].

Then x =
∑t
i=1 1Ui , so subsequently firing U1, . . . , Ut turns D into D′. Furthermore,

if ∅ ( U ′1 ⊆ U ′2 ⊆ · · · ⊆ U ′t′ ( V (G) is another increasing sequence such that
subsequently firing U ′1, . . . , U ′t′ turns D into D′, then y :=

∑t′

i=1 1U ′
i
∈ ZV (G) satisfies

D′ = D − LGy as well as the additional properties y ≥ 0 and yv = 0 for at least one
v ∈ V (G) (because U ′t′ ( V (G)), so we have y = x. But there is only one way to
decompose x as the sum of characteristic vectors of an increasing sequence of vertex
sets, so we have t′ = t and Ui = U ′i for all i ∈ [t]. This proves uniqueness.

Let D0, . . . , Dt be the sequence of intermediate divisors, so that D0 = D and
Di = Di−1 − LG1Ui for all i ∈ [t]. We must show that Di ≥ 0 for all i ∈ [t]. For
i = t this is clear, because Dt = D′. Now let i ∈ [t− 1] and v ∈ V (G). To show that
Di(v) ≥ 0, we distinguish two cases.

1Note that the order of firing does not matter, because addition is commutative: D − LG1v −
LG1u = D − LG1u − LG1v .
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• If v /∈ Ui, then also v /∈ U1, . . . , Ui (because U1 ⊆ · · · ⊆ Ui), so v has only
received chips so far. Therefore Di(v) ≥ D(v) ≥ 0.

• if v ∈ Ui, then also v ∈ Ui, . . . , Ut (because Ui ⊆ · · · ⊆ Ut), so v will only give
away chips from now on. Hence Di(v) ≥ D′(v) ≥ 0. �

This leads to the following alternative definition of gonality: dgonr(G) is the
minimum number of chips in a chip configuration (divisor) D ≥ 0 such that, by
subsequently firing valid vertex sets, we can reach for every E ∈ Divr+(G) a divisor
D′ ≥ E. In particular, dgon(G) is the minimum number of chips in a chip configuration
D ≥ 0 such that, by subsequently firing valid vertex sets, we can reach for every
v ∈ V (G) an effective divisor D′ ≥ 0 with D′(v) ≥ 1.

2.4 Reduced divisors

Let G be a graph, and let q ∈ V (G). An effective divisor D ∈ Div+(G) is said to be
q-reduced if every non-empty valid set contains q.2 In Proposition 2.3 below we prove
that every effective divisor is equivalent to exactly one q-reduced divisor. For this we
use the following lemma.

Lemma 2.2. Let D ∈ Div+(G) be a q-reduced divisor, and let D′ ∼ D be an effective
divisor equivalent to D. Then script(D,D′)q = dist(D,D′) and script(D′, D)q = 0.

Proof. Write x := script(D,D′) and t := dist(D,D′). By the proof of Proposition 2.1,
the highest level set U1 := {v ∈ V (G) : xv = t} is non-empty and valid with respect
to D. Since D is q-reduced, it follows that q ∈ U1, so xq = t. The other equality follows
because script(D,D′) + script(D′, D) = t1. �

Proposition 2.3 ([BN07, Prop. 3.1]). For every D ∈ Div+(G), there is a unique
q-reduced divisor D′ ∈ Div+(G) such that D ∼ D′.

Proof. To prove existence, we construct a sequence D0, D1, . . . , Dn, . . . ∈ Div+(G) of
effective divisors equivalent to D recursively in the following way:

• Set D0 := D.
• Suppose that D0, . . . , Dn have been defined. If Dn is q-reduced, set D′ := Dn

and terminate. Otherwise, choose a non-empty subset Un ⊆ V (G) \ {q} that is
valid with respect to Dn and set Dn+1 := Dn − LG1Un . Repeat.

Since Dn+1 is obtained from Dn by firing a valid vertex set, we have Di ≥ 0 for all i, and
D0 ∼ D1 ∼ · · · ∼ Dn. Furthermore, since q /∈ U0, . . . , Un−1, we have script(D0, Dn) =∑n−1
i=0 1Ui . In particular, for n 6= m we have script(D0, Dn) 6= script(D0, Dm), and

therefore Dn 6= Dm. Since there are only finitely many effective divisors of degree
2There is also a notion of q-reduced divisors which are not effective; see [BN07, §3.1]. For simplicity,

we restrict our attention to effective divisors, which suffice for our purposes. Here the definitions and
proofs are slightly simpler. It is not hard to see that our notion of q-reduced divisors agress with the
one from [BN07, §3.1].
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deg(D), the algorithm must terminate at some point, which shows that D is equivalent
to a q-reduced divisor.

To prove uniqueness, suppose that D′, D′′ ∈ Div+(G) are q-reduced effective
divisors equivalent to D. Since both D′ and D′′ are q-reduced, it follows from
Lemma 2.2 that script(D′, D′′)q = dist(D′, D′′), but also script(D′, D′′)q = 0. There-
fore dist(D′, D′′) = 0, hence D′ = D′′. �

The unique q-reduced divisor equivalent to D is denoted Dq. The following proposi-
tion shows that Dq maximizes the value of D′(q) among all effective divisors D′ ∼ D.

Proposition 2.4. Let D ∈ Div+(G) be an effective divisor, and let q ∈ V (G). Then
for every effective divisor D′ ∼ D, one has Dq(q) ≥ D′(q).

Proof. Let D′ ∼ D be effective, and write x := script(D′, Dq). Then x ≥ 0 and xq = 0,
by Lemma 2.2. Hence, when moving from D′ to Dq by subsequently firing the level
sets U1, . . . , Ut (see Proposition 2.1), the vertex q only receives chips, never giving
anything away. Therefore Dq(q) ≥ D′(q). �

Corollary 2.5. Let D ∈ Div+(G). Then rank(D) ≥ 1 if and only if Dq(q) ≥ 1 for
all q ∈ V (G).

The following estimate of the distance between D and Dq will be useful later on.

Proposition 2.6. Let D ∈ Div+(G) be an effective divisor and let q ∈ V (G). Then
dist(D,Dq) ≤ deg(D) · |V (G)|.

Proof. By Proposition 2.1, there is an increasing sequence ∅ ( U1 ⊆ U2 ⊆ · · · ⊆ Ut (
V (G) of vertex sets such that subsequently firing U1, . . . , Ut (in that order) turns D
into Dq without ever going into debt, where t := dist(D,Dq). In this sequence, the
same set Ui = Ui+1 = · · · can occur at most deg(D) times in a row, because every
time we fire Ui at least one chip leaves Ui. It follows that t ≤ deg(D) · |V (G)|. �

2.5 Dhar’s burning algorithm

Dhar’s burning algorithm [Dha90], given in Algorithm 2.7 below, takes as input a
graph G, a divisor D and a vertex q, and returns a valid vertex set U ⊆ V (G) \ {q}.

Input : A triple (G,D, q), where G is a graph, D ∈ Div+(G), and q ∈ V (G).
Output : The maximal valid subset U ⊆ V (G) \ {q}.

1 Function Dhar(G,D, q):
2 U := V (G) \ {q};
3 while D(v) < outdegU (v) for some v ∈ U do
4 U := U \ {v};
5 end while
6 return U

Algorithm 2.7: Dhar’s burning algorithm for finite graphs.
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Dhar’s burning algorithm can be implemented efficiently as a breadth first search.
By remembering the values of outdegU (v) for all v ∈ U (instead of computing them
when needed) and only updating those values that are changed when some vertex v is
removed from U , the algorithm can be implemented to run in O(|E(G)|) time. For
details, see [Dob12, Alg. 5.3].

We proceed to prove the basic properties of Dhar’s burning algorithm.

Proposition 2.8. The vertex set U ⊆ V (G)\{q} returned by Dhar’s burning algorithm
is valid and contains every other valid vertex set U ′ ⊆ V (G) \ {q}.

Proof. When Dhar’s burning algorithm terminates, it returns a set U ⊆ V (G) \ {q}
such that D(v) ≥ outdegU (v) for all v ∈ U , so this set is (by definition) valid.

Let U ′ ⊆ V (G) \ {q} be another valid vertex set. At the start of the algorithm, we
have U := V (G) \ {q}, so at this point U ′ ⊆ U . Furthermore, as long as the inclusion
U ′ ⊆ U is maintained, we have D(v) ≥ outdegU ′(v) ≥ outdegU (v) for all v ∈ U ′.
Therefore the algorithm never removes a vertex v ∈ U ′ from U . �

In other words, Dhar’s burning algorithm always returns the unique inclusionwise
maximal valid set U ⊆ V (G) \ {q}. The following corollaries are immediate.

Corollary 2.9. The output of Dhar’s burning algorithm does not depend on the order
in which vertices are selected in the while loop in lines 3–5.

Corollary 2.10. Let D ∈ Div+(G) be an effective divisor, and let q ∈ V (G). Then
D is q-reduced if and only if Dhar(G,D, q) = ∅.

If D is not q-reduced, then Dhar’s burning algorithm can be used to reduce the
distance between D and Dq.

Proposition 2.11. Let D ∈ Div+(G) be an effective divisor, and let q ∈ V (G). More-
over, let U := Dhar(G,D, q), and suppose that U 6= ∅. Then dist(D − LG1U , Dq) =
dist(D,Dq)− 1.

Proof. Write x := script(D,Dq) and t := dist(D,Dq). By the proof of Proposition 2.1,
the highest level set U1 := {v ∈ V (G) : xv = t} is valid with respect to D, so it
follows from Proposition 2.8 that U1 ⊆ U .

Let D′ := D − LG1U (which is effective by Proposition 2.8), and write x′ :=
script(D′, Dq). Then x− 1U and x′ differ by a multiple of 1. However, it follows from
Lemma 2.2 that xq = x′q = 0, and we have (1U )q = 0, so in fact x′ = x− 1U . Since
U1 ⊆ U , it is clear that dist(D′, Dq) = max{x′v : v ∈ V (G)} = t− 1. �

By Proposition 2.6 and Proposition 2.11, we need at most deg(D) · |V (G)| iterations
of Dhar’s burning algorithm to find the unique q-reduced divisor Dq ∼ D. Dhar’s
burning algorithm and a single subset firing move can both be done in O(|E(G)|) time,
so computing Dq from D can be done in O(deg(D) · |V (G)| · |E(G)|) time.



Chapter 3
Constructing tree decompositions of

graphs with bounded gonality

In 2014, Gijswijt and the author showed that treewidth is a lower bound for
graph gonality. In this chapter, we give a constructive proof of the same fact, by
giving a polynomial-time algorithm that turns a positive rank divisor of degree
d into a tree decomposition of width at most d.

This chapter is based on the paper [BDGS22]. A preliminary version of this
paper appeared earlier as a conference paper in [BDGS20]. This is joint work
with Hans L. Bodlaender, Dion Gijswijt, and Harry Smit.

3.1 Introduction

In the paper [DG20], originally written in 2014, van Dobben de Bruyn and Gijswijt
showed that gonality is closely related to treewidth, a graph parameter that plays an
important role in structural graph theory and theoretical computer science (See §3.2
for a definition of treewidth.) We proved that dgon(G) ≥ tw(G) for every graph G,
and we gave multiple examples where the two are actually equal. However, in general
the two can be arbitrarily far apart, as can be seen by taking a “chain of cycles”; see
[CDPR12]. (For another construction, see [Hen18].)

Given their very different origins, it is rather surprising that gonality and treewidth
are so closely related. Our original proof from [DG20] does little to clarify this
connection, as it is non-constructive and makes use of a dual characterization of
treewidth in terms of brambles. In this chapter, we intend to clarify this connection by
providing a constructive proof of the same fact. Specifically, we give a polynomial-time
algorithm that turns a positive rank divisor of degree k into a tree decomposition of
width at most k. Our main result is the following.

Theorem 3.1. There is an O(k · |V (G)|2 · |E(G)|) time algorithm that takes as input
a graph G and a positive rank effective divisor of degree k defined on G, and returns
as output a tree decomposition of G of width at most k.

To prove Theorem 3.1, we make use of an equivalent definition of treewidth in
terms of a Cops and Robbers game. The main idea behind the algorithm is to use the
chip-firing game to guide the searchers through the graph and capture the fugitive.

15
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This leads to an algorithm that converts a positive rank effective divisor of degree
k to a monotone search strategy with k + 1 searchers (see §3.4). By encoding this
monotone search strategy in a specific way (see §3.3), it can easily be turned into a
tree decomposition of width at most k (see §3.5).

3.2 Treewidth

Before diving into the proof of Theorem 3.1, we briefly recall the definition of treewidth.
Treewidth is a graph parameter with a long history. Its first appearance was under

the name of dimension, in 1972, by Bertelè and Brioschi [BB72]. It was rediscovered
several times since, each time under a different name. (For an overview, see for instance
[Bod98].)

The terms “tree decomposition” and “treewidth” were introduced by Robertson
and Seymour [RS86a] as part of their fundamental work on graph minors. These
notions have since become the dominant terminology. The treewidth of a graph is
defined as follows.

Definition 3.2. Let G be a graph. A tree decomposition of G is a tuple (T, (Xt)t∈V (T )),
where T is a tree and (Xt)t∈V (T ) is a collection of vertex sets Xt ⊆ V (G), one for each
node of T , that satisfies the following conditions:

(a)
⋃
t∈V (T )Xt = V ;

(b) for every edge e ∈ E(G) with endpoints u, v ∈ V (G), there is some t ∈ V (T )
such that u, v ∈ Xt;

(c) for every v ∈ V (G), the set of nodes Tv = {t ∈ V (T ) : v ∈ Xt} is connected (in
other words, it induces a subtree of T ).

The sets Xt ⊆ V (G) are called the bags of the tree decomposition. The width of the
tree decomposition is maxt∈V (T ) |Xt| − 1.

The treewidth of G, denoted tw(G), is the minimum width of a tree decomposition
of G.

There are several alternative (equivalent) definitions of treewidth. We will use a
notion that is based on a Cops and Robbers game, introduced by Seymour and Thomas
[ST93]. Here, a number of searchers need to catch a fugitive, subject to certain rules.

In the Cops and Robbers game for treewidth, searchers can move from a vertex in
the graph to a “helicopter”, or from a helicopter to any vertex in the graph. Between
moves of searchers, the fugitive can move with infinite speed in the graph, but may
not move over or to vertices with a searcher. The fugitive is captured when a searcher
moves to the vertex with the fugitive, and there is no other vertex without a searcher
that the fugitive can move to. The location of the fugitive is known to the searchers at
all times.

We say that k searchers can capture a fugitive in G if there is a strategy for k
searchers on G that guarantees that the fugitive is captured. In the initial configuration,
the fugitive can choose a vertex, and all searchers are in a helicopter. A search strategy
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is monotone if it is never possible for the fugitive to move to a vertex that had been
unreachable before. In particular, in a monotone search strategy, there is never a path
without searchers from the location of the fugitive to a vertex previously occupied by
a searcher.

Theorem 3.3 (Seymour and Thomas [ST93]). Let G be a graph and k a positive
integer. The following statements are equivalent.

(i) The treewidth of G is at most k.

(ii) k + 1 searchers can capture a fugitive in G.

(iii) k + 1 searchers can capture a fugitive in G with a monotone search strategy.

3.3 Monotone search strategies

We start by providing a way to encode monotone search strategies. Let G be a graph.
For X ⊆ V (G), the vertex set of a component of G \X is called an X-flap. A position
is a pair (X,R), where X ⊆ V (G) and R is a union1 of X-flaps (we allow R = ∅).
Note that R is a union of X-flaps if and only if N(R) ⊆ X.

The set X represents the vertices occupied by searchers, and the fugitive can
move freely within some X-flap contained in R (if R = ∅, then the fugitive has been
captured). In a monotone search strategy, the fugitive will remain confined to R, so
placing searchers on vertices other than R is of no use. Therefore, it suffices to consider
three types of moves for the searchers: (a) remove searchers that are not necessary to
confine the fugitive to R; (b) add searchers to R; (c) if R consists of more than one
X-flap, restrict attention to the X-flap Ri ( R containing the fugitive. This leads us
to the following definition.

Definition 3.4. Let G be a graph and let k be a positive integer. A monotone search
strategy (MSS) with k searchers for G is a directed tree T = (P, F ) where P is a set
of positions with |X| ≤ k for every (X,R) ∈ P, that satisfies the following additional
conditions:

(i) The root of T is (∅, V ).

(ii) If (X,R) is a leaf of T , then R = ∅.

(iii) Let (X,R) be a non-leaf of T . Then R 6= ∅ and there is a set X ′ ⊆ X ∪R such
that exactly one of the following applies:

(a) X ′ ( X, and the position (X ′, R) is the unique out-neighbour of (X,R);
(b) X ′ ) X, and the position (X ′, R \ X ′) is the unique out-neighbour of

(X,R);
(c) X ′ = X, and the out-neighbours of (X,R) are the positions (X,R1), . . . ,

(X,Rt) where t ≥ 2 and R1, . . . , Rt are the X-flaps contained in R.
1Here we deviate from the definition of position as stated in [ST93], in that we allow R to consist

of zero X-flaps or more than one X-flap.
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If condition (ii) does not necessarily hold, we say that T is a partial MSS. Note that
we do not consider the root node to be a leaf even if it has degree 1.

It is clear that if T is an MSS for k searchers, then, as the name suggests, k
searchers can capture the fugitive, the fugitive can never reach a vertex that it could
not reach before, and a searcher is never placed on a vertex from which a searcher was
previously removed.

We should point out that Definition 3.4 is slightly different from existing (formal
or informal) definitions of a monotone search strategy in the literature. Compared to
Seymour and Thomas [ST93], we also allow positions that consist of zero X-flaps or
more than one X-flap. We do not prove that Theorem 3.3 also holds for our definition
of a monotone search strategy (Definition 3.4), but we will show in §3.5 that an MSS
with k searchers yields a tree decomposition of width at most k − 1 in a relatively
straightforward fashion.

First we focus on constructing an MSS in polynomial time. For this we use the
following lemmas.

Lemma 3.5. Let G be a graph and let T be a partial MSS with k searchers for G.
Then T has at most |V (G)|2 + 1 nodes.

Proof. For every position (X,R), define f(X,R) = |R|(|X|+ |R|). We claim that for
every non-leaf node (X,R), the value of f(X,R) is at least the sum of the values of its
children plus the number of children. In case (a) and (b), the node (X,R) has exactly
one child (X ′, R′), which satisfies R′ ⊆ R and X ′ ∪R′ ⊆ X ∪R, with at least one of
these inclusions strict (and |R| 6= 0). Therefore we have f(X,R) > f(X ′, R′), hence
f(X,R) ≥ f(X ′, R′) + 1. Moreover, in case (c), we have f(X,R) ≥ f(X,R1) + · · ·+
f(X,Rt) + t, because

f(X,R)− (f(X,R1) + · · ·+ f(X,Rt)) =
∑

1≤i<j≤t
2|Ri| · |Rj |

≥ 2|R1| · (|R2|+ · · ·+ |Rt|)

≥ 2(t− 1) ≥ t.

This proves our claim. It follows by induction that f(X,R) is an upper bound on the
number of descendants of (X,R) in T . Since every non-root node is a descendant of the
root, it follows that the total number of nodes is at most 1+f(∅, V ) = 1+ |V (G)|2. �

3.4 Construction of a monotone search strategy

In this section, we present an algorithm that turns a positive rank effective divisor of
degree k into a monotone search strategy (MSS) with k+ 1 searchers. This will be the
main component in our proof of Theorem 3.1. The procedure to convert an MSS into
a tree decomposition is postponed until the next section.

The main idea behind our algorithm is to guide the searchers based on the way the
chips move through the graph in the chip-firing game. The input divisor D provides
the initial position for the searchers, after which we repeatedly use Dhar’s burning
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algorithm (see Algorithm 2.7) to compute the next move. By doing so in a careful
way, we can compute an MSS in polynomial time. We will make this idea precise in
Theorem 3.8 below. For this, we need the following lemmas.

Lemma 3.6. Let G be a graph, let X ⊆ V (G) be a non-empty vertex set, and let R
be an X-flap. If D ∈ Div(G) is a positive rank effective divisor with supp(D)∩R = ∅,
then the function calls Dhar(G,D, q) and Dhar(G,D, q′) return the same non-empty
set for all q, q′ ∈ R.

Proof. Let q, q′ ∈ R be arbitrary, and let U,U ′ be the sets returned by Dhar(G,D, q)
and Dhar(G,D, q′), respectively. Since D has positive rank and D(q) = 0, the divisor
D is not q-reduced, so U 6= ∅. Moreover, since R is an X-flap, there is a path from
q to q′ in R. Hence, in Dhar’s burning algorithm, if q is burned, then also q′ is
burned, because supp(D) ∩R = ∅. Therefore q′ /∈ U . Since U ′ is the maximal subset
S ⊆ V (G) \ {q′} that can be fired, we have U ⊆ U ′. By symmetry, we also have
U ′ ⊆ U , which shows that U = U ′. �

By a slight abuse of notation, if D satisfies the condition from Lemma 3.6, then
we denote the set returned by Dhar(G,D, q) for any q ∈ R as Dhar(G,D,R), and
we call this the R-Dhar set for D.

Lemma 3.7. Let G be a graph, let X ⊆ V (G) be a non-empty vertex set, and
let R be an X-flap. If D ∈ Div(G) is a positive rank effective divisor such that
supp(D) ∩ (X ∪R) = X, then by repeatedly firing R-Dhar sets, we obtain in a finite
number of steps an effective divisor D′ ∼ D such that supp(D′) ∩ (X ∪R) = X and
such that the R-Dhar set U := Dhar(G,D′, R) satisfies U ∩R = ∅ and U ∩X 6= ∅.

Proof. By Lemma 3.6, the R-Dhar set U := Dhar(G,D,R) is non-empty. For every
q ∈ R we have U = Dhar(G,D, q), and therefore q /∈ U , so U ∩R = ∅. If U ∩X 6= ∅,
we set D′ := D and we are done. Otherwise, we replace D by D − LG1U and iterate.
Since U ∩X = ∅, the vertices in X do not give away chips. Moreover, since R is an
X-flap, we have N(R) ⊆ X, so the vertices in R do not receive any chips. Therefore
the property that supp(D) ∩ (X ∪ R) = X is maintained. By Proposition 2.6 and
Proposition 2.11, we finish in no more than k · |V (G)| iterations. �

Theorem 3.8. There is an O(k · |V (G)|2 · |E(G)|) time algorithm that takes as input
a graph G and a positive rank effective divisor of degree k defined on G, and returns
as output an MSS with k + 1 searchers for G.

Proof. Throughout the execution of the algorithm, we will keep a partial MSS, which
we extend until it is an MSS. We start with only two nodes, namely the root (∅, V )
and its child (supp(D), V \ supp(D)), after which we repeatedly process all leaves
(X,R) with R 6= ∅ until no such nodes are left. At each step, for every leaf (X,R) of T
we keep an effective divisor D′ ∼ D such that supp(D′) ∩ (X ∪R) = X (equivalently:
X ⊆ supp(D′) and R ∩ supp(D′) = ∅).

We now describe the iterative procedure. While T has a leaf (X,R) with R 6= ∅,
let D′ be the divisor associated to (X,R) and perform one of the following steps.
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I. If R consists of multiple X-flaps R1, . . . , Rt, then we add the nodes (X,R1), . . . ,
(X,Rt) as children of (X,R), associate D′ to each of these nodes, and iterate.

II. If X ′ := N(R) is a strict subset of X, then add the node (X ′, R) as a child of
(X,R), associate D′ to this node, and iterate.

III. The remaining case is that N(R) = X and R is a single X-flap. By Lemma 3.7,
by repeatedly firing R-Dhar sets, we may obtain an effective divisor D′′ ∼ D′

such that supp(D′′) ∩ (X ∪R) = X and from D′′ we can fire a set U such that
U ∩ R = ∅ and U ∩X 6= ∅. To compute the next step in our search strategy,
we fire the set U , and use the chips that are fired from X to R to guide the
searchers towards the fugitive. We now make this idea precise.
Write U ∩X = {s1, s2, . . . , st}, where t = |U ∩X|. Since we can fire on U , we
have

D′′(si) ≥ outdegU (si) ≥ |N(si) ∩R| for all i ∈ {1, . . . , t}. (3.9)

We write (X ′0, R0) := (X,R), and we define the positions (X1, R1), (X ′1, R1), . . . ,
(Xt, Rt), (X ′t, Rt) recursively as follows:

Xi := X ′i−1 ∪ (N(si) ∩R);

X ′i := Xi \ {si};

Ri := R \Xi.

It is not hard to see that every edge in δ(R) has at least one endpoint in every
X ′i, and that therefore N(Ri) ⊆ X ′i ⊆ Xi for all i. This shows that every Ri is
a union of X ′i-flaps and of Xi-flaps, so (X1, R1), (X ′1, R1), . . . , (Xt, Rt), (X ′t, Rt)
are valid positions.
We add the path (X,R) → (X1, R1) → (X ′1, R1) → · · · → (Xt, Rt) → (X ′t, Rt)
to T . It may happen that (Xi, Ri) = (X ′i−1, Ri−1) for some i, in which case we
remove one of the two. After that, it is easy to see that the added path is valid, as
every non-leaf node in the path satisfies the condition from Definition 3.4(iii)(a)
or (b).
Next, we show that the added path uses at most k + 1 searchers. Using (3.9)
and the fact that X ⊆ supp(D′′), we see that

|X ′i| = |X \ {s1, . . . , si}|+ |(N(s1) ∩R) ∪ · · · ∪ (N(si) ∩R)|

≤ |X \ {s1, . . . , si}|+ |N(s1) ∩R|+ · · ·+ |N(si) ∩R)|

≤
∑

v∈X\{s1,...,si}

D′′(v) +
∑

v∈{s1,...,si}

D′′(v)

=
∑
v∈X

D′′(v)

for all i. Therefore we have |X ′i| ≤ k and |Xi| ≤ k + 1 for all i ∈ {1, . . . , t}, so
the number of searchers is at most k + 1.
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To the leaf (X ′t, Rt) we associate the divisor D′′ − LG1U (which is effective,
because U can be fired). We prove that supp(D′′ −LG1U )∩ (X ′t ∪Rt) = X ′t. To
that end, let v ∈ X ′t ∪Rt. We distinguish three cases.

– If v ∈ (N(s1) ∩R) ∪ · · · ∪ (N(st) ∩R), then v /∈ U but v has a neighbour
in U , so v receives at least one chip. Therefore v ∈ supp(D′′ − LG1U ).

– If v ∈ X \ {s1, . . . , st}, then v /∈ U but v ∈ X ⊆ supp(D′′), so v starts with
a chip and does not give anything away. Therefore v ∈ supp(D′′ − LG1U ).

– If v ∈ Rt, then v had no chips to begin with, and v does not have a
neighbour in U . Therefore v /∈ supp(D′′ − LG1U ).

Since X ′t = (X \ {s1, . . . , st})∪ (N(s1)∩R)∪ · · · ∪ (N(st)∩R) and X ′t ∩Rt = ∅,
this shows that supp(D′′ − LG1U ) ∩ (X ′t ∪Rt) = X ′t.

By Lemma 3.5, the iteration terminates after at most |V (G)|2 +1 steps. This completes
the construction of the monotone search strategy.

To complete the proof, we show that this algorithm runs in O(k · |V (G)|2 · |E(G)|)
time. Since the MSS has at most |V (G)|2 + 1 nodes, and each node carries O(|V (G)|)
data that needs to be updated, the algorithm spends O(|V (G)|3) time maintaining
the MSS. This is well within the desired O(k · |V (G)|2 · |E(G)|) bound.

It remains to bound the number of calls to Dhar’s burning algorithm. Let S ⊆ V (T )
denote the set of nodes for which step III of the algorithm is entered (i.e. for which
N(R) = X and R is a single X-flap). Let S ′ ⊆ S denote the set of nodes in S which do
not have a descendant in S, and write S ′ = {(X1, R1), . . . , (Xt, Rt)}, where t = |S ′|.
For all i 6= j we have Ri ∩Rj = ∅, because the children of a branch vertex of T have
distinct R-sets (by Definition 3.4(iii)(c)). Therefore, t ≤ |V (G)|.

For i ∈ [t], let Si denote the set of all nodes in S of which (Xi, Ri) is a descendant,
including the node (Xi, Ri) itself. Furthermore, choose some qi ∈ Ri, and let Dqi denote
the unique qi-reduced divisor equivalent to D. By monotonicity of the search strategy
(see Definition 3.4(iii)), we have Ri ⊆ R for all (X,R) ∈ Si, so in particular qi ∈ R for
all (X,R) ∈ Si. Hence, by Proposition 2.11, every call to Dhar’s burning algorithm
made during the processing of the nodes in Si decreases the distance between D and Dqi

by one. Since no other operations are performed on the intermediate divisors, and since
dist(D,Dqi) ≤ k · |V (G)| (by Proposition 2.6), it follows that the nodes in Si account
for at most k · |V (G)| calls to Dhar’s burning algorithm. Therefore the total number of
calls to Dhar’s burning algorithm is at most kt · |V (G)| ≤ k · |V (G)|2. Dhar’s burning
algorithm runs in time O(|E(G)|), so our algorithm spends O(k · |V (G)|2 · |E(G)|)
time on calls to Dhar’s burning algorithm. �

3.5 Construction of a tree decomposition

To complete the algorithm, we need to turn the MSS into a tree decomposition. This
is easy, as the following lemma shows.

Proposition 3.10. Let G be a graph, and let T ′ = (P, F ) be a monotone search
strategy for k searchers in G. If T is the undirected tree obtained by ignoring the
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orientation of edges in T ′, then (T, (X)(X,R)∈P) is a tree decomposition of G of width
at most k − 1.

Proof. Let v ∈ V . We first show that v ∈ X for some (X,R) ∈ P . Let P ′ := {(X,R) ∈
P : v ∈ R}. Note that P ′ contains the root node (∅, V ). Let (X,R) ∈ P ′ have
maximum distance from the root. Since v ∈ R, it follows from the definition of MSS
that (X,R) has a child (X ′, R′) with v ∈ X ′∪R′. Hence, by the maximality assumption,
we have v ∈ X ′.

Next, we show that the set of nodes {(X,R) ∈ P : v ∈ X} is a subtree of T .
Equivalently, we must show that if node (X2, R2) lies on a path from (X1, R1) to
(X3, R3) in T , then X1 ∩ X3 ⊆ X2. It suffices to check this in two cases: the case
that (X3, R3) is a descendant of (X1, R1) in T ′, and the case that (X2, R2) is the last
common ancestor of (X1, R1) and (X3, R3). In the first case, it is easy to see that
X3 ⊂ X2 ∪R2 and R2 ⊆ R1. It follows that

X1 ∩X3 ⊆ X1 ∩ (X2 ∪R2) ⊆ X1 ∩ (X2 ∪R1) ⊆ X2

since X1 and R1 are disjoint. In the second case, node (X2, R2) has more than one
out-neighbour, so its out-neighbours are positions (X2, R), where R runs over the
X2-flaps contained in R2. It follows that X1 ⊆ X2 ∪R′ and X3 ⊆ X2 ∪R′′ for distinct
X2-flaps R′ and R′′. Hence, X1 ∩X3 ⊂ X2.

To complete the proof, it suffices to show that for every edge e ∈ E(G) there
is some node (X,R) of T such that X contains both endpoints of e. Suppose for
contradiction that this is not the case for some edge e with endpoints u and v.

We first show that there is a node (X,R) such that u ∈ X and v ∈ R (or vice
versa). To this end, consider the nodes (X,R) of T with u, v ∈ R (e.g. the root node),
and take such a node that has maximum distance from the root. This node cannot be
a leaf since R is non-empty. Since u and v are neighbours, they belong to the same
X-flap, so it follows by the maximum distance assumption that (X,R) has a child
(X ′, R′) with u ∈ X ′ and v ∈ R′ (or vice versa).

Now consider all nodes (X,R) with u ∈ X and v ∈ R and take such a node
for which the distance to the root is maximal. This node cannot be a leaf, because
R is non-empty. Consider a child (X ′, R′) of (X,R). If we are in case (iii)(a) then
v ∈ R′, and we must have u ∈ X ′, for otherwise R′ is not a union of X ′-flaps (since u
and v are neighbours, but v ∈ R′ and u /∈ X ′ ∪ R′). This contradicts the maximum
distance assumption. If we are in case (iii)(b), then u ∈ X ′ and v ∈ R′, which once
again contradicts the maximum distance assumption. If we are in case (iii)(c), we may
assume that R′ is the X-flap containing v and again this contradicts the maximum
distance assumption. �

Theorem 3.1 now follows from Theorem 3.8 and Proposition 3.10.

3.6 A worked example

We apply the constructions of the previous section to a relatively small example. Let
G = (V,E) be the graph depicted in Figure 3.1 and let D = 3a be the divisor on G
that has value 3 on vertex a and value 0 elsewhere.
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Figure 3.1: An example graph G. The divisor D = 3a has positive rank. (It is not
optimal, as dgon(G) = 2, since the divisor b+ f also has positive rank.)
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Figure 3.2: The monotone search strategy obtained from G with divisor D = 3a. Each
node shows the corresponding pair (X,R) with the root being (∅, {a, b, c, d, e, f, g}).
The labels I–III refer to the steps in the construction.

If we follow the construction of §3.4, we will end up with the monotone search
strategy found in Figure 3.2. Recall that every node of the search tree is a pair (X,R)
of subsets of V such that R is a union of X-flaps in G. For every node, the sets X
and R are indicated in the figure. The three ways of growing the tree (steps I, II, III
of the construction) at a node with R 6= ∅ are indicated by downward arrows. Steps
of type I are the only steps that involve branching of the tree. Steps of type III are
the most involved: a path of nodes is added to the tree (depicted horizontally) and
the divisor D′ changes. For reference, the four steps of type III are labelled (1)–(4).
Below, we will elaborate on the construction.

Root. The initial partial MSS consists of a root (X,R) = (∅, V ) connected to a leaf
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node (supp(D), V \ supp(D)) = ({a}, {b, c, d, e, f, g}). The divisor associated to
the leaf node is D′ = 3a.

Step III(1). For the leaf node (X,R) = ({a}, {b, c, d, e, f, g}), the set R is a single
X-flap and N(R) = X, so we apply step III. Dhar’s burning algorithm applied
to divisor D′ = 3a (and an arbitrary vertex in R) gives the set U = {a} to fire
on. We have U ∩X = {s1} with s1 = a. We obtain

X1 = X ∪ (N(s1) ∩R) = {a, b, c}, R1 = R \X1 = {d, e, f, g}, X ′1 = {b, c}.

The path (X1, R1) → (X ′1, R1) is attached to leaf node (X,R). The divisor
D′ − LG1U = a+ b+ c is associated to the new leaf node (X ′1, R1).

Step I. For the leaf node (X,R) = ({b, c}, {defg}), the set R is the union of two
X-flaps: R = {d}∪{e, f, g}. Hence, we apply step I to obtain two new leaf nodes
({b, c}, {d}) and ({b, c}, {e, f, g}.

Step II. In the left-hand leaf node (X,R) = ({b, c}, {d}) we have N(R) = {b} ⊂ X,
so we apply step II and add a new leaf node ({b}, {d}).

Step III(2–4). The remaining steps in the construction of the MSS are of type III.
We summarize the details below.

(2) Divisor D′ is equal to a+ b+ c. Applying Dhar’s algorithm to D′ and the
vertex d, we obtain the set U = {a, b, c, e, f, g}. Firing on U , we obtain the
new divisor a+ c+ d.

(3) Divisor D′ is equal to a+ b+ c. Applying Dhar’s algorithm to D′ and any
of the vertices in R = {e, f, g} we obtain the set U = {a, c}. Firing on U ,
we obtain the new divisor 2b+ g.

(4) Divisor D′ is equal to 2b + g. Applying Dhar’s algorithm to D′ and the
vertex e (or equivalently f) we obtain the set U = {a, b, c, d, g}. Firing on
U , we obtain the new divisor e+ 2f .

From the search tree, we obtain a tree-decomposition of width deg(D) = 3 by
labelling each node (X,R) by the set X and ignoring arc directions. Removing nodes
with label ∅ and contracting edges of the tree between nodes with equal labels, we
obtain the tree decomposition depicted in Figure 3.3.

{a} {a, b, c} {b, c}

{b} {b, d} {d}

{b, c, g} {b, g} {b, e, f, g} {e, f, g} {e, f}

Figure 3.3: Tree decomposition of G derived from the MSS.
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3.7 Closing remarks

We conclude this chapter with a few closing remarks.
First, as we mentioned in Chapter 2, there are several different (inequivalent)

notions of gonality for graphs. In Part I of this dissertation, we focus on divisorial
gonality. However, in the paper [BDGS22] upon which the present chapter is based,
we also considered the so-called stable gonality, defined as the minimum degree of a
finite harmonic morphism from a refinement of G to a tree (for details, see [BDGS22]).
There we proved the following analogue of Theorem 3.1:

Theorem 3.11 ([BDGS22, Thm. 3]). There is an O(k2 · |V (G′)|) time algorithm
that takes as input a graph G and a finite harmonic morphism f : G′ → T from a
refinement G′ of G to a tree T , and returns as output a tree decomposition of G of
width at most k.

The proof of Theorem 3.11 is relatively easy, as the harmonic morphism f : G′ → T
immediately gives rise to a tree decomposition (for details, see [BDGS22]). This also
furnishes the first direct proof of the inequality tw(G) ≤ sgon(G), without relying on
divisor theory.

Second, we point out that the results from this chapter have an application
in parametrized complexity. It is well-known that many NP-hard graph problems
become tractable for graphs of bounded treewidth, provided that a sufficiently small
tree decomposition is available (see for instance [CFK+15, Thm. 7.9 and 7.10]). An
immediate corollary of Theorem 3.1 is that the same NP-hard problems also become
tractable when a positive rank divisor of sufficiently small degree is available. However,
this could also be deduced without using Theorem 3.1, because one could simply ignore
the divisor and use one of the existing algorithms for computing a tree decomposition,
such as Bodlaender’s celebrated O(2O(k3) · |V (G)|) time algorithm [Bod96]. In this
setting, the benefit of Theorem 3.1 is that the dependence on k is linear instead of
exponential (at the cost of higher dependence on |V (G)| and |E(G)|), making the
algorithm more practical for larger values of k.

Finally, we point out another intriguing connection with parametrized complexity.
As mentioned in the previous paragraph, problems that are tractable when parametrized
by treewidth are also tractable when parametrized by gonality. One important difference
between treewidth and gonality is that treewidth is blind to parallel edges, whereas
gonality is not. Motivated by this, Bodlaender, Cornelissen and van der Wegen were
able to show that several well-studied classes of multigraph problems are hard when
parametrized by treewidth, but become tractable when parametrized by stable gonality
[BCW22b]. This suggests that gonality could play an important role in parametrized
complexity of multigraph problems. An interesting open question is to also find
problems which are hard when parametrized by treewidth but become tractable when
parametrized by divisorial gonality [BCW22a, Open problem 5].
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Chapter 4
Discrete and metric divisorial gonality

can be different

In 2008, Matt Baker conjectured that the divisorial gonality of every graph
G is equal to the divisorial gonality of every regular subdivision of G, and to the
gonality of the associated metric graph Γ(G,1) with unit lengths. In this chapter,
we show that these two conjectures are equivalent, and we give a counterexample
to both.

This chapter is based on the paper [DSW22], and is joint work with Harry
Smit and Marieke van der Wegen.

4.1 Introduction

In [Bak08], Matt Baker provided a way to translate between curves and graphs, and
used this to show that certain results can be carried over from one world to another.
However, this translation is not perfect, as some information is lost in the process, so
not all results from algebraic geometry could immediately be translated to analogous
statements for graphs. As a consequence, the paper [Bak08] not only contains many
new results, but also a number of conjectures. Since then, these conjectures have
been among the main driving forces for further research into divisors and gonality on
graphs.

All but two of the conjectures from [Bak08] have since been solved; see [HKN13,
Luo11, CDPR12, DV21a]. The first and most important remaining open problem is
the Brill–Noether conjecture for finite graphs, based on an analogous result for curves.

Conjecture 4.1 (Brill–Noether conjecture for graphs, [Bak08, Conj. 3.9]). Define the
cyclomatic number of a connected loopless multigraph G as g := |E(G)| − |V (G)|+ 1.
Furthermore, for integers g, r, d ≥ 0, define the Brill–Noether number as

ρ(g, r, d) := g − (r + 1)(g − d+ r).

Then:

(a) If ρ(g, r, d) ≥ 0, then every connected loopless multigraph G of cyclomatic number
g has a divisor D with rank(D) = r and deg(D) ≤ d;

27
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(b) If ρ(g, r, d) < 0, then there exists a connected loopless multigraph G of cyclomatic
number g for which there is no divisor D with rank(D) = r and deg(D) ≤ d.

Parts (a) and (b) of Conjecture 4.1 are sometimes referred to as the ‘existence’ and
‘non-existence’ parts of the Brill–Noether conjecture, respectively (see e.g. [CDPR12,
AR18, Man22]). The non-existence part (Conjecture 4.1(b)) was settled in 2012
by Cools, Draisma, Payne and Robeva [CDPR12], but the existence part (Conjec-
ture 4.1(a)) remains wide open. We focus on the r = 1 case of this conjecture, which
can be reformulated as follows.

Conjecture 4.2 (Gonality conjecture, [Bak08, Conjecture 3.10(1)]). Let G be a
connected loopless multigraph, and let g := |E(G)| − |V (G)|+ 1 denote its cyclomatic
number. Then dgon(G) ≤ b g+3

2 c.

The corresponding result for metric graphs was proved by Baker [Bak08, Thm.
3.12] using algebraic geometry. A purely combinatorial proof of this result was recently
found by Draisma and Vargas [DV21a], with many promising avenues still to be
explored [DV21b]. However, for discrete graphs, Conjecture 4.2 is still wide open.1

Partial results were obtained by Atanasov and Ranganathan [AR18], who proved
Conjecture 4.2 for all graphs of genus at most 5, and by Aidun and Morrison [AM20],
who proved the conjecture for Cartesian product graphs.

The most straightforward approach to Conjecture 4.2 would be to show that the
divisorial gonality of a graph is equal to the divisorial gonality of the associated metric
graph with unit lengths (see §4.2). This is the second remaining conjecture of Baker’s
paper [Bak08, Conj. 3.14]. Given a multigraph G and an integer k ≥ 1, let σk(G)
denote the multigraph obtained from G by subdividing every edge into k parts. The
conjecture can then be stated as follows.

Conjecture 4.3 ([Bak08, Conjecture 3.14]). Let G be a connected loopless multigraph,
let Γ(G) be the corresponding metric graph with unit edge lengths, and let r ≥ 1. Then:

(a) dgonr(G) = dgonr(σk(G)) for all k ≥ 1;

(b) dgonr(Γ(G)) = dgonr(G).

The first main result of this chapter is that Conjecture 4.3(a) and Conjecture 4.3(b)
are equivalent for every graph G.

Theorem 4.4. For every connected loopless multigraph G and every integer r ≥ 1,
one has

dgonr(Γ(G)) = min
k∈N1

dgonr(σk(G)).

A partial result in this direction was already implicit in the work of Gathmann
and Kerber [GK08, Prop. 3.1] (see Theorem 4.12(a) below), but to our knowledge
Theorem 4.4 is new. Moreover, we use a different proof technique, which can be used

1A proof of Conjecture 4.1(a), and hence in particular Conjecture 4.2, was given by Caporaso
in [Cap12, Thm. 6.3], but a gap in this proof was later pointed out by Sam Payne and reported by
Baker and Jensen in [BJ16, Rmk. 4.8 and footnote 5]. To our knowledge, this has not been repaired.
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to give an upper bound on the number of subdivisions needed to get equality (see
Remark 4.16).

The proof runs roughly as follows. It is already known that every rank r divisor on
σk(G) also defines a rank r divisor on Γ(G). For the converse, we show that every rank
r divisor D on Γ(G) can be “rounded” to a nearby divisor D′ with rank(D′) ≥ r which
is supported on the Q-points of Γ(G), and therefore on the points of some regular
subdivision σk(G). The details will be given in §4.3.

As pointed out by Baker in [Bak08], a positive answer to Conjecture 4.3 would also
yield a positive answer to Conjecture 4.2. However, it turns out that the subdivision
conjecture fails, and we give a counterexample to Conjecture 4.3(a) in the case r = 1
and k = 2. Evidently this is also a counterexample to Conjecture 4.3(b). The second
main result of this chapter is the following.

Theorem 4.5. For every integer k ≥ 1, there exists a connected loopless multigraph
Gk such that dgon(Gk) = 6k and dgon(Γ(Gk)) = dgon(σ2(Gk)) = 5k. Furthermore,
Gk can be chosen simple and bipartite.

The proof is constructive and consists of two parts. In §4.4, we construct a family
of graphs with dgon(G) = 6 and dgon(Γ(G)) = dgon(σ2(G)) = 5. The graphs Gk are
then constructed in §4.5 by combining k of these graphs in a certain way.

Although the difference between dgon(G) and dgon(Γ(G)) can be large, as in
Theorem 4.5, the ratio between them is at most 2, as we show in Proposition 4.27.
Hence, for the gap to get arbitrarily large, it is necessary that dgon(Γ(G)) goes to
infinity.

In §4.6, we list a few additional counterexamples (without proof), including a
3-regular graph. Although all counterexamples in this chapter violate Conjecture 4.3,
they nevertheless satisfy the Brill–Noether bound. We do not know whether any of
these examples can be extended to disprove Conjecture 4.2. Additional open problems
are discussed in §4.6 as well.

4.2 Metric graphs and rank-determining sets

Before we dive into the proofs of Theorem 4.4 and Theorem 4.5, we briefly recall the
basics of metric graphs and their divisor theory.

A metric graph is a metric space Γ that can be obtained in the following way. Let
G be a finite multigraph and let ` : E(G)→ R>0 be an assignment of lengths to the
edges of G. To construct Γ, take an interval [0, `(e)] for every edge e ∈ E(G), and glue
these together at the endpoints as prescribed by G. To turn it into a metric space,
equip Γ with the shortest path metric in the obvious way. The metric graph Γ defined
in this way will be denoted Γ(G, `). If ` = 1 is the unit length function, we write
Γ(G) := Γ(G,1).

If the metric graph Γ is constructed from the pair (G, `) as above, then we say
that (G, `) is a model of Γ. We say that a model (G, `) is loopless (resp. simple) if G is
loopless (resp. simple). The valency val(v) of v ∈ Γ is the number of edges incident
with v in any loopless model (G, `) with v ∈ V (G).
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A divisor on a metric graph Γ is an element of the free abelian group on Γ. In
other words, a divisor is a formal sum

∑
v∈Γ avv where av ∈ Z for all v, and av = 0

for all but finitely many v. The notations supp(D), deg(D), D ≥ D′, Div(Γ), Div+(Γ)
and Divd+(Γ) are defined analogously to the discrete case.

The definition of equivalence is a bit different from the discrete case (see §2.2).
A rational function on Γ is a continuous piecewise linear function f : Γ → R with
integral slopes. For each point v ∈ Γ, let av be the sum of the outgoing slopes of f in
all edges incident with v in some appropriate model of Γ. The corresponding divisor∑
v∈Γ avv is called a principal divisor. Two divisors D and D′ are equivalent if D−D′

is a principal divisor.
The rank of a divisor D ∈ Div(Γ) is defined as in the discrete case; that is:

rank(D) := max{k ∈ Z | D−E is equivalent to an effective divisor for all E ∈ Divk+(Γ)}.
The r-th (divisorial) gonality dgonr(Γ) of Γ is the minimum degree of a rank r divisor
on Γ. For r = 1, this is simply called the (divisorial) gonality of Γ: dgon(Γ) := dgon1(Γ).

If G is a finite graph and if Γ := Γ(G) is the corresponding metric graph with
unit lengths, then two divisors D,D′ ∈ Div(G) are equivalent on G if and only if
they are equivalent on Γ; see [Bak08, Rmk. 1.3]. Furthermore, in this case one has
rankG(D) = rankΓ(D) for every divisor D ∈ Div(G); see [HKN13, Thm. 1.3].

Let Γ be a metric graph, and let S ⊆ Γ be a subset. Following [Luo11], we define
the S-restricted rank of a divisor D ∈ Div(Γ) as
rankS(D) := max{k | D−E is equivalent to an effective divisor for all E ∈ Divk+(S)},

where Divk+(S) is the set of degree k effective divisors whose support is contained
in S. The set S is rank-determining if rankS(D) = rank(D) for all D ∈ Div(Γ). The
following theorems are due to Luo.

Theorem 4.6 ([Luo11, Thm. 1.6]; see also [HKN13, Thm. 1.7]). Let Γ be a metric
graph, and let (G, `) be a loopless model of Γ. Then the set V (G) ⊆ Γ is rank-
determining.

Theorem 4.7 ([Luo11, Thm. 1.10]). Let Γ,Γ′ be metric graphs, and let φ : Γ → Γ′
be a homeomorphism. Then S ⊆ Γ is rank-determining if and only if φ[S] ⊆ Γ′ is
rank-determining.

We also formulate a discrete analogue of Theorem 4.6 for the case r = 1. If G is a
graph, then we say that a divisor D ∈ Div(G) reaches the vertex v ∈ V (G) if there is
an effective divisor D′ equivalent to D with D′(v) > 0. Furthermore, we say that a set
S ⊆ V (G) is a strong separator if for every connected component C of V (G) \ S we
have that C is a tree and for every s ∈ S there is at most one edge (in G) between C
and s.

Theorem 4.8 ([DG20, Lem. 2.6]). Let G be a graph, and let S ⊆ V (G) be a strong
separator. If D ∈ Div(G) reaches every s ∈ S, then rank(D) ≥ 1.

The following corollary is immediate from either Theorem 4.6 or Theorem 4.8.

Corollary 4.9. Let G be a loopless multigraph, and let H be a subdivision of G. If
D ∈ Div(H) reaches all vertices of V (G), then rank(D) ≥ 1.
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4.3 Equivalence of the subdivision conjecture and the
metrization conjecture

In this section, we prove Theorem 4.4 using a modification of the proof of [DG20,
Thm. 5.1]. The main idea is the following: given a rank r divisor D on the metric graph
Γ(G), we will change the lengths of the edges between points in V (G) ∪ supp(D) in
such a way that supp(D) is moved to the Q-points of the graph, all the while leaving
the rank of D and the distances between the vertices of G unchanged. We will now
make this precise.

Definition 4.10. Given a metric graph Γ and a model (G, `) of Γ, a G-rescaling
of Γ is a metric graph Γ′ := Γ(G, `′), where `′ ∈ RE(G)

>0 is another length vector. If
D ∈ Div(Γ) with supp(D) ⊆ V (G), then D defines a divisor D′ ∈ Div(Γ′) in the
obvious way, which we call the G-rescaling of D.

We point out that Γ and its G-rescaling Γ′ can be isometric even if ` 6= `′. This
is because vertices of degree 2 can be moved around, as illustrated in Figure 4.1. In
that case the vertex set V (G) is embedded into Γ ∼= Γ′ in two different ways, and the
divisor D and its G-rescaling D′ could be different divisors on the same metric graph.
This will be the main tool in our proof of Theorem 4.4.

v1 v2 v3
Γ :

v1 v2 v3
Γ′ :

Figure 4.1: A metric graph Γ = Γ(G, `) and a rescaling Γ′ = Γ(G, `′) with `′ 6= ` such
that Γ and Γ′ are isometric.

To rescale from real to rational edge lengths we use the following lemma.

Lemma 4.11. Let A ∈ Qm×n and b ∈ Qm. If the linear system Ax = b has a solution
x ∈ Rn>0, then it also has a solution x′ ∈ Qn>0.

Proof. Since the system has a solution x ∈ R>0, the solution space {z | Az = b} is a
non-empty affine Q-subspace of Rn. Choose an affine rational basis y0, . . . , yd ∈ Qn for
the solution space and write x = α(0)y0+· · ·+α(d)yd with α(0)+· · ·+α(d) = 1. For every
i ∈ {1, . . . , d}, choose a rational sequence {α(i)

k }∞k=1 such that limk→∞ α
(i)
k = α(i), and

define α(0)
k := 1−α(1)

k − · · · −α
(d)
k . Then limk→∞ α

(0)
k y0 + · · ·+α

(d)
k yd = x. Since Rn>0

is an open neighbourhood of x, there is a K0 ∈ N such that α(0)
k y0 + · · ·+α

(d)
k yd ∈ Rn>0

for all k ≥ K0. This gives a sequence of solutions in Qn>0 converging to x. Any one of
these suffices. �

We now come to the main result of this section. This is an extension of [DG20,
Thm. 5.1], though the result of Theorem 4.12(a) was already implicit in the proof of
[GK08, Prop. 3.1].
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Theorem 4.12. Let Γ be a metric graph, and let D ∈ Div+(Γ) be an effective divisor.

(a) There exists a loopless model (G, `) with supp(D) ⊆ V (G) and a rational length
vector `′ ∈ QE(G)

>0 such that the G-rescaling D′ of D in Γ′ := Γ(G, `′) satisfies
rankΓ′(D′) ≥ rankΓ(D).

(b) If Γ is a metric Q-graph, then the length vector `′ in (a) can be chosen in such
a way that Γ′ is isometric to Γ.

Proof. (a) Write r := rankΓ(D), and let S ⊆ Γ be a finite rank-determining set.
For every E ∈ Divr+(S), choose a divisor DE ∈ Div(Γ) and a rational function
fE : Γ→ R such that DE ≥ E and DE = D + div(fE). Furthermore, choose a
loopless model (G, `) of Γ such that

S ∪ supp(D) ∪
⋃

E∈Divr+(S)

supp(DE) ⊆ V (G).

Since D,DE ≥ 0 and DE −D = div(fE), we have supp(div(fE)) ⊆ supp(D) ∪
supp(DE) ⊆ V (G), so V (G) contains all points of non-linearity of fE , for every
E ∈ Divr+(S).
Choose an orientation of the edges of G. For every cycle C in G, choose a circular
orientation of the edges of C, and define χC : E(G)→ {−1, 0, 1} by setting

χC(e) :=


1, if e ∈ E(C) and the orientations of G and C agree on e;

−1, if e ∈ E(C) and the orientations of G and C disagree on e;

0, if e /∈ E(C).

For E ∈ Divr+(S) and e ∈ E(G), let φ(fE , e) ∈ Z denote the slope of fE on
e, in the forward direction of e. Note that a G-rescaling Γ(G, `′) of Γ admits
rational functions f ′E whose slope on e equals φ(fE , e), for all E ∈ Divr+(S) and
all e ∈ E(G), if and only if y = `′ is a solution to following system of equations:∑

e∈E(G)

φ(fE , e)χC(e) y(e) = 0, for every cycle C and every E ∈ Divr+(S). (4.13)

Since the coefficients (that is, φ(fE , e)χC(e)) and constants (that is, 0) of this
linear system are integral, and since y = ` ∈ RE(G)

>0 is a solution, it follows from
Lemma 4.11 that there exists a solution `′ ∈ QE(G)

>0 .
Consider the G-rescaling Γ′ := Γ(G, `′). Let D′ be the corresponding G-rescaling
of D, and let D′E be the G-rescaling of DE for all E ∈ Divr+(S). By the above,
we may choose rational functions f ′E on Γ′ such that the slope of f ′E on e equals
φ(fE , e), for all E ∈ Divr+(S) and all e ∈ E(G). Then clearly D′E = D′+div(f ′E),
so the D′E are equivalent to D′. Since D′E ≥ E for every E ∈ Divr+(S), it
follows that rankS(D′) ≥ r. By Theorem 4.7, S is rank-determining in Γ′, so
rankΓ′(D′) = rankS(D′) ≥ r.
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(b) Choose a rational model (G̃, ˜̀) of Γ. We repeat the argument of (a) with the
following modifications. First, we add the requirement that V (G̃) ⊆ V (G). Then
every edge ẽ in G̃ corresponds to a path in G, which we denote Pẽ. Second, we
extend the linear system from (4.13) by adding the following constraints:∑

e∈E(Pẽ)

y(e) = ˜̀(ẽ), for all ẽ ∈ E(G̃). (4.14)

Again, the coefficients and constants of the linear system are rational, and
y = ` ∈ RE(G)

>0 is a solution, so it follows from Lemma 4.11 that there is a
solution `′ ∈ QE(G)

>0 . The rest of the proof of (a) carries through unchanged, and
the extra constraints from (4.14) ensure that Γ′ is isometric to Γ. �

Proof of Theorem 4.4. A rank r divisor on σk(G) also defines a rank r divisor on
Γ(σk(G),1/k) = Γ(G,1). Therefore dgonr(Γ(G)) ≤ mink∈N1 dgonr(σk(G)).

Conversely, let D ∈ Div+(Γ(G)) be an effective divisor of rank r. By Theo-
rem 4.12(b), there exists a divisor D′ ∈ Div+(Γ(G)) with deg(D′) = deg(D) and
rank(D′) ≥ rank(D) which is supported on the Q-points of Γ(G). Then D′ is sup-
ported on the vertices of the model (σk(G),1/k) of Γ(G) for some k ∈ N1, so we have
dgonr(σk(G)) ≤ dgonr(Γ(G)). �

Remark 4.15. Analogously to the proof of the main result of [BWZ21], the linear
system from the proof of Theorem 4.12(b) forms a certificate that dgonr(Γ) ≤ d. If r
and d are fixed, then this certificate has size polynomial in the size of Γ, so it follows
that Metric Divisorial r-Gonality for Q-graphs belongs to the complexity class
NP. (For details, refer to the proof in [BWZ21].) This problem is also known to be
NP-hard: for r = 1, this can be deduced from the proof of [GSW20, Thm. 3.5] (see
also [EEH+22, Thm. 1.3], where a different proof is given), and for arbitrary r ≥ 1
this was proved in [MT22].

Remark 4.16. The proof of Theorem 4.12(b) can also be used to find an upper bound
on the size of the subdivision needed to get equality in Theorem 4.4. One such upper
bound can be obtained by following the proof of [BWZ21, Cor. 6.2]. We sketch a way
to improve this bound. Let G̃ be a graph with n vertices and m edges, let Γ := Γ(G̃)
be the corresponding unit metric graph, and let D ∈ Div(Γ) be a divisor of degree
d and rank r. We repeat the proof of Theorem 4.12(b) with respect to the rational
model (G̃,1) and the rank-determining set S := V (G̃) (use Theorem 4.6). Without
loss of generality, we may assume that D is equal to one of the DE . Then the number
of variables of the linear system is |E(G)| ≤ m+ dnr.

Note that we can also allow a solution `′ ≥ 0 instead of `′ > 0. This has the effect of
contracting some of the edges of the model G from the proof of Theorem 4.12, but the
equations from (4.14) ensure that the resulting graph Γ′ is still isometric to Γ. Hence
(4.13) and (4.14) determine a linear program Ax = b, x ≥ 0, and the entries of A are
integers which can be shown to be bounded in absolute value by d. The set of feasible
solutions is non-empty and bounded by (4.14), so there is a basic feasible solution x
(see e.g. [MG07, Thm. 4.2.3]). Hence there is a subset B ⊆ {1, . . . , |E(G)|} such that
xB = A−1

B b and xBc = 0. Therefore the lowest common denominator of the entries
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of x is at most |det(AB)| ≤
∑
σ∈Sym(B)

∏
i∈B |Aiσ(i)| ≤ |B|! · d|B|. In conclusion, if

the unit metric graph Γ = Γ(G̃,1) has a divisor of rank r and degree d, then so does
σk(G̃) for some k ≤ (m+ dnr)! · dm+dnr .

4.4 A graph G such that dgon(σ2(G)) < dgon(G)

In this section we construct a class of graphs, which we call “tricycle graphs”. We
show that the divisorial gonality of any tricycle graph G is strictly greater than the
divisorial gonality of its 2-subdivision σ2(G), and thus of its associated metric graph
Γ(G).

Definition 4.17. A tricycle graph is a multigraph G that can be obtained in the
following way:

• Start with three disjoint cycles C1, C2, C3, each on at least 2 vertices (a cycle
on 2 vertices consists of two vertices connected by two parallel edges).

• Choose two distinct vertices on each of these cycles, say v−i , v+
i ∈ V (Ci).

• Add the edges v+
1 v
−
2 , v+

2 v
−
3 and v+

3 v
−
1 to the graph.

• Add another vertex v0 and six new edges to G, connecting v0 to the six vertices
v−1 , v

+
1 , v

−
2 , v

+
2 , v

−
3 , v

+
3 .

• Subdivide the six edges incident with v0.

We call the vertices v−i , v+
i ∈ V (Ci) the transition vertices, the edges v+

1 v
−
2 , v+

2 v
−
3 and

v+
3 v
−
1 the transition edges, and v0 the central vertex. The outer ring is the union of

the cycles C1, C2, C3 and the transition edges.

Figure 4.2 illustrates an example of a tricycle graph, along with the minimal tricycle
Tm and the minimal simple tricycle Tms. Note that a multigraph (resp. simple graph)
G is a tricycle if and only if G can be obtained by taking a subdivision of the minimal
tricycle Tm (resp. the minimal simple tricycle Tms) in such a way that the transition
edges are not subdivided.

In what follows, we will show that every tricycle graph G satisfies dgon(G) = 6
and dgon(Γ(G)) = dgon(σ2(G)) = 5. First of all, we exhibit a positive rank divisor of
degree 5 on σ2(G).

Proposition 4.18. Let G be a tricycle graph. Then dgon(σ2(G)) ≤ 5.

Proof. Let D0 ∈ Div(σ2(G)) be the effective divisor with two chips on v0 and one chip
on the midpoint of each of the transition edges v+

1 v
−
2 , v+

2 v
−
3 , v+

3 v
−
1 . Then deg(D0) = 5.

In light of Corollary 4.9, in order to show that D0 has positive rank, it suffices to
prove that D0 reaches v0 and the transition vertices v−1 , v+

1 , v
−
2 , v

+
2 , v

−
3 , v

+
3 .

Clearly D0 reaches v0, for we have D0(v0) > 0. Now fix i ∈ {1, 2, 3}. To reach
the transition vertices v−i and v+

i , let Si ⊆ V (σ2(G)) be the connected component of
σ2(G) \ supp(D0) that contains the cycle Ci. Then the subset Sci can be fired, and
doing so yields an effective divisor Di with Di(v−i ) = Di(v+

i ) = 1. This shows that D0
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v0

v−1

v+
1v−2

v+
2

v−3 v+
3

C1C2

C3

(a) a generic tricycle graph;

v0

v−1

v+
1v−2

v+
2

v−3 v+
3

(b) the minimal
tricycle Tm;

v0
v−1

v+
1v−2

v+
2

v−3 v+
3

(c) the minimal
simple tricycle Tms.

Figure 4.2: A generic tricycle, the minimal tricycle, and the minimal simple tricycle,
with the transition vertices and the transition edges highlighted for emphasis.

reaches v−i and v+
i , for all i ∈ {1, 2, 3}. It follows that D0 is a positive rank divisor on

σ2(G), hence dgon(σ2(G)) ≤ 5. �

Evidently, the divisor from Proposition 4.18 is not supported on vertices of G. The
remainder of this section is dedicated to showing that G has no positive rank divisors
of degree 5. Along the way, we also prove that dgon(Γ(G)) ≥ 5.

In Lemma 4.21 below, we show that every positive rank v0-reduced divisor of
degree at most 5 on a subdivision of the minimal tricycle Tm must be of a very specific
form. This will subsequently be used to show that dgon(Γ(G)) = dgon(σ2(G)) = 5
(see Corollary 4.23) and dgon(G) = 6 (see Theorem 4.24) for every tricycle graph G.

For convenience, we use the following notation.

Definition 4.19. Let G be a graph and let H be a subdivision of G. For e =
uw ∈ E(G), let P e[u,w] ⊆ H denote the path uv1v2 · · · vkw in H corresponding to the
subdivided edge e. Furthermore, let P e(u,w) := P e[u,w] \ {u,w}, P e[u,w) := P e[u,w] \ {w}
and P e(u,w] := P e[u,w] \ {u} denote the corresponding open and half-open subpaths. If
e is the only edge between u and w, then we omit the superscript and simply write
P[u,w], P(u,w), P[u,w) and P(u,w].

The following simple lemma is essential to our proof, and will be used repeatedly.

Lemma 4.20. Let G be a graph and let v0 ∈ V (G). Let e1, . . . , ek ∈ V (G) be the
edges incident with v0, and let vi ∈ V (G) \ {v0} be the other endpoint of ei for every i.
Moreover, let H be a subdivision of G, let D ∈ Div(H) be a positive rank v0-reduced
divisor on H, and let w ∈ V (H) be a vertex with D(w) = 0.
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Then an execution of Dhar’s burning algorithm on the triple (H,D,w) has the
following properties:

(a) v0 is not burned;

(b) If I ⊆ {i ∈ [k] : vi is burned}, then
⋃
i∈I P

ei
[v0,vi) contains at least |I| chips.

Proof. (a) Since D has positive rank and D(w) = 0, the divisor D cannot be w-
reduced, so Dhar’s algorithm returns a non-empty subset U ⊆ V (G) that can be
fired. Since D is v0-reduced, we must have v0 ∈ U , which means that v0 is not
burned.

(b) Partition I as I = I0 ∪ I1, where i ∈ I0 if all vertices of the path P ei(v0,vi] are
burned, and i ∈ I1 otherwise. Since v0 is not burned, it has at most D(v0)
burning neighbours, so |I0| ≤ D(v0). Moreover, if i ∈ I1, then vi is burned, but
not all vertices of the path P ei(v0,vi] are burned, so there must be at least one chip
on P ei(v0,vi). The conclusion follows. �

We will apply Lemma 4.20 to an arbitrary subdivision of the minimal tricycle
Tm. For this we use the following terminology. Using notation from Definition 4.19, if
H is a subdivision of Tm, then the three transition edges v+

1 v
−
2 , v+

2 v
−
3 , v+

3 v
−
1 of Tm

correspond to the paths P[v+
1 ,v
−
2 ], P[v+

2 ,v
−
3 ], P[v+

3 ,v
−
1 ] in H, which we call the transition

paths. The transition vertices of H are the images in H of the original six transition
vertices v−1 , v+

1 , v
−
2 , v

+
2 , v

−
3 , v

+
3 of Tm, or in other words, the endpoints of the transition

paths in H. (This is consistent with our definition of the transition vertices of a tricycle
graph, which can also be seen as a subdivision of Tm.)

Lemma 4.21. Let H be a subdivision of the minimal tricycle Tm. If D ∈ Div(H) is
a positive rank v0-reduced divisor with deg(D) ≤ 5, then D must have two chips on v0
and exactly one chip on each of the transition paths P[v+

1 ,v
−
2 ], P[v+

2 ,v
−
3 ], P[v+

3 ,v
−
1 ].

Proof. First, we prove that there must be at least one chip on every transition path.
Suppose, for the sake of contradiction, that one of the transition paths, say P[v+

1 ,v
−
2 ],

has no chips at all. We start an execution of Dhar’s burning algorithm on (H,D, v+
1 ).

Let H+
2 ⊆ H be the union of the cycle C2 and the transition path P[v+

2 ,v
−
3 ].

We claim that the number of chips on H+
2 plus the number of burned transition

vertices in H+
2 is at least 3. To that end, note first of all that v−2 is burned, since there

is no chip on the transition path P[v+
1 ,v
−
2 ]. Now we distinguish three cases:

• If v+
2 is not burned, then there must be at least two chips on C2 to stop the

fire spreading from v−2 to v+
2 . In this case, H+

2 contains at least one burned
transition vertex (namely v−2 ) and at least two chips, for a total of at least 3.

• If v+
2 is burned but v−3 is not burned, then there must be at least one chip on

the half-open transition path P(v+
2 ,v
−
3 ]. In this case, H+

2 contains two burned
transition vertices (v−2 and v+

2 ) and at least one chip, for a total of at least 3;
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• If both v+
2 and v−3 are burned, then H+

2 contains three burned transition vertices
(v−2 , v+

2 and v−3 ).

Likewise, write H−1 := C1∪P[v−1 ,v
+
3 ]. Analogously, the number of chips plus the number

of burned transition vertices on H−1 is at least 3. Since H+
2 and H−1 are disjoint, the

total number of chips on the outer ring plus the total number of burned transition
vertices is at least 6. But since the transition vertices are exactly the Tm-neighbours
of v0, and since the half-open paths P[v0,v

±
i

) are disjoint from the outer ring, it follows
from Lemma 4.20(b) that deg(D) ≥ 6, which is a contradiction. We conclude that
every transition path must have at least one chip.

Second, we prove that there must be two chips on v0. Since the total number of
chips is at most 5, there must be a cycle Ci on the outer ring with at most one chip.
Choose w ∈ V (Ci) with D(w) = 0 and start an execution of Dhar’s burning algorithm
on (H,D,w). Since there is at most one chip on Ci, the entire cycle Ci is burned. It
follows from Lemma 4.20(b) that there are at least two chips on P[v0,v

−
i

) ∪ P[v0,v
+
i

).
Therefore the number of chips on the outer ring is at most 3, so there must be
another cycle Cj (j 6= i) on the outer ring with at most one chip. By an analogous
argument, there are at least two chips on P[v0,v

+
j

) ∪ P[v0,v
−
j

). But since the outer ring
has at least 3 chips (one on every transition path), there can be at most 2 chips on
P[v0,v

−
i

) ∪ P[v0,v
+
i

) ∪ P[v0,v
−
j

) ∪ P[v0,v
+
j

). The only way to meet these requirements is if
there are exactly two chips on v0.

To conclude the proof, note that 2 chips on v0 and at least 1 chip on every
transition path add up to at least 5 chips in total. Since deg(D) ≤ 5, all chips have
been accounted for. In particular, there cannot be more than one chip on each of the
transition paths. �

Lemma 4.21 shows that every positive rank v0-reduced divisor D with deg(D) ≤ 5
must in fact satisfy deg(D) = 5, so the following corollary is immediate.

Corollary 4.22. Let H be a subdivision of the minimal tricycle Tm. Then one has
dgon(H) ≥ 5.

In particular, this enables us to compute the metric gonality of an arbitrary tricycle
graph:

Corollary 4.23. Let G be a tricycle graph. Then dgon(Γ(G)) = dgon(σ2(G)) = 5.

Proof. It follows from Proposition 4.18 that dgon(Γ(G)) ≤ dgon(σ2(G)) ≤ 5. Further-
more, since every subdivision of G is a also subdivision of the minimal tricycle Tm, it
follows from Corollary 4.22 and Theorem 4.4 that

dgon(Γ(G)) = min
k∈N1

dgon(σk(G)) ≥ 5. �

All that remains is to prove that every tricycle graph has divisorial gonality 6. To
do so, we once again use the preceding lemmas.
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Theorem 4.24. Every tricycle graph G satisfies dgon(G) = 6.

Proof. Suppose, for the sake of contradiction, that dgon(G) ≤ 5. Then we may choose
a positive rank v0-reduced divisor D ∈ Div(G) with deg(D) ≤ 5. We interpret G as a
subdivision of the minimal tricycle Tm. It follows from Lemma 4.21 that D has two
chips on v0 and exactly one chip on every transition path. Since G is a tricycle graph,
the transition edges of Tm are not subdivided. Therefore a chip on a transition edge
must lie on one of the transition vertices.

By the above, the divisor D has between 0 and 2 chips on each of the cycles C1,
C2, C3 on the outer ring, and all such chips must lie on the transition vertices. Since
the total number of chips on the outer ring is odd, there must be a cycle Ci with
exactly one chip. Assume without loss of generality that C1 is such a cycle, and that
D(v−1 ) = 0 and D(v+

1 ) = 1.
We start an execution of Dhar’s burning algorithm on (G,D, v−1 ). Since there is

only one chip on C1, the entire cycle C1 is burned. In particular, the vertex v+
1 is

burned. The transition edge v+
1 v
−
2 has exactly one chip, which is on v+

1 , so the fire
spreads via this edge to the vertex v−2 , which is also burned. But now we see that at
least three Tm-neighbours of v0 are burned (namely, v−1 , v+

1 and v−2 ), so it follows from
Lemma 4.20(b) that there must be at least 3 chips on P[v0,v

−
1 ) ∪ P[v0,v

+
1 ) ∪ P[v0,v

−
2 ).

This is a contradiction, and we conclude that dgon(G) ≥ 6.
To see that dgon(G) ≤ 6, note that the set {v−1 , v+

1 , v
−
2 , v

+
2 , v

−
3 , v

+
3 } of all transition

vertices is a strong separator. Therefore the effective divisor with one chip on each of
the transition vertices has positive rank, by Theorem 4.8, so dgon(G) ≤ 6. �

This concludes the proof of validity of our counterexample. In summary, every
tricycle graph G satisfies dgon(G) = 6 and dgon(Γ(G)) = dgon(σ2(G)) = 5.

4.5 A family of examples with larger gaps

In this section, we combine tricycle graphs in a certain way in order to obtain graphs
Gk with dgon(Gk) = 6k and dgon(σ2(Gk)) = dgon(Γ(Gk)) = 5k, which shows that
the gap between dgon(Γ(G)) and dgon(G) can be arbitrarily large. Furthermore, we
show that dgonr(Γ(G)) and dgonr(G) differ by at most a factor 2.

Definition 4.25. Given a (connected) simple graph H and an integer t ≥ 1, an
(H, t)-skewered graph is a graph G that can be obtained in the following way:

• Start with a disjoint union of graphs G1, . . . , Gn, where n = |V (H)|.

• For every i ∈ [n], choose a base vertex wi ∈ V (Gi);

• For every edge ij ∈ E(H), add t parallel edges between wi and wj , and subdivide
these edges in an arbitrary way.

An example of a (K2, 12)-skewered graph is given in Figure 4.3 below.

Lemma 4.26. Let G be an (H, t)-skewered graph with t ≥
∑|V (H)|
i=1 dgon(Gi). Then

dgon(G) =
∑|V (H)|
i=1 dgon(Gi).
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Proof. First, we prove that dgon(G) ≤
∑|V (H)|
i=1 dgon(Gi). For every i, choose a positive

rank divisor Di ∈ Div(Gi) of minimum degree. This defines a divisor D ∈ Div(G) with
deg(D) =

∑|V (H)|
i=1 dgon(Gi). We prove that D has positive rank. By Corollary 4.9, it

suffices to prove that D reaches all vertices of every Gi. Let v ∈ V (Gi), and choose an
effective divisor D′i ∈ Div(Gi) equivalent to Di with D′i(v) > 0. By Proposition 2.1,
we can go from Di to D′i by subsequently firing an increasing sequence U1 ⊆ · · · ⊆
Uk ⊆ V (Gi) of valid sets. Define U ′1 ⊆ · · · ⊆ U ′k ⊆ V (G) by

U ′j :=
{
Uj , if wi /∈ Uj ;

Uj ∪ V (Gi)c, if wi ∈ Uj .

Then, starting with D and subsequently firing the sets U ′1 ⊆ · · · ⊆ U ′k, we obtain
an equivalent divisor D′ = D −Di +D′i ∈ Div(G). In other words, we can play the
chip-firing game on Gi while leaving the remainder of G unchanged. This shows that
D reaches all vertices of every Gi, so it follows from Corollary 4.9 that rank(D) ≥ 1.

Next, we prove that dgon(G) ≥
∑|V (H)|
i=1 dgon(Gi). Suppose, for the sake of con-

tradiction, that D ∈ Div(G) is a positive rank w1-reduced divisor with deg(D) <∑|V (H)|
i=1 dgon(Gi). We claim that D is wi-reduced for all i. To that end, let S ⊆ V (G)

be a subset for which there is some ij ∈ E(H) with wi ∈ S and wj /∈ S. Since there
are t parallel paths in G between wi and wj , it follows from the max-flow min-cut
theorem that |E(S, Sc)| ≥ t. Therefore, |E(S, Sc)| ≥ t ≥

∑|V (H)|
i=1 dgon(Gi) > deg(D),

so S cannot be fired. Thus, if S ⊆ V (G) is a subset which can be fired, then w1 ∈ S
(because D is w1-reduced), and therefore wi ∈ S for all i (because H is connected).
This proves our claim that D is wi-reduced for all i.

Next, we claim that D restricts to a positive rank divisor on every Gi. Indeed,
let v ∈ V (Gi) for some i, and choose an equivalent effective divisor D′ ∈ Div(G)
with D′(v) > 0. By Proposition 2.1, we can go from D to D′ by subsequently firing
an increasing sequence U1 ⊆ · · · ⊆ Uk of valid sets. Since D is wi-reduced, we have
wi ∈ U1, and therefore wi ∈ Uj for all j. Since wi is the only vertex in Gi connected
to anything outside of Gi, the firing sequence U1 ⊆ · · · ⊆ Uk only ever sends chips
out of Gi, and never into Gi. Hence it restricts to a valid firing sequence in Gi,
which shows that the restricted divisor D|Gi ∈ Div(Gi) reaches v. This proves our
claim that D restricts to a positive rank divisor on every Gi. But now it follows that
deg(D) ≥

∑|V (H)|
i=1 dgon(Gi), contrary to our assumption. This is a contradiction. �

Proof of Theorem 4.5. Let G1, . . . , Gk be tricycle graphs, and let H be an arbitrary
connected simple graph on k vertices. Choose t ≥ 6k, and let G be an (H, t)-skewered
graph obtained from the graphs G1, . . . , Gk. Then it follows from Lemma 4.26 that
dgon(G) = 6k. Furthermore, for every s ∈ N1, the subdivided graph σs(G) is an
(H, t)-skewered graph relative to the base graphs σs(G1), . . . , σs(Gk), so it follows from
Lemma 4.26 and Corollary 4.23 that

dgon(σs(G)) =
k∑
i=1

dgon(σs(Gi)) ≥
k∑
i=1

dgon(Γ(Gi)) = 5k,
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w1

w2

Figure 4.3: A simple, bipartite, (K2, 12)-skewered tricycle graph G with dgon(G) = 12
and dgon(Γ(G)) = dgon(σ2(G)) = 10.

with equality if s = 2. Therefore dgon(Γ(G)) = dgon(σ2(G)) = 5k.
A simple and bipartite realization can be obtained by choosing the tricycles

G1, . . . , Gk simple and bipartite (e.g. the tricycles skewered together in Figure 4.3),
and choosing an appropriate subdivision in the process of Definition 4.25. �

Theorem 4.5 shows that the discrete and metric divisorial gonality can be arbitrarily
far apart. The following simple result shows that large gaps like this can only occur
when the metric gonality is also large.

Proposition 4.27. For every graph G and every integer r ≥ 1, one has dgonr(G) ≤
2 dgonr(Γ(G))− r.

Proof. Let D1 ∈ Div(Γ(G)) be a divisor of rank r and degree d := dgonr(Γ(G)). Choose
some E ∈ Divr+(G), and choose a divisor D′1 ∼ D1 such that D′1 ≥ E. Let D2 ∈ Div(G)
be the divisor obtained from D′1 by replacing every chip on the interior of some edge
uv ∈ E(G) by one chip on u and one chip on v. Since D′1 ≥ E and supp(E) ⊆ V (G),
the divisor D′1 has at least r chips on vertices of G, so deg(D2) ≤ 2d − r. By firing
everything but the interior of the edge uv, we can move the newly added chips on u
and v so that one of the two reaches the original position of the chip in D′1 and the
other becomes superfluous. This shows that D2 is equivalent on Γ to a divisor D′2 with
D′2 ≥ D′1, so rankG(D2) = rankΓ(D2) ≥ r, by [HKN13, Thm. 1.3]. �

4.6 Computational results and open questions

Apart from the tricycle graphs, we have found a few other counterexamples, which
we sketch here. First of all, the proofs from §4.4 still hold if each of the cycles C1, C2
and C3 is replaced by any graph C which has two distinct vertices v−, v+ such that:
(i) there are two edge-disjoint paths between v− and v+; (ii) the divisor v− + v+ has
positive rank on C.
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Second, we have found a number of counterexamples which we have verified
computationally (using a brute force gonality algorithm), but for which we have no
human-readable proof. Most of these have a structure very similar to a tricycle graph:
there are 3 cycles which are connected to one another and to a central vertex in some
way. A small selection of these counterexamples is given in Figure 4.4. In each of these,
the optimal divisor on the 2-regular subdivision σ2(G) has 3 chips on the midpoints of
certain edges, and 2 or 3 chips on the central vertex, and dgon(G) = dgon(σ2(G)) + 1.
Note that the counterexample depicted in Figure 4.4(c) is 3-regular. We have also
found counterexamples where the outer ring has 5 or 7 cycles; see Figure 4.4(d). We
have not found a counterexample with 9 or more cycles on the outer ring. See [DSW21]
for code and additional figures.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.4: Additional counterexamples to Conjecture 4.3(a) for k = 2 and r = 1.
The small cyan-coloured hexagons represent the chips of an optimal divisor on the
2-regular subdivision. In each example, the divisorial gonality of the original graph is
one higher.

We have tested Conjecture 4.3(a) for k = 2 and r = 1 for all simple connected
graphs on at most 10 vertices. These graphs were generated using the program
geng from the gtools suite packaged with nauty [MP14, MP20], and tested using
custom code that we wrote to compute the divisorial gonality of a graph [DSW21].
We have found that every simple connected graph with 9 or fewer vertices satisfies
dgon(σ2(G)) = dgon(G), and that there are exactly 29 counterexamples with 10
vertices (and no parallel edges), including the minimal simple tricycle Tms and the
graphs depicted in Figure 4.4(e)–(h). All 29 minimal simple counterexamples are
depicted in Figure 4.5. For code to reproduce this list, see [DSW21]. There we have
also included optimized code to check whether the divisorial gonality of a given graph
satisfies the Brill–Noether bound, which we have used to verify Conjecture 4.2 for all
simple connected graphs with at most 13 vertices. No counterexamples were found.
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We close with a few open problems.

1. As mentioned before, the Brill–Noether conjecture [Bak08, Conj. 3.9(1)] remains
open.

2. What is the smallest constant c such that dgon(G) ≤ cdgon(Γ(G)) for all graphs
G? Our examples from Theorem 4.5 show that c ≥ 6

5 , and Proposition 4.27
shows that c ≤ 2.

3. All counterexamples presented in this chapter satisfy dgon(σ2(G)) < dgon(G).
Note that this implies that dgon(σk(G)) < dgon(G) for every even number k. Is
there also a graph G such that dgon(σk(G)) < dgon(G) for some odd number
k, or a graph G such that dgon(σ2(G)) = dgon(G) but dgon(σk(G)) < dgon(G)
for some k > 2?

4. Is there a graph G such that dgon(Γ(G)) = dgon(G), but dgonr(Γ(G)) <
dgonr(G) for some r ≥ 2?
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Figure 4.5: All 29 minimal simple counterexamples to Conjecture 4.3(a), with 10
vertices and no parallel edges. The small cyan-coloured hexagons represent the chips
of an optimal divisor on the 2-regular subdivision. In each example, the divisorial
gonality of the original graph is one higher.
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Chapter 5
The slice rank method

The slice rank method is a new technique in extremal combinatorics, developed
in 2016 by Croot, Lev and Pach [CLP17], Ellenberg and Gijswijt [EG17], and
Tao [Tao16]. It has been used to solve the cap set problem and make progress
on several other open problems in extremal combinatorics, and will be the main
focus of Part II of this dissertation. In this introductory chapter, we cover the
basics of this technique, and we show how it can be applied to problems in
extremal combinatorics.

Introduction

For several decades, the cap set problem had been one of the central open problems
in extremal combinatorics. This problem asks whether or not there exists a constant
c < 3 such that every subset S ⊆ Fn3 of size at least cn contains an affine line. It
is related to many other open problems in combinatorics, such as the Erdős–Turán
conjecture on arithmetic progressions, the sunflower conjecture, and the computational
complexity of matrix multiplication [ASU13].

In 2016, the cap set problem was solved by Ellenberg and Gijswijt [EG17], using
a new technique developed earlier that year by Croot, Lev and Pach [CLP17]. Their
proof was subsequently recast by Tao in terms of a new rank function for tensors,
called slice rank [Tao16], which has led this set of techniques to be called the slice
rank method. This will be the main topic of Part II of this dissertation.

In this chapter, we cover the definitions and basic properties of slice rank, and we
discuss applications of the method to three problems in extremal combinatorics: the
cap set problem, tricoloured sum-free sets, and sets without non-trivial solutions to a
system of balanced linear equations. This last result will be the point of departure for
the remainder of Part II.

5.1 Slice rank

Let A1, . . . , Ak be finite sets and let F be a field. A hypermatrix is a function T :
A1 × · · · ×Ak → F. A slice of a k-dimensional hypermatrix T is a (k − 1)-dimensional
hypermatrix T ′ of the form T ′(x1, . . . , xk−1) = T (x1, . . . , xi−1, a, xi, . . . , xk−1) for
some fixed i ∈ [k] and a ∈ Ai. (For example, a slice of a matrix is a row or column.)

47
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A hypermatrix is called diagonal if A1 = · · · = Ak and T (x1, . . . , xk) = 0 whenever
x1, . . . , xk are not all equal.

The hypermatrix T : A1 × · · · ×Ak → F is said to have slice rank one if T 6= 0 and
there exists i ∈ [k] and functions f : Ai → F and g : A1×· · ·×Ai−1×Ai+1×· · ·×Ak → F
such that T (x1, . . . , xk) = f(xi)g(x1, . . . , xi−1, xi+1, . . . , xk) for all (x1, . . . , xk) ∈
A1 × · · · × Ak. The slice rank of an arbitrary hypermatrix T , denoted sr(T ), is the
minimum integer r such that T can be written as the sum of r hypermatrices of
slice rank one. (For a coordinate-free definition of slice rank, using tensors instead of
hypermatrices, see [TS16].)

For k = 2, the slice rank is simply the matrix rank, so slice rank is a generalization
of matrix rank to hypermatrices. However, it differs from the usual notion of (tensor)
rank, as the only hypermatrices of tensor rank one are those of the form T (x1, . . . , xk) =
f1(x1)f2(x2) · · · fk(xk).

We proceed to prove the basic properties of the slice rank.

Proposition 5.1. Let T : A1 × · · · ×Ak → F be a hypermatrix. Then:

(a) one has sr(T ) ≤ min(|A1|, . . . , |Ak|);

(b) for all subsets B1 ⊆ A1, . . . , Bk ⊆ Ak, one has sr(T |B1×···×Bk) ≤ sr(T );

(c) if T =
∑k
i=1
∑ri
j=1 fij(xi)gij(x1, . . . , xi−1, xi+1, . . . , xk) is an optimal slice rank

decomposition of T (that is, if sr(T ) =
∑k
i=1 ri), then for each i ∈ [k] the vectors

fi1, . . . , firi ∈ FAi are linearly independent, and likewise for each i ∈ [k] the
slices gi1, . . . , giri ∈ FA1×···×Ai−1×Ai+1×···×Ak are linearly independent.

Proof. (a) For every i ∈ [k] we have

T (x1, . . . , xk) =
∑
a∈Ai

χa(xi)T (x1, . . . , xi−1, a, xi+1, . . . , xk),

where χa : Ai → F denotes the indicator vector of {a}. This is a valid slice rank
decomposition of T , so we have sr(T ) ≤ min(|A1|, . . . , |Ak|).

(b) Every slice rank decomposition T =
∑k
i=1
∑ri
j=1 fij(xi)gij(x1, . . . , xi−1, xi+1, . . . , xk)

of T restricts to a slice rank decomposition of T |B1×···×Bk , so sr(T |B1×···×Bk) ≤
sr(T ).

(c) Suppose that λ1fi1 + · · ·+ λrifiri = 0 with λ1, . . . , λri not all equal to zero. By
rearranging, we may assume that λri 6= 0. But then we have firi = − 1

λri
(λ1fi1 +

· · ·+ λri−1fi,ri−1), hence

ri∑
j=1

fij(xi)gij(x1, . . . , xi−1, xi+1, . . . , xk)

=
ri−1∑
j=1

fij(xi)
(
gij(x1, . . . , xi−1, xi+1, . . . , xk)− 1

λri
gir1(x1, . . . , xi−1, xi+1, . . . , xk)

)
.
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This reduces the number of terms in the slice rank decomposition by one, con-
trary to the assumption that the original decomposition was optimal. Therefore
fi1, . . . , firi must be linearly independent. Analogously, gi1, . . . , giri are linearly
independent. �

In applications of the slice rank method to problems in extremal combinatorics,
one must compute the slice rank of an infinite family of (ever growing) hypermatrices.
This can be very challenging, as even computing the slice rank of a single hypermatrix
is NP-hard [BIL+21]. However, for certain special families of hypermatrices, the slice
rank is relatively easy to compute. In particular, in Proposition 5.3 below we prove
a direct formula for the slice rank of a diagonal hypermatrix. For this we need the
following lemma.

Lemma 5.2. Let F be a field and let V ⊆ Fn be a linear subspace. Then there exists
a vector v ∈ V with at least dim(V ) non-zero entries.

Proof. Choose a basis B = {b1, . . . , bd} of V , and let M be the matrix whose rows are
b1, . . . , bd. After performing Gaussian elimination, we obtain a matrix M ′ in reduced
row echelon form which is row equivalent to M . If b′1, . . . , b′d denote the rows of M ′,
then b′1 + · · ·+ b′d has at least dim(V ) non-zero entries. �

Proposition 5.3 ([Tao16, Lemma 1]). For all k ≥ 2, the slice rank of every k-
dimensional diagonal hypermatrix equals the number of non-zero entries.

Proof. It is easy to see that a hypermatrix with d non-zero entries has slice rank at
most d, so it suffices to show that the slice rank of a diagonal hypermatrix with d
non-zero entries is at least d. We proceed by induction on k.

• For k = 2, the slice rank coincides with the ordinary matrix rank, and we know
from linear algebra that the rank of a diagonal matrix equals the number of
non-zero entries.

• Let k ≥ 3 be given such that the slice rank of every (k− 1)-dimensional diagonal
hypermatrix is at least the number of non-zero entries. Now let T : Ak → F be
a k-dimensional diagonal hypermatrix. Write A′ := {a ∈ A : T (a, . . . , a) 6= 0},
and let T ′ := T |(A′)k be the restriction of T to (A′)k. Choose an optimal slice
rank decomposition T ′ =

∑k
i=1
∑ri
j=1 fij(xi)gij(x1, . . . , xi−1, xi+1, . . . , xk) of T ′,

so that sr(T ′) =
∑k
i=1 ri.

Let V := {fk1, . . . , fkrk}⊥ ⊆ FA′ be the space of functions h : A′ → F satisfying∑
x∈A′ fkj(x)h(x) = 0 for all j ∈ [rk]. By Proposition 5.1(c), we have dim(V ) =

|A′| − rk, so by Lemma 5.2 we may choose some h ∈ V with at least |A′| − rk
non-zero entries. Define T ′′ : (A′)k−1 → F by

T ′′(x1, . . . , xk−1) :=
∑
xk∈A′

T ′(x1, . . . , xk)h(xk).
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Then T ′′ is a (k−1)-dimensional diagonal hypermatrix with at least |A′|−rk non-
zero entries, so it follows from the induction hypothesis that sr(T ′′) ≥ |A′| − rk.
On the other hand, since h ∈ {fk1, . . . , fkrk}⊥, we have

∑
xk∈A′

rk∑
j=1

fkj(xk)gkj(x1, . . . , xk−1)h(xk) =
rk∑
j=1

gkj(x1, . . . , xk−1)
∑
xk∈A′

fkj(xk)h(xk) = 0,

so plugging in the slice rank decomposition of T ′ gives

T ′′(x1, . . . , xk−1) =
∑
xk∈A′

k∑
i=1

ri∑
j=1

fij(xi)gij(x1, . . . , xi−1, xi+1, . . . , xk)h(xk)

=
k−1∑
i=1

∑
xk∈A′

ri∑
j=1

fij(xi)gij(x1, . . . , xi−1, xi+1, . . . , xk)h(xk)

=
k−1∑
i=1

ri∑
j=1

fij(xi) ·
( ∑
xk∈A′

gij(x1, . . . , xi−1, xi+1, . . . , xk)h(xk)
)
.

This gives a valid slice rank decomposition of T ′′ of size r1 + · · ·+rk−1, so we have
sr(T ′′) ≤ r1 +· · ·+rk−1. It follows that |A′| ≤ sr(T ′′)+rk ≤ r1 +· · ·+rk = sr(T ′),
so by Proposition 5.1(b) we have sr(T ) ≥ sr(T ′) ≥ |A′|. �

In all applications of the slice rank method in this dissertation, the hypermatrix
will be diagonal, so Proposition 5.3 is all we need. However, we point out that slice
rank formulas are known for certain other classes of hypermatrices as well; see for
instance [TS16, Sau22].

5.2 Monomials of small degree and the Croot–Lev–Pach
lemma

In a typical application of the slice rank method, the hypermatrix under consideration
is defined by a polynomial which encodes the combinatorial structure of the problem. If
this polynomial has sufficiently low degree, then a clever expansion of this polynomial
and a large deviations bound show that the hypermatrix has exponentially small size.
In this section, we make these statements precise.

Let F be a field, and let F[x1, . . . , xn] be the polynomial ring in n variables over F.
For α ∈ Nn0 , write xα := xα1

1 · · ·xαnn ∈ F[x1, . . . , xn] and |α| = α1 + · · ·+αn. Moreover,
for q ∈ N1 and d ∈ R≥0, write Mq,n,d := {α ∈ {0, 1, . . . , q − 1}n : |α| ≤ d} and
mq,n,d := |Mq,n,d|. Then mq,n,d is equal to the number of monomials in F[x1, . . . , xn]
whose degree in every variable (separately) is at most q − 1 and whose total degree is
at most d.1

The following lemma shows that a hypermatrix defined by a polynomial of small
total degree has relatively small slice rank. It is named after Croot, Lev and Pach,

1For technical reasons, it will be convenient to also allow non-integer values of d, even though the
total degree of a monomial is always an integer.
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whose paper [CLP17] led to the solution of the cap set problem [EG17] and the
development of the slice rank method [Tao16]. The k = 2 case of the lemma is implicit
in [CLP17].

Lemma 5.4 (Generalized Croot–Lev–Pach lemma). Let q be a prime power, let
n ∈ N1, and let A1, . . . , Ak ⊆ Fnq . Furthermore, let T : A1 × · · · × Ak → Fq be a
hypermatrix given by

T (x1, . . . ,xk) = f(x11, . . . , x1n , . . . , xk1, . . . , xkn)

for some polynomial f ∈ Fq[x11, . . . , x1n , . . . , xk1, . . . , xkn] of total degree at most d.
Then sr(T ) ≤ k ·mq,n, dk

.

Proof. Since xq = x for all x ∈ Fq, we may assume without loss of generality that f
has degree at most q − 1 in every variable xij (separately), and total degree at most d.

For i ∈ [k] and αi ∈ {0, 1, . . . , q − 1}n, write xαi

i = xαi1i1 · · ·x
αin
in and |αi| =

αi1 + · · ·+αin. Furthermore, write Mq,n,k,d = {(α1, . . . ,αk) ∈ ({0, 1, . . . , q− 1}n)k :
|α1|+ · · ·+ |αk| ≤ d}. Then we may write f as

f(x11, . . . , x1n , . . . , xk1, . . . , xkn) =
∑

(α1,...,αk)∈Mq,n,k,d

ξ(α1,...,αk) · xα1
1 · · ·x

αk

k ,

where ξ(α1,...,αk) ∈ Fq for all (α1, . . . ,αk) ∈Mq,n,k,d.
By the pigeonhole principle, for every (α1, . . . ,αk) ∈Mq,n,k,d there is some i ∈ [k]

such that |αi| ≤ d
k . Choosing one such i for every (α1, . . . ,αk) ∈Mq,n,k,d, we obtain

a partition Mq,n,k,d =M1 ∪ · · · ∪Mk such that for all (α1, . . . ,αk) ∈Mi we have
|αi| ≤ d

k .
Now we can write

T (x1, . . . ,xk) =
∑

(α1,...,αk)∈Mq,n,k,d

ξ(α1,...,αk) · xα1
1 · · ·x

αk

k

=
k∑
i=1

∑
(α1,...,αk)∈Mi

ξ(α1,...,αk) · xα1
1 · · ·x

αk

k

=
k∑
i=1

∑
α∈Mq,n,d/k

xαi

 ∑
(α1,...,αk)∈Mi

αi=α

ξ(α1,...,αk) · xα1
1 · · ·x

αi−1
i−1 x

αi+1
i+1 · · ·x

αk

k

 .

This is a valid slice rank decomposition of size k · mq,n, dk
, so we have sr(T ) ≤ k ·

mq,n, dk
. �

The remainder of this section is devoted to upper bounding mq,n,d. For q ∈ N1 and
λ ∈ R≥0, define

J(q, λ) := inf
t>0

1 + t+ t2 + · · ·+ tq−1

tλ
.

The following estimate shows that mq,n,λn is small when λ < q−1
2 is fixed and n→∞.

We give a short, self-contained proof, but we note that this follows from a more general
principle in probability theory; see Remark 5.6.
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Lemma 5.5. For all integers n ≥ 1 and q ≥ 2 and all λ ∈ R with 0 ≤ λ < q−1
2 , one

has
1 < J(q, λ) < q and mq,n,λn ≤ J(q, λ)n.

Proof. Define f : R>0 → R>0 by f(t) := 1+t+t2+···+tq−1

tλ
. For all t > 1 we have

f(t) = 1 + t+ t2 + · · ·+ tq−1

tλ
>

1 + t+ t2 + · · ·+ tq−1

t
q−1

2
≥ q = f(1),

where the first inequality holds because t > 1 and λ < q−1
2 and the second inequal-

ity follows from the AM–GM inequality (applied to the sequence 1, t, t2, . . . , tq−1).
Therefore the infimum can be taken over (0, 1] instead of (0,∞); that is, we have
J(q, λ) = inft∈(0,1] f(t).

We have f ′(t) =
∑q−1
i=0 (i − λ)ti−λ−1, so in particular f ′(1) =

∑q−1
i=0 (i − λ) =

q(q−1−2λ)
2 > 0, because q > 0 and q − 1 − 2λ > 0, by assumption. It follows that f

is strictly increasing in some neighbourhood (1− ε, 1 + ε) of 1, so we have J(q, λ) ≤
f(1− 1

2ε) < f(1) = q. Furthermore, since f is continuous and limt→0 f(t) = +∞, the
function f has a minimum on (0, 1], so there is some t0 ∈ (0, 1] such that J(q, λ) = f(t0).
Therefore,

J(q, λ) = 1 + t0 + t20 + · · ·+ tq−1
0

tλ0
≥ 1 + t0 + t20 + · · ·+ tq−1

0 > 1,

where the first inequality holds because 0 < t0 ≤ 1 and λ ≥ 0 and the second inequality
holds because q ≥ 2 and t0 > 0. This shows that 1 < J(q, λ) < q.

In order to prove that mq,n,λn ≤ J(q, λ)n, write (1+ t+ · · ·+ tq−1)n =
∑(q−1)n
i=0 bit

i,
where bi is the number of α ∈ {0, 1, . . . , q − 1}n with |α| = i. Then for all t ∈ (0, 1]
we have

mq,n,λn =
bλnc∑
i=0

bi

≤
bλnc∑
i=0

bit
i−λn (because ti−λn ≥ 1 whenever t ∈ (0, 1] and i ≤ λn)

≤
(q−1)n∑
i=0

bit
i−λn (because biti−λn ≥ 0 for all i > bλnc)

= t−λn
(q−1)n∑
i=0

bit
i = f(t)n.

Minimizing over t ∈ (0, 1] shows that mq,n,λn ≤ J(q, λ)n. �

Remark 5.6. We note that Lemma 5.5 also follows from a more general principle
in probability theory, which is perhaps a bit more insightful than the ‘ad hoc’ proof
given above. The problem of bounding mq,n,λn can be modelled as the following
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probability experiment. Let X1, . . . , Xn be i.i.d. random variables, drawn from the
uniform distribution on {0, 1, . . . , q−1}. Then mq,n,λn = qn ·Pr[X1 +· · ·+Xn ≤ λn], so
to bound mq,n,λn we need to bound the probability of the event {X1 + · · ·+Xn ≤ λn}.

By the central limit theorem, the normalized partial sums 1
σ
√
n

∑n
i=1(Xi − µ) tend

to a standard normal distribution. This tells us that events of the form {X1+· · ·+Xn ≤
µn − c

√
n} (with c > 0 fixed) occur with constant probability as n → ∞, whereas

events of the form {X1 + · · ·+Xn ≤ µn− cn} (with c > 0 fixed) become exceedingly
rare. Since λ < q−1

2 = E[X1], we are dealing with a problem of the latter form. To
bound these so-called tail probabilities, we draw on the theory of large deviations. For
this particular problem, the rate of convergence is governed by the following theorem,
known as Cramér’s theorem.

Theorem 5.7 (Cramér, Chernoff). Let {Xn}n∈N be a sequence of i.i.d. real random
variables with well-defined (finite) expectation µ := E[X1]. Define Λ∗ : R→ [0,+∞] by

Λ∗(x) := sup
t∈R

(
tx− logE[etX1 ]

)
,

with the convention that log(+∞) = +∞. Then for all x < µ one has

Pr[X1 + · · ·+Xn ≤ xn] ≤ e−Λ∗(x)n for all n ∈ N1;

lim
n→∞

1
n

log Pr[X1 + · · ·+Xn ≤ xn] = −Λ∗(x);

with the convention that e−∞ = 0 and log(0) = −∞.

A proof of Theorem 5.7 can be found in some of the more comprehensive textbooks
on general probability theory (e.g. [Bau96, Kle08, Kal21]) and in textbooks specializing
in large deviations theory (e.g. [Var84, DS89, DZ98, Hol00, RS15]).2

In the setting of Remark 5.6, a straightforward computation shows that e−Λ∗(λ)n =
1
qn J(q, λ)n, so Cramér’s theorem gives the same upper bound as Lemma 5.5. Therefore
the limit in Cramér’s theorem shows that the upper bound mq,n,λn ≤ J(q, λ)n is
asymptotically optimal.

5.3 The slice rank method: three examples

We now have all the ingredients to apply the slice rank method to problems in extremal
combinatorics. In this section, we cover three example applications: the cap set problem,
tricoloured sum-free sets, and sets without non-trivial solutions to a system of balanced
linear equations.

The cap set problem
For n ∈ N1, let a(n) denote the largest size of a subset S ⊆ Fn3 which does not contain
an affine line. The asymptotic behaviour of a(n) as n→∞ has been subject of study

2The inequality Pr[X1 + · · ·+Xn ≤ xn] ≤ e−Λ∗(x)n is not always stated as part of the theorem,
but it is usually contained in the proof.
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for several decades. In 1982, Brown and Buhler [BB82] showed that a(n) ∈ o(3n); that
is, limn→∞

a(n)
3n = 0. A few years later, Frankl, Graham and Rödl [FGR87] gave a

shorter proof of that same fact, and asked whether there exists a constant c < 3 such
that a(n) ∈ O(cn). This problem became known as the cap set problem.

Despite substantial interest in this problem, very few improvements were made
on the upper bounds for a(n). In 1995, Meshulam [Mes95] showed that a(n) ≤ 2 · 3n

n ,
and only in 2012 this was improved to a(n) ∈ O( 3n

n1+ε ) for some constant ε > 0 by
Bateman and Katz [BK12]. The Fourier-analytic techniques employed by Meshulam
and Bateman and Katz appeared to have reached their limit, and it was suspected
that further progress might be possible using the polynomial method [Tao10], but for
a long time it was unclear how to do so.

All of this suddenly changed in 2016, when Croot, Lev and Pach published a
preprint containing a new application of the polynomial method to the closely related
problem of avoiding 3-term arithmetic progressions in (Z/4Z)n. Soon after, it was
realized by Ellenberg and Gijswijt (independently) that the method of Croot, Lev and
Pach could be modified to solve the cap set problem, and they proved the following
more general result.

Theorem 5.8 (Ellenberg–Gijswijt [EG17]). Let p ≥ 3 be prime, and let cp :=
J(p, p−1

3 ) < p. Then for every n ∈ N and every subset S ⊆ Fnp without non-trivial
3-term arithmetic progressions, one has |S| ≤ cnp .

Over F3, the non-trivial 3-term arithmetic progressions are precisely the affine
lines, so the p = 3 case of Theorem 5.8 provides an affirmative answer to the cap set
problem.

The proof was later recast by Tao in terms of slice rank [Tao16], and this has since
become the dominant terminology. We follow Tao’s proof, for which we already set up
all the necessary prerequisites in the previous sections.

Proof of Theorem 5.8. Let S ⊆ Fnp be a set without non-trivial 3-term arithmetic
progressions. Define T : S × S × S → Fp by

T (x,y, z) :=
n∏
i=1

(1− (xi − 2yi + zi)p−1).

By Fermat’s little theorem, we have (xi−2yi+zi)p−1 = 1 if and only if xi−2yi+zi 6= 0,
hence

T (x,y, z) =
{

0, if xi − 2yi + zi 6= 0 for some i;
1, if x− 2y + z = 0.

It follows that T (x,y, z) 6= 0 if and only if x, y and z form a 3-term arithmetic
progression. By assumption, the only 3-term arithmetic progressions in S are the
trivial ones, so we have T (x,y, z) 6= 0 if and only if x = y = z. This shows that T is
a diagonal hypermatrix with non-zero entries on the diagonal. Hence it follows from
Proposition 5.3 that sr(T ) = |S|. On the other hand, by Lemma 5.4 and Lemma 5.5,
we have sr(T ) ≤ 3 ·m

p,n,
(p−1)n

3
≤ 3 · J(p, p−1

3 )n = 3cnp . This shows that |S| ≤ 3cnp .
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To get rid of the additional factor 3, we use the following trick (known as the
‘power trick’). Let ` ∈ N1, and consider the set S` ⊆ (Fnp )` ∼= Fn`p . If (x1, . . . ,x`) −
2(y1, . . . ,y`) + (z1, . . . ,z`) = (0, . . . , 0), then we must have xi = yi = zi for all
i ∈ [`], so S` does not contain non-trivial 3-term arithmetic progressions. Hence, by
the preceding result, we have |S|` = |S`| ≤ 3cn`p , and therefore |S| ≤ 31/` · cnp . Letting
`→∞, we conclude that |S| ≤ cnp . �

It is not known whether or not the constant cp = J(p, p−1
3 ) in Theorem 5.8 is

optimal. Currently, the best known upper bound on the size of a set S ⊆ Fnp without
3-term arithmetic progressions is O( 1√

n
·J(p, p−1

3 )n), due to Jiang [Jia21]. In particular,
for the cap set problem (p = 3) we have

c3 = J
(
3, 2

3
)

= 3
8

3
√

207 + 33
√

33 ≈ 2.755105,

so the best known upper bound on a(n) is O( 2.755105n
n ). This is still far away from

the best known lower bound, which is Ω(2.218021n), due to Tyrrell [Tyr22]. For lower
bounds for other primes (p ≥ 5), see e.g. [Ede04, EP20, EL23].

Tricoloured sum-free sets
After the cap set problem was solved, it was quickly realized that the same technique
could also be used to prove an asymmetric (or ‘tricoloured’) version of Theorem 5.8.

Let G be an abelian group. A sequence {(xi, yi, zi)}Li=1 in G3 is called a tricoloured
sum-free set in G if for all i, j, k ∈ [L] one has xi + yj + zk = 0 if and only if
i = j = k.3 Observe that the definition implies that |{x1, . . . , xL}| = |{y1, . . . , yL}| =
|{z1, . . . , zL}| = L; that is, in a tricoloured sum-free set there can be no repetitions in
each of the coordinates (separately).

A straightforward application of the slice rank method gives the following upper
bound on the size of tricoloured sum-free sets in Fnp :

Theorem 5.9 (Blasiak–Church–Cohn–Grochow–Naslund–Sawin–Umans [BCC+17]).
Let p be prime, and let cp := J(p, p−1

3 ) < p. Then for every tricoloured sum-free set
{(xi,yi, zi)}Li=1 in Fnp one has L ≤ cnp .

Proof. Let {(xi,yi, zi)}Li=1 be a tricoloured sum-free set in Fnp . Define T : [L]× [L]×
[L]→ Fp by

T (i, j, k) :=
n∏
`=1

(1− (xi` + yj` + zk`)p−1)

=
{

1, if xi + yj + zk = 0;
0, otherwise;

3Sometimes tricoloured sum-free sets are defined more generally by the property that xi+yj+zk = t
if and only if i = j = k, where t ∈ G is fixed. However, if {(xi, yi, zi)}Li=1 is a generalized tricoloured
sum-free set, then {(xi, yi, zi − t)}Li=1 is a tricoloured sum-free set, so there is no loss in generality by
restricting our attention to the t = 0 case.
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=
{

1, if i = j = k;
0, otherwise.

By Proposition 5.3, we have sr(T ) = L. On the other hand, by Lemma 5.4 and
Lemma 5.5, we have sr(T ) ≤ 3 ·m

p,n,
(p−1)n

3
≤ 3 · J(p, p−1

3 )n = 3cnp . This shows that
|S| ≤ 3cnp .

To get rid of the additional factor 3, we repeat the ‘power trick’ from the proof of
Theorem 5.8. If {(xi,yi, zi)}Li=1 is a tricoloured sum-free set in Fnp and if ` ∈ N, then
{((xi1 , . . . ,xi`), (yi1 , . . . ,yi`), (zi1 , . . . ,zi`))}(i1,...,i`)∈[L]` is a tricoloured sum-free set
in (Fnp )` ∼= Fn`p . Therefore we have L` ≤ 3 · cn`p , hence L ≤ 31/` · cnp . Letting ` → ∞,
we conclude that L ≤ cnp . �

In [BCC+17, Thm. A], Blasiak et al. also gave an extension of Theorem 5.9 to
arbitrary abelian groups of bounded exponent. A further extension to non-abelian
finite groups was given by Sawin [Saw18].

Since Fnps ∼= Fsnp as groups, the following corollary is immediate.

Corollary 5.10. Let q = ps be a prime power, and let cq := J(p, p−1
3 )s < q. Then for

every tricoloured sum-free set {(xi,yi, zi)}Li=1 in Fnq one has L ≤ cnq .

Tricoloured sum-free sets are the asymmetric (or ‘tricoloured’) equivalent of cap
sets, in the following sense. If S ⊆ Fnp is a set without non-trivial 3-term arithmetic
progressions, and if S = {xi}Li=1 is an enumeration of the elements of S (where
L = |S|), then {(xi,−2xi,xi)}Li=1 is a tricoloured sum-free set. In this setting, the
proofs from Theorem 5.8 and Theorem 5.9 use the same hypermatrix and result in the
same upper bound. Hence Theorem 5.9 can be seen as a generalization of Theorem 5.8
where the three variables can be taken from different sets.

Contrary to the cap set problem, the bound from Theorem 5.9 is known to be
tight up to a subexponential factor. In a series of papers, Kleinberg, Speyer and Sawin
[KSS18], Pebody [Peb18] and (independently) Norin [Nor19] proved that for every
ε > 0, there is a tricoloured sum-free set of size (cp − ε)n in Fnp for large enough n.
This shows that no exponential improvement of the cap set bound from Theorem 5.8
is possible without somehow taking the symmetry of that problem into account.

Remark 5.11. In the next chapter, it will be convenient to replace the bound L ≤ cnq
from Corollary 5.10 by a strict inequality, L < cnq . We can do this because J(p, p−1

3 )
is not the n-th root of an integer, but this is not completely trivial. We sketch a proof
of this fact here, assuming familiarity with a bit of algebra (see e.g. [Lan02, §IV.2]).

Write F (t) = (1 + t+ · · ·+ tp−1)t− p−1
3 . Recall from the proof of Lemma 5.5 that F

attains a minimum on (0, 1). Write t0 = arg mint∈(0,1) F (t), so that J(p, p−1
3 ) = F (t0).

First we prove that t0 is algebraic, but not an algebraic integer (i.e. it is not
the zero of a monic polynomial in Z[X]). A direct computation shows that F ′(t) =
1
3 ·f(t) ·t− p−1

3 −1, where f(t) = (−p+1)+(−p+4)t+ · · ·+(2p−2)tp−1. Since F ′(t0) = 0
and t0 6= 0, it follows that f(t0) = 0, which shows that t0 is algebraic.

For p ∈ {2, 3} it is easy to verify that t0 is not an algebraic integer. Assume
henceforth that p ≥ 5. Let c = c(f) and pp(f) be the content and primitive part of f ,
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respectively (i.e. c is the gcd of the coefficients of f , and pp(f) = 1
cf). Since successive

coefficients of f differ by 3, we have either c = 1 (if p 6≡ 1 mod 3) or c = 3 (if p ≡ 1
mod 3), so either pp(f) = f or pp(f) = 1

3f . In either case, pp(f) is not monic.
Now suppose, for the sake of contradiction, that t0 is an algebraic integer. Then

the minimal polynomial g ∈ Z[t] of t0 is monic and has integer coefficients, so it
is different from pp(f). Therefore we may write pp(f) = gh for some non-constant
h ∈ Z[t]. Let f̄ , ḡ, h̄ ∈ Fp[t] be the reductions of f, g, h modulo p. A direct computation
shows that f̄ = −2 · (t − 1)p−2(t − p−1

2 ), so we have ḡ = (t − 1)k(t − p−1
2 )` and

h̄ = −2
c · (t − 1)p−2−k(t − p−1

2 )1−` for some k ∈ {0, . . . , p − 2} and ` ∈ {0, 1}. Since
f(1) = p(p−1)

2 is divisible by p but not by p2, at most one of g(1) and h(1) can be
divisible by p, so at most one of ḡ and h̄ vanishes on 1. Since deg(g),deg(h) ≥ 1, we
must have (k, `) = (p− 2, 0) or (k, `) = (0, 1).

• If (k, `) = (0, 1), then deg(g) = 1, so t0 is a rational number. Since we assumed
that t0 is an algebraic integer, we must have t0 ∈ Z. This is a contradiction,
because 0 < t0 < 1.

• If (k, `) = (p − 2, 0), then deg(h) = 1. Write h(t) = at − b. By primitivity of
pp(f), we must have gcd(a, b) = 1. Since g is monic, the leading coefficient of
h is equal to the leading coefficient of pp(f), so a = 2p−2

c . Furthermore, since
1−p
c = 1

cf(0) = g(0)h(0), we have b = h(0) | 1−p
c | a. But since gcd(a, b) = 1,

it follows that b = ±1. Finally, since g(1)h(1) = 1
cf(1) = p(p−1)

2c , we have
a−b = h(1) | p(p−1)

2c . But a−b = 2p−2
c ±1 is not divisible by p (for c = 1 we have

a− b 6≡ 0 mod p since we assumed p ≥ 5, and for c = 3 we have 0 < a− b < p),
so in fact we have a− b = 2p−2

c ± 1 | p−1
c , which is absurd.

Either way, we reach a contradiction, so we conclude that t0 is not an algebraic integer.
(With a bit more work, one can also show that 1

cf is in fact the minimal polynomial
of t0, but we don’t need that here.)

Finally, to show that J(p, p−1
3 ) is not the n-th root of an integer, suppose that

J(p, p−1
3 )n = b for some b ∈ Z. Then we have F (t0)3n = b3, hence (1 + t0 + · · · +

tp−1
0 )3n = b3t

(p−1)n
0 , so t0 is a zero of a monic polynomial of degree 3n(p − 1) with

integer coefficients. This is a contradiction, since t0 is not an algebraic integer.

Avoiding non-trivial solutions to a system of balanced linear
equations

As a final application, we briefly look into the problem which will be studied in more
detail in the next chapter. Let Fq be a finite field, and let A = (aij) ∈ Fm×kq be a fixed
matrix over Fq. Consider the linear system

a11x1 + · · ·+ a1kxk = 0,
...

am1x1 + · · ·+ amkxk = 0;
(?)
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with variables x1, . . . ,xk ∈ Fnq . We say that (?) is balanced if each of the row sums
ai1 + · · · + aik of the coefficient matrix is equal to zero. If (?) is balanced, then a
solution (x1, . . . ,xk) is called trivial if x1 = x2 = · · · = xk, and non-trivial otherwise.
When the number of variables is sufficiently large, a straightforward application of the
slice rank method shows that a set S ⊆ Fnq without non-trivial solutions must have
exponentially small density:

Theorem 5.12 ([TS16], [Sau22, Theorem 1.1]). Let q be a prime power, and let (?) be
a balanced linear system over Fq with k variables and m equations, where k ≥ 2m+ 1.
Write Cq,m,k := J(q, (q−1)m

k ) < q. Then for all n ∈ N, every subset S ⊆ Fnq without
non-trivial solutions to (?) has size |S| ≤ (Cq,m,k)n.

Proof. Let S ⊆ Fnq be a set without non-trivial solutions to (?). Define T : Sk → Fq
by

T (x1, . . . ,xk) :=
m∏
i=1

n∏
j=1

(1− (ai1x1j + · · ·+ aikxkj)q−1)

=
{

1, if (x1, . . . ,xk) is a solution to (?);
0, otherwise;

=
{

1, if x1 = x2 = · · · = xk;
0, otherwise.

By Proposition 5.3, we have sr(T ) = |S|. On the other hand, by Lemma 5.4 and
Lemma 5.5, we have sr(T ) ≤ k ·mq,n,(q−1)nmk ≤ k · J(q, (q − 1)mk )n = k · (Cq,m,k)n,
where the second inequality relies on the assumption that m

k < 1
2 . This shows that

|S| ≤ k · (Cq,m,k)n.
To get rid of the additional factor k, we use the power trick. For every ` ∈ N,

the set S` ⊆ (Fnq )` ∼= Fn`q also has no non-trivial solutions to (?). Therefore we have
|S`| ≤ k · (Cq,m,k)n`, hence |S| ≤ k1/` · (Cq,m,k)n. Letting ` → ∞, we conclude that
|S| ≤ (Cq,m,k)n. �

Since a 3-term arithmetic progression can be encoded by a single balanced linear
equation in three variables, Theorem 5.12 contains Theorem 5.8 as a special case.

It is important to note that Theorem 5.12 only applies to systems with sufficiently
many variables. The case where k ≤ 2m appears to be out of reach for current (slice
rank) methods. In the next chapter, we will extend Theorem 5.12 in another direction,
by looking at the problem of finding/avoiding solutions of higher non-degeneracy.



Chapter 6
Avoiding solutions to a system of

balanced linear equations

The solution of the cap set problem shows that a subset S ⊆ Fnp without
3-term arithmetic progressions must have exponentially small density. For k-term
arithmetic progressions (k ≥ 4), this problem is wide open, and is believed to
be beyond the reach of current slice rank methods. In this chapter, we study
an application of the slice rank method to the broader problem of avoiding
non-degenerate solutions to a system of balanced linear equations over Fq.

This chapter is based on the paper [DG21], and is joint work with Dion
Gijswijt.

6.1 Introduction

The cap set problem occurs as a special case of several other open problems. Therefore
we should ask if the slice rank method can also be used to solve these more general
problems. One such problem is to determine whether or not for all values of 3 ≤ k ≤ p
there is a constant cp,k < p such that every set S ⊆ Fnp with |S| ≥ cnp,k contains a
k-term arithmetic progression. For k = 3 this is settled by the slice rank method (see
[EG17]), but for k ≥ 4 the problem is wide open. This is believed to be beyond the
reach of current slice rank methods.

Instead, research has shifted to other related problems. Recently, Mimura and
Tokushige [MT19a, MT19b, MT20] and Sauermann [Sau22] started developing tech-
niques to bound the maximum size of a subset of Fnq which avoids non-degenerate
solutions to a given system of linear equations over a finite field Fq. Since a k-term
arithmetic progression can be encoded as a system of k − 2 linear equations, this
contains the problem of avoiding k-APs as a special case.

Given a fixed matrix A = (aij) ∈ Fm×kq , we want to bound the maximum size of a
subset S ⊆ Fnq for which there are no k-tuples (x1, . . . ,xk) ∈ Sk satisfying

a11x1 + · · ·+ a1kxk = 0,
...

am1x1 + · · ·+ amkxk = 0;
(?)

59
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except possibly trivial/degenerate solutions (more on that later). Note that the variables
x1, . . . ,xk are not taken from Fq, but from Fnq as n→∞.

If ai1 + · · ·+ aik 6= 0 for some i (i.e. the coefficients in one of the rows do not sum
to zero), then there are large subsets of Fnq with no solutions at all to (?). Indeed, let
S ⊆ Fnq be the set of all vectors whose first coordinate is equal to 1. If some row of (?)
does not sum to zero, then S does not contain solutions to (?), and |S| = qn−1 = 1

q ·|F
n
q |,

so S contains a constant proportion of the vectors in Fnq . (This example is due to
Sauermann [Sau22].)

We will henceforth assume that ai1 + · · ·+ aik = 0 for all i. Such equations are
called balanced linear equations (or affine dependences), and the system (?) is also
called balanced. Recent results show that the problem becomes much more interesting
in this case.

If the system (?) is balanced, then every set S ⊆ Fnq has at least |S| solutions to
(?), namely the solutions of the form (a, . . . , a) for a ∈ S. So the question is: how large
does S have to be to guarantee the existence of solutions to (?) which are somehow
non-degenerate? For this we consider three different notions of non-degeneracy:

Definition 6.1. A solution (x1, . . . ,xk) ∈ (Fnq )k of (?) is called:

(a) non-trivial if x1, . . . ,xk are not all equal.

(b) a (?)-shape1 if x1, . . . ,xk are pairwise distinct.

(c) generic2 if every balanced linear equation (over Fq) satisfied by (x1, . . . ,xk) is
a linear combination of the equations in (?).

The requirements get stronger in each step, moving from (a) to (c). Indeed, it is
clear that every (?)-shape is a non-trivial solution. Furthermore, if the system (?) does
not rule out the existence of (?)-shapes in Fnq (in other words, if no linear combination
of the rows of (?) forces xi = xj for i 6= j), then every generic solution is a (?)-shape.

The easiest of these problems is finding a non-trivial solution. If the number of
variables is sufficiently large (specifically, if k ≥ 2m+ 1), then this can be done by a
routine application of the slice rank method, as we showed in the previous chapter:

Theorem 6.2 (see Theorem 5.12). If k ≥ 2m + 1, then there exists a constant
Γq,m,k < q such that every subset S ⊆ Fnq of size at least (Γq,m,k)n has a non-trivial
solution of (?).

If k ≤ 2m, then the problem is believed to be beyond the reach of current (slice
rank) methods. Therefore we will assume throughout this chapter that k ≥ 2m+1. The
aim of this chapter is to refine Theorem 6.2 to the stronger notions of non-degeneracy
from Definition 6.1. For this we use the following terminology:

Definition 6.3. The linear system (?) is called:

(a) moderate1 if there exist constants β, γ > 0 with γ < q such that every subset
S ⊆ Fnq of size at least β · γn contains a (?)-shape;

1Following terminology from Mimura and Tokushige [MT19a, MT19b, MT20].
2Terminology introduced by the authors.
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(b) temperate3 if there exist constants β, γ > 0 with γ < q such that every subset
S ⊆ Fnq of size at least β · γn contains a generic solution of (?).

If (?) consists of the single equation x1 + · · ·+xp = 0 over Fp (with p prime), then
the existence of (?)-shapes is tightly linked to the Erdős–Ginzburg–Ziv constant of the
group Fnp . If p ≥ 3, then this system is moderate over Fp; this is implicit in [Nas20a]
and [Sau21]. Furthermore, the method in [Sau21] can be easily adapted to show that
every balanced linear equation with at least 3 variables forms a moderate linear system.

The problem of determining whether or not a system of two or more equations
is moderate was first studied by Mimura and Tokushige [MT19a, MT19b, MT20].4

They showed that several specific linear systems are moderate. Although all of their
proofs rely on more or less the same idea, the details of the proofs are so different that
a new proof was needed for each new system. We discuss some of their results in more
detail in §6.7.

The first general result in this direction was found by Sauermann [Sau22]. In an
elaborate proof, using a new application of the slice rank method and a subspace
sampling argument, she showed that (?)-shapes can always be found if the number of
variables is sufficiently large and if the system is very much non-degenerate:

Theorem 6.4 ([Sau22, Theorem 1.2]). If k ≥ 3m and every m×m submatrix of A
is invertible, then (?) is moderate.

Despite its generality, this result does not replace the results of Mimura and
Tokushige, because the systems they studied have many singular m×m submatrices
(so Theorem 6.4 does not apply).

The third and final problem is that of finding a generic solution. A partial result in
this direction was found by Sauermann, who showed that solutions of higher dimension
exist as the number of variables becomes larger:

Theorem 6.5 ([Sau22, Theorem 1.3]). If r ≥ 2 and k ≥ 2m − 1 + r, then there
are constants Crank

p,m,k,r ≥ 1 and Γrank
p,m,k,r < p such that every subset S ⊆ Fnp of

size at least Crank
p,m,k,r · (Γrank

p,m,k,r)n has a solution (x1, . . . ,xk) ∈ Sk of (?) satisfying
dim(span(x1, . . . ,xk)) ≥ r.

Finding solutions of high dimension is closely related to finding a generic solution,
as we explain in §6.5.

Main results of this chapter
The main results of this chapter are twofold. First, we prove a general result on finding
(?)-shapes, which contains most of the results from [MT19a, MT19b, MT20] as special
cases. Second, we prove a general result for finding generic solutions, which we believe
to be the first of its kind. We should point out that these results have since been
superseded by an even more general result of Gijswijt [Gij21].

3Terminology introduced by the authors.
4Similar results over the integers had been obtained by Ruzsa in the 1990s [Ruz93, Ruz95], but

Mimura and Tokushige were the first to study this problem for vector spaces over a finite field.
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Throughout the chapter, we focus on a specific class of systems that is completely
different from the class of systems studied by Sauermann. Where Sauermann’s result
(Theorem 6.4 above) requires every m×m submatrix to be invertible, we require the
opposite: there must be sufficiently many linear dependencies between the columns.
Specifically, we focus on the class of ‘type (RC)’ linear systems, which we define as
follows:

Definition 6.6. Consider the linear system (?), whose coefficients are specified by
the matrix A = (aij) ∈ Fm×kq .

(a) We say that two indices in [k] are equivalent if the corresponding columns of A
are nonzero scalar multiples of one another. This defines an equivalence relation
on [k]. We will refer to the equivalence classes of this equivalence relation as the
column equivalence classes.

(b) We say that (?) is a type (RC) linear system 5 if it is balanced and has at most
one column equivalence class of size 1.

(c) We say that a column equivalence class sums to zero if the columns indexed by
that class add up to the zero vector.

Examples of type (RC) linear systems will be given in §6.7 below. Among these
examples are the systems studied by Mimura and Tokushige.

The assumptions made throughout this chapter can be summarized as follows:

Situation 6.7. Let (?) be a type (RC) linear system, given by the coefficient matrix
A = (aij) ∈ Fm×kq , with ` column equivalence classes. Furthermore, assume that (?) is
non-degenerate and irreducible (see Definition 6.13 below).

In all of our main results below, we assume that (?) and A are as in Situation 6.7.
In particular, we always assume that (?) is irreducible. However, we note that our
results can also be applied to reducible systems. We show in Proposition 6.14 (resp.
Proposition 6.27) that a system is moderate (resp. temperate) if and only if every
irreducible subsystem is moderate (resp. temperate).

Our first main result is a sufficient condition for a type (RC) linear sytem to be
moderate.

Theorem 6.8. Let (?), A, m, k and ` be as in Situation 6.7. Suppose that (?) satisfies
at least one of the following additional properties:

(i) none of the column equivalence classes of size 2 sums to zero;

(ii) every column equivalence class sums to zero, and k ≥ 3.

Then (?) is moderate.

5Terminology introduced by the authors (‘RC’ stands for ‘repeated columns’).
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This result encompasses most of the systems studied by Mimura and Tokushige,
and the rest can be recovered using a slight modification of our proof. See §6.7 for a
detailed discussion.

Our second main result is a sufficient condition for a type (RC) linear sytem to be
temperate.

Theorem 6.9. Let (?), A, m, k and ` be as in Situation 6.7. Suppose that (?) satisfies
at least one of the following additional properties:

(i) none of the column equivalence classes sums to zero, and ` = m+ 1;

(ii) every column equivalence class sums to zero.

Then (?) is temperate.

The requirements of Theorem 6.9 are more restrictive than those of Theorem 6.8.6

In particular, one of the systems studied by Mimura and Tokushige does not meet
these requirements (see §6.7 for a detailed discussion).

We do not know if every irreducible linear system of type (RC) is moderate and/or
temperate, but we have the following partial result. We say that a balanced linear
equation satisfied by (x1, . . . ,xk) ∈ Sk preserves the column equivalence classes of (?)
if appending that equation to the system (?) preserves the column equivalence classes.
We prove the following:

Theorem 6.10. Let (?), A, m, k and ` be as in Situation 6.7. Then there exist
constants β, γ > 0 with γ < q such that every subset S ⊆ Fnq of size at least β · γn has
a solution (x1, . . . ,xk) ∈ Sk of (?) with the following properties:

(i) every balanced linear equation satisfied by (x1, . . . ,xk) preserves the column
equivalence classes of (?);

(ii) dim(aff(x1, . . . ,xk)) ≥ min(k − `, k − 2).

Theorem 6.10 improves upon Theorem 6.5 whenever 2 ≤ ` < 2m; see Remark 6.35.
Finally, we turn to an application of our techniques and results. In characteristic 0,

results like Bourgain’s theorem [Bou90] (see also [TV06, Chapter 12]) show that it is
substantially easier to find long arithmetic progressions in sum sets than in general
sets. Using the techniques from this chapter, we establish a similar result in vector
spaces over Fq.

Given sets S1, . . . , Sl ⊆ Fnq , we define the affinely independent restricted sum set
(or AIR-sumset) as follows:

S1 u
aff
· · · u

aff
Sl := {x1 + · · ·+ xl | x1 ∈ S1, . . . ,xl ∈ Sl affinely independent}.

Further, if (?) is linear system which is not necessarily balanced, then we say that
a solution (x1, . . . ,xk) ∈ (Fnq )k is linearly generic if every linear equation (over Fq)

6Except that Theorem 6.9(ii) does not have the condition k ≥ 3. That condition is included in
Theorem 6.8 to rule out the system x1 − x2 = 0. It is not hard to see that this particular system is
temperate but not moderate.
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satisfied by (x1, . . . ,xk) is a linear combination of the equations in (?). By comparison,
the solutions which we call generic throughout this chapter (see Definition 6.1(c)) only
satisfy this property for balanced linear equations (so by ‘generic’ we will always mean
‘affinely generic’).

Corollary 6.11. Let Fq be a finite field, let (?) be a (not necessarily balanced) linear
system over Fq, and let c1, . . . , cl ∈ Fq \ {0} with c1 + · · · + cl = 0. Then there are
constants β, γ ≥ 1 with γ < q such that, for every subset S ⊆ Fnq of size at least β · γn,
the set (c1 · S u

aff
· · · u

aff
cl · S) ∪ {0} contains a linearly generic solution of (?).

Note that Corollary 6.11 does not impose any restriction on the linear system
(?); that is, the coefficient matrix A ∈ Fm×kq can be arbitrary. This is a significant
difference with our main results and Sauermann’s result (Theorem 6.4 above), which
only work for very specific classes of linear systems.

In Corollary 6.11, we only need to append 0 to the AIR-sumset when one of the
single-variable equations xj = 0 (j ∈ [k]) can be written as a linear combination of
the equations in the linear system (?). If this is not the case, then a linearly generic
solution (x1, . . . ,xk) will satisfy xj 6= 0 for all j ∈ [k], so it is not necessary to append
0 to the AIR-sumset.

By letting (?) be the system that encodes a k-term arithmetic progression, Corol-
lary 6.11 contains the following special case:

Corollary 6.12. Let p be prime, and let 3 ≤ k ≤ p. Then, for every subset S ⊆ Fnp of
size at least p1+(1− 1

k )n, the set (S − S) \ {0} contains a non-trivial k-term arithmetic
progression.

We note that this special case can be proved without using the slice rank method,
using only a simple counting argument (see §6.7 for details).

Overview of the main ideas and organization of this chapter
Main ideas. There are two new techniques in this chapter.

First, the majority of our results depend on a ‘replacement trick’. This trick works
roughly as follows. If the j1-th and j2-th columns of A are non-zero multiples of one
another, and if we have a long enough list {(x(i)

1 , . . . ,x
(i)
k )}Li=1 of pairwise disjoint

solutions to (?), then we use tricoloured sum-free sets to recombine these solutions
to obtain new solutions of (?). This is done by taking one of the solutions from this
list, say (x(i)

1 , . . . ,x
(i)
k ), and replacing x(i)

j1
and x(i)

j2
by (respectively) x(i′)

j1
and x(i′′)

j2
,

for some i′, i′′ 6= i. We show in Corollary 6.21 that there exists i ∈ [L] which admits
one such replacement (the ‘single replacement trick’), and in Corollary 6.30 that there
exists i ∈ [L] which admits many replacements (the ‘multiple replacement trick’).

The second main ingredient in our proofs is Lemma 6.22, which shows that, for
every subset S ⊆ Fnq of size at least q1+(1− 1

k )n, the difference set S − S contains
linearly generic solutions to every linear system in k variables. The proof relies only
on a simple counting argument, using the pigeonhole principle.

We point out that this chapter does not make use of the full strength of Theorem 6.2,
as we only use the slice rank method for 3-tensors. Indeed, the replacement trick relies
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on tricoloured sum-free sets, and Lemma 6.22 does not rely on the slice rank method
at all.

The constants. Theorem 6.8(i), Theorem 6.9(i), and Theorem 6.10 rely only on
the replacement trick. Hence, the base of the exponent in the upper bounds from these
theorems7 is equal to Γq, the constant from the bound on tricoloured sum-free sets
(see Theorem 6.17).

Theorem 6.8(ii), Theorem 6.9(ii), and Corollary 6.11 rely on a combination of the
replacement trick and Lemma 6.22. Hence, the base of the exponent in the upper
bounds from these theorems is the maximum of Γq and q

k−1
k .

Corollary 6.12 relies solely on Lemma 6.22. The base of the exponent in the upper
bound is p1− 1

k .

Organization of the chapter. This chapter consists of three parts.
First, in §6.2–6.4, we focus on moderate systems. In §6.2, we discuss the gen-

eralities of moderate systems, and we show that we may restrict our attention to
irreducible systems. In §6.3, we establish the ‘single replacement trick’, and use it to
prove Theorem 6.8(i). In §6.4, we establish the other main technique of this chapter
(Lemma 6.22), and combine it with the replacement trick to prove Theorem 6.8(ii).

Second, in §6.5–6.6, we focus on temperate systems. In §6.5, we discuss the
generalities of temperate systems. Here we show how the problem of finding solutions
of high rank is related to the problem of finding a generic solution, and we show that
we may once again restrict our attention to irreducible systems. In §6.6, we establish
the ‘multiple replacement trick’, and use it to prove Theorem 6.9 and Theorem 6.10.

Finally, in §6.7, we discuss several examples and applications. Here we prove
Corollary 6.11 and Corollary 6.12, and we recover most of the results from [MT19a,
MT19b, MT20] as special cases of our results. Furthermore, we show that the system
conjectured to be moderate in [MT20] is indeed moderate.

6.2 Preliminaries on moderate systems

In this chapter, we study linear systems of the form
a11x1 + · · ·+ a1kxk = 0,

...

am1x1 + · · ·+ amkxk = 0;

(?)

with coefficient matrix A = (aij) ∈ Fm×kq and variables x1, . . . ,xk ∈ Fnq .
Following standard usage, we say that two linear systems (?) and (?′) are equivalent

if each equation in (?) is a linear combination of the equations in (?′) and vice versa.
Furthermore, we say that a variable xi is used by the linear system (?) if it occurs
with non-zero coefficient in at least one equation.

7By ‘the base of the exponent in the upper bound’, we mean the constant γ < q in the upper
bound β · γn.
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Definition 6.13. The linear system (?) is said to be:

(a) non-degenerate if the rows of A are linearly independent and every variable is
used;

(b) reducible if it is equivalent to a linear system (?′) with the property that the
variables x1, . . . ,xk can be partitioned into two or more classes in such a way
that every equation in (?′) only uses variables from one partition class. If this is
not the case, then (?) is said to be irreducible.

Passing to an equivalent system or deleting columns with only zeroes does not
change the problem of finding a (?)-shape, so we may assume without loss of generality
that (?) is non-degenerate. The following proposition shows that we can also restrict
our attention to irreducible systems.

Proposition 6.14. Suppose that (?) is equivalent to a linear system (?′) whose
coefficient matrix can be written as (

A1 0
0 A2

)
for some A1 ∈ Fm1×k1

q and A2 ∈ Fm2×k2
q with m1,m2, k1, k2 6= 0. Then (?) is moderate

if and only if the systems given by A1 and A2 are moderate.

Proof. If (?′) is moderate, then it is easy to see that the same holds for the systems
given by A1 and A2.

Suppose that for i = 1, 2, the system given by Ai is moderate, with constants
βi, γi > 0, where γi < q. Let S ⊆ Fnq be a set of size at least max(β1γ

n
1 , k1 +

β2γ
n
2 ). Since |S| ≥ β1γ

n
1 , we may choose an A1-shape (x1, . . . ,xk1) in S. Then, since

|S \ {x1, . . . ,xk1}| ≥ β2γ
n
2 , we may choose an A2-shape in S \ {x1, . . . ,xk1}. Since

max(β1γ
n
1 , k1 + β2γ

n
2 ) ∈ O(max(γ1, γ2)n), this shows that (?′), and therefore (?), is

moderate. �

Therefore we may restrict our attention to irreducible systems, as stipulated in
Situation 6.7.

The following proposition will be useful later on.

Proposition 6.15. Let (?) be a linear system given by the matrix A = (aij) ∈ Fm×kq .
If (?) is non-degenerate and irreducible, and if m ≥ 2, then every non-zero linear
equation implied by (?) uses at least two column equivalence classes, and ` ≥ m+ 1.

Proof. Let ` be the number of column equivalence classes, and note that m =
rank(A) ≤ ` (recall that the columns with indices in the same column equivalence
class are scalar multiples of each other). Suppose for the sake of contradiction that
some linear combination of the rows of (?) uses exactly one column equivalence class.
By passing to an equivalent system and permuting the columns, we may assume
without loss of generality that the first row of (?) only uses the column equivalence
class C = {1, . . . , |C|} ⊆ [k]. Since the columns indexed by C are non-zero multiples
of one another, we have a1j 6= 0 for all j ∈ C.
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By Gaussian elimination, we may pass to an equivalent system (?′), given by
the matrix A′ = (a′ij) ∈ Fm×kq , such that ai1 = 0 for all i > 1. Since elementary
row operations preserve the column equivalence classes, we have aij = 0 for all
(i, j) ∈ {2, . . . ,m} × C. It follows that every row in (?′) uses variables from either C
or [k] \ C, but not both. Since ` ≥ m ≥ 2, we have |C|, |[k] \ C| 6= 0, so it follows that
(?) is reducible. This is a contradiction, so we conclude that every (non-zero) equation
implied by (?) uses at least two column equivalence classes.

To prove that ` ≥ m + 1, let A′ be the matrix obtained by deleting from A
the columns in one column equivalence class. By the above, every non-zero linear
combination of the rows of A′ uses at least one of the remaining `−1 column equivalence
classes. It follows that rank(A′) = m, so `− 1 ≥ m. �

6.3 Proof of Theorem 6.8(i)

In this section, we develop the first main technique (the ‘single replacement trick’, see
Corollary 6.21) and use it to prove Theorem 6.8(i).

We recall the definition of tricoloured sum-free sets (already used in §5.3):

Definition 6.16. Let G be an abelian group. A sequence {(xi, yi, zi)}Li=1 in G3 is
called a tricoloured sum-free set in G if for all i, i′, i′′ ∈ [L] one has xi + yi′ + zi′′ = 0
if and only if i = i′ = i′′.

Note that the definition implies |{x1, . . . , xL}| = |{y1, . . . , yL}| = |{z1, . . . , zL}| =
L; that is, in a tricoloured sum-free set there can be no repetitions in each of the
coordinates (separately).

In Corollary 5.10 and Remark 5.11, we proved the following exponential upper
bound on the size of tricoloured sum-free sets in Fnq :

Theorem 6.17 (cf. Corollary 5.10, Remark 5.11). Let q = ps be a prime power, and
define Γq := J(p, p−1

3 )s. Then for every tricoloured sum-free set {(xi,yi, zi)}Li=1 in
Fnq one has L < (Γq)n.

To prove the ‘single replacement trick’, we start with the following lemma.

Lemma 6.18. Let q be a prime power, and let Γq be as in Theorem 6.17. Let
α, β ∈ Fq \ {0}, let x1, . . . ,xL ∈ Fnq be distinct, and let y1, . . . ,yL ∈ Fnq be distinct. If
L ≥ (Γq)n, then there exist i, i′, i′′ ∈ [L] with i 6= i′, i′′ and αxi + βyi = αxi′ + βyi′′ .

Proof. For i ∈ [L], define zi = αxi+βyi. Each triple in the sequence {(αxi, βyi,−zi)}Li=1
sums to zero, but we have L ≥ (Γq)n, so it follows from Theorem 6.17 that this se-
quence is not a tricoloured sum-free set. Therefore we may choose i, i′, i′′ ∈ [L], not all
equal, such that αxi + βyi = zi = αxi′ + βyi′′ .

Suppose that i′′ = i. Then we have αxi = αxi′ , hence xi = xi′ (because α 6= 0),
and therefore i = i′ (because x1, . . . ,xL are distinct), contrary to our assumption
that i, i′ and i′′ are not all equal. This is a contradiction, so we must have i′′ 6= i. An
analogous argument shows that i′ 6= i. �
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Remark 6.19. In Lemma 6.18, we do not require that i′ 6= i′′. The case that i′ = i′′

corresponds to the case that z1, . . . ,zL are not all distinct. This does not matter for
the rest of the proof.

Definition 6.20. We say that two solutions ~x = (x1, . . . ,xk) and ~y = (y1, . . . ,yk)
to (?) are disjoint if {x1, . . . ,xk} ∩ {y1, . . . ,yk} = ∅. Note that we do not require
the xj (resp. the yj) to be pairwise distinct.

Corollary 6.21 (‘Single replacement trick’). Let {(x(i)
1 , . . . ,x

(i)
k )}Li=1 be a list of

pairwise disjoint solutions of (?), and suppose that j1 and j2 are distinct indices in
the same column equivalence class. If L ≥ (Γq)n, then there exist i, i′, i′′ ∈ [L] with
i 6= i′, i′′ such that the k-tuple (y1, . . . ,yk) ∈ (Fnq )k given by

yj =


x

(i)
j , if j 6= j1, j2;

x
(i′)
j , if j = j1;

x
(i′′)
j , if j = j2;

is also a solution of (?).

Proof. Since the j1-th and j2-th column of (?) are multiples of one another, we may
choose a vector v ∈ Fmq and constants α, β 6= 0 such that the j1-th column is equal to
αv and the j2-th column is equal to βv.

By assumption, the vectors x(1)
j1
, . . . ,x

(L)
j1

are distinct, and likewise the vectors
x

(1)
j2
, . . . ,x

(L)
j2

are distinct, so it follows from Lemma 6.18 that there exist i, i′, i′′ ∈ [L]
with i 6= i′, i′′ and αx

(i)
j1

+ βx
(i)
j2

= αx
(i′)
j1

+ βx
(i′′)
j2

. Hence, the total contribution of
x

(i)
j1

and x(i)
j2

to the equations of (?) is the same as the contribution of x(i′)
j1

and x(i′′)
j2

.
Since (x(i)

1 , . . . ,x
(i)
k ) is a solution of (?), so is (y1, . . . ,yk). �

We now prove the first main result of this chapter, using the replacement trick
from the preceding corollary.

Proof of Theorem 6.8(i). Let (?), A, m, k and ` be as in Situation 6.7, and suppose
that (?) satisfies property (i) from Theorem 6.8 (none of the column equivalence classes
of size 2 sums to zero). Furthermore, let Γq be the constant from Theorem 6.17.

We prove by induction on λ that, for every λ ∈ [k], there is a constant βλ ≥ 1 such
that every subset S ⊆ Fnq of size at least βλ ·(Γq)n contains a solution (x1, . . . ,xk) ∈ Sk
of (?) with at least λ different vectors; that is, |{x1, . . . ,xk}| ≥ λ. For λ = 1, this is
trivially true with β1 = 1, since (x, . . . ,x) is a solution of (?) for every x ∈ Fnq .

For the induction step, suppose that λ0 ∈ [k − 1] is given such that the statement
is true for λ = λ0. Define βλ0+1 := βλ0 + P (k, λ0) · k, where P (k, λ0) denotes the
number of partitions of a k-element set into λ0 parts.

Let S ⊆ Fnq be a set of size at least βλ0+1 · (Γq)n = βλ0 · (Γq)n +P (k, λ0) · (Γq)n · k.
Create a list of disjoint solutions {(x(i)

1 , . . . ,x
(i)
k )}L0

i=1 of (?) in S, each with at least
λ0 different vectors, by repeatedly finding such a solution in S and removing it from
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S. By the induction hypothesis, we can find a new solution as long as the remaining
set has size at least βλ0 · (Γq)n, and in each step we remove at most k vectors from S,
so we find a list of length L0 ≥ P (k, λ0) · (Γq)n.

If one of the solutions in the list has strictly more than λ0 different vectors, then
we are done. So we may assume that every solution in the list has exactly λ0 different
vectors.

We sort the entries in the list according to their partition pattern. We say that
a solution (x(i)

1 , . . . ,x
(i)
k ) is compatible with a partition [k] = J1 ∪ · · · ∪ Jλ0 if for

all j1, j2 ∈ [k] we have: x(i)
j1

= x
(i)
j2

if and only if j1 and j2 belong to the same
partition class. Evidently every solution is compatible with exactly one partition. By
the pigeonhole principle, we may choose a partition [k] = J1 ∪ · · · ∪ Jλ0 that occurs at
least (Γq)n times in our list of solutions. Thus, we obtain a list {(y(i)

1 , . . . ,y
(i)
k )}L1

i=1
of solutions of the same partition type, where L1 ≥ (Γq)n.

Now we have two competing partitions of [k], given by the column equivalence
classes and the (now fixed) partition type [k] = J1 ∪ · · · ∪Jλ0 . For j1, j2 ∈ [k], we write
j1 ‖ j2 if j1 and j2 are in the same column equivalence class, and j1 ≡ j2 if j1 and j2
belong to the same class in the partition [k] = J1 ∪ · · · ∪ Jλ0 (i.e. if y(i)

j1
= y

(i)
j2

for all
i ∈ [L1]).

Since λ0 < k, we may choose distinct j0, j1 ∈ [k] with j0 ≡ j1. Furthermore, since
(?) has at most one column equivalence class of size 1, we may assume without loss
of generality that j1 belongs to a column equivalence class of size 2 or more. We
distinguish two cases, depending on which of the column equivalence classes j0 and j1
belong to.

• Case 1: j0 ∦ j1 or j0 and j1 belong to the same column equivalence class of
size at least 3. In this case, we may choose j2 6= j0, j1 such that j1 ‖ j2. By
Corollary 6.21, there is a solution (z1, . . . ,zk) of (?) of the form

zj =


y

(i)
j , if j 6= j1, j2;

y
(i′)
j , if j = j1;

y
(i′′)
j , if j = j2;

for some i, i′, i′′ ∈ [L1] with i 6= i′, i′′. In other words, (z1, . . . ,zk) is obtained
by taking the solution (y(i)

1 , . . . ,y
(i)
k ) and replacing two entries.

We prove that |{z1, . . . ,zk}| ≥ λ0 + 1. First, note that {zj1 , zj2} ∩ {zj | j 6=
j1, j2} = ∅, since the solutions in the list were disjoint. Now we distinguish two
cases.

– If j1 ≡ j2, then the removal of the j1-th and j2-th vectors from (y(i)
1 , . . . ,y

(i)
k )

does not change the number of different vectors, since y(i)
j0

= y
(i)
j1

= y
(i)
j2

.
We replace them by two vectors zj1 , zj2 which are distinct from the other
vectors in the solution (but possibly zj1 = zj2), so the number of different
vectors increases by at least 1.
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– If j1 6≡ j2, then the removal of j1-th and j2-th vectors from (y(i)
1 , . . . ,y

(i)
k )

decreases the number of different vectors by at most 1, because y(i)
j0

= y
(i)
j1

.
In this case we are guaranteed to have zj1 6= zj2 : different solutions in the
list are disjoint, but even within the same solution the j1-th and j2-th entry
are always different (because j1 6≡ j2). Thus, adding zj1 and zj2 to the
solution increases the number of different vectors by 2. The net effect is an
increase of at least 1.

This proves our claim that |{z1, . . . ,zk}| ≥ λ0 + 1.

• Case 2: j0 and j1 belong to the same column equivalence class of size 2. Then,
by assumption (i) from the theorem statement, the j0-th and j1-th columns of
(?) do not sum to zero.
By Corollary 6.21, there is a solution (z1, . . . ,zk) of (?) of the form

zj =


y

(i)
j , if j 6= j0, j1;

y
(i′)
j , if j = j0;

y
(i′′)
j , if j = j1;

for some i, i′, i′′ ∈ [L1] with i 6= i′, i′′.

Suppose for the sake of contradiction that zj0 = zj1 ; that is, y(i′)
j0

= y
(i′′)
j1

. Since
the j0-th and j1-th columns of (?) do not sum to zero, and since y(i)

j0
= y

(i)
j1

,
the fact that both (y(i)

1 , . . . ,y
(i)
k ) and (z1, . . . ,zk) are solutions of (?) implies

that y(i′)
j0

= y
(i′′)
j1

= y
(i)
j0

= y
(i)
j1

. This is a contradiction, because i 6= i′, i′′, and
different solutions of the list are disjoint. Therefore we must have zj0 6= zj1 .

The removal of y(i)
j0

and y(i)
j1

from the solution decreases the number of different
vectors by at most 1, since y(i)

j0
= y

(i)
j1

. On the other hand, putting back zj0 and
zj1 increases the number of different vectors by 2, since we have zj0 6= zj1 and
{zj1 , zj2} ∩ {zj | j 6= j1, j2} = ∅. The net effect is an increase of at least 1, so
we have |{z1, . . . ,zk}| ≥ λ0 + 1. �

6.4 Proof of Theorem 6.8(ii)

In this section, we develop our second main technique (Lemma 6.22) and combine it
with the techniques from the previous section to prove Theorem 6.8(ii).

Lemma 6.22. Let A = (aij) ∈ Fm×kq be a non-zero matrix and let S ⊆ Fnq have size
at least q1+(1− 1

k )n. Then there are (x1, . . . ,xk), (y1, . . . ,yk) ∈ Sk such that, for all
b = (b1, . . . , bk) ∈ Fkq , one has b1x1 + · · ·+ bkxk = b1y1 + · · ·+ bkyk if and only if b
is a linear combination of the rows of A.

Proof. By removing redundant rows, we may assume without loss of generality that
rankA = m. If k = m, then we can take x = y ∈ Sk arbitrary. Hence, we may assume
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that k ≥ m+ 1. By performing elementary row operations and permuting columns,
we may assume without loss of generality that A is of the form [A′ Im] for some
A′ ∈ Fm×(k−m)

q .
The matrix A defines a function f : (Fnq )k → (Fnq )m, where [f(x1, . . . ,xk)]i =

ai1x1+· · ·+aikxk. By the pigeonhole principle, we may choose some ~z = (z1, . . . ,zm) ∈
(Fnq )m such that the set T := f−1(~z) ∩ Sk has size |T | ≥ |S|k/qmn ≥ qkq(k−m−1)n.

Let π : (Fnq )k → (Fnq )k−m be the projection onto the first k −m coordinates, let
g : T → (Fnq )k−m be the restriction of π to T , and let T ′ := g[T ]. Since A is of the form
[A′ Im], it is easy to see that for every (x1, . . . ,xk−m) ∈ (Fnq )k−m there is exactly one
possible choice of (xk−m+1, . . . ,xk) ∈ (Fnq )m such that f(x1, . . . ,xk) = ~z. Therefore
g is injective, and it follows that |T ′| = |T |.

Let D = {(z1, . . . ,zk−m) ∈ (Fnq )k−m | z1, . . . ,zk−m are linearly dependent}.
Then |D| < qk−mq(k−m−1)n since there are fewer than qk−m possible linear relations.

Choose some ~y ′ = (y′
1, . . . ,y

′
k−m) ∈ T ′. Since |T ′ − ~y ′| = |T ′| > |D|, we

have (T − ~y ′) \ D 6= ∅, so we may choose (x′
1, . . . ,x

′
k−m) ∈ T ′ such that x′

1 −
y′
1, . . . ,x

′
k−m − y′

k−m are linearly independent. Let (x1, . . . ,xk), (y1, . . . ,yk) ∈ T ⊆
Sk be the (unique) preimages of (x′

1, . . . ,x
′
k−m) and (y′

1, . . . ,y
′
k−m) under g. Note

that (x1, . . . ,xk−m) = (x′
1, . . . ,x

′
k−m) and (y1, . . . ,yk−m) = (y′

1, . . . ,y
′
k−m), since

g is just a coordinate projection.
We claim that (x1, . . . ,xk) and (y1, . . . ,yk) satisfy the required property.
Since f(x1, . . . ,xk) = f(y1, . . . ,yk) = ~z, it is clear that b1x1 + · · · + bkxk =

b1y1 + · · ·+ bkyk whenever (b1, . . . , bk) is a linear combination of the rows of A.
Now let b = (b1, . . . , bk) ∈ Fkq be an arbitrary row vector such that b1x1 + · · · +

bkxk = b1y1 + · · · + bkyk. Since A is of the form [A′ Im], we can add a linear
combination of the rows of A to b to obtain a vector c = (c1, . . . , ck) ∈ Fkq with
ck−m+1 = · · · = ck = 0. By linearity, we have c1x1 + · · ·+ ckxk = c1y1 + · · ·+ ckyk,
or equivalently,

c1(x1 − y1) + · · ·+ ck−m(xk−m − yk−m) = 0.

Since x1 − y1, . . . ,xk−m − yk−m are linearly independent, it follows that c1 = · · · =
ck−m = 0, so we have cj = 0 for all j ∈ [k]. This shows that b is a linear combination
of the rows of A. �

We now come to the proof of Theorem 6.8(ii). The proof is largely analogous to
the proof of Theorem 6.8(i) (see §6.3), the main difference being that we now use
Lemma 6.22 to control column equivalence classes that sum to zero.

We prove the following slightly stronger theorem.

Theorem 6.23. Let (?), A, m, k and ` be as in Situation 6.7. Suppose that there is
a partition [k] = P1 ∪ · · · ∪ P2s such that:

(i) for all r ∈ [s], the columns of A indexed by Pr ∪ Ps+r sum to zero;
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(ii) if (b1, . . . , bk) ∈ Fkq \ {0} is a non-zero linear combination of the rows of A, then
one has

∑
j∈Pr bj 6= 0 for at least two different values of r ∈ [s].8

(iii) if C is a column equivalence class of size 2 that sums to zero, then there is some
r ∈ [s] such that C = Pr ∪ Ps+r.

Then (?) is moderate.

Before we prove Theorem 6.23, we first show how it implies Theorem 6.8(ii).

Proof of Theorem 6.8(ii), assuming Theorem 6.23. Let C1, . . . , C` ⊆ [k] be the col-
umn equivalence classes of A. We distinguish two cases:

• If ` = 1, then we have m = rank(A) ≤ ` = 1, so we are in the situation with a
single equation. Since we assumed k ≥ 3, there is no column equivalence class of
size 2, so it follows from Theorem 6.8(i) that (?) is moderate.

• Suppose that ` ≥ 2. Since A is non-degenerate, every column of A is non-zero.
Hence, since the column equivalence classes of A sum to zero, every column
equivalence class has size at least 2. For every r ∈ [`], choose jr ∈ Cr arbitrary,
and set Pr := {jr} and P`+r := Cr \ {jr}.
We prove that the partition [k] = P1 ∪ · · · ∪ P2` satisfies the properties from
Theorem 6.23. Property (i) is met because each of the column equivalence classes
sums to zero, and property (iii) is met by construction. To see that property (ii)
is met, recall that (?) is irreducible, so it follows from Proposition 6.15 that
every non-zero linear combination of the rows of A uses at least two different
column equivalence classes. �

Proof of Theorem 6.23. Let Γq be the constant from Theorem 6.17. We prove by
induction on λ that, for every λ ∈ [k], there is a constant βλ ≥ 1 such that every subset
S ⊆ Fnq of size at least βλ · (max(Γq, q

k−1
k ))n contains a solution (x1, . . . ,xk) ∈ Sk of

(?) satisfying the following properties:

(a) the solution contains at least λ different vectors; that is, |{x1, . . . ,xk}| ≥ λ;

(b) for every column equivalence class of size 2 that sums to zero, the variables
xj1 ,xj2 corresponding to that class are distinct.

Before proving the base case, we first show that the induction step from the proof
of Theorem 6.8(i) carries through unchanged. This time, part (b) of the induction
hypothesis replaces the assumption (i) from Theorem 6.8. To see that property (b) is
automatically maintained by the proof of Theorem 6.8(i), recall that the induction
step consists of choosing a column equivalence class Ct and replacing two variables
from that class by other values, leaving the other classes unchanged. Since we started
and ended with a solution of (?), the contribution of the variables {xj | j ∈ Ct}

8Note that we only look at r ∈ {1, . . . , s}, and we ignore all r ∈ {s+ 1, . . . , 2s}. This is because it
follows from (i) that

∑
j∈Pr

bj 6= 0 if and only if
∑

j∈Ps+r
bj 6= 0. An equivalent statement is that∑

j∈Pr
bj 6= 0 for at least four different values of r ∈ [2s].
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to (?) must have remained the same. Property (b) is equivalent to saying that the
contribution of {xj | j ∈ C} to (?) is non-zero for every column equivalence class C of
size 2 that sums to zero, so this property is automatically maintained by the proof of
Theorem 6.8(i).

It remains to prove the base case. Let B = (bir) ∈ Fm×sq be the matrix given by

bir :=
∑
j∈Pr

aij = −
∑

j∈Ps+r

aij .

Suppose that S ⊆ Fnq has size at least q · (max(Γq, q
k−1
k ))n. It follows from Lemma 6.22

that there are (z1, . . . ,zs), (zs+1, . . . ,z2s) ∈ Ss such that, for all (c1, . . . , cs) ∈ Fsq,
one has c1z1 + · · ·+ cszs = c1zs+1 + · · ·+ csz2s if and only if (c1, . . . , cs) is a linear
combination of the rows of B. By assumption (ii), none of the standard unit vectors
e1, . . . , es ∈ Fsq can be written as linear combination of the rows of B, so it follows
that zr 6= zs+r for all r ∈ [s].

Since [k] = P1∪· · ·∪P2s is a partition, we may define y1, . . . ,yk ∈ {z1, . . . ,z2s} ⊆
S in such a way that yj = zr if and only if j ∈ Pr. Then for all i ∈ [m] we have

ai1y1 + · · ·+ aikyk =
∑
j∈P1

aijz1 + · · ·+
∑
j∈P2s

aijz2s

= bi1z1 + · · ·+ biszs − bi1zs+1 − · · · − bisz2s = 0,

so (y1, . . . ,yk) ∈ Sk is a solution of (?). Clearly |{y1, . . . ,yk}| ≥ 1. Furthermore, by
assumption (iii), for every column equivalence class C = {j1, j2} of size 2 that sums
to zero, there is some r ∈ [s] such that Pr = {j1} and Ps+r = {j2}, so it follows that
yj1 = zr 6= zs+r = yj2 . �

6.5 Preliminaries on temperate systems

We now shift our attention from moderate to temperate systems. We show that the
problem of finding a generic solution is closely related to the problem of finding
solutions of high dimension, and we show that we may once again restrict our attention
to irreducible systems.

For an affine subspace X ⊆ Fnq we let dim(X) denote the dimension of X. So
dim(X) is the maximum number of affinely independent vectors in X minus one. For
a set S ⊆ Fnq , we let aff(S) denote the affine hull of S.

Definition 6.24. For any given k-tuple (x1, . . . ,xk) ∈ (Fnq )k, let

Annbal(x1, . . . ,xk) = {(b1, . . . , bk) ∈ Fkq | b1x1 + · · ·+ bkxk = 0, b1 + · · ·+ bk = 0}.

So the elements of Annbal(x1, . . . ,xk) correspond to the balanced linear equations
satisfied by (x1, . . . ,xk).

Lemma 6.25. For every (x1, . . . ,xk) ∈ (Fn)k we have

dim(aff(x1, . . . ,xk)) + dim(Annbal(x1, . . . ,xk)) = k − 1.
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Proof. Let A ∈ F(n+1)×k be the matrix

A =


1 · · · 1

| |
x1 · · · xk
| |

 .

For I ⊆ [k] the vectors xi, i ∈ I are affinely independent if and only if the columns of
A indexed by I are linearly independent. So rank(A) = dim(aff(x1, . . . ,xk)) + 1.

Evidently, ker(A) is precisely Annbal(x1, . . . ,xk), so the result follows from the
rank-nullity theorem. �

Corollary 6.26. Let (?) be a balanced linear system of rank m, with coefficient matrix
A ∈ Fm×kq , and let (x1, . . . ,xk) be a solution of (?). Then dim(aff(x1, . . . ,xk)) ≤
k −m− 1, with equality if and only if (x1, . . . ,xk) is a generic solution of (?).

Proof. Since (x1, . . . ,xk) is a solution of (?), the row space of A is contained in
Annbal(x1, . . . ,xk). Therefore we have m = rank(A) ≤ dim(Annbal(x1, . . . ,xk)), so
it follows from Lemma 6.25 that

dim(aff(x1, . . . ,xk)) = k − 1− dim(Annbal(x1, . . . ,xk)) ≤ k − 1−m.

Clearly we have equality if and only if the row space of A is equal to Annbal(x1, . . . ,xk),
which is equivalent to saying that all balanced linear equations satisfied by (x1, . . . ,xk)
are linear combinations of the equations in (?). �

Proposition 6.27. Suppose that (?) is equivalent to a linear system (?′) whose
coefficient matrix A′ can be written as

A′ =
(
A1 0
0 A2

)
for some A1 ∈ Fm1×k1

q and A2 ∈ Fm2×k2
q with m1,m2, k1, k2 6= 0. Then (?) is temperate

if and only if the systems given by A1 and A2 are temperate.

Proof. If (?′) is temperate, then it is easy to see that the same holds for the systems
given by A1 and A2.

Suppose that for i = 1, 2 the system given by Ai is temperate, with constants
βi, γi > 0, where γi < q. Let γ satisfy max(γ1, γ2) < γ < q, and choose β such that

βqγn ≥ max(qn · β1q
γ1n, nqk1 · β2q

γ2n) for all n ∈ N1.

Let S ⊆ Fnq have size |S| ≥ βqγn. For i ∈ [n] and α ∈ Fq, write S(i, α) := {x ∈
S | xi = α}. We claim that there exist i ∈ [n] and distinct α′, α′′ ∈ Fq such that
|S(i, α′)|, |S(i, α′′)| ≥ |S|qn . For each coordinate i ∈ [n], let αi ∈ arg maxα∈Fq |S(i, α)|
be a most popular value. Then S \ {(α1, . . . , αn)} = ∪i∈[n](S \ S(i, αi)). So we can
choose i ∈ [n] such that |S \ S(i, αi)| ≥ |S|−1

n . Then there is an α′′ 6= αi such that
S(i, α′′) ≥ |S|−1

n(q−1) ≥
|S|
qn . Taking α′ = αi proves the claim.
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Without loss of generality, we will assume that we can take i = 1 in the claim. We
denote S1 = S(1, α′) and S2 = S(1, α′′). Since |S1| ≥ β1q

γ1n, there exists a generic
solution ~y = (y1, . . . ,yk1) ∈ (S1)k1 to the linear system given by A1. We can take
I ⊆ [n] with |I| ≤ k1−1 such that for all b = (b1, . . . , bk1) ∈ Fk1

q with b1 + · · ·+bk1 = 0
we have:

∀i ∈ I : (b1y1 + · · ·+ bk1yk1)i = 0 =⇒ b1y1 + · · ·+ bk1yk1 = 0.

Indeed, if M ∈ Fn×k1
q is the matrix with columns y1, . . . ,yk1 , then we can take I ⊆ [n]

of size |I| ≤ k1 − 1 such that the rows of M are contained in the span of the rows
indexed by I and the row vector (1, . . . , 1). Since y11 = · · · = yk11 we may assume
that 1 6∈ I.

As ~y is a generic solution to the system given by A1, we obtain

∀i ∈ I : (b1y1 + · · ·+ bk1yk1)i = 0 =⇒ b ∈ rowspace(A1). (6.28)

We can take αi ∈ Fq for each i ∈ I such that T = {x ∈ S2 | xi = αi for all i ∈ I} has
size |T | ≥ |S2| · q1−k1 ≥ β2q

γ2n.
It follows that there exists a generic solution ~z ∈ T k2 to the system given by

A2. Now ~x = (~y,~z) is a generic solution to (?′). Indeed, let b = (b1, . . . , bk) ∈
Annbal(x1, . . . ,xk). It suffices to show that b ∈ rowspace(A′). Looking at the first
coordinate and using that b1 + · · ·+ bk = 0, we see that

0 = (b1 + · · ·+ bk1)α′ + (bk1+1 + · · ·+ bk)α′′ = (b1 + · · ·+ bk1)(α′ − α′′).

Since α′ 6= α′′, we find that b1 + · · · + bk1 = 0 = bk1+1 + · · · + bk. Since ~z ∈ T k2 it
follows that

(b1y1 + · · ·+ bk1yk1)i = (b1x1 + · · ·+ bkxk)i = 0 (∀i ∈ I).

It now follows from (6.28) that (b1, . . . , bk1) ∈ rowspace(A1). So after modifying b by
an element of rowspace(A′), we may assume that b1, . . . , bk1 = 0. Hence the fact that
b ∈ Annbal(x1, . . . ,xk) implies that bk1+1z1 + · · ·+ bkzk2 = 0. Since ~z is generic, we
conclude that (bk1+1, . . . , bk) ∈ rowspace(A2). Hence, b ∈ rowspace(A′). �

6.6 Proof of Theorem 6.9 and Theorem 6.10

In this section, we develop the multiple replacement trick (Corollary 6.30) and use it
(in combination with Lemma 6.22) to prove Theorem 6.9 and Theorem 6.10.

We start with a many-solutions version of Lemma 6.18.

Lemma 6.29. Let q be a prime power, let N0 = (Γq)n, where Γq is as in Theorem 6.17,
and let t ∈ N1. Let x1, . . . ,xL ∈ Fnq be distinct, let y1, . . . ,yL ∈ Fnq be distinct, and
let α, β ∈ Fq \ {0}. If L ≥ 4tN0, then there exists an i ∈ [L] such that∣∣{(i′, i′′) ∈ ([L] \ {i})2 | αxi′ + βyi′′ = αxi + βyi

}∣∣ ≥ t.
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Proof. Write

T := {(i, i′, i′′) ∈ [L]3 | αxi′ + βyi′′ = αxi + βyi and i 6= i′, i′′}.

By Lemma 6.18, the set T ∩ J3 is nonempty for all J ⊆ [L] with |J | ≥ N0. We claim
that |T ∩ J3| ≥ |J | − N0 for all J ⊆ [L]. Indeed, suppose that |T ∩ J3| < |J | − N0;
then we could delete fewer than |J | −N0 elements from J to obtain a set J ′ of size
|J ′| > N0 such that T ∩ (J ′)3 is empty: a contradiction. So |T ∩ J3| − |J |+N0 ≥ 0 for
all J ⊆ [L].

Let J be the random subset of [L] obtained by independently taking each element of
[L] with probability 1

2t . We have E[|J |] = L
2t and E[|T ∩J3|] ≤ |T |

(2t)2 since |{i, i′, i′′}| ≥ 2
for all (i, i′, i′′) ∈ T . From E[|T ∩ J3| − |J |+ N0] ≥ 0 we obtain |T |4t2 ≥

L
2t −N0, and

therefore |T |L ≥ 2t− 4t2N0
L ≥ t. Hence, by the pigeonhole principle, there is an i ∈ [L]

such that |{(i′, i′′) ∈ [L]2 | (i, i′, i′′) ∈ T}| ≥ t, as required. �

Recall that two solutions (x1, . . . ,xk) and (y1, . . . ,yk) are said to be disjoint if
{x1, . . . ,xk} ∩ {y1, . . . ,yk} = ∅. We obtain a corollary analogous to Corollary 6.21.

Corollary 6.30 (‘Multiple replacement trick’). Let {(x(i)
1 , . . . ,x

(i)
k )}Li=1 be a list of

pairwise disjoint solutions of (?), and suppose that j1 and j2 are distinct indices from the
same column equivalence class. Suppose that L ≥ 4t · (Γq)n. Then there exist an i ∈ [L]
and t distinct pairs (i′s, i′′s ) ∈ ([L] \ {i})2, s ∈ [t], such that (y(s)

1 , . . . ,y
(s)
k ) ∈ (Fnq )k

given by

y
(s)
j =


x

(i)
j , if j 6= j1, j2;

x
(i′s)
j , if j = j1;

x
(i′′s )
j , if j = j2;

is also a solution of (?) for all s ∈ [t].

Proof. Since the j1-th and j2-th column of (?) are nonzero multiples of one another,
we may choose a vector v ∈ Fmq and constants α, β 6= 0 such that the j1-th column is
equal to αv and the j2-th column is equal to βv.

By assumption, the vectors x(1)
j1
, . . . ,x

(L)
j1

are pairwise distinct, and likewise the
vectors x(1)

j2
, . . . ,x

(L)
j2

are pairwise distinct, so it follows from Lemma 6.29 that there
exist i ∈ [L] and t distinct pairs (i′s, i′′s ) ∈ ([L] \ {i})2, s ∈ [t], with αx

(i)
j1

+ βx
(i)
j2

=
αx

(i′s)
j1

+ βx
(i′′s )
j2

. Hence, the total contribution of x(i)
j1

and x(i)
j2

to the equations of (?)
is the same as the contribution of x(i′s)

j1
and x(i′′s )

j2
. Since (x(i)

1 , . . . ,x
(i)
k ) is a solution

of (?), so is (y(s)
1 , . . . ,y

(s)
k ). �

Definition 6.31. Let A ∈ Fm×kq be a matrix and let j1, j2 ∈ [k] be distinct elements
in the same column equivalence class of A. We say that (b1, . . . , bk) ∈ Fkq breaks the
pair {j1, j2} if after adding the row (b1, . . . , bk) to A, the columns indexed by j1 and
j2 are no longer scalar multiples of one another.
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Lemma 6.32. Let (?), A, m, k and ` be as in Situation 6.7, let j1, j2 ∈ [k] be distinct
indices in the same column equivalence class, and let {(x(i)

1 , . . . ,x
(i)
k )}Li=1 be a list of

pairwise disjoint solutions to (?). If L ≥ 4qk(Γq)n, then there exist an i ∈ [L] and a
solution (y1, . . . ,yk) to (?) such that:

(i) yj = x
(i)
j for all j 6= j1, j2 and yj ∈ {x(1)

j , . . . ,x
(L)
j } for j ∈ {j1, j2};

(ii) Annbal(y1, . . . ,yk) ⊆ Annbal(x(i)
1 , . . . ,x

(i)
k );

(iii) no b ∈ Annbal(y1, . . . ,yk) breaks the pair (j1, j2).

Proof. By Corollary 6.30, we may choose i ∈ [L] and a sequence {(i′s, i′′s )}q
k

s=1 of qk
pairwise distinct pairs (i′s, i′′s ) ∈ ([L] \ {i})2 such that, for all s ∈ [qk], the k-tuple
(z(s)

1 , . . . ,z
(s)
k ) ∈ Sk defined by

z
(s)
j =


x

(i)
j if j ∈ [k] \ {j1, j2}

x
(i′s)
j if j = j1

x
(i′′s )
j if j = j2

is a solution to (?).
If b = (b1, . . . , bk) breaks the pair (j1, j2), then the contributions bj1z

(s)
j1

+ bj2z
(s)
j2

for s ∈ [qk] are pairwise distinct. Therefore we can have b ∈ Annbal(z(s)
1 , . . . ,x

(s)
k ) for

at most one value of s. Since the number of b ∈ Fkq with b1 + · · ·+ bk = 0 is less than
qk, we may choose s0 ∈ [qk] such that no b ∈ Annbal(z(s0)

1 , . . . ,z
(s0)
k ) breaks the pair

(j1, j2).
Set y := z(s0). Then (i) and (iii) are met. To prove (ii), let b ∈ Annbal(y1, . . . ,yk)

be given. Since b does not break the pair (j1, j2), we have bj1z
(s0)
j1

+ bj2z
(s0)
j2

=
bj1x

(i)
j1

+ bj2x
(i)
j2

, and therefore b ∈ Annbal(x(i)
1 , . . . ,x

(i)
k ), as desired. �

Lemma 6.33. Let (?), A, m, k and ` be as in Situation 6.7. Let S ⊆ Fnq have size

|S| ≥ q1+ `−1
` n. Assume that at least one of the following two conditions holds:

(i) ` = m+ 1;

(ii) every column equivalence class sums to zero.

Then there exists a solution ~x = (x1, . . . ,xk) ∈ Sk to (?) with the following property:

If b ∈ Annbal(x1, . . . ,xk) preserves the column
equivalence classes of (?), then b ∈ rowspace(A).

(6.34)

Proof. Let [k] = C1 ∪ · · · ∪ C` be the partition of [k] into column equivalence classes.
We first consider the case that condition (i) holds. Let ~x = (x1, . . . ,xk) be any

solution to (?). Suppose that ~x satisfies a balanced equation b1x1 + · · ·+ bkxk = 0
that preserves the column equivalence classes of (?), but (b1, . . . , bk) is not a linear
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combination of the rows of A. Let A′ be the (m+ 1)× k matrix obtained by adding
the row (b1, . . . , bk) to A. Then rank(A′) = m + 1 = `. For t ∈ [`] let σt ∈ Fm+1

q be
the sum of the columns of A′ in class t. Since the column rank of A′ is `, it follows
that if we take one index from each column equivalence class, the corresponding `
columns are linearly independent. Let I = {t ∈ [`] | σt 6= 0}. Then the σt, t ∈ I
are linearly independent and

∑
t∈I σt =

∑
t∈[`] σt = 0. It follows that I = ∅. So all

column equivalence classes of A′ (and hence of A) sum to zero, and we are in case (ii).
We now consider the case that condition (ii) holds. Since A has no zero columns,

every column equivalence class has size at least 2. For t ∈ [`] let jt ∈ Ct. Let
A′ = (a′it) ∈ Fm×`q be the submatrix of A induced by columns j1, . . . , jt. Consider the
system ∑̀

t=1
a′ityt = 0 for all i ∈ [m].

Since |S| ≥ q1+ `−1
` n, it follows by Lemma 6.22 that there are (y1, . . . ,y`) and

(z1, . . . ,z`) in S` such that for all (b1, . . . , b`) ∈ F`q one has b1(y1 − z1) + · · · +
b`(y` − z`) = 0 if and only if (b1, . . . , b`) is a linear combination of the rows of A′.
Define (x1, . . . ,xk) ∈ Sk by setting (for t ∈ [`] and j ∈ Ct)

xj =
{
yt if j = jt,

zt otherwise.

Note that for any bj1 , . . . , bj` ∈ Fq there are unique bj ∈ Fq, j ∈ [k] \ {j1, . . . , j`} such
that b1 + · · ·+ bk = 0 and (b1, . . . , bk) preserves the column equivalence classes of A.
Moreover, we have bj1(y1−z1)+· · ·+bj`(y`−z`) = 0 if and only if b1x1+· · ·+bkxk = 0.
It follows that (x1, . . . ,xk) satisfies the requirements. �

We are now ready to prove Theorem 6.9 and Theorem 6.10.

Proof of Theorem 6.9. Let Γq be the constant from Theorem 6.17. For every t ∈ N0,
we define

Nt := q1+ `−1
` n + t · (4kqk(Γq)n).

Let [k] = C1 ∪ · · · ∪ C` be the partition of [k] into column equivalence classes of
A. We will prove by induction on |P | that, for every set P ⊆

(
C1
2
)
∪ · · · ∪

(
C`
2
)

of
equivalent pairs and for every set S ⊆ Fnq of size |S| ≥ N|P |, the system (?) has a
solution ~x = (x1, . . . ,xk) ∈ Sk that satisfies (6.34) and such that no (b1, . . . , bk) ∈
Annbal(x1, . . . ,xk) breaks a pair in P .

• For |P | = 0, the claim follows directly from Lemma 6.33.

• Assume that |P | ≥ 1 and that the claim holds for sets of fewer than |P | pairs.
Fix some {j1, j2} ∈ P , and write L = 4qk(Γq)n. Since |S| ≥ N|P | ≥ kL+N|P |−1,
there exist disjoint solutions ~x (1), . . . ,~x (L) ∈ Sk to (?) that satisfy the desired
property for the list P \ {{j1, j2}}. Using Lemma 6.32, we obtain a solution
~x = (x1, . . . ,xk) ∈ Sk to (?) with Annbal(x1, . . . ,xk) ⊆ Annbal(x(i)

1 , . . . ,x
(i)
k )

for some i ∈ [L] and such that no b ∈ Annbal(x1, . . . ,xk) breaks the pair (j1, j2).



6.7. Examples and applications 79

Since Annbal(x1, . . . ,xk) ⊆ Annbal(x(i)
1 , . . . ,x

(i)
k ), no b ∈ Annbal(x1, . . . ,xk)

breaks a pair in P \ {(j1, j2)} and ~x satisfies (6.34).

Letting P =
(
C1
2
)
∪ · · · ∪

(
C`
2
)

completes the proof. �

Proof of Theorem 6.10. If all column equivalence classes sum to zero, the result follows
directly from Theorem 6.9(ii). Assume therefore that not all column equivalence classes
sum to zero. Let Γq be the constant from Theorem 6.17. For every t ∈ N0 we define

Nt := t · (4kqk(Γq)n).

Let S ⊆ Fnq have size |S| ≥ Nk2 . By the same argument as in the proof of Theorem 6.9,
we have a solution ~x = (x1, . . . ,xk) ∈ Sk to (?) such that no b ∈ Annbal(x1, . . . ,xk)
breaks a pair from the same column equivalence class. In other words, b preserves the
column equivalence classes, so this proves part (i).

For part (ii), observe that Annbal(x1, . . . ,xk) does not contain all balanced lin-
ear equations that preserve the column equivalence classes, for otherwise every col-
umn equivalence class must sum to zero, contrary to our assumption. So we have
dim(Annbal(x1, . . . ,xk)) ≤ ` − 1, and therefore dim(aff(x1, . . . ,xk)) ≥ k − `, by
Lemma 6.25. �

Remark 6.35. We compare the rank of the solution (x1, . . . ,xk) in Theorem 6.10 to
the rank given by Theorem 6.5. Suppose we are in Situation 6.7, and set r = k−2m+1.
Then k ≥ 2m− 1 + r, so it follows from Theorem 6.5 that we can find a solution with
dim(span(x1, . . . ,xk)) ≥ r, and therefore dim(aff(x1, . . . ,xk)) ≥ r − 1 = k − 2m.

So how do these two compare? If ` = 1, then we must have m = 1 (because we
assume that the rows of A are linearly independent), so in this case the rank from
Theorem 6.10 and Theorem 6.5 agree. If ` ≥ 2, then we see that Theorem 6.10 improves
upon Theorem 6.5 whenever m > `

2 . Then again, Theorem 6.10 only applies to a
smaller class of linear systems.

6.7 Examples and applications

We conclude this chapter by looking at a few examples of type (RC) linear systems, to
highlight the applications and limitations of the results from this chapter. First we will
look at an application to sumsets in Fnq . We show that our results can be used to find
non-trivial solutions of an arbitrary linear system in the difference set S − S, but not
in the sumset S + S. After that, we will look at the systems studied by Mimura and
Tokushige [MT19a, MT19b, MT20]. We show that our techniques furnish alternative
proofs that those systems are moderate, and in many cases we strengthen this to show
that the system is also temperate.

Applications to sum and difference sets
Since this chapter studies linear systems with repeated columns, one obvious question
is to which extent our results can be applied to the problem of finding solutions to
a system of linear equations in sum and difference sets. Throughout this section, let
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Fq be a finite field of characteristic p, and let c1, . . . , cl ∈ Fq \ {0}. We consider the
affinely independent sumset (or AIR-sumset)

T := c1 · S u
aff
· · · u

aff
cl · S = {c1x1 + · · ·+ clxl | x1, . . . ,xl ∈ S affinely independent}.

If c1 + · · ·+cl = 0, then Corollary 6.11 states that T contains generic solutions to every
linear system (?), provided that S is sufficiently large. We now prove this statement.

Proof of Corollary 6.11. Let A = (aij) ∈ Fm×kq be the coefficient matrix of the system
(?). (Recall from the statement of Corollary 6.11 that A may be arbitrary.) Let
A′ = (a′ij) ∈ Fm×lkq be the m× lk matrix

A′ =
[
c1A | c2A | · · · | clA

]
,

and let (?′) be the corresponding linear system. Every column equivalence class of (?′)
is the union of sets of the form {j, j + k, . . . , j + (l − 1)k} (for some j ∈ [k]), so (?′)
is of type (RC). Furthermore, the column equivalence classes sum to zero, because
c1 + · · ·+ cl = 0. Hence it follows from Theorem 6.9(ii) and Proposition 6.27 that (?′)
is temperate. Therefore there are constants β, γ ≥ 1 with γ < q such that every set
S ⊆ Fnq with |S| ≥ β · γn contains a generic solution of (?′). Choose such a generic
solution (x1, . . . ,xlk) ∈ Slk, and define y1, . . . ,yk ∈ c1 · S + · · ·+ cl · S by

yj := c1xj + c2xj+k + · · ·+ clxj+(l−1)k.

Clearly (y1, . . . ,yk) is a solution of the linear system (?). We show that (y1, . . . ,yk)
is linearly generic and that y1, . . . ,yk ∈ (c1 · S u

aff
· · · u

aff
cl · S) ∪ {0}.

First, let b = (b1, . . . , bk) ∈ Fkq be such that b1y1+· · ·+bkyk = 0. Then (x1, . . . ,xlk)
belongs to the kernel of the 1× lk matrix

B′ =
[
c1b | c2b | · · · | clb

]
.

Since c1 + · · ·+ cl = 0, the entries of B′ sum to 0, so B′ represents a balanced linear
equation satisfied by (x1, . . . ,xlk). Since (x1, . . . ,xlk) is a generic solution of (?′), it
follows that B′ is a linear combination of the rows of A′. Equivalently, b is a linear
combination of the rows of A. This shows that (y1, . . . ,yk) is linearly generic.

To complete the proof, it suffices to show that yj = 0 whenever the vectors
xj ,xj+k, . . . ,xj+(l−1)k are affinely dependent, for every j ∈ [k]. To that end,
suppose that xj ,xj+k, . . . ,xj+(l−1)k are affinely dependent. Then there is some
b = (b1, . . . , bl) ∈ Flq \ {0} with b1 + · · ·+ bl = 0 and

b1xj + b2xj+k + · · ·+ blxj+(l−1)k = 0. (b′)

Since (x1, . . . ,xlk) is generic, the balanced linear equation (b′) is a linear combination
of the equations in (?′). By choosing some r ∈ [l] such that br 6= 0 and restricting our
attention to the variables x(r−1)k+1, . . . ,xrk (i.e. the r-th block in the block matrix
representation of A′), we see that the equation yj = 0 is a linear combination of the
equations in (?). �
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Corollary 6.12 can be deduced from Corollary 6.11 by letting (?) be the linear system
that encodes a k-term arithmetic progression and setting l = 2 and (c1, c2) = (1,−1).
We show that Corollary 6.12 does not depend on the full strength of Corollary 6.11,
as it follows immediately from Lemma 6.22.

Proof of Corollary 6.12. Let (?) be a linear system which encodes a k-term arithmetic
progression, for instance the system given by the matrix

A =


1 −2 1 0 0 · · · 0 0 0 0 0
0 1 −2 1 0 · · · 0 0 0 0 0
...

...
...

...
... . . . ...

...
...

...
...

0 0 0 0 0 · · · 0 1 −2 1 0
0 0 0 0 0 · · · 0 0 1 −2 1

 ∈ F(k−2)×k
p .

Let S ⊆ Fnp with |S| ≥ p1+(1− 1
k )n. By Lemma 6.22, there are (x1, . . . ,xk), (y1, . . . ,yk) ∈

Sk such that (x1 − y1, . . . ,xk − yk) is a linearly generic solution of (?).
Since the standard basis vectors e1, . . . , ek ∈ Fkq cannot be written as linear

combinations of the rows of A,9 we have xj −yj 6= 0 for all j ∈ [k]. Likewise, since the
vectors ej − ej′ (j 6= j′) cannot be written as linear combinations of the rows of A,9

we have xj − yj 6= xj′ − yj′ whenever j 6= j′. It follows that (x1 − y1, . . . ,xk − yk)
is a non-trivial k-AP in (S − S) \ {0}. �

Remark 6.36. The preceding proof carries through unchanged if A is replaced
by an arbitrary matrix, and if the difference set (S − S) \ {0} is replaced by the
sum set c1 · S + · · · + cl · S with c1 + · · · + cl = 0 (replace xj − yj ∈ S − S by
c1xj + (c2 + · · ·+ cl)yj ∈ c1 · S + · · ·+ cl · S). So a weaker version of Corollary 6.11,
where the AIR-sumset is replaced by an ordinary sumset, can also be proved by a
simple counting argument, without using the slice rank method.

Remark 6.37. Now consider once again the sumset c1 · S + · · ·+ cl · S, but this time
assume that c1 + · · ·+ cl 6= 0. In this case, the techniques from this chapter do not
say anything non-trivial about the problem of finding a non-trivial k-AP in the sum
set c1 · S + · · ·+ cl · S. (But the results from this chapter were later superseded by
another paper by Gijswijt [Gij21], and it follows from the results contained therein
that Corollary 6.12 remains valid when c1 + · · ·+ cl 6= 0.)

We explain why the results from this chapter do not work when c1 + · · ·+ cl 6= 0. It
is tempting to try to repeat the proof of Corollary 6.11, but we run into a problem: The
column equivalence classes no longer sum to zero, so we have to replace Theorem 6.9(ii)
by Theorem 6.9(i). However, this imposes two extra conditions on the original m× k
matrix in the proof of Corollary 6.11, namely that A1 = 0 (i.e. (?) is balanced) and
that k = rank(A) + 1. So we can only say something for a very specific class of
linear systems. In fact, this class is so specific that the coefficient matrix must satisfy
ker(A) = span(1), so every solution of the original system must be constant!

Likewise, it is tempting to try to repeat the proof of Corollary 6.11, but this time
replacing Theorem 6.9(ii) by Theorem 6.8(i). After all, to find (say) a non-trivial

9To prove this, it is sufficient to note that there exist non-trivial k-APs in Fnq \ {0}.
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k-AP, it is enough to find a solution with y1, . . . ,yk pairwise distinct instead of a
generic solution. Here we run into another problem. In the proof of Corollary 6.11, we
can find a solution (x1, . . . ,xlk) ∈ Slk of the extended system (?′) with x1, . . . ,xlk

pairwise distinct. But when we recombine these to form a solution (y1, . . . ,yk) ∈
(c1 · S + · · ·+ cl · S)k of the original system (?), we may end up with y1 = · · · = yk,
since we have no way to avoid these additional equations. In fact, if we use the proof
of Theorem 6.8(i) as an algorithm to find the x1, . . . ,xlk, then this is guaranteed to
happen: We start with a solution where all variables x1, . . . ,xlk are equal, and then
modify the variables in such a way that the contribution to each column equivalence
class remains the same, so the equation y1 = · · · = yk is maintained throughout
the proof. Once again, the techniques from this chapter are unable to say anything
non-trivial.

The systems studied by Mimura and Tokushige

In a series of papers [MT19a, MT19b, MT20], Mimura and Tokushige studied several
specific (classes of) linear systems, and showed that each of them is moderate. These
were the first results of this type. We show that our results and techniques furnish
alternative proofs for all systems studied by Mimura and Tokushige (though our
constants might not be as good).

The systems studied by Mimura and Tokushige have integer entries, and can
therefore be interpreted as a linear system over Fq for an arbitrary prime power q = ps.
Depending on the system, Mimura and Tokushige sometimes had to assume that p 6= 2
or p 6= 3, and we shall do the same.

Example 6.38. In [MT19a], Mimura and Tokushige studied a star of k three-term
arithmetic progressions, given by the linear system (S∗k) with coefficient matrix

1 1 0 0 · · · 0 0 −2
0 0 1 1 · · · 0 0 −2
...

...
...

... . . . ...
...

...
0 0 0 0 · · · 1 1 −2

 ∈ Fk×(2k+1)
q ,

and proved that this system is moderate whenever p ≥ 3.
This result can be recovered as a special case of Theorem 6.8, and strengthened to

(S∗k) being temperate by Theorem 6.9. Indeed, (S∗k) is a type (RC) linear system, as
it is balanced and there is only one column equivalence class of size 1. If p 6= 2, then
the system is non-degenerate and irreducible, and all column equivalence classes have
sum ±2 6= 0, so it follows from Theorem 6.8(i) that (S∗k) is moderate. Additionally,
since there are k equations and k + 1 column equivalence classes, it follows from
Theorem 6.9(i) that (S∗k) is temperate. 4

Example 6.39. Also in [MT19a], Mimura and Tokushige point out that their proof
also extends to a ‘fan’ of k three-term arithmetic progressions, given by the linear
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system (S ′∗k) with coefficient matrix
1 −2 0 0 · · · 0 0 1
0 0 1 −2 · · · 0 0 1
...

...
...

... . . . ...
...

...
0 0 0 0 · · · 1 −2 1

 ∈ Fk×(2k+1)
q .

Analogously to Example 6.38, it follows from Theorem 6.8(i) and Theorem 6.9(i) that
(S ′∗k) is moderate and temperate, provided that p 6= 2. 4

Example 6.40. In [MT19b], Mimura and Tokushige studied the problem of avoiding
a ‘W shape’, and showed that the linear system (W) with coefficient matrix(

1 −1 −1 1 0
1 0 −2 0 1

)
∈ F2×5

q

is moderate whenever p ≥ 3.
This is not a type (RC) linear system, since there are 3 column equivalence classes

of size 1, so this result cannot be recovered as a special case of Theorem 6.8 or
Theorem 6.9.

Nevertheless, our techniques from §6.3 can be adapted to recover this result as well.
Indeed, let Γq be the constant from Theorem 6.17, and let S ⊆ Fnq with |S| ≥ 4 · (Γq)n.
By repeatedly finding a non-trivial 3-AP and removing it from S, we can find a
list {(x(i)

1 ,x
(i)
3 ,x

(i)
5 )}Li=1 of L ≥ (Γq)n pairwise disjoint non-trivial 3-APs in S3. For

all i ∈ [L], set x(i)
2 = x

(i)
3 and x(i)

4 = x
(i)
5 , so that (x(i)

1 ,x
(i)
2 ,x

(i)
3 ,x

(i)
4 ,x

(i)
5 ) ∈

S5 is a solution of (W). Since 2 and 4 belong to the same column equivalence
class, it follows from Corollary 6.21 that there are i 6= i′, i′′ such that the 5-tuple
(y1,y2,y3,y4,y5) = (x(i)

1 ,x
(i′)
2 ,x

(i)
3 ,x

(i′′)
4 ,x

(i)
5 ) ∈ S5 is also a solution of (W). Then

y1,y3,y5 are pairwise distinct because they stem from the same non-trivial 3-AP, and
{y1,y3,y5} ∩ {y2,y4} = ∅ because they stem from disjoint solutions. Finally, note
that y2 6= y4, for otherwise the first equation of (W) would imply that y1 = y3. This
shows that (W) is moderate.

With minor modifications, the preceding argument also shows that (W) is temperate.
Indeed, by repeating the argument, but using multiple replacement (Corollary 6.30)
instead of single replacement (Corollary 6.21), we can make sure that x(i′)

2 is not in
the line through x(i)

1 , x(i)
3 and x(i)

5 . Then dim(aff(x(i)
1 ,x

(i′)
2 ,x

(i)
3 ,x

(i′′)
4 ,x

(i)
5 )) ≥ 2,

so it follows from Corollary 6.26 that this solution is generic. 4

Example 6.41. In [MT20], Mimura and Tokushige studied the system (T ) with
coefficient matrix (

1 −2 1 0 0
0 0 −2 1 1

)
∈ F2×5

q ,

and proved that it is moderate whenever p ≥ 3.
Once again, this result can be recovered as a special case of Theorem 6.8(i), and

strengthened to (T ) being temperate by Theorem 6.9(i). 4
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Example 6.42. In [MT20], Mimura and Tokushige studied the class of linear systems
(lSk+2). This class is defined as follows: let k ≥ 1, and let a1, . . . , ak+2 ∈ Fq be non-zero
such that a1 + · · ·+ ak+2 = 0. Then (lSk+2) is given by the coefficient matrix

a1 · · · ak ak+1 ak+2 0 0 · · · 0 0
a1 · · · ak 0 0 ak+1 ak+2 · · · 0 0
... . . . ...

...
...

...
... . . . ...

...
a1 · · · ak 0 0 0 0 · · · ak+1 ak+2

 ∈ Fl×(k+2l)
q .

In [MT20, Thm. 5], Mimura and Tokushige showed that such a system is always
moderate. (This contains the linear system (S1) from [MT20] as a special case.)

This result can be recovered as a special case of Theorem 6.8, and strengthened to
(lSk+2) being temperate by Theorem 6.9. Indeed, (lSk+2) is balanced, and it has one
column equivalence class of size k ≥ 1 and l column equivalence classes of size 2, so it is
a type (RC) linear system. Furthermore, the system is non-degenerate and irreducible.
Note that, if one column equivalence class sums to zero, then all column equivalence
classes must sum to zero, so it follows from either Theorem 6.8(i) or Theorem 6.8(ii)
that (lSk+2) is moderate. Furthermore, since the number of equations is l and the
number of column equivalence classes is l + 1, it follows from either Theorem 6.9(i) or
Theorem 6.9(ii) that (lSk+2) is temperate. 4

Example 6.43. In [MT20], Mimura and Tokushige studied the class of linear systems
(2Tk,l). This class is defined as follows: let k ≥ 1 and l ≥ 2, and let a1, . . . , ak+l ∈ Fq
be non-zero such that a1 + · · · + ak+l = 0. Then (2Tk,l) is given by the coefficient
matrix (

a1 · · · ak ak+1 · · · ak+l 0 · · · 0
a1 · · · ak 0 · · · 0 ak+1 · · · ak+l

)
∈ F2×(k+2l)

q .

In [MT20, Thm. 6], Mimura and Tokushige showed that such a system is always
moderate. (This contains the linear system (S2) from [MT20] as a special case.)

This result can be recovered as a special case of Theorem 6.8, and strengthened
to (2Tk,l) being temperate by Theorem 6.9. The argument is analogous to that of
Example 6.42. 4

Example 6.44. In [MT20], Mimura and Tokushige studied the linear system (S−3 )
with coefficient matrix1 1 1 1 −4 0 0 0 0 0

1 1 0 0 0 1 1 −4 0 0
1 1 0 0 0 1 0 0 1 −4

 ∈ F3×10
q ,

and proved that it is moderate whenever p 6= 2.10

10The authors don’t make the assumption p 6= 2 explicit in their proof. This assumption is
necessary because the sum of the second and third row of the coefficient matrix is congruent to(
0 0 0 0 0 0 1 0 −1 0

)
(mod 2). So for p = 2 the system cannot be moderate

because it forces two variables to be equal.
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This result can be recovered as a special case of Theorem 6.8, provided that
p 6= 2, 3.11 The results from this chapter are insufficient to determine whether (S−3 ) is
temperate, because there are not enough equations to apply Theorem 6.9(i). 4

Example 6.45. Finally, in [MT20, Conjecture 1], Mimura and Tokushige conjectured
that the system (S3) with coefficient matrix1 1 1 1 −4 0 0 0 0 0 0

1 1 0 0 0 1 1 −4 0 0 0
1 1 0 0 0 0 0 0 1 1 −4

 ∈ F3×11
q

is moderate. This is confirmed by our results. If p 6= 2, then it follows from Theo-
rem 6.8(i) and Theorem 6.9(i) that (S3) is moderate and temperate. If p = 2, then some
of the columns become zero, so they correspond to free variables. After removing those
columns, it follows from Theorem 6.8(ii) and Theorem 6.9(ii) that (S3) is moderate
and temperate. 4

In summary: in all examples except Example 6.44, we were able to prove that the
system is moderate and temperate, thereby strengthening prior results (and proving a
conjecture) of Mimura and Tokushige. In Example 6.44, we gave an alternative proof
of the fact that the system is moderate, but we were unable to determine whether the
system is also temperate.

In Example 6.40, we could not apply Theorem 6.8. Instead, we needed a proof
that was adapted to this particular system, using results from §6.3, to furnish an
alternative proof that the system is moderate. In all other examples, the fact that the
system is moderate follows immediately from Theorem 6.8.

As a final remark, we point out once again that the results from this chapter
were later superseded by another paper by Gijswijt [Gij21]. It follows from the results
contained therein that all systems from this section are temperate. This includes
Example 6.44, which we were unable to settle in this chapter.

11If p = 2, then there are three column equivalence classes of size 1, so the system is not of type
(RC). Furthermore, if p ∈ {2, 3}, then there are column equivalence classes of size 2 that sum to
zero, but not all column equivalence classes sum to 0, so neither Theorem 6.8(i) nor Theorem 6.8(ii)
applies in this case. If p /∈ {2, 3}, then the system is of type (RC) and none of column equivalence
classes sums to zero, so Theorem 6.8(i) applies.
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Chapter 7
Outline of Part III

In this chapter, we give an outline of Part III of this dissertation.

Part III is based on the paper [Dob20b], and this chapter is based on the
introduction (Chapter 1) of that paper.

7.1 Introduction

Convex cones have applications in almost all branches of mathematics, from algebra
and geometry to analysis and optimization. Consequently, convex cones have been
studied extensively in their own right, and there is a vast body of work on all kinds of
geometrical, analytical, and combinatorial properties of convex cones.

In the study of convex cones, just as in any other area of mathematics, it is
important to have good ways of creating new objects from old. One such problem
which has attracted a lot of attention is the following. Suppose that we are given convex
cones E+ and F+ in the vector spaces E and F , respectively. Can we then use the data
of E+ and F+ to somehow construct a natural cone in the tensor product E ⊗ F? As
it turns out, there are multiple ways to do so [Mer64, PS69], just as there are multiple
ways to define a norm on the tensor product of two normed spaces [Rya02].

Among all “reasonable” cones in the tensor product E ⊗ F , there is a smallest and
a largest one, which we denote by E+ ⊗π F+ and E+ ⊗ε F+, respectively. These have
come up many times in the literature, motivated by problems in a variety of different
fields. We outline a few of these applications:

• In functional analysis, one is often interested in tensor products of various types
of spaces (e.g. Banach spaces, C∗-algebras, operator spaces, etc.). Often the two
factors come with natural order structure, in which case it is desirable to find a
compatible order structure in the tensor product. This is equivalent to finding a
tensor product of the positive cones, and so tensor products of convex cones are
closely linked to tensor products of ordered (topological) vector spaces.

• In operator theory, the minimal and maximal tensor product of a positive
semidefinite cone with an arbitrary cone C correspond to the smallest and
largest operator system with C at its ground level. Question surrounding this
minimal and maximal operator system have been studied by several authors; for
instance, [PTT11, FNT17, HN21]. Furthermore, these questions turn out to be

89
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closely related to questions about matrix convex sets [PSS18, §7], [Sha21, Thm.
9.11] and free spectrahedra [FNT17], topics which have been studied by authors
in geometry, optimization, and quantum information theory.

• In theoretical physics, the theory of “general probabilistic theories” (GPTs)
forms a new framework which generalizes both classical and quantum probability
[Lam17, Mül21, Plá21, ALPP21]. A GPT derives probability from an arbitrary
finite-dimensional Archimedean cone with an order unit. Classical (resp. quantum)
probability can then be recovered as a special case by taking a simplex (resp.
positive semidefinite) cone.
Given GPTs E and F , the tensor product E ⊗ F corresponds to the composite
system (E,F ). In this setting, the elements of the smallest cone E+ ⊗π F+
correspond to the separable states, whereas the elements of E+ ⊗ε F+\E+ ⊗π F+
correspond to the entangled states [Plá21, Def. 5.8]. Thus, understanding tensor
products of convex cones is crucial to understanding entanglement in GPTs.

• In polyhedral geometry, the minimal and maximal tensor product of two poly-
hedral cones are closely related to the tensor product and Hom-polytope of the
underlying polytopes. Since Hom and tensor are fundamental constructions in
the category of polytopes, their properties have been studied in detail in the
literature; see for instance [BCG13].

• In approximation theory, tensor products of convex cones come up naturally in
the context of multivariate shape preserving interpolation with cone constraints.
For a precise description of this problem and its relation to tensor products of
convex cones, see [Mul97].

In each of these settings, the underlying construction is just a tensor product of
convex cones. This underpins the importance of a systematic study of tensor products of
convex cones, and indeed many papers have already been written about this. However,
most of the existing literature only focuses on one of two particular cases: lattice cones
and finite-dimensional cones. As a result, the literature is divided into two separate
lines of investigation, neither of which addresses the problem in full generality.

The first line of investigation comes from functional analysis. In this setting, the
focus has mostly been on Riesz spaces and Banach lattices. Although most classical
Banach spaces are lattice-ordered, many other interesting classes of ordered vector
spaces are not. For example, the self-adjoint part of a C∗-algebra A is an ordered
vector space with a closed, proper and generating cone A+, but by Sherman’s theorem
it is lattice-ordered if and only if A is commutative. This shows that, in a way,
restricting one’s attention to lattice-ordered spaces is akin to restricting one’s attention
to commutative C∗-algebras.

The second line of investigation comes from linear algebra, and encompasses the
remaining applications from the preceding list. In this setting, research has dealt
exclusively with closed, proper and generating cones in finite-dimensional spaces.
This is once again a severe limitation, at least from the perspective of analysis, as
finite-dimensional spaces are often of limited use there. Furthermore, even in the
finite-dimensional case one occasionally encounters cones which are not closed or not
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proper. For example, lexicographical cones in a space of dimension at least 2 are never
closed, and quotients/projections of closed, proper cones are not guaranteed to be
closed either (see e.g. [Dob20a, Example 6.3]).

There has been very little cross-pollination between these two lines of investigation,
and very little has been done beyond these two specific cases. In particular, almost
nothing is known about tensor products of infinite-dimensional ordered vector spaces
which are not lattice-ordered, or about tensor products of cones which are not closed
and/or not proper. This disqualifies many cones from consideration, including even
standard cones such as the positive semidefinite cone over an infinite-dimensional
Hilbert space.

Furthermore, even in the cases that have been studied, many basic properties have
not been noted or proved in the existing literature. For instance, whereas mapping
properties play an important role in the similar theory of normed tensor products,
we are not aware of prior papers which establish the mapping properties of the
minimal/maximal tensor product of convex cones. Likewise, only partial results are
known about properness of the minimal/maximal tensor product of convex cones, or
whether the minimal/maximal tensor product preserves faces of the base cones.

Part III of this dissertation aims to develop a general theory of tensor products of
convex cones, without any restrictions on the cones or the ambient spaces. By using
ideas from both lines of investigation and borrowing additional techniques from the
similar theory of normed tensor products, we are able to extend known results to the
general setting and prove many completely new results.

In the next section, we give a very brief overview of the existing literature. After
that, the remainder of this chapter gives a comprehensive overview of the main results
of Part III.

7.2 Brief literature overview

The study of tensor products of ordered topological vector spaces was initiated in
the 1960s by Merklen [Mer64],1 Hulanicki and Phelps [HP68], Popa [Pop68, Pop69],
and Peressini and Sherbert [PS69]. From the 1970s onwards, the focus has mostly
been on Riesz spaces ([Sch72, Fre72, Fre74, Wit74, Sch74, Bir76, FT79, Nie82, GL88,
Nie88, GL89, Bla16, ABJ18, BT22, BGY22]) and, in a separate line of investigation,
on closed cones in finite-dimensional spaces ([BL75, Bar76, HFP76, Bar78a, Bar78b,
Bar81, BLP87, ST90, Tam92, Tam95, Mul97, Hil08, HN21, ALPP21]). For general
ordered vector spaces, some of the basic questions remain unanswered (and, on one
occasion, escaped from collective memory, as we point out below).

The most comprehensive paper on tensor products of general ordered vector spaces
is the article of Peressini and Sherbert [PS69]. It contains an in-depth study of the

1It appears that Merklen was the first to study tensor products of ordered vector spaces, but his
article is very hard to find, and contains several errors. For instance, [Mer64, Teorema 5] states that
the weak closure of the projective cone E+ ⊗π F+ is a proper cone if at least one of E+ and F+ is
proper, provided that E+ and F+ are weakly closed. Likewise, [Mer64, Teorema 9] states the same
for the injective cone. Both of these statements are incorrect, as can be seen by taking E+ = R≥0
and F+ = R. The correct statement is that both E+ and F+ should be proper; see Theorem D and
Theorem B below.
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properties of the projective (minimal) and injective (maximal) cone in the tensor
product.2 It answers various topological and order-theoretic questions about these
cones, for instance relating to normality and order units. Furthermore, it establishes a
few sufficient conditions for the projective/injective cone to be proper, but it does not
provide precise necessary and sufficient conditions.

Conditions for the projective cone to be proper were quickly provided by Dermenjian
and Saint-Raymond [DS70], but their result seems to have been unknown to later
generations of mathematicians. Only recently was this question answered (again)
by Wortel [Wor19]; until then only special cases were assumed to be known in the
literature. For the injective cone, no precise necessary and sufficient conditions for
properness are known in the literature.

The situation is much better in the setting of lattice-ordered or finite-dimensional
spaces. For lattice-ordered spaces, a lot has been said about the problem of turning the
tensor product (or its completion) into a lattice-ordered space as well [Sch72, Fre72,
Fre74, Wit74], and connections between such lattice tensor products and lattices of
operators are well-known [Sch74, §IV.7]. However, such results are rather specific to
lattice-ordered spaces, and have little hope of being generalized to general (non-lattice-
ordered) spaces.

Likewise, in the finite-dimensional setting, much more is known. Here research has
focused on cones that are closed, proper and generating. This is sufficient to guarantee
that the projective and injective tensor product are closed, proper and generating as
well [Tam77b], so finding criteria for properness is not an issue here. More advanced
results have been obtained as well; see for instance [BL75, Bar76, Bar81, Tam92]. In
particular, in the context of cones of positive operators, Tam gave a construction
which can be used to obtain faces in the injective cone from faces of the base cones
[Tam92, §4]. We will extend this result; see §7.6.

There is very little overlap between the lattice-ordered and the finite-dimensional
theory, because they deal with very different questions. After all, the only finite-
dimensional closed lattice cones are the simplex cones (i.e. the ones isomorphic to
Rn≥0), which are not very interesting from either perspective. However, one problem
that has been studied in both settings is the question whether or not the projective
cone is dense in the injective cone. Birnbaum [Bir76] showed that this is true whenever
E and F are locally convex lattices and gave an example which shows that it is not
true in general. Very recently, this problem was settled in the finite-dimensional case
by Aubrun, Lami, Palazuelos and Plávala [ALPP21]. They proved that, for closed,
proper and generating cones E+ and F+ in finite-dimensional spaces E and F , one
has E+ ⊗π F+ = E+ ⊗ε F+ if and only if at least one of E+ and F+ is a simplex
cone. Around the same time, we independently found a different proof of this result
for nearly all cones [Dob20b], which we have included in this manuscript (see §7.8).

2A note on terminology: several authors refer to the maximal cone as the biprojective cone. We
aim to show that it is in many ways analogous to the injective norm, and as such deserves the name
injective cone. This term has also occasionally been used before, for instance by Wittstock [Wit74]
and Mulansky [Mul97].
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7.3 Scope and notation

We now outline the scope of Part III of this dissertation, and we cover the basic
notation needed to state our main results in the upcoming sections.

In Part III of this dissertation, we study the projective and injective tensor product
of two convex cones E+ ⊆ E and F+ ⊆ F , where E and F are either real vector spaces
or real topological vector spaces.

Topological considerations will not matter too much for our investigation, but to
build a satisfactory duality theory we need to at least keep track of the duals of all
spaces involved. Hence, instead of remembering the topology of a vector space E (or
the fact that E has no topology), we only remember the dual pair 〈E,E′〉 to which E
belongs. The advantage of this approach is twofold: it allows us to treat the topological
and non-topological cases simultaneously (if E has no topology, let E′ := E∗ be the
algebraic dual), and it allows us to completely ignore any topological issues in the
tensor product, thereby sidestepping the notoriously difficult theory of topological
tensor products. One downside of this approach is the following: since we have no
topology on E, we must occasionally refer to the weak closure E+

w of E+, instead
of the ordinary closure. However, we remind the reader that in every locally convex
space, the weak closure of a convex set coincides with its original closure.

We now recall some basic notation. A convex cone (otherwise known as a wedge)
in a real vector space E is a non-empty subset K ⊆ E satisfying K + K ⊆ K and
λK ⊆ K for all λ ∈ R≥0. The lineality space of a convex cone K is the linear subspace
lin(K) := K ∩ −K. We say that a convex cone K is proper if lin(K) = {0} and
semisimple if its weak closure Kw is proper.

Let E and F be vector spaces, and let E+ ⊆ E, F+ ⊆ F be convex cones. The
projective cone in E ⊗ F is given by

E+ ⊗π F+ :=
{

k∑
i=1

xi ⊗ yi : k ∈ N, x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+

}
.

Furthermore, if E and F belong to the dual pairs 〈E,E′〉 and 〈F, F ′〉, then the
injective cone in E ⊗ F is given by

E+ ⊗ε F+ :=
{
u ∈ E ⊗ F : 〈u, ϕ⊗ ψ〉 ≥ 0 for all ϕ ∈ E′+, ψ ∈ F ′+

}
.

For additional notation, see Chapter 8, or refer to the glossary of notation on page 201.

A note about cones in the completed tensor product
So far, the study of tensor products of convex cones has mostly been limited to cones
in the algebraic tensor product, with the exception of some results on tensor products
of Banach lattices. However, the algebraic tensor product is often of limited use in
analysis; instead, one is usually interested in its completion with respect to some
suitable topology. For this reason, we also aim to initiate a study of the projective and
injective cones in completed locally convex tensor products.

When dealing with topological tensor products, one has to define the topology before
taking the completion, for obviously the completion depends on the chosen topology.
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On the other hand, the cone is unrelated to the topology, and can therefore be defined
directly on the completion. This gives rise to a natural extension of the injective cone
to the completed tensor product, which we will also study in this dissertation. On the
other hand, the projective cone in the completed tensor product E ⊗̃α F is merely the
same cone embedded in a larger ambient space3, so there is little reason to study this
cone separately.

An overview of the cones under consideration, their notation, and their domains of
definition, is given in Table 7.1. (In all cases, E+ ⊆ E and F+ ⊆ F are convex cones
in the primal spaces.)

Table 7.1: The domain of definition of the projective/injective cones studied in Part III
of this dissertation.

Cone Ambient space Notation Domain of definition

Projective E ⊗ F E+ ⊗π F+ E and F vector spaces
Injective E ⊗ F E+ ⊗ε F+ 〈E,E′〉 and 〈F, F ′〉 dual pairs
Injective E ⊗̃α F E+ ⊗̃εα F+ E and F complete lcs;

α a compatible lc topology on E⊗F

In the remainder of this chapter, we state the main results of Part III only for cones
in the algebraic tensor product. Similar results hold for the injective cone in completed
locally convex tensor products, but these are harder to state, as they often require
additional (topological) assumptions. Precise statements can be found in Chapter 10
on the injective cone.

7.4 Mapping properties

In the theory of normed tensor products, it is well-known that the projective norm
preserves metric surjections (quotients) and the injective norm preserves metric injec-
tions (isometries), and these simple mapping properties play an important role in the
theory. By looking at the corresponding types of positive linear maps, we show that
the projective and injective cones have analogous mapping properties.

Let E and F be vector spaces, and let E+ ⊆ E, F+ ⊆ F be convex cones. We
say that a linear map T ∈ L(E,F ) is positive if T [E+] ⊆ F+, a pullback (or bipositive
operator) if E+ = T−1[F+], and a pushforward if T [E+] = F+. Furthermore, if E and F
belong to dual pairs 〈E,E′〉 and 〈F, F ′〉, then we say that an operator T ∈ L(Ew, Fw)
is an approximate pullback (or approximately bipositive) if E+

w = T−1[F+
w], and an

approximate pushforward if T [E+]w = F+
w. (Recall that in a locally convex space,

the weak closure of a convex set coincides with its original closure.) Every pushforward
is also an approximate pushforward, but a pullback is not necessarily an approximate
pullback (see §8.3).

3We define the projective cone algebraically, without taking its closure. This is the prevalent
definition in the literature, but might not be appropriate for all applications. We do prove a few
results about its closure; see Corollary I and Theorem D.
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A typical example of a pullback is an order embedding: if (E,E+) is order isomorphic
to a subspace of (F, F+), then the embedding E ↪→ F is a pullback. A typical example
of a pushforward is a quotient or projection.

In the normed theory, the projective norm preserves metric surjections (quotients)
and the injective norm preserves metric injections (isometries). We prove a similar
result for cones:

Theorem A. The projective cone preserves positive linear maps, (approximate) push-
forwards, and order retracts, but not (approximate) pullbacks.

The injective cone preserves weakly continuous positive linear maps, approximate
pullbacks, and topological order retracts, but not pullbacks or (approximate) pushfor-
wards.

In particular, the injective cone preserves order embeddings when the cones are
weakly closed. We believe this result to be new, even in the finite-dimensional setting.

The proof of Theorem A will be given in §9.2 (projective cone) and §10.2 (injective
cone). An overview of these mapping properties is given in Table 7.2.

Table 7.2: Types of maps preserved by the projective/injective cone.

Type of map Preserved by

Projective cone Injective cone

Positive map X X

Pushforward X

Approximate pushforward X

Pullback
Approximate pullback X

Retract (positive projection) X X

Note that the injective cone only preserves approximate pullbacks. It is not so
strange that it does not preserve all pullbacks: the injective cone does not see the
difference between E+ and E+

w, and a pullback for E+ is not necessarily a pullback
for E+

w (for details, see §10.2). In general, the properties of the injective cone depend
on those of E+

w and F+
w rather than E+ and F+. By contrast, the projective cone

does see the difference between E+ and E+
w, so it preserves both pushforwards and

approximate pushforwards.

7.5 Criteria for properness, the lineality space, and
semisimplicity

Another basic question about tensor products of convex cones is to determine when
the projective or injective cone is proper. Peressini and Sherbert [PS69] found a few
sufficient conditions, but their paper does not specify precise necessary and sufficient
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criteria. For the projective cone, precise conditions were found by Dermenjian and
Saint-Raymond [DS70], and rediscovered in recent years by Wortel [Wor19].4 For the
injective cone, no such result is known, except in the finite-dimensional case. In this
dissertation, we give a simpler proof for the projective cone, and we also settle the
problem for the injective cone.

Theorem B. The projective cone E+ ⊗π F+ is proper if and only if E+ = {0}, or
F+ = {0}, or both E+ and F+ are proper cones (cf. [DS70, Théorème 2]).

The injective cone E+ ⊗ε F+ is proper if and only if E = {0}, or F = {0}, or both
E+

w and F+
w are proper cones.

The proof of Theorem B will be given in §9.3 (projective cone) and §10.3 (injective
cone). Note that there is a subtle difference between the corner cases in Theorem B:
the corner case for the projective cone is when one of the cones is trivial, whereas
the corner case for the injective cone is when one of the spaces is trivial. In partial
explanation of this discrepancy, we establish direct formulas for the lineality spaces,
from which the criteria of Theorem B can easily be recovered.

Theorem C. The lineality space of the projective/injective cone is

lin(E+ ⊗π F+) = (lin(E+)⊗ span(F+)) + (span(E+)⊗ lin(F+));

lin(E+ ⊗ε F+) = (lin(E+
w)⊗ F ) + (E ⊗ lin(F+

w)).

The proof of Theorem C will be given in Corollary 9.17 (projective cone) and
Corollary 10.37 (injective cone).

We also address the related question of finding precise necessary and sufficient
conditions for the closure of the projective cone to be proper. (For the injective cone,
this is already addressed by Theorem B, because the injective cone is always closed.)
Recall that we say that E+ is semisimple if its weak closure is proper. If E is locally
convex, then this is the same as saying that its ordinary closure is proper, because the
weak and original closure of a convex set in a locally convex space coincide. We prove
the following semisimplicity version of Theorem B.

Theorem D. The projective cone E+ ⊗π F+ is semisimple if and only if E+ = {0},
or F+ = {0}, or both E+ and F+ are semisimple.

A parallel result was proved by van Gaans and Kalauch [GK10]: if E+ and F+ are
Archimedean, then their projective tensor product is contained in an Archimedean
proper cone. Neither of these two results implies the other.

The proof of Theorem D will be given in §11.3.
We also address the question of semisimplicity in completed locally convex tensor

products. In §11.4, we prove that the injective cone remains semisimple in the completed
injective tensor product, and more generally, in every completion E ⊗̃α F for which
the natural map E ⊗̃α F → E ⊗̃ε F is injective. However, we do not know whether
the projective cone remains semisimple in the completed projective tensor product

4The result of Dermenjian and Saint-Raymond seems to have been unknown to later generations
of mathematicians, and until recently only special cases were assumed to be known in the literature.
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E ⊗̃π F ; see Question 11.16. This question is related to the approximation property,
as we will explain in §11.4.

7.6 Faces and extremal rays

Next, we turn our attention to another permanence property: preservation of faces.
In the normed theory, it follows from a result of Tseitlin [Tse76] that the projective
norm sometimes preserves extreme points of the closed unit ball, provided that certain
topological requirements are met. Further results in this direction are known for
stronger notions of extreme points, such as denting points [RS86b, Wer87]. This leads
us to ask to which extent the projective and injective cones preserve extremal rays, or
more generally, faces.

In the infinite-dimensional setting, we are not aware of prior results in this direction.
For closed cones in finite-dimensional spaces, some constructions are known in the
literature. The injective cone E+ ⊗ε F+ can be interpreted as a cone of positive
operators E∗ → F , whose faces have already been studied by many authors. However,
some information is lost in passing from E to E∗, so instead we give a different
construction which we believe to be more natural, and we extend this to the general
setting. For the projective cone, Tam [Tam92, § 4] pointed out one way to construct
faces (without proof). We extend this construction to the general setting, give a full
proof, and show that a pair of faces of the base cones give rise to not one but four
natural faces of the projective tensor product.

Faces of the projective cone

By combining the mapping properties with the properness criteria, we can show that
the projective cone preserves faces.

Theorem E. If M ⊆ E+ and N ⊆ F+ are faces, then (M ⊗π F+) + (E+ ⊗π N) and
(M ⊗π N) + lin(E+ ⊗π F+) are faces of the projective cone E+ ⊗π F+.

In particular, if E+ and F+ are proper cones, then M ⊗π N is a face of E+ ⊗π F+.

For closed, proper and generating cones in finite-dimensional spaces, this last
property was already noted (without proof) by Tam in [Tam77a, p. 53] and [Tam92,
p. 71]. We have recovered his simple proof for this special case (see Remark 9.20), but
a different technique is needed to prove the general case. In the full generality stated
here, Theorem E is a non-trivial result which contains Theorem B as a special case
(by setting M = N = {0}). Remarkably, it is true without any niceness assumptions
on the cones E+ and F+ or the faces M and N .

The proof of Theorem E will be given in §9.4. There we also mention two other
faces induced by M and N , showing that a pair of faces M ⊆ E+ and N ⊆ F+ gives
rise to not one but four natural faces of the projective cone. This is a new result, even
in the finite-dimensional case.

As an application of Theorem E, we prove that the tensor product of symmetric
convex sets preserves proper faces.
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Theorem F. Let E and F be real vector spaces, let C ⊆ E, D ⊆ F be absolutely
convex, and let M ⊂ C, N ⊂ D be proper faces. Then conv(M ⊗s N) is a face of
conv(C ⊗s D).

For extreme points, results in this direction were known in the setting of normed
tensor products (where C and D are the closed unit balls of the norms of E and F ).
However, in that setting, stronger assumptions are needed (E and F must be Banach
spaces such that at least one of E and F has the approximation property and at
least one of E and F has the Radon–Nikodym property), and a stronger conclusion is
obtained (x⊗ y is an extreme point of the closure of conv(C ⊗s D) in the completed
projective Banach space tensor product); see our remarks following Corollary 9.31. To
our knowledge, no such results are known for higher faces, and we are not aware of a
general statement like Theorem F in the literature.

Note that Theorem F is a purely algebraic statement, as we do not take closures. We
do not know whether it remains true after taking closures, but we suspect it does not
(see Remark 9.32). However, if C and D are compact, then conv(C ⊗s D) is compact
as well, so in particular it follows from Theorem F that the projective norm preserves
proper faces of the closed unit ball of finite-dimensional spaces (Corollary 9.31). As
far as we know, this had only been known for extreme points.

The proof of Theorem F will be given in §9.6.

Ideals for the injective cone

The injective cone E+ ⊗ε F+ can be interpreted as a subcone of the cone of positive
operators E′ → F . Since there has been a lot of research into the properties of such
cones, a lot has already been said about their faces. For every set M ′ ⊆ E′+ and every
face N ⊆ F+, it is trivially easy to show that the set of positive operators T ∈ L(E′, F )
satisfying T [M ′] ⊆ N forms a face (see Lemma 10.27), so this gives us a plethora of
faces in the injective cone. On the other hand, finding all extremal rays of the cone
of positive operators is a notoriously difficult problem, so the face structure of the
injective cone is still far from fully understood.

Although it is not so hard to construct faces of the injective cone from faces of
the base cones, it is unclear what the “right” way of doing so is. Only interpreting
E+ ⊗ε F+ as a cone of positive operators E′ → F is a bit unsatisfactory; we might
just as well have interpreted it as a cone of positive operators F ′ → E. Apart from
the fact that this is not a symmetric formulation, this poses a bigger problem: in both
interpretations, we have one primal and one dual space, but faces are not well-behaved
under duality (not every face of E′+ is the dual of a face of E+ and vice versa). As far
as we know, this problem has not been addressed in the literature, where the focus
has been on cones of positive operators E → F instead of injective tensor products.

In this dissertation, we set out to prove a satisfactory injective counterpart of
Theorem E. To do so, we believe we should change perspective from faces to ideals. An
(order) ideal in a preordered vector space (E,E+) is a subspace I ⊆ E for which the
quotient cone (E/I)+ is proper (for other equivalent definitions, see Proposition A.2).
There is a close relationship between faces and ideals: the map I 7→ I+ (= I ∩ E+)
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defines a surjective many-to-one correspondence between the order ideals of the
preordered vector space (E,E+) and the faces of E+ (see Appendix A.1).

The benefit of working with ideals instead of faces is twofold. First, in the infinite-
dimensional (topological) setting, it is often important to work with closed ideals so
as to have a useable quotient, but it is not always easy (or even possible) to tell from
a face whether or not it occurs as the positive part of a closed ideal. Second, whereas
faces of the injective cone can only be given by implicit formulas (all positive operators
mapping certain sets into certain faces), for ideals we get the following very simple
explicit formulas.

Theorem G. If I ⊆ E and J ⊆ F are ideals with respect to E+
w and F+

w, then
(I ⊗ J) + lin(E+ ⊗ε F+) is an ideal with respect to the injective cone E+ ⊗ε F+.

Additionally, if I is weakly closed and (E/I)+ is semisimple, or if J is weakly
closed and (F/J)+ is semisimple, then (I ⊗ F ) + (E ⊗ J) is also an ideal with respect
to the injective cone.

We believe Theorem G to be new, even in the finite-dimensional case. Note that the
first formula simplifies to I ⊗ J whenever E+

w and F+
w are proper (by Theorem B

or Theorem C).
The proof of Theorem G will be given in §10.5. There we will also show that

the extra assumption that (E/I)+ or (F/J)+ is semisimple cannot be omitted from
the second part of Theorem G (see Example 10.35). Furthermore, we will extend
Theorem G to completed locally convex tensor products, though this requires additional
topological assumptions (see Theorem 10.46 and Theorem 10.47).

Contrary to the projective case, the preceding results do not have an application
to tensor products of symmetric convex sets. The injective analogue of Theorem F
is simply not true, because the injective norm does not preserve extreme points of
the unit balls (see Remark 10.52). This makes it all the more remarkable that the
injective cone preserves faces and extremal rays.

Extremal rays

As a special case of Theorem E and Theorem G, we show that the projective and
injective cones preserve extremal rays.

Theorem H. A vector u ∈ E ⊗ F is an extremal direction of the projective cone
E+ ⊗π F+ if and only if u can be written as u = x⊗ y, where x and y are extremal
directions of E+ and F+.

If x and y are extremal directions of E+
w and F+

w, then x ⊗ y is an extremal
direction of the injective cone E+ ⊗ε F+. All extremal directions of (tensor) rank one
are of this form, but there may also be extremal directions of larger rank.

For closed, proper and generating cones in finite-dimensional spaces, this was
already known; see for instance [HFP76, Thm. 3.4(2)]5 or [Tam95, Thm. 3.1]. We

5Their result is formulated only for polyhedral cones, but the proof also works for other closed,
proper and generating cones.
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extend it to arbitrary cones, and also to cones in completed locally convex tensor
products (Corollary 10.50).

The proof of Theorem H will be given in §9.5 (projective cone) and §10.6/§11.1
(injective cone). An immediate consequence is that every “reasonable crosscone” (see
Chapter 11) preserves extremal rays whenever E+ and F+ are weakly closed.

Corollary I. If E+ and F+ are weakly closed, and if x and y are extremal directions
of E+ and F+, then x⊗ y is an extremal direction of every convex cone K ⊆ E ⊗ F
with E+ ⊗π F+ ⊆ K ⊆ E+ ⊗ε F+.

In particular, the closure of the projective cone also preserves extremal rays. We
do not know if it also preserves higher faces (as in Theorem E). For further discussion
of this problem, see Chapter 14. For more on reasonable crosscones, see Chapter 11.

7.7 Special properties in the finite-dimensional case

In the linear algebra literature, all papers on tensor products of convex cones have
focused on closed, proper and generating cones in finite-dimensional spaces. On the
other hand, in the functional analysis literature, most of the focus has been on tensor
products of Archimedean lattice cones. Therefore the only cones which are covered
by both regimes are the ones isomorphic to the standard cone Rn≥0 (all Archimedean
lattice cones in Rn are isomorphic to Rn≥0), which are not very interesting from either
perspective. Consequently, these two lines of investigation have focused on completely
different problems.

Even if one is primarily interested in tensor products of infinite-dimensional convex
cones, it is good to be aware of the finite-dimensional theory, as various fundamental
phenomena can already be observed here. For this reason, in Chapter 12, we give an
overview of the most important additional properties in the finite-dimensional setting
(with closed cones).

The main results of Chapter 12 are threefold. First, for closed cones E+ and
F+ in finite-dimensional spaces, we show that the projective cone E+ ⊗π F+ can
be interpreted as the cone of positive operators E∗ → F that factor positively
through some finite-dimensional Archimedean Riesz space (i.e. though some Rn with
the standard cone Rn≥0). Second, we show that the closure of the projective cone
E+ ⊗π F+ is equal to the projective cone E+ ⊗π F+, thereby extending a result of
Tam [Tam77b], who proved this in the case that E+ and F+ are closed, proper and
generating. Third, we study the basic properties of order retracts of finite-dimensional
cones, and give many examples of retracts occurring in standard cones.

7.8 Many examples where the projective and injective cone
differ

Another question which has attracted a lot of attention is to determine under which
circumstances the projective cone E+ ⊗π F+ is dense in the injective cone E+ ⊗ε F+.
For locally convex lattices E and F , Birnbaum [Bir76, Prop. 3] proved that E+ ⊗π F+
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is dense in E+ ⊗ε F+ in the projective topology (and therefore in every coarser
topology), and followed this by an example showing that this is not true for all
ordered locally convex spaces (not necessarily lattice ordered). In general, however,
the infinite-dimensional version of this problem does not appear to be well understood.

A lot more is known in the finite-dimensional setting (with closed, proper and
generating cones), where various results in this direction have been obtained since the
1970s. Here E+ ⊗π F+ is automatically closed whenever E+ and F+ are closed (by
the results from §7.7), so the question is whether or not the projective and injective
cones are equal.

Let E and F be finite-dimensional spaces, and let E+ ⊆ E, F+ ⊆ F be closed,
proper and generating convex cones. We say that E+ is a simplex cone (or Yudin cone)
if it is generated by a basis (or equivalently, if there is a linear isomorphism E ∼= Rn
that identifies E+ with the standard cone Rn≥0).

In the 1970s, Barker showed that E+ ⊗π F+ = E+ ⊗ε F+ whenever E+ or F+ is
a simplex cone [Bar76], and conversely conjectured that E+ or F+ must be a simplex
cone whenever E+ ⊗π F+ = E+ ⊗ε F+ [Bar81, p. 277]. His conjecture remained open
for a very long time, but partial results were obtained by Barker and Loewy [BL75,
Prop. 3.1], who proved the conjecture when F+ = E∗+, and by Poole [Poo75, Thm.
5.15], who proved it when E+ and F+ are polyhedral. More recently, Huber and Netzer
[HN21] proved the conjecture when E+ is a positive semidefinite cone and F+ is a
polyhedral cone (or vice versa).

In Chapter 13, we prove Barker’s conjecture for nearly all6 pairs (E+, F+) of
closed, proper and generating cones in finite-dimensional spaces. Recall that a closed,
proper and generating convex cone is called strictly convex if every non-zero boundary
point is an extremal direction, and smooth if every non-zero boundary point has
exactly one supporting hyperplane. It is well-known that E+ is strictly convex if and
only if E∗+ is smooth, and vice versa. We prove Barker’s conjecture in the case that
dim(E) ≥ dim(F ) and E+ is smooth or strictly convex.

Theorem J. Let E, F be finite-dimensional real vector spaces, and let E+ ⊆ E,
F+ ⊆ F be closed, proper, and generating convex cones. If dim(E) ≥ dim(F ), and if
E+ is strictly convex or smooth, then one has E+ ⊗π F+ = E+ ⊗ε F+ if and only if
F+ is a simplex cone.

The set of convex bodies in Rn which are not smooth or strictly convex is meagre
in the Hausdorff metric [Kle59], and even satisfies the stronger notion of “σ-porosity”
[Zam87]. As such, Theorem J shows that the projective and injective cone differ for
nearly all6 pairs of closed, proper, and generating cones (E+, F+).

The proof of Theorem J will be given in §13.3.
Although Theorem J covers nearly all cones, it does not cover most standard cones.

For instance, polyhedral cones and positive semidefinite cones (and their duals) have
many non-trivial faces, so they are not smooth or strictly convex. We complement
Theorem J with a similar result for combinations of standard cones.

6The term ‘nearly all’ has a precise meaning (namely, up to a σ-porous set); see for instance
[Zam87].
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Theorem K. Let E, F be finite-dimensional real vector spaces, and let E+ ⊆ E,
F+ ⊆ F be closed, proper, and generating convex cones. Assume that each of E+ and
F+ is one of the following (all combinations allowed):

(i) a polyhedral cone;

(ii) a second-order cone;

(iii) a (real or complex) positive semidefinite cone.

Then one has E+ ⊗π F+ = E+ ⊗ε F+ if and only if at least one of E+ and F+ is a
simplex cone.

Using retracts, Theorem K could already be deduced from the aforementioned
known results of Poole [Poo75, Thm. 5.15] and Huber and Netzer [HN21]. We give a
new proof of Theorem K, thereby also providing new proofs of the results of Poole
and of Huber and Netzer.

The proof of Theorem K will be given in §13.4.

Remark L. As the manuscript [Dob20b] that forms the basis for Part III of this
dissertation was being written, the preceding results were superseded by independent
work of Aubrun, Lami, Palazuelos and Plávala [ALPP21]. Motivated by questions in
theoretical physics, they proved that E+ ⊗π F+ = E+ ⊗ε F+ if and only if at least
one of E+ and F+ is a simplex cone (provided that E+ and F+ are closed, proper,
and generating). Both Theorem J and Theorem K are special cases of this result.

The proofs in Part III of this dissertation were discovered independently around the
same time, and our proofs differ significantly from the proof in [ALPP21]. Although
we recover their result for nearly all cones, we have not been able to recover it in full
generality.

Applications to operator systems

The recent resurgence of interest in the question of whether or not E+ ⊗π F+ =
E+ ⊗ε F+ is due in part to recent developments in the study of operator systems
[FNT17, HN21]. Reformulated in terms of operator systems (using notation from
[FNT17]), our results prove the following.

Corollary M. Let C ⊆ Rd be a closed, proper, and generating convex cone. If d ≤ 4,
or if C is strictly convex, or smooth, or polyhedral, or (real or complex) positive
semidefinite, then the following are equivalent:

(i) C is a simplex cone;

(ii) the minimal and maximal operator systems Cmin and Cmax are equal;

(iii) there exists n ≥ 2 for which Cmin
n = Cmax

n ;

(iv) one has Cmin
2 = Cmax

2 .
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Again, Corollary M was superseded by the work of Aubrun, Lami, Palazuelos
and Plávala [ALPP21], who removed the additional assumptions on the cone C (see
Remark L).

The proof of Corollary M will be given in §13.4.

7.9 Appendix: faces and ideals

The main body of Part III is complemented by an appendix on faces and ideals of
convex cones in infinite-dimensional spaces. This material is not directly related to
tensor products, but will be used extensively in the proofs.

Although faces and ideals have each received a lot of attention in the literature,
the link between these concepts does not appear to be well-known. The relationship is
very simple: the map I 7→ I+ defines a surjective many-to-one correspondence between
ideals and faces (Appendix A.1). Going back and forth between faces and ideals is
crucial in our study of the faces of the projective/injective cone.

In Appendix A, we study the basic properties of faces and ideals and the connection
between the two (Appendix A.1), we outline to which extent the homomorphism and
isomorphism theorems hold (Appendix A.2), and we study dual and exposed faces in
infinite-dimensional cones (Appendix A.3). A more detailed outline will be given at
the beginning of Appendix A.

7.10 Organization of Part III

In Chapter 8, we recall all required notation and terminology for Part III. This is
complemented by a glossary notation and an index, both of which can be found at the
end of this dissertation.

In Chapter 9, we study the properties of the projective cone. Here we prove all of the
main results for the projective cone (see §7.4–7.6), with the exception of Theorem D,
whose proof is deferred until Chapter 11.

Likewise, in Chapter 10, we study the properties of the injective cone. Here we
prove all of the main results for the injective cone (see §7.4–7.6).

In Chapter 11, we study the basic properties of the so-called ‘reasonable crosscones’
(that is, arbitrary cones which lie somewhere between the projective and injective
cone). We show that all reasonable crosscones have the same rank 1 tensors whenever
E+ and F+ are weakly closed and proper, and we briefly look at ideals and extremal
rays of reasonable crosscones. Furthermore, we study semisimplicity of reasonable
crosscones, and we give a proof of Theorem D (on the semisimplicity of the projective
cone). We also look at questions surrounding semisimplicity of cones in completed
locally convex tensor products, and we discuss how these questions are related to
topological issues and the approximation property.

In Chapter 12, we give an overview of the most important additional properties in
the finite-dimensional setting (see §7.7). Building on this, in Chapter 13, we give many
(finite-dimensional) examples where the projective and injective cone are different (see
§7.8).

In Chapter 14, we discuss a few open problems related to Part III.
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Finally, in Appendix A, we discuss the relation between faces and order ideals.
These results are not very well known, and will be used extensively in the main body
of Part III, so we have included them for completeness.



Chapter 8
Preliminaries for Part III

This chapter covers the prerequisites for Part III, including: topological vector
spaces, dual pairs, convex cones, and ordered vector spaces.

This chapter is based on Chapter 2 of [Dob20b].

Introduction

In Part III, we study tensor products of convex cones E+, F+ in real vector spaces
E,F . Occasionally, E and F will be topological vector spaces, but usually they are
only assumed to be the primal spaces of the dual pairs 〈E,E′〉, 〈F, F ′〉. In this chapter,
we cover the necessary terminology and notation for Part III. This is complemented
by a glossary of notation and an index, both of which can be found at the end of this
dissertation.

8.1 Topological vector spaces

Throughout Part III, all vector spaces are over R.
If E is a vector space, then a linear map E → R is called a linear functional. The

algebraic dual space E∗ of E is the space of all linear functionals E → R.
A topological vector space is a vector space E equipped with a topology T such

that the map E × E → E, (x, y) 7→ x + y and the map R × E → E, (λ, x) 7→ λx
are (jointly) continuous with respect to T. If E is a topological vector space, then its
topological dual space E′ is the space of all continuous linear functionals E → R. It is
a subspace of the algebraic dual, but usually the two are different.

A topological vector space is locally convex if it has a neighbourhood base at 0
consisting of convex sets. Locally convex spaces are more well-behaved than general
topological vector spaces, and almost all important spaces in functional analysis are
locally convex. For more on locally convex spaces, the reader is referred to a graduate
level textbook on functional analysis, for instance [Sch99, Rud91, Con07].

Dual pairs and weak topologies
Let E and F be vector spaces, and let b : E × F → R be a bilinear form. We say that
a subset N ⊆ F separates points on E (via b) if for every x ∈ E there is some y′ ∈ N

105
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such that b(x, y′) 6= 0. Likewise, a subset M ⊆ E separates points on F (via b) if for
every y ∈ F there is some x′ ∈ M such that b(x′, y) 6= 0. If F separates points on
E and E separates points on F , then b is called a dual pairing (or non-degenerate
bilinear form), and we denote it by the shorthand notation 〈x, y〉 := b(x, y). A dual
pair is a tuple (E,F, 〈 · , · 〉), where E and F are vector spaces and 〈 · , · 〉 : E×F → R
is a dual pairing. We usually use the shorthand notation 〈E,F 〉 to denote the dual
pair (E,F, 〈 · , · 〉).

Let 〈E,F 〉 be a dual pair. The σ(E,F )-topology on E is the initial topology induced
by the family of linear functionals {x 7→ 〈x, y〉 : y ∈ F}, and the σ(F,E)-topology on F
is the initial topology induced by the family of linear functionals {y 7→ 〈x, y〉 : x ∈ E}.
If F = E′ is the topological dual of E, then the σ(E,E′)-topology on E is called the
weak topology, and the σ(E′, E)-topology on E′ is called the weak-∗ topology. In this
case, we denote the resulting topological vector spaces by Ew and E′w∗, respectively.
Likewise, the weak closure of a subset M ⊆ E will be denoted M

w, and the weak-∗
closure of a subset N ⊆ E′ will be denoted N

w∗.
Throughout Part III, we tacitly assume that all dual pairs consist of a topological

vector space and its topological dual space (or algebraic dual space, if the primal space
has no topology). Consequently, by a slight abuse of notation, we denote our dual
pairs as 〈E,E′〉, 〈F, F ′〉, etc., and we say that E belongs to the dual pair 〈E,E′〉. To
keep the topological prerequisites to a minimum, we will forget about the original
topology of E, and only remember the dual pair 〈E,E′〉 to which E belongs. When E
has no topology, we tacitly assume that E′ := E∗ is the algebraic dual.

Linear maps
If E and F are vector spaces, then the space of linear maps E → F is denoted by
L(E,F ). If E and F are topological vector spaces, then the space of continuous linear
maps E → F is denoted by L(E,F ). If the (topological) duals separate points, then
every continuous map E → F is also weakly continuous (see e.g. [Köt83, §20.4.(5)]),
so we have

L(E,F ) ⊆ L(Ew, Fw) ⊆ L(E,F ).

If E and F are vector spaces without topologies, then every linear map T : E → F is
σ(E,E∗)-σ(F, F ∗)-continuous (since ψ ◦ T is σ(E,E∗)-continuous for every ψ ∈ F ∗),
so we have

L(Ew, Fw) = L(E,F ) (if E′ = E∗, F ′ = F ∗).

The adjoint of a (continuous) linear map T : E → F is denoted T ∗ : F ∗ → E∗

(algebraic adjoint) or T ′ : F ′ → E′ (topological adjoint).

Bilinear maps
Let E,F,G be topological vector spaces. A bilinear map b : E × F → G is (jointly)
continuous if it is continuous with respect to the product topology on E × F , and
separately continuous if for all fixed x0 ∈ E and y0 ∈ F the maps y 7→ b(x0, y) and
x 7→ b(x, y0) are continuous.
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From left to right, let

Bi`(E × F ) ⊆ Bil(E × F ) ⊆ Bil(E × F )

denote the spaces of continuous, separately continuous, and all bilinear forms E×F →
R.1

For our purposes, the most important of these is Bil(E×F ), the space of separately
continuous bilinear forms. It will be used extensively in the study of the injective cone
in Chapter 10.

Given a bilinear form b ∈ Bil(E × F ) and fixed vectors x0 ∈ E, y0 ∈ F , we let
b(x0, · ) ∈ F ∗ and b( · , y0) ∈ E∗ denote the linear functionals

b(x0, · ) :=
(
y 7→ b(x0, y)

)
;

b( · , y0) :=
(
x 7→ b(x, y0)

)
.

Using this notation, we see that b is separately continuous if and only if one has
b(x0, · ) ∈ F ′ for all x0 ∈ E and b( · , y0) ∈ E′ for all y0 ∈ F . In particular, it follows
that Bil(E × F ) does not depend on the topologies of E and F , but only on the dual
pairs 〈E,E′〉, 〈F, F ′〉. Likewise, it follows that Bil(E × F ) = Bil(E × F ) whenever
E′ = E∗ and F ′ = F ∗.

It follows from [Köt79, §40.1.(2’)] and the preceding remarks that the maps
b 7→ (x 7→ b(x, · )) and b 7→ (y 7→ b( · , y)) define linear isomorphisms

Bil(E × F ) = Bil(Ew × Fw) ∼= L(Ew, F ′w∗) ∼= L(Fw, E′w∗).

(The isomorphism L(Ew, F ′w∗) ∼= L(Fw, E′w∗) is simply T 7→ T ′.)

Tensor products
We assume the reader to be familiar with the basics of the (algebraic) theory of tensor
products. We will need very little on the side of topological tensor products (but many
results in Part III are inspired by the theory of normed tensor products).

For clarity, we shall occasionally use the following notation: if E and F are vector
spaces and M ⊆ E and N ⊆ F are subsets, then we define the “set-wise” tensor
product

M ⊗s N := {x⊗ y : x ∈M, y ∈ N} ⊆ E ⊗ F.

8.2 Subspaces, quotients, and tensor products of dual pairs

Many of the properties of a convex cone E+ in topological vector space E depend only
on the geometry of E+ and on the dual pair 〈E,E′〉, not on the precise topology of E.
In particular, we don’t need to know the exact topology of E ⊗ F , because for our
purposes it suffices to know what its dual space is. This enables us to ignore topological
issues in the tensor product, thereby circumventing the notoriously complicated theory

1Note: with this notation it is possible to confuse Bi`(E × F ) with Bil(E × F ), but notation like
this appears to be at least moderately common (e.g. [Sch99, p. 91], [Köt79, p. 154]).



108 8. Preliminaries for Part III

of locally convex tensor products. Instead, we formulate our results for a wide range
of reasonable duals of E ⊗ F (see below).

Throughout Part III, we encode the “input spaces” E and F and the “output space”
E ⊗ F by the dual pairs to which they belong; that is, by only remembering what the
appropriate (algebraic or topological) dual space is, without remembering the exact
topology. In this section, we briefly discuss how to handle subspaces, quotients, and
tensor products of dual pairs.

Questions about the projective/injective cone that depend not only on the dual
pair, but also on a specific topology on E ⊗ F , will not be treated in this dissertation.
In particular, for questions about normality of the projective/injective cone, we refer
the reader to [PS69].

Remark 8.1. Because we choose to forget about the topology of E and only formulate
results in terms of the dual pair 〈E,E′〉, we occasionally have to make use of the
weak topology. In particular, we often refer to the weak closure of a convex cone and
to weakly closed subspaces. We should point out that the adjective “weak” can be
omitted here if E is a locally convex space, because in this setting the weak and
original closure of a convex set (in particular, a convex cone or a subspace) coincide,
by [Rud91, Theorem 3.12].

If E is a topological vector space which is not locally convex, then the adjective
“weak” cannot be omitted.

Subspaces
If 〈E,E′〉 is a dual pair and if I ⊆ E is a subspace, then we will understand I to
belong to the dual pair 〈I, E′/I⊥〉.

We show that this is usually, but not always, the natural dual pair for I. To that
end, assume that E a topological vector space, E′ is its (topological) dual, and I
carries the subspace topology. Let T : I ↪→ E denote the inclusion and T ′ : E′ → I ′

its adjoint.
If E is locally convex, then every continuous linear functional on I can be extended

to E, so T ′ is surjective. Clearly ker(T ′) = I⊥, so T ′ restricts to a linear isomorphism
E′/I⊥ → I ′. Furthermore, the relative σ(E,E′)-topology on I coincides with the
σ(I, E′/I⊥)-topology (even if I is not closed), so we may unambiguously refer to this
as the weak topology on I. On the other hand, the σ(E′/I⊥, I)-topology on E′/I⊥ = I ′

coincides with the quotient topology E′w∗/I⊥ if and only if I is closed (see e.g. [Sch99,
§IV.4.1, Corollary 1]).

If E is not locally convex, then I may have continuous linear functionals that
cannot be extended. In this case one still has ker(T ′) = I⊥, but T ′ is not surjective,
so I ′ 6= E′/I⊥. Nevertheless, E′/I⊥ is the dual of I with respect to the relative
σ(E,E′)-topology on I.

Quotients
If E is a topological vector space and if I ⊆ E is a closed subspace, then E/I is
a Hausdorff topological vector space. Every continuous linear functional E/I → R
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extends to a continuous linear functional E → R that vanishes on I. Conversely, if
ϕ : E → R is a continuous linear functional that vanishes on I, then ϕ factors through
E/I, by the universal property of quotients. Therefore: (E/I)′ ∼= I⊥ as vector spaces.

Thus, if 〈E,E′〉 is a dual pair and if I ⊆ E is a weakly closed subspace, then we can
understand E/I to belong to the dual pair 〈E/I, I⊥〉. The quotient topology on Ew/I
coincides with the σ(E/I, I⊥)-topology, and the subspace topology on I⊥ ⊆ E′w∗
coincides with the σ(I⊥, E/I)-topology (see e.g. [Sch99, §IV.4.1, Corollary 1]), so
we may unambiguously refer to these as the weak topology on E/I and the weak-∗
topology on I⊥, respectively.

The only downside to this approach is that we cannot “see” all quotients of E. If
E is locally convex, then every closed subspace is also weakly closed, but this is not
true for general topological vector spaces (see e.g. [Kal78]). However, if I is closed
but not weakly closed, then the quotient E/I is Hausdorff, but its topological dual
(E/I)′ = I⊥ does not separate points. Throughout this dissertation, we assume that
all duals separate points, so we only consider quotients E/I where I is weakly closed.

Tensor products

Let 〈E,E′〉 and 〈F, F ′〉 be dual pairs. Recall from §8.1 that the space Bil(E × F ) of
separately continuous bilinear forms E × F → R can be defined without specifying
topologies on E and F , since this space depends only on the dual pairs 〈E,E′〉 and
〈F, F ′〉. Since the algebraic dual of E ⊗ F is isomorphic with Bil(E × F ), we can
identify Bil(E×F ) with a subspace of (E⊗F )∗. We say that a subspace G ⊆ (E⊗F )∗
is a reasonable dual of E ⊗ F (with respect to the dual pairs 〈E,E′〉, 〈F, F ′〉) if

E′ ⊗ F ′ ⊆ G ⊆ Bil(E × F ).

This definition will allow us to treat (duality of) convex cones in topological tensor
products without having to deal with the specifics of topological tensor products.

We show that this definition covers all important cases. First, if E,F are locally
convex and E ⊗ F carries a compatible topology α (in the sense of Grothendieck [Gro55,
p. 89]; see also [Köt79, §44.1]), then we claim that the topological dual (E ⊗α F )′ is
a reasonable dual of E ⊗ F . Indeed, one of the requirements for α to be compatible
is E′ ⊗ F ′ ⊆ (E ⊗α F )′. Moreover, every compatible topology is coarser than the
inductive topology, whose dual is Bil(E × F ) (see e.g. [Köt79, §44.1.(5)]), so one has
(E ⊗α F )′ ⊆ Bil(E × F ). This shows that (E ⊗α F )′ is a reasonable dual.

Second, if E and F originate from spaces without topologies, then we understand
these to belong to the dual pairs 〈E,E∗〉, 〈F, F ∗〉. In this case we have Bil(E × F ) =
Bil(E × F ) (see §8.1), so we find that (E ⊗ F )∗ = Bil(E × F ) is a reasonable dual of
E ⊗ F . This is useful when applying topological results in the non-topological setting
(for instance, see Corollary 9.4).
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8.3 Ordered vector spaces

Convex cones and their duals

Let E be a (real) vector space. A convex cone2 is a non-empty subset K ⊆ E satisfying
K+K ⊆ K and λK ⊆ K for all λ ∈ R≥0. If K is a convex cone, then lin(K) := K∩−K
is a linear subspace of E, called the lineality space of K. We say that K is proper 3 if
lin(K) = {0}, and generating if K −K = E.

If K ⊆ E is a convex cone, then its algebraic dual cone K∗ is the set of all positive
linear functionals:

K∗ :=
{
ϕ ∈ E∗ : ϕ(x) ≥ 0 for all x ∈ K

}
.

If 〈E,E′〉 is a dual pair, then we define K′ := K∗ ∩E′ (the dual cone for the dual pair
〈E,E′〉). The dual cone of K′ ⊆ E′ with respect to the dual pair 〈E′, E〉 is the bipolar
cone

K′′ :=
{
x ∈ E : 〈x, ϕ〉 ≥ 0 for all ϕ ∈ K′

}
= (K′)′.4

Using the (one-sided) bipolar theorem, one easily shows that K′′ = Kw. It follows that
⊥(K′) = K′′ ∩ −K′′ = lin(Kw). In particular, Kw is a proper cone if and only if K′
separates the points of E. If this is the case, then we say that K is semisimple. (For
an equivalent definition of semisimplicity in terms of representations, see [Dob20a].)

Ordered vector spaces

Let E be a vector space. A vector preorder is a preorder ≤ on E such that for all
x, y, z ∈ E and λ ∈ R>0 one has x ≤ y if and only if x + z ≤ y + z if and only if
λx ≤ λy.

There is a natural bijective correspondence between vector preorders on E and
convex cones in E, which identifies the preorder ≤ with the convex cone E+ := {x ∈
E : x ≥ 0} of positive elements of E. In the reverse direction, a convex cone K ⊆ E is
identified with the vector preorder ≤K given by x ≤K y if and only if y − x ∈ K (for
all x, y ∈ E).

A preordered vector space is a tuple (E,E+) where E is a vector space and E+ ⊆ E
is a convex cone. We understand E to be preordered by the vector preorder associated
with E+. Likewise, a preordered topological vector space is a tuple (E,E+), where E is
a topological vector space and E+ ⊆ E is a convex cone. Note that we do not assume
any kind of compatibility between the topology and the cone E+.

The positive cone E+ of a preordered (topological) vector space E is proper if and
only if the associated vector preorder is antisymmetric (so it is a partial order). If this
is the case, then (E,E+) is called an ordered (topological) vector space.

2A note about terminology: some authors call this a wedge, and reserve the term cone for what
we call a proper cone (e.g. [Day62, Per67, AT07]).

3Some authors call this pointed or salient.
4There is some chance of confusion here, because K′′ could also refer to the positive cone of the

second dual E′′ of E. To avoid this confusion, and in light of the bipolar theorem, we will henceforth
refer to the bipolar cone as Kw instead of K′′.
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Whenever we have a (topological) vector space E and a convex cone E+ ⊆ E, we
will implicitly assume that E is a preordered (topological) vector space with positive
cone E+. Furthermore, the preorder of E will be denoted by ≤.

Positive linear maps

Let (E,E+) and (F, F+) be preordered vector spaces. We say that a linear map T ∈
L(E,F ) is positive if T [E+] ⊆ F+, a pullback (or bipositive operator) if E+ = T−1[F+],
and a pushforward if T [E+] = F+.

Furthermore, if E and F belong to dual pairs 〈E,E′〉 and 〈F, F ′〉, then we say that
an operator T ∈ L(Ew, Fw) is approximately positive if T [E+

w] ⊆ F+
w, an approximate

pullback (or approximately bipositive) if E+
w = T−1[F+

w], and an approximate
pushforward if T [E+]w = F+

w. A continuous positive map (resp. pushforward) is
also approximately positive (resp. an approximate pushforward), but a pullback
is not necessarily an approximate pullback. (Concrete example: let F = R2 with
F+ = {(x, y) : x > 0} ∪ {(0, 0)}, let E := span{(0, 1)} ⊆ F with F+ := F+ ∩ E, and
let T be the inclusion E ↪→ F .)

These approximate type operators are not particularly natural from the perspective
of ordered vector spaces, but they come into play as soon as one starts to make
use of duality. Given T ∈ L(Ew, Fw), it is not hard to show that the adjoint T ′ ∈
L(F ′w∗, E′w∗) is positive if and only if T is approximately positive. In addition, using
that (T [C])◦ = (T ′)−1[C◦] (e.g. [Sch99, Proposition IV.2.3(a)]), it is easy to show that
T is an approximate pullback if and only if T ′ is a weak-∗ approximate pushforward,
and vice versa. This is no longer true if the adjective “approximate” is omitted.

We shall treat pullbacks and pushforwards as the natural ordered analogues of
metric injections (isometries) and metric surjections (quotients); see Table 8.2. As soon
as duality comes into play, it will be helpful to pass to the corresponding approximate
versions. In particular, we show that the injective cone preserves approximate pullbacks,
but not all pullbacks.

Note that every linear map E → F can be made a pullback/pushforward by
choosing appropriate cones. In particular, a pullback is not necessarily injective, and
a pushforward is not necessarily surjective. However, if E+ is a proper cone, then
every pullback T : E → F is injective (since ker(T ) ⊆ T−1[F+] = E+), and if F+ is
generating then every pushforward E → F is surjective.

Table 8.2: Ordered analogues of common concepts in the normed theory.

Normed theory Ordered theory

Continuous operator Positive operator
Metric injection (isometry) Pullback (bipositive operator)
Metric surjection (quotient) Pushforward (quotient)
Projection (complemented subspace) Positive projection (order retract)
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Retracts

Let (E,E+) be a preordered vector space. A subspace F ⊆ E is an order retract if
there exists a positive projection E → F . If E is furthermore a topological vector
space, then we say that F is a topological order retract if there exists a continuous
positive projection E → F .

For simplicity, we shall speak of retracts and top-retracts, as there is minimal
chance of confusion with other types of retracts (e.g. from topology).

Note that a retract provides at the same time an injective pullback (i.e. bipositive
map) F ↪→ E and a surjective pushforward (“quotient”) E � F . We will show that,
although the projective tensor product does not preserve bipositive maps and the
injective tensor product does not preserve quotients, retracts are sufficiently rigid to
be preserved by both.

To illustrate their place in the theory, note that every top-retract is a complemented
subspace (after all, it admits a continuous projection5). If E+ = {0}, then the top-
retracts are precisely the complemented subspaces.

As far as we know, order retracts are not a very common notion, and have not
received much attention. However, some special cases already play a role in the theory,
such as projection bands in Riesz spaces (see e.g. [Zaa97, §11]) and projectionally
exposed faces in finite-dimensional cones (see e.g. [BLP87, ST90]).

Positive bilinear maps

If (E,E+), (F, F+), (G,G+) are preordered vector spaces, then a bilinear map b :
E × F → G is called positive if b(E+, F+) ⊆ G+.

In terms of the isomorphism Bil(Ew×Fw) ∼= L(Ew, F ′w∗) (see §8.1), we note that a
bilinear form b ∈ Bil(Ew×Fw) is positive if and only if b(x, · ) defines a positive linear
functional on F for every x ∈ E+, or equivalently, if and only if the corresponding map
Ew → F ′w∗ is positive. Thus, contrary to the topological setting, there is no difference
between positive and “separately positive” bilinear forms.

Faces and extremal rays

Let E be a vector space and let E+ ⊆ E be a convex cone. A face (or extremal set)
of E+ is a (possibly empty) convex subset M ⊆ E+ such that, if M contains a point
in the relative interior of a line segment in E+, then M also contains the endpoints
of that segment. If ϕ is a continuous positive linear functional, then ker(ϕ) ∩ E+ is a
face. Faces of this type are called exposed.

Every convex cone has a unique minimal non-empty face (the lineality space lin(E+),
contained in every face) and a unique maximal face (the cone itself, containing every
face). Note that E+ is a proper cone if and only if {0} is a face.

Let x0 ∈ E+ \ {0}. If M := {λx0 : λ ∈ R≥0} is a face, then we say that x0 is an
extremal direction, and M is an extremal ray. If x0 is an extremal direction, then so

5Some authors require a complemented subspace to be closed, but this is automatic: if P : E → E
is a continuous projection with range F , then F = ker(idE −P ), so F is closed.
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is µx0 for every µ > 0. We let rext(E+) ⊆ E+ \ {0} denote the set of all extremal
directions of E+.

If M ⊆ E+ is a non-empty subset, then E′+ ∩M⊥ defines a face of E′+. Faces of
this type are called dual faces. In the finite-dimensional case, dual faces are precisely
the exposed faces, but this is not true in locally convex spaces. For more on dual and
exposed faces, see Appendix A.3.

Order ideals
Let (E,E+) be a preordered vector space. A subspace I ⊆ E is called an order ideal
if the pushforward of E+ along the quotient map E → E/I is a proper cone. If no
ambiguity can arise (i.e. if the space does not carry a multiplication), then we call I
simply an ideal.

A subspace I ⊆ E is an ideal if and only if I ∩ E+ is a face of E+ (see Propo-
sition A.2). Conversely, if M ⊆ E+ is a face, then span(M) is an ideal satisfying
span(M) ∩E+ = M (see Proposition A.3). Thus, I 7→ I+ defines a many-to-one corre-
spondence between ideals and faces. We shall draw heavily upon this correspondence.

If K ⊆ E+ is a subcone, then every ideal I ⊆ E with respect to E+ is also an ideal
with respect to K. More generally, if T : E → F is a positive linear map and if J ⊆ F
is an ideal, then T−1[J ] ⊆ E is also an ideal (see Proposition A.3). In particular, if F+
is a proper cone, then {0} ⊆ F+ is a face, so ker(T ) ∩ E+ is a face of E+. It can be
shown that all faces can be written in this form (see Proposition A.4(b)).

We will show in Corollary A.12 that the maximal order ideals are precisely the
kernels of non-zero positive linear functionals, or in other words, the supporting hyper-
planes of E+. In particular, not every maximal ideal in a preordered topological vector
space is closed. (Example: the kernel of a discontinuous positive linear functional.)

For more about ideals and faces, see Appendix A and [Bon54].
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Chapter 9
The projective cone

In this chapter, we carry out an in-depth study of the properties of the
projective cone. This cone does not depend on any topological data, so we will
mostly ignore topological issues in this chapter. Some questions about the closure
of the projective cone will briefly be discussed in Chapter 11.

This chapter is based on Chapter 3 of [Dob20b].

Introduction

Let E,F be (real) vector spaces and let E+ ⊆ E, F+ ⊆ F be convex cones. The
simplest way to define a cone in E ⊗ F is to consider the projective cone

E+ ⊗π F+ :=
{

k∑
i=1

xi ⊗ yi : k ∈ N, x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+

}
.

If E,F are locally convex and if α is a compatible locally convex topology on E ⊗ F ,
then we denote by E+ ⊗πα F+ and E+ ⊗̃πα F+ the same cone, but embedded in the
topological vector spaces E ⊗α F and E ⊗̃α F , respectively. (The topology is denoted
in the subscript; the cone in the superscript.)

It is easy to see that E+ ⊗π F+ is indeed a (convex) cone. This cone has received a
lot of attention in the literature; see for instance [Mer64, PS69, GL88, GK10, Wor19].

In the subsequent sections, we will study the basic properties of the projective cone.
We point out a characteristic property of the projective cone (§9.1), study its mapping
properties (§9.2), prove precise necessary and sufficient conditions for E+ ⊗π F+ to
be proper (§9.3), and show that the projective tensor product of two faces is again a
face (§9.4, §9.5). Finally, as an application of the results from this section, we prove
that the tensor product of absolutely convex sets also preserves faces (§9.6).

9.1 The characteristic property of the projective cone

Let E,F,G be vector spaces equipped with convex cones E+ ⊆ E, F+ ⊆ F , G+ ⊆ G.
There is a natural isomorphism Bil(E×F,G) ∼= L(E⊗F,G), which identifies a bilinear
map Φ : E × F → G with its linearization ΦL : E ⊗ F → G, ΦL(

∑k
i=1 xi ⊗ yi) =∑k

i=1 Φ(xi, yi).
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Proposition 9.1. If E ⊗ F is equipped with the projective cone E+ ⊗π F+, then a
linear map ΦL : E ⊗ F → G is positive if and only if its corresponding bilinear map
Φ : E × F → G is positive.

Proof. A bilinear map Φ : E×F → G is positive if and only if ΦL(x⊗y) = Φ(x, y) ≥ 0
for all x ∈ E+, y ∈ F+. On the other hand, since E+ ⊗π F+ is generated by E+ ⊗ F+,
we also find that a linear map ΦL : E⊗F → G is positive if and only if ΦL(x⊗ y) ≥ 0
for all x ∈ E+, y ∈ F+. �

This is the ordered analogue of the characteristic property of the projective topology.
It follows that

(E+ ⊗π F+)∗ = Bil(E × F )+ (E,F vector spaces);

(E+ ⊗ππ F+)′ = (E+ ⊗̃ππ F+)′ = Bi`(E × F )+ (E,F locally convex).

9.2 Mapping properties of the projective cone

The projective norm preserves continuous linear maps, quotients, and complemented
subspaces (see e.g. [DF93, Propositions 3.2, 3.8, and 3.9(1)], or [Köt79, §41.5] for
the more general locally convex setting). The projective cone has analogous mapping
properties.

Proposition 9.2. Let T ∈ L(E,G) and S ∈ L(F,H).

(a) If T [E+] ⊆ G+ and S[F+] ⊆ H+, then (T ⊗ S)[E+ ⊗π F+] ⊆ G+ ⊗π H+.

(b) If T [E+] = G+ and S[F+] = H+, then (T ⊗ S)[E+ ⊗π F+] = G+ ⊗π H+.

(c) If (E,E+) and (F, F+) are retracts of (G,G+) and (H,H+), respectively, then
(E ⊗ F,E+ ⊗π F+) is a retract of (G⊗H,E+ ⊗π F+).

In summary: the projective cone preserves positive linear maps, pushforwards, and
retracts.

It follows immediately that the same statements hold for maps between the
completions (in the locally convex case), for the projective cone is contained in the
algebraic tensor product.

Proof.

(a) Let z ∈ E+ ⊗π F+ be given, and write z =
∑k
i=1 xi ⊗ yi with x1, . . . , xk ∈ E+,

y1, . . . , yk ∈ F+. Then we have (T ⊗ S)(z) =
∑k
i=1 T (xi)⊗ S(yi) ∈ G+ ⊗π H+,

since T (x1), . . . , T (xk) ∈ G+, S(y1), . . . , S(yk) ∈ H+.

(b) By (a), T ⊗ S is positive. Now let u ∈ G+ ⊗π H+ be given, and write u =∑k
i=1 vi ⊗ wi with v1, . . . , vk ∈ G+ and w1, . . . , wk ∈ H+. By assumption there

are x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+ such that vi = T (xi) and wi = S(yi), for
all i. Consequently, we have z :=

∑k
i=1 xi⊗yi ∈ E+ ⊗π F+, and u = (T ⊗ S)(z).
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(c) There are positive linear maps T1, T2, S1, S2 so that the following two diagrams
commute:

G H

E E, F F.

T2 S2T1

idE

S1

idF

Consequently, the following diagram commutes:

G⊗H

E ⊗ F E ⊗ F.

T2⊗S2T1⊗S1

idE ⊗ idF

By (a), the maps in the preceding diagram are all positive for the projective cone,
so it follows that (E ⊗ F,E+ ⊗π F+) is a retract of (G⊗H,G+ ⊗π H+). �

Next, we prove that the projective tensor product also preserves approximate
pushforwards: if T and S are maps whose adjoints are bipositive, then the same is
true of T ⊗ S.

Lemma 9.3. Let 〈E,E′〉, 〈F, F ′〉, 〈G,G′〉, 〈H,H ′〉 be dual pairs, and let E+, F+,
G+, H+ be convex cones in the primal spaces. If T ∈ L(Ew, Gw) and S ∈ L(Fw, Hw)
are approximate pushforwards, then the map (T ⊗S)′ : Bil(Gw×Hw)→ Bil(Ew×Fw),
((T ⊗ S)′b)(x, y) = b(Tx, Sy) is bipositive.

Here (T ⊗S)′ denotes the adjoint of T ⊗S : E⊗F → G⊗H, assuming that E⊗F
and G⊗H are equipped with the largest reasonable duals (see §8.2).

Proof. Note that (T ⊗ S)′b is a positive bilinear functional on E × F if and only if b
is positive on T [E+]× S[F+], so if b is separately weakly continuous, then this is the
case if and only if b is positive on T [E+]w × S[F+]w. (First use weak continuity in
the second variable to pass from T [E+]× S[F+] to T [E+]× S[F+]w, then use weak
continuity in the first variable to proceed to T [E+]w × S[F+]w.) Analogously, b itself
is a positive bilinear functional on G×H if and only if b is positive on G+

w ×H+
w.

By assumption, we have T [E+]w = G+
w and S[F+]w = H+

w, so it follows that b is
positive if and only if (T ⊗ S)′b is positive. �

The preceding lemma has immediate applications to algebraic tensor products (of
vector spaces without topologies) and to completed locally convex topologies. It will
also be used to prove one of the fundamental properties of the injective cone (see
Lemma 10.15(b)).

Corollary 9.4. Let E,F,G,H be preordered vector spaces, and let T ∈ L(E,G), S ∈
L(F,H) be linear maps such that T ∗ and S∗ are bipositive. Then (T ⊗S)∗ is bipositive
with respect to the dual cones (E+ ⊗π F+)∗ ⊆ (E ⊗ F )∗, (G+ ⊗π H+)∗ ⊆ (G⊗H)∗.
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Proof. If we understand the primal spaces to belong to the dual pairs 〈E,E∗〉, . . . ,
〈H,H∗〉, then every linear map is weakly continuous. Furthermore, (E ⊗ F )∗ =
Bil(E × F ) = Bil(Ew × Fw), and the positive cone of Bil(Ew × Fw)+ coincides with
the dual cone (E+ ⊗π F+)∗ ⊆ (E ⊗ F )∗, by Proposition 9.1. Hence the result is a
special case of Lemma 9.3. �

Corollary 9.5. Let E,F,G,H be locally convex preordered topological vector spaces
and let T ∈ L(E,G) and S ∈ L(F,H) be approximate pushforwards. If T ⊗α→β S :
E ⊗α F → G⊗β H is continuous (α and β compatible locally convex topologies), then
T ⊗α→β S and T ⊗̃α→β S are approximate pushforwards.

Proof. Every continuous linear map is also weakly continuous (see [Köt83, §20.4.(5)]),
so we have T ∈ L(Ew, Gw) and S ∈ L(Fw, Hw). Furthermore, since α and β are
compatible topologies, we have (E ⊗α F )′ ⊆ Bil(E × F ) = Bil(Ew × Fw) and
(G⊗β H)′ ⊆ Bil(F ×H) = Bil(Fw ×Hw). It follows that (T ⊗α→β S)′ is a restriction
of the map (T ⊗ S)′ from Lemma 9.3, and therefore it is also bipositive. For the
completion, note that (T ⊗̃α→β S)′ = (T ⊗α→β S)′. �

Interestingly, Corollary 9.4 uses topological techniques to prove a purely algebraic
result. We don’t know a purely algebraic proof of Corollary 9.4.

Finally, we show that the projective tensor product does not preserve bipositive
maps, even if all spaces are finite-dimensional and all cones are closed and generating
(Example 9.6), or even closed, generating and proper (Example 9.7).

Example 9.6. As a very simple example, let F = G = R2 with F+ = R2 and
G+ = R2

≥0. Furthermore, let E = span{(1,−1)} ⊆ G, and write E+ := E ∩ G+ =
{0}. Then the inclusion T : E ↪→ G is bipositive, but E+ ⊗π F+ = {0} whereas
G+ ⊗π F+ = G⊗F . Since E⊗F 6= {0}, we have (G+ ⊗π F+)∩ (E⊗F ) 6= E+ ⊗π F+,
which shows that T ⊗ idF is not bipositive. 4

Example 9.7 (Compare [Dob22, Situation 4]). For a more advanced example, let
E be a finite-dimensional space equipped with a proper, generating, polyhedral cone
E+ which is not a simplex cone. Choose ϕ1, . . . , ϕm ∈ E∗ such that E+ =

⋂m
i=1{x ∈

E : ϕi(x) ≥ 0}, and let Rm be equipped with the standard cone Rm≥0. Then the map
T : E → Rm, x 7→ (ϕ1(x), . . . , ϕm(x)) is bipositive.

Since E+ is not a simplex cone, it follows from [BL75, Proposition 3.1] (see also
Theorem 13.2 below) that E+ ⊗π E∗+ 6= E+ ⊗ε E∗+. On the other hand, it is well-
known that Rm≥0 ⊗π E∗+ = Rm≥0 ⊗ε E∗+, and it follows from Theorem 10.16(b) below
that T ⊗ idE∗ is bipositive for the injective cone. Therefore:

(T ⊗ idE∗)−1[Rm≥0 ⊗π E∗+] = (T ⊗ idE∗)−1[Rm≥0 ⊗ε E∗+] = E+ ⊗ε E∗+ 6= E+ ⊗π E∗+.

This shows that T ⊗ idE∗ is not bipositive for the projective cone.
Note that all cones in this example are polyhedral, and therefore closed. In partic-

ular, the situation is not resolved by taking closures. 4

The finite-dimensional techniques used in Example 9.7 will be discussed in more
detail in Chapter 12 and Chapter 13.
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Despite the preceding counterexamples, bipositivity can be preserved under certain
additional conditions. First, if E ⊆ G and F ⊆ H are retracts, then E⊗F ⊆ G⊗H is
also a retract (by Proposition 9.2(c)), so in particular the inclusion E ⊗ F ↪→ G⊗H
is bipositive. Furthermore, we prove in Proposition 9.21 that the projective cone also
preserves ideals of proper cones bipositively.

9.3 When is the projective cone proper?

There is a simple necessary and sufficient condition for E+ ⊗π F+ to be proper, which
we prove in Theorem 9.10 below. This result was first proved (in three different
ways) by Dermenjian and Saint-Raymond [DS70], and recently rediscovered by Wortel
[Wor19]. (The original proof seems to have been forgotten, and before Wortel only
special cases were known in the literature.) The proof given here is different from each
of the existing proofs. Further methods of proof will be discussed in Remark 9.12.

We proceed via reduction to the finite-dimensional case, using the following lemmas.

Lemma 9.8. A convex cone E+ ⊆ E is generating if and only if its algebraic dual
cone E∗+ is proper.

Proof. Note that E∗+ is not proper if and only if there is some ϕ ∈ E∗ \ {0} such
that both ϕ and −ϕ are positive linear functionals, or equivalently, ϕ(x) = 0 for all
x ∈ E+. This is in turn equivalent to E+ being contained in a (linear) hyperplane,
which happens if and only if E+ is not generating. �

Corollary 9.9. If E is finite-dimensional, then a closed convex cone E+ ⊆ E is
proper if and only if its dual cone E∗+ is generating.

Proof. Set F := E∗ and F+ := E∗+. Under the canonical isomorphism E ∼= E∗∗, we
have F ∗+ = E+, by the bipolar theorem (here we use that E+ is closed). The result
follows from Lemma 9.8, applied to the cone F+ ⊆ F . �

We are now ready to state and prove the main result of this section.

Theorem 9.10 (cf. [DS70]). Let E and F be vector spaces with convex cones E+ ⊆ E,
F+ ⊆ F . Then the projective cone E+ ⊗π F+ is proper if and only if E+ = {0}, or
F+ = {0}, or both E+ and F+ are proper.

Proof. Suppose first that E+, F+ 6= {0} and E+ is not proper. Then we may choose
x ∈ E \ {0} such that x,−x ∈ E+, and y ∈ F+ \ {0}. Both x⊗ y and −x⊗ y belong
to E+ ⊗π F+, but we have x⊗ y 6= 0, so we see that E+ ⊗π F+ is not a proper cone.

For the converse, if E+ = {0}, then E+ ⊗π F+ = {0} regardless of any properties
of F+ (and similarly if F+ = {0}). So assume now that both E+ and F+ are proper
(not necessarily 6= {0}). Let z ∈ E⊗F be given such that z,−z ∈ E+ ⊗π F+. Then we
may choose integers n ≥ k ≥ 0 and vectors x1, . . . , xn ∈ E+, y1, . . . , yn ∈ F+ such that
z =

∑k
i=1 xi ⊗ yi and −z =

∑n
i=k+1 xi ⊗ yi. Consequently, we have

∑n
i=1 xi ⊗ yi = 0.

Now set X := span(x1, . . . , xn) ⊆ E and Y := span(y1, . . . , yn) ⊆ F , and let
X+ ⊆ X and Y+ ⊆ Y be the convex cones generated by x1, . . . , xn and y1, . . . , yn,
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respectively. Note that X+ is a closed proper cone in the finite-dimensional vector
space X, since it is finitely generated (hence closed; see [AT07, Lemma 3.19]) and
contained in the proper cone X ∩ E+ (hence also proper). Similarly, Y+ is a closed
proper cone in Y .

It follows from Corollary 9.9 that X∗+ and Y ∗+ are generating cones in X∗ and
Y ∗, respectively. Therefore clearly X∗+ ⊗π Y ∗+ is generating in X∗ ⊗ Y ∗. Since 〈x⊗ y,
ϕ ⊗ ψ〉 = 〈x, ϕ〉〈y, ψ〉 ≥ 0 for all x ∈ X+, y ∈ Y+, ϕ ∈ X∗+, ψ ∈ Y ∗+, we have
X∗+ ⊗π Y ∗+ ⊆ (X+ ⊗π Y+)∗. It follows that (X+ ⊗π Y+)∗ is also generating, and
therefore (X+ ⊗π Y+)∗∗ = X+ ⊗π Y+ is a proper cone, by Lemma 9.8. Since z,−z ∈
X+ ⊗π Y+ ⊆ (X+ ⊗π Y+)∗∗, it follows that z = 0. �

Remark 9.11. The final steps in the proof of Theorem 9.10 can be simplified with
well-known results from the finite-dimensional theory, but we didn’t need that. The
dual of the projective cone X+ ⊗π Y+ is the injective cone X∗+ ⊗ε Y ∗+, and X+ ⊗π Y+
is automatically closed, by [Tam77b] (see also Theorem 12.10 below).

Remark 9.12. In the proof of Theorem 9.10, we reduced the problem to finitely
generated proper cones. There are many ways to prove this special case. Apart from
the method used here and the proofs given in [DS70] and [Wor19], we could also have
applied either one of the sufficient criteria from [PS69, Proposition 2.4]. Yet another
method is mentioned in Remark 12.6.

Theorem 9.10 will be extended in Corollary 9.17 below, where we determine
the lineality space of E+ ⊗π F+ for arbitrary convex cones E+, F+. Furthermore, a
result very similar to Theorem 9.10, giving criteria for E+ ⊗π F+ to be semisimple
(i.e. contained in a weakly closed proper cone), will be given in Corollary 11.11.

9.4 Faces of the projective cone

As a simple application of the theory developed so far, we develop two ways to combine
faces of E+ and F+ to form a face of E+ ⊗π F+. For closed, proper and generating
cones in finite-dimensional spaces, one of these constructions was already pointed
out (without proof) by Tam in [Tam77a, p. 53] and [Tam92, p. 71]. He likely had a
different proof in mind which does not work in general; see Remark 9.20.

First we carry out the following very general construction; more convenient formulas
and special cases will be studied afterwards.

Theorem 9.13. Let E,F be vector spaces, let E+ ⊆ E, F+ ⊆ F be convex cones, and
let M ⊆ E+, N ⊆ F+ be non-empty faces. Define

M >π N := (M ⊗π F+) + (E+ ⊗π N);

M ?π N := (M ⊗π N) + (lin(E+)⊗π F+) + (E+ ⊗π lin(F+)).

Then:

(a) M >π N and M ?π N are faces of E+ ⊗π F+.
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(b) The face lattice of E+ ⊗π F+ contains the following sublattice:

M >π N

M >π lin(F+) = M ?π F+ lin(E+) >π N = E+ ?π N

M ?π N

Furthermore, M >π N is not just the face generated by M ?π F+ and E+ ?π N ,
but even the sum of these faces, so we have

M >π N = (M >π lin(F+)) + (lin(E+) >π N) = (M ?π F+) + (E+ ?π N);

M ?π N = (M >π lin(F+)) ∩ (lin(E+) >π N) = (M ?π F+) ∩ (E+ ?π N).

Assume furthermore that E, F , and E ⊗ F belong to the dual pairs 〈E,E′〉, 〈F, F ′〉,
and 〈E ⊗F,G〉, where G is a reasonable dual (i.e. E′ ⊗F ′ ⊆ G ⊆ Bil(E ×F )). Then:

(c) If M and N are dual (resp. exposed) faces, then M>πN is a dual (resp. exposed)
face of E+ ⊗π F+.

(d) If M and N as well as lin(E+) and lin(F+) are dual (resp. exposed) faces, then
M ?π N is a dual (resp. exposed) face of E+ ⊗π F+.

A mnemonic for the chosen notation: M >π N is generated by the elements x⊗ y ∈
E+ ⊗s F+ with x ∈ M or y ∈ N , whereas M ?π N is generated by the elements
x ⊗ y ∈ E+ ⊗s F+ with x ∈ M and y ∈ N , together with what turns out to be the
lineality space of E+ ⊗π F+ (see Corollary 9.18 below).

Proof of Theorem 9.13.

(a) Let I ⊆ E be an order ideal such that M = I ∩ E+ (e.g. I = span(M); see
Proposition A.3(a)). Then the quotient cone (E/I)+ ⊆ E/I is proper, the natural
map πI : E → E/I is positive, and M = ker(πI) ∩ E+. Similarly, let J ⊆ F be
an ideal such that N = J ∩ F+; then πJ : F → F/J is a positive map to a space
with a proper cone, and N = ker(πJ) ∩ F+.
Now consider the linear map πI ⊗ πJ : E ⊗ F → E/I ⊗ F/J . It follows from
Proposition 9.2 that πI ⊗ πJ is positive, and it follows from Theorem 9.10 that
(E/I)+ ⊗π (F/J)+ is a proper cone in E/I ⊗ F/J , so ker(πI ⊗ πJ )∩(E+ ⊗π F+)
is a face of E+ ⊗π F+ (see Proposition A.4(b)). We claim that

ker(πI ⊗ πJ) ∩ (E+ ⊗π F+) = M >π N. (9.14)

Indeed, if z =
∑k
i=1 xi ⊗ yi with x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+ is such that

(πI ⊗ πJ)(z) = 0, then we must have (πI ⊗ πJ)(xi ⊗ yi) = 0 for all i (since
(E/I)+ ⊗π (F/J)+ is proper). As such, for each i we must have xi ∈ ker(πI) = I
or yi ∈ ker(πJ) = J , or possibly both. Equivalently: xi ∈ I ∩ E+ = M or
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yi ∈ J ∩ F+ = N . This proves our claim (9.14), and we conclude that M >π N
is a face of E+ ⊗π F+.
To see that M ?π N is a face, we proceed analogously, where the linear map
πI ⊗ πJ is replaced by the linear map

QI,J : E ⊗ F → (E/I ⊗ F/ lin(F+))⊕ (E/ lin(E+)⊗ F/J),

x⊗ y 7→ (πI(x)⊗ πlin(F+)(y))⊕ (πlin(E+)(x)⊗ πJ(y)).

If z =
∑k
i=1 xi⊗yi with x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+ and QI,J (z) = 0, then

again we must have QI,J (xi⊗yi) = 0 for all i (since QI,J is positive and the cone
in the codomain is proper). Then either xi ∈ `(E+) ⊆M , or yi ∈ `(F+) ⊆ N , or
xi /∈ `(E+) and yi /∈ `(F+). In the latter case, we must have xi ∈M and yi ∈ N .
This way we find

ker(QI,J) ∩ (E+ ⊗π F+) = M ?π N.

It follows that M ?π N is also a face of E+ ⊗π F+.

(b) Using the notation from the proof of (a), note that

ker(QI,J) = ker(πI ⊗ πlin(F+)) ∩ ker(πlin(E+) ⊗ πJ).

It follows that

M ?π N = (M >π lin(F+)) ∩ (lin(E+) >π N).

The other formulas follow straight from the definitions: we have

(M >π lin(F+)) + (lin(E+) >π N) = (M ⊗π F+) + (E+ ⊗π lin(F+))
+ (lin(E+)⊗π F+) + (E+ ⊗π N)

= (M ⊗π F+) + (E+ ⊗π N)

=M >π N,

since lin(E+) ⊆M and lin(F+) ⊆ N . Likewise,

M ?π F+ = (M ⊗π F+) + (lin(E+)⊗π F+) + (E+ ⊗π lin(F+))

= (M ⊗π F+) + (E+ ⊗π lin(F+))

= M >π lin(F+),

and the formula E+ ?π N = lin(E+) >π N follows analogously.

(c) If M = �M1 and N = �N1, then it is routinely verified that M >π N =
�(M1 ⊗s N1). If M and N are furthermore exposed, then we may take M1 and
N1 to be singletons; consequently, M1 ⊗s N1 is also a singleton.

(d) This follows from (c) and the intersection formula from (b). �
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Remark 9.15. In Theorem 9.13(d), it is required that lin(E+) and lin(F+) are
exposed/dual faces. Sometimes this is automatically the case. If E+ is weakly closed,
then lin(E+) = lin(E+

w) = ⊥(E′+) = �(E′+), so in this case lin(E+) is always a dual
face. Likewise, if E is a separable normed space and E+ is closed, then lin(E+) is
automatically exposed; see Corollary A.19.

To see that this assumption cannot be omitted, let E := R2 with the lexicographical
cone, and let F := R with the standard cone. Then the unique one-dimensional face
M ⊆ E+ and the trivial face N := {0} ⊆ R are both exposed (hence dual), but
M ?π N = {0} is neither exposed nor dual in E+ ⊗π F+ ∼= E+.

Remark 9.16. By dualizing the example from Example 10.51 below, one can show
that not every facet of E+ ⊗π F+ is necessarily of the form M >π N or M ?π N . In
follows that, in general, not every face of E+ ⊗π F+ can be written as an intersection
of faces of the type M >π N or M ?π N .

We proceed to point out the consequences of Theorem 9.13. First of all, it allows us
to extend Theorem 9.10, giving a direct formula for the lineality space of E+ ⊗π F+.

Corollary 9.17 (The lineality space of the projective cone). Let E and F be vector
spaces, and let E+ ⊆ E and F+ ⊆ F be convex cones. Then one has

lin(E+ ⊗π F+) = (lin(E+)⊗π F+) + (E+ ⊗π lin(F+))

= (lin(E+)⊗ span(F+)) + (span(E+)⊗ lin(F+)).

Proof. If x ∈ lin(E+) and y ∈ F+, then ±x⊗y ∈ E+ ⊗π F+, so x⊗y ∈ lin(E+ ⊗π F+).
Similarly, if x ∈ E+ and y ∈ lin(F+), then x⊗ y ∈ lin(E+ ⊗π F+), so we have

(lin(E+)⊗π F+) + (E+ ⊗π lin(F+)) ⊆ lin(E+ ⊗π F+).

Conversely, it follows from Theorem 9.13(a) that the ‘upper face’ lin(E+)>π lin(F+) =
(lin(E+)⊗π F+) + (E+ ⊗π lin(F+)) is a face of E+ ⊗π F+, so it must contain the
minimal face lin(E+ ⊗π F+). The first equality follows.

For the second equality, we claim that lin(E+)⊗π F+ = lin(E+)⊗ span(F+).
Indeed, for x ∈ lin(E+) and y ∈ span(F+) we may write y = u−v (for some u, v ∈ F+),
so we have x⊗y = (x⊗u)+((−x)⊗v) ∈ E+ ⊗π F+. Taking positive linear combinations
proves our claim. Analogously, we have E+ ⊗π lin(F+) = span(E+) ⊗ lin(F+), and
the second equality follows. �

This direct formula for the lineality space also simplifies the formula for the lower
face M ?π N .

Corollary 9.18. Let E,F be vector spaces, let E+ ⊆ E, F+ ⊆ F be convex cones,
and let M ⊆ E+, N ⊆ F+ be non-empty faces. Then one has

M ?π N = (M ⊗π N) + lin(E+ ⊗π F+),

and this defines a face of E+ ⊗π F+.
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In particular, if E+ and F+ are proper cones, then M ⊗π N is a face of E+ ⊗π F+,
and the sublattice from Theorem 9.13(b) reduces to

(M ⊗π F+) + (E+ ⊗π N)

M ⊗π F+ E+ ⊗π N

M ⊗π N

For closed, proper and generating cones in finite-dimensional spaces, the fact that
M ⊗π N is a face of E+ ⊗π F+ was already pointed out (without proof) by Tam in
[Tam77a, p. 53] and [Tam92, p. 71]. He likely had a different proof in mind, which we
outline in Remark 9.20 below.

Remark 9.19. In general, M ⊗π N is not a face of E+ ⊗π F+. If E+ or F+ is not
proper, then the term + lin(E+ ⊗π F+) cannot be omitted in Corollary 9.18. Indeed,
suppose that E+ is not proper. Choose x ∈ lin(E+) \ {0} and y ∈ span(F+) \ span(N).
Then x ⊗ y ∈ lin(E+ ⊗π F+), by Corollary 9.17. However, x ⊗ y /∈ M ⊗π N , so
M ⊗π N is not a face, because every face must contain the lineality space.

Remark 9.20. If E∗+ and F ∗+ separate points on E and F ,1 then there is a simpler way
to show that M ⊗π N is a face of E+ ⊗π F+. Indeed, let z, z′ ∈ E+ ⊗π F+ be such
that z′′ := z + z′ ∈M ⊗π N , and write z =

∑k
i=1 xi ⊗ yi, where x1, . . . , xk ∈ E+ and

y1, . . . , yk ∈ F+ are all non-zero. For i ∈ {1, . . . , k}, choose ϕi ∈ E∗+ and ψi ∈ F ∗+ such
that ϕi(xi), ψi(yi) > 0. Then we have 0 < ϕi(xi)yi ≤

∑k
j=1 ϕi(xj)yj = (ϕi⊗ idF )(z) ≤

(ϕi⊗ idF )(z′′) ∈ N , hence yi ∈ N . Likewise, 0 < ψi(yi)xi ≤ (idE ⊗ψi)(z′′) ∈M , hence
xi ∈M . It follows that z ∈M ⊗π N , which shows that M ⊗π N is a face.

In particular, this simple proof settles the case when E and F are finite-dimensional
and E+ and F+ are closed, proper and generating. This special case was already pointed
out (without proof) by Tam in [Tam77a, p. 53] and [Tam92, p. 71]. The proof he had
in mind is probably similar to short proof given here.

As a final application, we note that Theorem 9.13 is also a statement about
preservation of bipositive maps.

Proposition 9.21. Let E and F be vector spaces, and let E+ ⊆ E, F+ ⊆ F be convex
cones. If E+ and F+ are proper and if I ⊆ E, J ⊆ F are ideals, then the inclusion
I ⊗ J ↪→ E ⊗ F is bipositive (with respect to the projective cone).

Proof. Let QI,J : E ⊗ F → (E/I ⊗ F ) ⊕ (E ⊗ F/J) be the map from the proof of
Theorem 9.13(a). It follows from said proof (and Corollary 9.18) that I+ ⊗π J+ =
ker(QI,J) ∩ (E+ ⊗π F+). To complete the proof, note that ker(QI,J) = I ⊗ J . �

Example 9.6 shows that this is not true if one of the cones is not proper.
1In other words, E+ and F+ are semisimple with respect to the dual pairs 〈E,E∗〉 and 〈F, F ∗〉;

see [Dob20a]. Schaefer [Sch58] called such cones regular.
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9.5 Extremal rays of the projective cone

The results from §9.4 show us how to construct faces in the projective tensor cone,
even though not all faces are reached this way (see Remark 9.16). Nevertheless, it
turns out that all extremal rays of E+ ⊗π F+ are obtained in this way.

Recall that rext(E+) ⊆ E+\{0} denotes the set of extremal directions, and M⊗sN
denotes the entry-wise tensor product {x⊗ y : x ∈M, y ∈ N}.

Theorem 9.22 (The extremal rays of the projective cone). Let E, F be vector spaces
equipped with convex cones E+ ⊆ E, F+ ⊆ F . Then

rext(E+ ⊗π F+) = rext(E+)⊗s rext(F+).

Proof. “⊆”. Suppose that z ∈ (E+ ⊗π F+) \ {0} defines an extremal ray. Write
z =

∑k
i=1 xi⊗ yi with x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+, and xi⊗ yi 6= 0 for all i ∈ [k].

By extremality of z there are λ1, . . . , λk ∈ R>0 such that λixi ⊗ yi = z (i ∈ [k]). In
particular, z = λ1x1 ⊗ y1. Now suppose that 0 ≤ v ≤ x1, then 0 ≤ λ1v ⊗ y1 ≤ z, so
by extremality of z we must have µλ1v ⊗ y1 = z for some µ ∈ R≥0. Since y1 6= 0
and λ1 6= 0, it follows that µv = x1, so we see that x1 defines an extremal ray
of E+. Analogously, y1 defines an extremal ray of F+. This proves the inclusion
rext(E+ ⊗π F+) ⊆ rext(E+)⊗s rext(F+).

“⊇”. Let x0 ∈ E+ \ {0} and y0 ∈ F+ \ {0} define extremal rays in E+ and F+,
respectively. Then M := {λx0 : λ ≥ 0} defines a face of E+. Every face contains the
lineality space, but M does not contain a non-zero subspace, so it follows that E+
is a proper cone. Analogously, N := {µy0 : µ ≥ 0} defines a face of F+, so F+ is
proper. Now it follows from Corollary 9.18 that M ⊗π N is a face of E+ ⊗π F+. In
other words: x0 ⊗ y0 defines an extremal ray of E+ ⊗π F+. �

Remark 9.23. Remarkably, Theorem 9.22 has no corner cases: it is true for every pair
of convex cones. In particular, if rext(E+) or rext(F+) is empty, then rext(E+ ⊗π F+)
is empty as well. Conversely, if each of E+ and F+ has an extremal ray, then so does
E+ ⊗π F+.2

Again, in the case where E and F are finite-dimensional and E+ and F+ are
closed, proper and generating, this was already pointed out (without proof) by Tam
in [Tam77a, p. 53] and [Tam92, p. 71]. See also Remark 9.20.

9.6 An application to tensor products of absolutely convex
sets

We conclude our study of the projective cone with an application in convex geometry.
Using a slight modification of the construction from §9.4, we show that faces of

2It should be noted that many standard cones in infinite-dimensional spaces do not have sufficiently
many extremal rays to generate the cone. For instance, the positive cone of C[0, 1] has no extremal
rays at all.
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absolutely convex sets M and N determine faces of their tensor product M ⊗π N :=
conv{x⊗ y : x ∈M, y ∈ N}.3

This application is based on the following general principle, giving sufficient condi-
tions for the sum of faces M1 ?πN1 and M2 ?πN2 (see §9.4) to be another face in the
projective cone E+ ⊗π F+. (This is a vast generalization of the method of [BCG13,
Example 3.7].)

Proposition 9.24. Let E, F be vector spaces, let E+ ⊆ E, F+ ⊆ F be convex
cones, and let M1,M2 ⊆ E+ and N1, N2 ⊆ F+ be faces. If M1 ∩M2 = lin(E+) and
N1 ∩N2 = lin(F+), then

(M1 ?π N1) + (M2 ?π N2) = (M1 >π N2) ∩ (M2 >π N1).

In particular, in this case (M1 ?π N1) + (M2 ?π N2) is a face of E+ ⊗π F+.

Proof. “⊆”. By Theorem 9.13(b), we have M1 ?π N1 ⊆M1 ?π F+ = M1 >π lin(F+) ⊆
M1 >π N2. Three analogous inclusions prove the forward inclusion.

“⊇”. Let z ∈ (M1 >π N2) ∩ (M2 >π N1), and write z =
∑k
i=1 xi ⊗ yi with

x1, . . . , xk ∈ E+ and y1, . . . , yk ∈ F+. Since z ∈ M1 >π N2, it follows from the
proof of Theorem 9.13(a) that for all i we have xi ∈M1 or yi ∈ N2, or possibly both.
Likewise, for all i we have xi ∈M2 or yi ∈ N1, or possibly both.

If xi ∈ lin(E+) or yi ∈ lin(F+), then xi ⊗ yi ∈ lin(E+ ⊗π F+) ⊆ (M1 ?π N1) ∩
(M2 ?π N2), since every face contains the lineality space. So assume xi /∈ lin(E+)
and yi /∈ lin(F+). Then, by assumption, xi (resp. yi) is contained in at most one of
M1 and M2 (resp. N1 and N2). Combined with earlier constraints, this show that we
must either have xi ∈ M1 \M2 and yi ∈ N1 \ N2, or otherwise xi ∈ M2 \M1 and
yi ∈ N2 \N1. Either way, xi ⊗ yi ∈ (M1 ?π N1) + (M2 ?π N2). �

If E is a vector space and C ⊆ E is a convex subset, then the homogenization C (C)
of C is the convex cone generated by C ⊕ {1} ⊆ E ⊕ R. Note that C (C) is always a
proper cone, and that the faces of C are in bijective correspondence with the faces of
C (C).

Since we are working over the real numbers, a convex set C ⊆ E is absolutely
convex if and only if C = −C. For sets of this kind, there is a simple way to identify
the projective tensor product of the homogenizations C (C) and C (D) with the
homogenization of conv(C ⊗s D):

Proposition 9.25. Let E and F be (real) vector spaces and let C ⊆ E, D ⊆ F
be absolutely convex sets. Under the natural isomorphism (E ⊕ R) ⊗ (F ⊕ R) =
(E ⊗ F )⊕ E ⊕ F ⊕ R, one has

(C (C)⊗π C (D)) ∩
(
(E ⊗ F )⊕ {0} ⊕ {0} ⊕ {1}

)
= {(z, 0, 0, 1) : z ∈ conv(C ⊗s D)}.

3Some authors define the projective tensor product of convex sets to be the closed convex hull
of M ⊗s N (e.g. [AS17, §4.1.4]), but our methods are not equipped to deal with closures. See also
Remark 9.30.
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Proof. Under the aforementioned natural isomorphism, we have (x, λ) ⊗ (y, µ) =
(x⊗ y, µx, λy, λµ).

“⊆”. Let (z, 0, 0, 1) ∈ C (C)⊗π C (D) be given, and write (z, 0, 0, 1) =
∑k
i=1 λi ·

(xi, 1) ⊗ (yi, 1) with λ1, . . . , λk ≥ 0, x1, . . . , xk ∈ C and y1, . . . , yk ∈ D. Then
(z, 0, 0, 1) =

∑k
i=1 λi · (xi ⊗ yi, xi, yi, 1), so we have

∑k
i=1 λi = 1 and z =

∑k
i=1 λixi ⊗

yi ∈ conv(C ⊗s D).
“⊇”. Let z ∈ conv(C⊗sD) be given, and write z =

∑k
i=1 λixi⊗yi with x1, . . . , xk ∈

C, y1, . . . , yk ∈ D, λ1, . . . , λk ≥ 0, and
∑k
i=1 λi = 1. Since (xi, 1)⊗ (yi, 1) + (−xi, 1)⊗

(−yi, 1) = 2(xi ⊗ yi, 0, 0, 1), we may write

(z, 0, 0, 1) =
k∑
i=1

1
2λi ·

(
(xi, 1)⊗ (yi, 1) + (−xi, 1)⊗ (−yi, 1)

)
. (9.26)

Since C and D are absolutely convex, we have (±xi, 1) ∈ C (C) and (±yi, 1) ∈ C (D)
for all i ∈ {1, . . . , k}, hence (z, 0, 0, 1) ∈ C (C)⊗π C (D). �

Theorem 9.27. Let E and F be (real) vector spaces, let C ⊆ E, D ⊆ F be absolutely
convex, and let M ⊂ C, N ⊂ D be proper faces. Then conv(M ⊗s N) is a face of
conv(C ⊗s D).

Proof. By symmetry, −M ⊆ C and −N ⊆ D also define faces of C and D. First we
prove that M ∩ −M = ∅. Suppose that x ∈ M ∩ −M . Then also −x ∈ M ∩ −M ,
so by convexity 0 ∈ M ∩ −M . But then for every y ∈ C we must have y,−y ∈ M ,
since 0 belongs to the relative interior of the line segment joining y and −y. This
contradicts our assumption that M is a proper face, so we conclude that M ∩−M = ∅.
Analogously, N ∩ −N = ∅.

Let M1 ⊆ C (C) be the face of C (C) associated with M , and let M2 ⊆ C (C) be the
face associated with −M . Since M∩−M = ∅, it follows that M1∩M2 = {0}. Similarly,
let N1 and N2 be the faces of C (D) associated with N and −N , respectively; then
N1 ∩N2 = {0}. Hence it follows from Proposition 9.24 that (M1 ?π N1) + (M2 ?π N2)
is a face of C (C)⊗π C (D). To complete the proof, we show that(

(M1 ?π N1) + (M2 ?π N2)
)
∩
(
(E ⊗ F )⊕ {0} ⊕ {0} ⊕ {1}

)
= {(z, 0, 0, 1) : z ∈ conv(M ⊗s N)}.

We proceed analogously to the proof of Proposition 9.25.
“⊆”. Let (z, 0, 0, 1) ∈ (M1 ?π N1) + (M2 ?π N2) be given. Then we may choose

integers n ≥ k ≥ 0, scalars λ1, . . . , λn ≥ 0 and vectors x1, . . . , xn ∈M , y1, . . . , yn ∈ N
such that (z, 0, 0, 1) =

∑k
i=1 λi · (xi, 1) ⊗ (yi, 1) +

∑n
i=k+1 λi · (−xi, 1) ⊗ (−yi, 1).

Therefore
∑n
i=1 λi = 1 and z =

∑n
i=1 λixi ⊗ yi, which shows that z ∈ conv(M ⊗s N).

“⊇”. Let z ∈ conv(M⊗sN) be given, and write z =
∑k
i=1 λixi⊗yi with x1, . . . , xk ∈

M , y1, . . . , yk ∈ N , λ1, . . . , λk ≥ 0, and
∑k
i=1 λi = 1. Then it follows from (9.26) that

(z, 0, 0, 1) ∈ (M1 ?π N1) + (M2 ?π N2). �

Corollary 9.28. Let E and F be (real) vector spaces, let C ⊆ E, D ⊆ F be absolutely
convex, and let x0 ∈ C, y0 ∈ D be extreme points. Then x0 ⊗ y0 is an extreme point
of conv(C ⊗s D).
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Remark 9.29. Theorem 9.27 fails if one of the faces is not proper. Indeed, if M = C,
then 0 ∈M⊗sN , so now conv(M⊗sN) is a face only if conv(M⊗sN) = conv(C⊗sD).

Furthermore, Theorem 9.27 and Corollary 9.28 do not hold for non-symmetric
convex sets. For example, 1 ⊗ 2 is not an extreme point of conv([−1, 1] ⊗s [2, 3]) ⊆
R⊗ R = R.

Remark 9.30. In many applications it is natural to start with closed absolutely
convex sets, and take the closed convex hull of their tensor product (e.g. [PTT11,
Remark 3.19], [AS17, §4.1.4], or when computing the closed unit ball of the projective
norm). Our methods are not equipped to deal with closures.

If E, F are finite-dimensional and if C, D are compact, then conv(C ⊗s D) is
automatically compact, so here taking closures is not necessary. In particular:

Corollary 9.31. Let E and F be (real) finite-dimensional normed spaces. Then the
closed unit ball of the projective norm preserves proper faces: if M ⊂ BE, N ⊂ BF
are proper faces, then conv(M ⊗s N) is a face of BE⊗πF .

This had already been known for extreme points. More generally, if E and F are
Banach spaces, then it follows from a result of Tseitlin [Tse76] (see also [RS82]) that
the closed unit ball of the completed projective tensor product E′ ⊗̃π F ′ preserves
extreme points, provided that E′ or F ′ has the approximation property and E′ or F ′
has the Radon–Nikodym property.4 In particular, this settles the finite-dimensional
case, proving Corollary 9.31 for extreme points.

Remark 9.32. We do not know whether the closed unit ball of the projective norm
always preserves extreme points, even in the algebraic tensor product. This does not
follow from Corollary 9.28, because the closed unit ball of E ⊗π F is the closure of
conv(BE⊗sBF ). Known results in this direction usually start with something stronger
than an extreme point, such as a denting point (see [RS86b, Theorem 5], [Wer87,
Corollary 4]).

We suspect that there are Banach spaces E and F such that the projective norm
does not preserve all extreme points of their closed unit balls, but we have not been
able to construct such an example. To our knowledge, no such examples are known in
the literature either.

Finally, we should point out that the injective norm does not preserve extreme
points; see Remark 10.52.

4The cited results relate to extreme points in duals of operator spaces. Our assumptions on E′

and F ′ ensure that E′ ⊗̃π F ′ ∼= (E ⊗̃ε F )′ isometrically; see [DF93, Theorem 16.6].



Chapter 10
The injective cone

In this chapter, we carry out an in-depth study of the properties of the
injective cone. This cone depends not only on the vector spaces E,F and the
cones E+, F+, but also on the dual spaces E′, F ′. Therefore we will work with
dual pairs.

This chapter is based on Chapter 4 of [Dob20b].

Introduction

Let 〈E,E′〉, 〈F, F ′〉 be dual pairs of (real) vector spaces, and let E+ ⊆ E, F+ ⊆ F be
convex cones in the primal spaces. The injective cone1 in E ⊗ F is defined as

E+ ⊗ε F+ :=
{
u ∈ E ⊗ F : 〈u, ϕ⊗ ψ〉 ≥ 0 for all ϕ ∈ E′+, ψ ∈ F ′+

}
.

The notation causes some ambiguity, because E+ ⊗ε F+ does not only depend on
E+ and F+, but also on the dual pairs 〈E,E′〉 and 〈F, F ′〉. To be fully precise, the
injective cone should be denoted as something like (〈E,E′〉, E+)⊗ε (〈F, F ′〉, F+). We
forego this cumbersome notation for the sake of clarity; it will always be clear what is
meant.

If E and F are locally convex and if E⊗F is equipped with a compatible topology
α (in the sense of Grothendieck [Gro55, p. 89], see also [Köt79, §44.1]), then for every
ϕ ∈ E′, ψ ∈ F ′ the tensor product ϕ ⊗ ψ : E ⊗α F → R is continuous, and as such
has a unique extension to E ⊗̃α F . In this setting we may likewise define the injective
cone as

E+ ⊗̃εα F+ :=
{
u ∈ E ⊗̃α F : (ϕ ⊗̃α ψ)(u) ≥ 0 for all ϕ ∈ E′+, ψ ∈ F ′+

}
.

Clearly E+ ⊗ε F+ = (E+ ⊗̃εα F+) ∩ (E ⊗ F ). Note that, unlike the projective cone,
the injective cone typically becomes larger when passing from the algebraic tensor
product E ⊗ F to the completion E ⊗̃α F .

1A note about terminology: in the literature, E+ ⊗ε F+ is usually called the biprojective cone (see
e.g. [Mer64, PS69, Bir76]). The results in this section show that this cone is in many ways analogous
to the injective topology, and as such deserves the name injective cone. The only prior use of this
name (that we are aware of) is in [Wit74] and [Mul97].

129
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Remark 10.1. Let G be any reasonable dual of E ⊗ F (cf. page 109). It is clear
from the definition that E+ ⊗ε F+ is the predual cone of E′+ ⊗π F ′+ under the dual
pairing 〈E⊗F,G〉. Likewise, E+ ⊗̃εα F+ ⊆ E ⊗̃αF is the predual cone of E′+ ⊗π F ′+ ⊆
(E ⊗̃α F )′.

An immediate consequence is that the injective cone is always weakly closed.
Furthermore, by the bipolar theorem, the dual cone of E+ ⊗ε F+ with respect to the
dual pair 〈E ⊗ F,G〉 is the σ(G,E ⊗ F )-closure of E′+ ⊗π F ′+. (Note that this need
not be contained in E′ ⊗ F ′.) Similarly, in the locally convex setting, the dual cone of
E+ ⊗̃εα F+ is the weak-∗ closure of E′+ ⊗π F ′+ ⊆ (E ⊗̃α F )′.

In this chapter, we give a detailed study of the properties of the injective cone.
In §10.1, we establish the characteristic property of the injective cone. In §10.2, we
show that the injective cone preserves positive maps, bipositive maps, and retracts,
but not pushforwards. In §10.3 we determine necessary and sufficient conditions for
the injective cone to be proper. Finally, in §10.4–§10.6 we show how faces in E+ and
F+ determine faces of E+ ⊗ε F+.

10.1 The characteristic property of the injective cone

We show that the injective cone can be identified with a cone of positive bilinear forms.
Let E~F denote the space of separately weak-∗ continuous bilinear forms on E′×F ′:

E ~ F := Bil
(
E′w∗ × F ′w∗).

(Köthe [Köt79, §44.4] uses the symbol � instead of ~.)
We shall understand E~F to be equipped with the cone it inherits from Bil(E′×F ′).

In other words, b ∈ E ~F is positive if and only if b(ϕ,ψ) ≥ 0 for all ϕ ∈ E′+, ψ ∈ F ′+.
The characteristic property of the injective cone is that it is given by a bipositive

map to E ~ F (algebraic case) or Ẽ ~ F̃ (completed locally convex case).

Remark 10.2. Statements about positive bilinear forms can be turned into equiv-
alent statements about positive linear operators in the following way. Recall that
Bil(E′w∗ × F ′w∗) is naturally isomorphic to L(E′w∗, Fw). Under this correspondence,
the positive cone of Bil(E′w∗ × F ′w∗) is the cone of approximately positive operators
E′w∗ → Fw, i.e. those operators T that satisfy T [E′+] ⊆ F+

w. In particular, if F+ is
weakly closed, then this is just the cone of positive operators E′w∗ → Fw. Similarly,
Bil(E′w∗ × F ′w∗) ∼= L(F ′w∗, Ew), and the positive cone of Bil(E′w∗ × F ′w∗) corresponds
with the approximately positive cone of L(F ′w∗, Ew).

The advantage of sticking to bilinear forms is twofold: it keeps the theory symmetric
in E and F , and it avoids the nuisance of having to take the weak closure of F+ (or
E+).

We proceed to prove the characteristic property in three settings: the algebraic
tensor product, the completed injective tensor product, and arbitrary completed tensor
products.
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Situation I: the algebraic tensor product

Let 〈E,E′〉 and 〈F, F ′〉 be dual pairs. Equip E′ and F ′ with their respective weak-∗
topologies, and denote these spaces as E′w∗ and F ′w∗. The dual pairing 〈E⊗F,E′⊗F ′〉
yields a natural map E ⊗ F ↪→ (E′ ⊗ F ′)∗ ∼= Bil(E′ × F ′). Note that the elements
of E ⊗ F give rise to jointly continuous bilinear maps E′w∗ × F ′w∗ → R. Indeed, an
elementary tensor x0 ⊗ y0 ∈ E ⊗ F defines the bilinear map (ϕ,ψ) 7→ 〈x0, ϕ〉〈y0, ψ〉,
which is easily seen to be jointly continuous (use that ϕ 7→ 〈x0, ϕ〉 and ψ 7→ 〈y0, ψ〉
are continuous). Consequently, finite sums of elementary tensors also define jointly
continuous bilinear maps, and the claim follows. This gives us natural inclusions

E ⊗ F ⊆ Bi`(E′w∗ × F ′w∗) ⊆ E ~ F ⊆ Bil(E′ × F ′). (10.3)

From left to right, these are the spaces of (continuous) finite rank, jointly continuous,
separately continuous, and all bilinear forms on E′w∗ × F ′w∗.

Proposition 10.4. The elements of E+ ⊗ε F+ are precisely those elements in E⊗F
which define a positive bilinear map E′ × F ′ → R; that is:

E+ ⊗ε F+ = Bi`(E′w∗ × F ′w∗)+ ∩ (E ⊗ F ).

Proof. By Remark 10.1, E+ ⊗ε F+ is the dual cone of E′+ ⊗π F ′+ with respect to the
dual pair 〈E ⊗ F,E′ ⊗ F ′〉, so we have E+ ⊗ε F+ = (E′ ⊗ F ′)∗+ ∩ (E ⊗ F ). It follows
from Proposition 9.1 that u ∈ E ⊗ F belongs to E+ ⊗ε F+ if and only if u defines a
positive bilinear map E′ × F ′ → R. �

Corollary 10.5. All inclusions in (10.3) are bipositive.

Situation II: injective topology, completed

Let E and F be locally convex. Let E~εF denote the space E~F (= Bil(E′w∗×F ′w∗))
equipped with the bi-equicontinuous (or injective) topology ε, that is, the locally convex
topology given by the family of seminorms

p
M,N

(b) = sup
ϕ∈M,ψ∈N

|b(ϕ,ψ)|, (M ⊆ E′ and N ⊆ F ′ equicontinuous).

If E and F are complete, then E ~ε F is also complete (see [Köt79, §40.4.(5)]), so in
this case we may identify E ⊗̃ε F with the closure of E ⊗ε F in E ~ε F , and we have
the following inclusions of vector spaces:

E ⊗ F ⊆ E ⊗̃ε F ⊆ E ~ε F ⊆ Bil(E′ × F ′), (E and F complete). (10.6)

This may fail if E or F is not complete. (In particular, E ⊗ R = E ~ R = E, but
E ⊗̃ε R = Ẽ.) However, in general we have E ⊗̃ε F = Ẽ ⊗̃ε F̃ (see [Köt79, §44.5.(1)]),
hence

E ⊗ F ⊆ E ⊗̃ε F = Ẽ ⊗̃ε F̃ ⊆ Ẽ ~ε F̃ ⊆ Bil(E′ × F ′). (10.7)
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Proposition 10.8. Let E, F be locally convex. Then the natural inclusion E ⊗̃ε F ↪→
Ẽ ~ε F̃ is bipositive; that is:

E+ ⊗̃εε F+ = Bil
(
E′
σ(E′,Ẽ) × F

′
σ(F ′,F̃ )

)
+
∩ (E ⊗̃ε F ).

Proof. Continuous linear functionals ϕ ∈ E′ and ψ ∈ F ′ define a functional on E ⊗̃ε F
in two different ways: either as the (unique) extension of ϕ ⊗ ψ to the completion
E ⊗̃ε F , or as the restriction of the evaluation functional fϕ,ψ : Bil(E′ × F ′) → R,
b 7→ b(ϕ,ψ) to the subspace E ⊗̃ε F . We claim that these two functionals coincide on
E ⊗̃ε F . The inclusion E ⊗ F ↪→ Bil(E′ × F ′) is such that (ϕ⊗ ψ)(u) = u(ϕ,ψ), so
the functionals coincide on E ⊗ F . Furthermore, the functional fϕ,ψ is easily seen to
be continuous on Ẽ ~ε F̃ (use that the sets {ϕ} ⊆ E′, {ψ} ⊆ F ′ are equicontinuous).
Hence ϕ⊗ ψ = fϕ,ψ on E ⊗ F , and by continuity also on E ⊗̃ε F , which proves our
claim.

It follows from the claim and the definition of E+ ⊗̃εε F+ that an element u ∈ E⊗̃εF
belongs to E+ ⊗̃εε F+ if and only if it defines a positive bilinear form E′×F ′ → R. �

Corollary 10.9. All inclusions in (10.6) and (10.7) are bipositive.

We only needed the bi-equicontinuous topology on E ~ F for the proof of Proposi-
tion 10.8. From here on out we can forget about it.

Situation III: arbitrary compatible topology, completed
Now let α be an arbitrary compatible topology on E ⊗ F (E and F locally convex).
Since the injective topology is the weakest compatible topology, we have a natural
map E ⊗̃α F → E ⊗̃ε F , so here the picture is as follows:

E ⊗ F ↪→ E ⊗̃α F → E ⊗̃ε F ↪→ Ẽ ~ F̃ ↪→ Bil(E′ × F ′). (10.10)

The map E ⊗̃α F → E ⊗̃ε F need not be injective (this is related to the approximation
property; see e.g. [DF93, Theorem 5.6]). However, it remains bipositive.

Proposition 10.11. Let E, F be locally convex, and let α be a compatible topology
on E ⊗ F . Then the natural map Φα→ε : E ⊗̃α F → E ⊗̃ε F is bipositive; that is:

E+ ⊗̃εα F+ = Φ−1
α→ε[E+ ⊗̃εε F+].

Proof. Note that ϕ ⊗̃α ψ = (ϕ ⊗̃ε ψ) ◦ Φα→ε, as they coincide on E ⊗ F . Hence:
u ∈ E+ ⊗̃εα F+ if and only if Φα→ε(u) ∈ E+ ⊗̃εε F+. �

Corollary 10.12. All maps in (10.10) are bipositive.

10.2 Mapping properties of the injective cone

We show that the injective cone preserves all positive maps, bipositive maps (provided
the cones are closed), and retracts, and show that it fails to preserve quotients,
pushforwards, and approximate pushforwards.
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Let 〈E,E′〉, 〈F, F ′〉, 〈G,G′〉, 〈H,H ′〉 be dual pairs, equipped with convex cones
E+, F+, G+, H+ in the primal spaces. Given T ∈ L(Ew, Gw) and S ∈ L(Fw, Hw), we
define T � S : Bil(E′ × F ′)→ Bil(G′ ×H ′) by

b 7→
(

(ϕ,ψ) 7→ b(T ′ϕ, S′ψ)
)
,

where T ′ ∈ L(G′w∗, E′w∗), S′ ∈ L(H ′w∗, F ′w∗) denote the respective adjoints.
Note that (T �S)b is separately weak-∗ continuous whenever b is, so T �S restricts

to a map T ~ S : E ~ F → G~H.

Proposition 10.13. The following diagram commutes:

E ⊗ F E ~ F Bil(E′ × F ′)

G⊗H G~H Bil(G′ ×H ′).

T⊗S T~S T�S

Proof. The rightmost square commutes by definition (T ~ S is the restriction of
T � S). For the leftmost square, note that x ⊗ y ∈ E ⊗ F defines the bilinear map
(ϕ,ψ) 7→ 〈x, ϕ〉〈y, ψ〉, and Tx⊗Sy defines the bilinear map (ϕ,ψ) 7→ 〈Tx, ϕ〉〈Sy, ψ〉 =
〈x, T ′ϕ〉〈y, S′ϕ〉. �

Proposition 10.14. If E, F , G, H are locally convex, if T ∈ L(E,G), S ∈ L(F,H),
and if α and β are compatible topologies on E ⊗ F and G ⊗ H for which the map
T ⊗α→β S : E ⊗α F → G⊗β H is continuous, then the following diagram commutes:

E ⊗ F E ⊗̃α F E ⊗̃ε F Ẽ ~ F̃ Bil(E′ × F ′)

G⊗H G ⊗̃β H G ⊗̃ε H G̃~ H̃ Bil(G′ ×H ′).

T⊗S T ⊗̃α→βS T ⊗̃εS T̃~S̃ T�S

Here the horizontal maps are the ones from (10.10), which are bipositive by
Corollary 10.12.

Proof. The rightmost square commutes since T �S = T̃ � S̃ (use that T : E → G and
its completion T̃ : Ẽ → G̃ have the same adjoint T ′ = T̃ ′ : G′ → E′), and T̃ ~ S̃ is
a restriction of T̃ � S̃. (However, T̃ ~ S̃ 6= T ~ S, as the domain and codomain are
different!)

The other squares (and the triangles) commute because the respective compositions
agree on the dense subspace E ⊗ F (or G⊗H). �

Using the preceding results, we can now show that the injective cone preserves
positive maps and approximately bipositive maps.
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Lemma 10.15. Let 〈E,E′〉, 〈F, F ′〉, 〈G,G′〉, 〈H,H ′〉 be dual pairs, and let T ∈
L(Ew, Gw) and S ∈ L(Fw, Hw).

(a) If T and S are positive, then T � S is positive.

(b) If E+
w = T−1[G+

w] and F+
w = S−1[H+

w] (i.e. T and S are approximately
bipositive), then T ~ S is bipositive.

Proof.

(a) Let b ∈ Bil(E′ × F ′) be positive. If ϕ ∈ G′+ and ψ ∈ H ′+, then ϕ ◦ T ∈
E′+ and ψ ◦ S ∈ F ′+ (the composition of positive linear maps is positive), so
(T � S)(b)(ϕ,ψ) ≥ 0. It follows that (T � S)(b) is a positive bilinear map on
G′ ×H ′, so T � S is positive.

(b) By the duality between approximate pushforwards and approximate pullbacks
(see page 111), the adjoints T ′ ∈ L(G′w∗, E′w∗) and S′ ∈ L(H ′w∗, F ′w∗) are weak-∗
approximate pushforwards. Since T ~ S is precisely the map (T ′ ⊗ S′)′ from
Lemma 9.3, it follows from said lemma that T ~ S is bipositive. �

Theorem 10.16. Let T ∈ L(Ew, Gw) and S ∈ L(Fw, Hw).

(a) If T and S are positive, then (T ⊗ S)[E+ ⊗ε F+] ⊆ G+ ⊗ε H+.

(b) If E+
w = T−1[G+

w] and F+
w = S−1[H+

w] (i.e. T and S are approximately
bipositive), then E+ ⊗ε F+ = (T ⊗ S)−1[G+ ⊗ε H+].

In summary: the algebraic injective cone preserves continuous positive maps and
(continuous2) approximately bipositive maps.

Proof. All horizontal arrows in the diagram from Proposition 10.13 are bipositive (by
Corollary 10.5), so (a) and (b) follow easily from Lemma 10.15. For the summary,
recall from Remark 10.1 that E+ ⊗ε F+ and G+ ⊗ε H+ are weakly closed, so in (b)
we find that T ⊗ S is approximately bipositive (in addition to being bipositive). �

Theorem 10.17. Let E, F , G, H be locally convex, let T ∈ L(E,G) and S ∈ L(F,H),
and let α and β be compatible topologies on respectively E ⊗ F and G⊗H for which
the map T ⊗α→β S : E ⊗α F → G⊗β H is continuous.

(a) If T and S are positive, then (T ⊗̃α→β S)[E+ ⊗̃εα F+] ⊆ G+ ⊗̃εβ H+.

(b) If E and F are complete and E+ = T−1[G+] and F+ = S−1[H+], then
E+ ⊗̃εα F+ = (T ⊗̃α→β S)−1[G+ ⊗̃εβ H+].

In summary: the completed injective cone preserves continuous positive maps, and
(continuous2) approximately bipositive maps if E and F are complete.

2By our definition, approximately bipositive maps are already required to be continuous.
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Proof.

(a) All horizontal arrows in the diagram from Proposition 10.14 are bipositive (by
Corollary 10.12), so the result follows from Lemma 10.15(a).

(b) Recall: in a locally convex space, the weak closure and original closure of a convex
cone coincide. Moreover, note that we may assume without loss of generality
that G and H are also complete. (Extend T to the map T̃ : E → G̃, and let G̃+
denote the closure of G+ in G̃. Then T̃−1[G̃+] = T−1[G+], since ran(T̃ ) ⊆ G.)
We refer again to the diagram from Proposition 10.14. All horizontal arrows in are
bipositive, and the vertical arrow T ~S = T̃ ~ S̃ is bipositive by Lemma 10.15(b).
The result is easily deduced. �

Remark 10.18. We get one of the characteristic properties of the injective topology
for free: if E, F , G, H are locally convex, E and F complete, and if T ∈ L(E,G)
and S ∈ L(F,H) are injective, then so is T ⊗̃ε S ∈ L(E ⊗̃ε F,G ⊗̃ε H). Indeed, equip
all spaces with the trivial cone {0}, then every dual cone is the entire dual space,
so Bil(E′ × F ′)+ = {0}. Therefore E ⊗̃ε F and G ⊗̃ε H are also equipped with the
zero cone (since E ⊗̃ε F → Bil(E′ × F ′) is bipositive and injective). Since T ⊗̃ε S is
bipositive, we have (T ⊗̃ε S)−1[{0}] = {0}, so T ⊗̃ε S is injective.

This shows immediately that the completeness assumptions in Theorem 10.17(b)
cannot be omitted. (After all, T ⊗̃ε idR : E ⊗̃ε R→ G ⊗̃ε R is simply the completion
T̃ : Ẽ → G̃, which may fail to be injective even if T is injective.)

A similar argument shows that the weak closures in Lemma 10.15(b) and subsequent
theorems cannot be omitted: the map T ⊗ε idR : E ⊗ R → G ⊗ R is simply T , but
with the positive cones E+, G+ replaced by their weak closures. But one does not
necessarily have T−1[G+

w] = E+
w whenever T−1[G+] = E+. (Concrete example:

let G = R2 with G+ = {(x, y) : x > 0} ∪ {(0, 0)}, let E := span{(0, 1)} ⊆ G with
E+ := G+ ∩ E, and let T be the inclusion E ↪→ G.)

Remark 10.19. A topological order retract G ⊆ E is given by two continuous
positive linear maps E � G ↪→ E, so it follows at once that the injective cone (in all
its incarnations) preserves all topological order retracts, without any assumptions on
completeness or weak closures. The argument is analogous to that of Proposition 9.2(c).

The following example shows that the injective cone does not preserve pushforwards,
not even approximately.

Example 10.20 (Dual to Example 9.7; cf. [Dob22, Situation 4]). Let E be a finite-
dimensional space equipped with a proper, generating, polyhedral cone which is
not a simplex cone. Let x1, . . . , xm be representatives of the extremal rays of E+,
and let Rm be equipped with the standard cone Rm≥0. Then the map T : Rm → E,
(λ1, . . . , λm) 7→ λ1x1 + . . .+ λmxm is a pushforward (i.e. T [Rm≥0] = E+).

Since E+ is not a simplex cone, it follows from [BL75, Proposition 3.1] (see also
Theorem 13.2 below) that E+ ⊗π E∗+ 6= E+ ⊗ε E∗+. On the other hand, we have
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Rm≥0 ⊗π E∗+ = Rm≥0 ⊗ε E∗+, and it follows from Proposition 9.2(b) that T ⊗ idE∗ is a
pushforward for the projective cone. Therefore:

(T ⊗ idE∗)[Rm≥0 ⊗ε E∗+] = (T ⊗ idE∗)[Rm≥0 ⊗π E∗+] = E+ ⊗π E∗+ 6= E+ ⊗ε E∗+.

This shows that T ⊗ idE∗ is not a pushforward for the injective cone.
Note that all cones in this example are polyhedral, and therefore closed. In partic-

ular, the situation is not resolved by adding closures, which shows that the injective
cone does not preserve approximate pushforwards. 4

The finite-dimensional techniques used in Example 10.20 will be discussed in more
detail in Chapter 12 and Chapter 13.

10.3 When is the injective cone proper?

We determine the lineality space of E ~ F , and we use this to give necessary and
sufficient conditions for the injective cone (in all its incarnations) to be proper. Direct
formulas for the lineality space (under certain topological assumptions) will be given
in §10.5.

As before, let 〈E,E′〉, 〈F, F ′〉 be dual pairs, equipped with convex cones E+ ⊆ E,
F+ ⊆ F in the primal spaces.

Proposition 10.21. The lineality space of (E~F )+ is the set of those bilinear forms
in E ~ F that vanish on span(E′+)w∗ × span(F ′+)w∗ = lin(E+

w)⊥ × lin(F+
w)⊥.

Proof. If b ∈ E ~ F vanishes on span(E′+)w∗ × span(F ′+)w∗, then in particular it
vanishes on E′+ × F ′+, so evidently both b and −b define positive bilinear forms.
Conversely, if b ∈ lin((E ~ F )+), then both b and −b are positive on E′+ × F ′+, so
it follows that b must vanish on E′+ × F ′+. Therefore b also vanishes on span(E′+)×
span(F ′+), and consequently on span(E′+)w∗ × span(F ′+)w∗. (Use weak-∗ continuity
in one variable at a time, as we did in the proof of Lemma 9.3.)

Since lin(E+
w) = ⊥(E′+) (see §8.3), we have span(E′+)w∗ = lin(E+

w)⊥. �

Direct formulas for the lineality space of the injective cone will be given in Corol-
lary 10.37(c) (in E ⊗ F ) and Corollary 10.41(b) (in E ~ F ). For now, we focus on
conditions for the injective cone to be proper.

Theorem 10.22. The following are equivalent:

(i) E+ ⊗ε F+ is a proper cone;

(ii) For every subspace E⊗F ⊆ G ⊆ E~F , the cone G+ := G∩ (E~F )+ is proper.

(iii) (E ~ F )+ is a proper cone;

(iv) E = {0}, or F = {0}, or both E+
w and F+

w are proper cones.

In particular, the injective tensor product of weakly closed proper cones is a proper
cone.
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Note that the equivalence (i)⇐⇒ (iv) is very similar to Theorem 9.10. However,
we should point out that the corner case is slightly different now. In Theorem 9.10,
the corner case is when one of the cones is trivial; here the corner case is when one of
the spaces is trivial.

Proof of Theorem 10.22. (iii) =⇒ (ii). Trivial.
(ii) =⇒ (i). Immediate, since E+ ⊗ε F+ = (E ⊗ F ) ∩ (E ~ F )+.
(iv) =⇒ (iii). If E = {0}, then clearly E ~ F = {0}, so (E ~ F )+ is a proper cone

regardless of any properties of F+ (and similarly if F = {0}). If E+
w and F+

w are
proper cones, then lin(E+

w) = lin(F+
w) = {0}, so it follows from Proposition 10.21

that lin((E ~ F )+) = {0}.
(i) =⇒ (iv). We prove the contrapositive: suppose that E,F 6= {0} and that E+

w

is not a proper cone. Then we may choose x ∈ E \ {0} with ±x ∈ E+
w. Note that

(E+
w)′ = E′+, so for every ϕ ∈ E′+ we have ϕ(x), ϕ(−x) ≥ 0, and therefore ϕ(x) = 0.

Now choose any y ∈ F \ {0} (here we use that F 6= {0}), then for all ϕ ∈ E′+, ψ ∈ F ′+
we have 〈x ⊗ y, ϕ ⊗ ψ〉 = ϕ(x)ψ(y) = 0 · ψ(y) = 0, so we find ±x ⊗ y ∈ E+ ⊗ε F+.
Since x and y are non-zero, we have x⊗ y 6= 0, and we conclude that E+ ⊗ε F+ fails
to be proper. �

To tell whether E+ ⊗̃εα F+ is a proper cone, we need to assume that E and F are
complete. In the case where E and F are not complete, an answer can be found by
first passing to the completions Ẽ, F̃ . See also Remark 10.24 below.

Corollary 10.23. Let E,F be complete locally convex spaces, E+ ⊆ E, F+ ⊆ F
convex cones, and α a compatible locally convex topology on E⊗F . Then the following
are equivalent:

(i) E+ ⊗̃εα F+ ⊆ E ⊗̃α F is a proper cone;

(ii) E = {0}, or F = {0}, or both E+ and F+ are proper cones and the natural map
E ⊗̃α F → E ⊗̃ε F is injective.

Proof. First of all, recall that E+ = E+
w, since E+ is convex and E is locally convex.

Likewise, F+ = F+
w.

For the injective topology, recall from (10.6) that we have E⊗F ⊆ E ⊗̃εF ⊆ E~F ,
since E and F are complete. Hence for α = ε the result follows from Theorem 10.22.

For general α, recall that E ⊗̃α F → E ⊗̃ε F is bipositive. Therefore:
(i) =⇒ (ii). If E+ ⊗̃εα F+ is proper, then the bipositive map E ⊗̃α F → E ⊗̃ε F

is automatically injective (see Remark A.7). Furthermore, the subcone E+ ⊗ε F+ ⊆
E+ ⊗̃εα F+ is also proper, so it follows from Theorem 10.22 that (ii) holds.

(ii) =⇒ (i). It follows from the assumptions that E+ ⊗̃εε F+ is a proper cone and
that E ⊗̃α F → E ⊗̃ε F is injective. (The latter statement is trivially true if E = {0}
or F = {0}; otherwise it holds by assumption.) Since E ⊗̃α F → E ⊗̃ε F is bipositive
and injective, it follows that E+ ⊗̃εα F+ is also proper. �

Remark 10.24. In Corollary 10.23, the assumption that E and F are complete
cannot be omitted. Under the natural isomorphism E ⊗̃α R ∼= Ẽ, the injective cone
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E+ ⊗̃εα R+ corresponds with Ẽ+ (the closure of E+ in Ẽ). However, it can happen
that E+ is proper but Ẽ+ is not (e.g. [Dob20a, Example 6.4]).

Remark 10.25. The natural map E ⊗̃α F → E ⊗̃ε F is not always injective; this is
related to the approximation property. Further remarks along this line can be found
in §11.4 below; see also [DF93, Theorem 5.6].

10.4 Faces of the injective cone

In this section, we present a general way to construct faces of the space E ~ F =
Bil(E′w∗ × F ′w∗) of separately weak-∗ continuous bilinear forms. This will be used in
§10.5 to obtain ideals in for the injective cone.

Since the injective cone is characterized by bipositive maps E ⊗ F → E ~ F and
E ⊗̃α F → Ẽ ~ F̃ (see §10.1, the inverse image of a face in (E ~F )+ (resp. (Ẽ ~ F̃ )+)
immediately gives us a face in E+ ⊗ε F+ (resp. E+ ⊗̃εα F+). Therefore we focus on
faces in E ~ F . For ideals in E ⊗ F and E ⊗̃α F , see §10.5.

Definition 10.26. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs, and let E+ ⊆ E, F+ ⊆ F be
convex cones. Given b ∈ E ~ F and subsets M ′ ⊆ E′, N ′ ⊆ F ′, let us write

b(M ′, · ) := {b(ϕ, · ) : ϕ ∈M ′} ⊆ (F ′w∗)′ = F ;

b( · , N ′) := {b( · , ψ) : ψ ∈ N ′} ⊆ (E′w∗)′ = E.

Given subsets M ⊆ E, M ′ ⊆ E′, N ⊆ F , N ′ ⊆ F ′, we define

M ′ nN :=
{
b ∈ E ~ F : b(M ′, · ) ⊆ N

}
;

M oN ′ :=
{
b ∈ E ~ F : b( · , N ′) ⊆M

}
.

Under the natural isomorphism E ~ F = Bil(E′w∗ × F ′w∗) ∼= L(E′w∗, Fw), the set
M ′ nN is simply the set of operators T : E′w∗ → Fw satisfying T [M ′] ⊆ N . Likewise,
M oN ′ corresponds with the set of operators S : F ′w∗ → Ew satisfying S[N ′] ⊆M .

Note that the positive cone can be described as (E~F )+ = E′+nF+
w = E+

woF ′+.
The following lemma will be central to the remainder of this chapter. The special

case where M ′ and N ′ are also faces has already been studied in the finite-dimensional
setting (e.g. [Bar78b, §4] and [Tam92, §4]), but we will need the greater generality
presented here.

Lemma 10.27. If M ′ ⊆ E′+, N ′ ⊆ F ′+ are subsets of the dual cones and if M ⊆ E+
w,

N ⊆ F+
w are faces, then (M ′ nN) ∩ (E ~ F )+ and (M oN ′) ∩ (E ~ F )+ are faces

of (E ~ F )+.

Proof. Given ϕ ∈ E′, let Lϕ : E ~ F → (F ′w∗)′ = F denote the map b 7→ b(ϕ, · ). If
ϕ ∈ E′+, then Lϕ is a positive linear map in the sense that Lϕ[(E ~ F )+] ⊆ F+

w.
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Therefore L−1
ϕ [N ] ∩ (E ~ F )+ defines a face of (E ~ F )+. Since (M ′ nN) ∩ (E ~ F )+

can be written as an intersection of faces,

(M ′ nN) ∩ (E ~ F )+ =
⋂

ϕ∈M ′
L−1
ϕ [N ] ∩ (E ~ F )+,

it also a face of (E ~ F )+. The conclusion for (M o N ′) ∩ (E ~ F )+ follows by
symmetry. �

As a first application of Lemma 10.27, we study a construction of faces in the
injective cone that is dual to the construction in the projective cone (see §9.4). A
slightly different construction, based again on Lemma 10.27, will be used in §10.5
below to construct ideals for the injective cone.

Theorem 10.28. Let M ⊆ E+
w, N ⊆ F+

w be faces, and define

M >ε N := (M oN �) ∩ (M � nN) ∩ (E ~ F )+;

M ?ε N := (M o F ′+) ∩ (E′+ nN).

Then:

(a) M >ε N and M ?ε N are faces of (E ~ F )+.

(b) The face lattice of (E ~ F )+ contains the following partially ordered subset:

M >ε N

M >ε lin(F+
w) = M ?ε F+

w = M o F ′+ lin(E+
w) >ε N = E+

w
?ε N = E′+ nN

M ?ε N

This subset respects meets from the face lattice:

M ?ε N = (M >ε lin(F+
w))∩ (lin(E+

w) >ε N) = (M ?ε F+
w)∩ (E+

w
?ε N).

(c) If M and N are dual faces, then so are M >ε N and M ?ε N , and one has

M >ε N = �(M � ?π N �) = (M oN �) ∩ (E ~ F )+ = (M � nN) ∩ (E ~ F )+;

M ?ε N = �(M � >π N �).

If this is the case, then the subset from (b) respects meets and joins from the
lattice of 〈(E ~ F )+ , E′+ ⊗π F ′+〉-dual faces (as defined in Appendix A.3).

(d) If M and N are exposed faces, then so is M >ε N .

(e) If M and N as well as lin(E+
w) and lin(F+

w) are exposed faces, then so is
M ?ε N .
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Note: in the finite-dimensional case, the conclusion in (c) is simply that the
four-element subset from (b) respects the operations of the lattice of exposed faces.
(Here we use that (E+ ⊗ε F+)∗ = E∗+ ⊗π F ∗+ because E∗+ ⊗π F ∗+ is closed; see Corol-
lary 12.13(b).)

Proof of Theorem 10.28.

(a) Note that everything in M o F ′+ is automatically positive, for if b( · , F ′+) ⊆M
then certainly b( · , F ′+) ⊆ E+

w. This shows that MoF ′+ = (MoF ′+)∩(E~F )+.
Now the result follows from Lemma 10.27, since the intersection of two faces is
again a face.

(b) If b ∈ M o F ′+, then b( · , F ′+) ⊆ M , so in particular b vanishes on M � × F ′+.
Therefore b(M �, · ) ⊆ ⊥(F ′+) = lin(F+

w), which shows that M o F ′+ ⊆ M � n
lin(F+

w). Since we also have M o F ′+ ⊆ (E ~ F )+ (see (a)), it follows from the
definition that

M >ε lin(F+
w) = (M o F ′+) ∩ (M � n lin(F+

w)) ∩ (E ~ F )+ = M o F ′+.

Similarly, since E′+ n F+
w = (E ~ F )+, it follows again from the definition that

M ?ε F+
w = (M o F ′+) ∩ (E′+ n F+

w) ∩ (E ~ F )+ = M o F ′+.

The equality lin(E+
w) >ε N = E+

w
?ε N = E′+ nN follows analogously. As a

consequence, the intersection formula follows immediately from the definition of
M?εN . Finally, the upwards inclusions follow by noting that if M1 ⊆M2 ⊆ E+

w

and N1 ⊆ N2 ⊆ F+
w are faces, then M1 >ε N1 ⊆M2 >ε N2.

(c) If b ∈ M o N �, then b( · , N �) ⊆ M , so in particular b vanishes on M � × N �.
Conversely, if b ∈ (E ~F )+ vanishes on M � ×N �, then b( · , N �) ⊆ �(M �) = M ,
so b ∈M oN �. This proves that

(M oN �) ∩ (E ~ F )+ =
{
b ∈ (E ~ F )+ : b(ϕ,ψ) = 0 for all ϕ ∈M �, ψ ∈ N �

}
= �(M � ⊗s N �).

By symmetry, the same is true of M � nN , so we find

M >ε N = (M oN �) ∩ (E ~ F )+ = (M � nN) ∩ (E ~ F )+ = �(M � ⊗s N �).

Since M � ?π N � is the face (of E′+ ⊗π F ′+) generated by M � ⊗s N �, it follows
that M >ε N = �(M � ?π N �). This shows that M >ε N is a dual face.
Since lin(E+

w) = �(E′+) and lin(F+
w) = �(F ′+) are dual faces, it follows from

the intersection formula from (b) that M ?ε N is also a dual face. Furthermore,
since lin(E+

w)� = E′+ and lin(F+
w)� = F ′+, it follows that

M ?ε N = (M >ε lin(F+
w)) ∩ (lin(E+

w) >ε N)
= �(M � ?π F ′+) ∩ �(E′+ ?π N �)

= �
(
(M � ?π F ′+) + (E′+ ?π N �)

)
= �(M � >π N �),
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where the last step uses that M � >π N � = (M � ?π F ′+) + (E′+ ?π N �), by
Theorem 9.13(b).
That the diagram from (b) respects joins from the lattice of 〈(E~F )+, E

′
+ ⊗π F ′+〉-

dual faces follows from duality. Indeed, by Theorem 9.13(c) and Theorem 9.13(d),
M �>πN � and M �?πN � are 〈E′+ ⊗π F ′+, (E~F )+〉-dual faces (use that lin(E′+)
and lin(F ′+) are automatically dual faces, because E′+ and F ′+ are weak-∗ closed;
see Remark 9.15), so it follows that

(M >ε N)� = M � ?π N �;

(M ?ε N)� = M � >π N �.

Therefore, the join of M >ε lin(F+
w) and lin(E+

w) >ε N in the lattice of
〈(E ~ F )+, E

′
+ ⊗π F ′+〉-dual faces is given by

�((
M >ε lin(F+

w)
)� ∩ (lin(E+

w) >ε N
)� ) = �((M � ?π F ′+) ∩ (E′+ ?π N �)

)
= �(

M � ?π N �
)

= M >ε N.

(d) Suppose that M = �{ϕ0} and N = �{ψ0}. Then in particular M and N are dual
faces, so by (c) we have

M >ε N = �(M � ?π N �) = (M oN �) ∩ (E ~ F )+ = (M � nN) ∩ (E ~ F )+.

We prove that M >εN = �{ϕ0⊗ψ0}. Evidently one has {ϕ0⊗ψ0} ⊆M �?πN �,
so �{ϕ0 ⊗ ψ0} ⊇ �(M � ?π N �) = M >ε N . For the converse, suppose that
b ∈ (E ~ F )+ is such that b(ϕ0, ψ0) = 0. Then b( · , ψ0) ∈ �{ϕ0} = M , so
b vanishes on M � × {ψ0}. It follows that b(M �, · ) ⊆ �{ψ0} = N , so b ∈
(M � nN) ∩ (E ~ F )+ = M >ε N .

(e) This follows from (d) and the intersection formula from (b). �

Remark 10.29. In Theorem 10.28(e), it is required that lin(E+
w) and lin(F+

w) are
exposed. Recall that this is automatically the case if E and F are separable normed
spaces; see Remark 9.15 and Corollary A.20.

Much as in the projective case, this assumption on lin(E+
w) and lin(F+

w) cannot
be omitted. The example runs along the same lines as the example in Remark 9.15,
except we need a much larger space. Let E+ be a weakly closed proper cone for
which {0} is not exposed (see Example A.21, Example A.22), and let F := R with
the standard cone, so that E ~ F ∼= E. Take some exposed face M ⊆ E+, and let
N := {0} ⊆ R be the minimal face. Then M ?ε N = {0}, which is not exposed by
assumption.

Remark 10.30. Theorem 10.28(c) presents a duality between the four-element sub-
lattices from Theorem 9.13(b) and Theorem 10.28(b). In the projective diagram, the
top face M >π N is not merely the join, but even the sum of the left and right faces
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M ?π F+ and E+ ?π N . Given that the injective diagram is dual to the projective
diagram, could the same be true here?

Unfortunately, this is not the case, and it already fails for proper, generating,
polyhedral cones in finite-dimensional spaces. In this setting, all faces are exposed, so
by Theorem 10.28(c) an equivalent question is the following: if f : E∗ → F is positive
with f [M �] ⊆ N , then can f be written as f = g + h with g and h positive and
g[M �] = {0} and h[E∗+] ⊆ N?

Counterexample: let F+ be a proper, generating, polyhedral cone with a facet
N ⊆ F+ such that at least two extremal rays of F+ are not contained in N . Furthermore,
let E+ := F ∗+ with M := N �, and let f : E∗ = F → F be the identity. Then one has
f [M �] ⊆ N . However, if f = g + h is the desired decomposition, then rank(g) ≤ 1,
because ker(g) contains a facet, so g[F+] is either a ray or {0}. But now every x ∈ F+
can be written as x = g(x) + h(x) ∈ g[F+] +N , contradicting our assumption that at
least two extremal rays of F+ are not contained in N .

10.5 Order ideals for the injective cone

Recall that I 7→ I+ defines a surjective many-to-one correspondence between order
ideals and faces (see Appendix A.1). In order to get more convenient formulas for the
faces of the injective cone, it is helpful to formulate these results in terms of ideals.
The main aim in this section is to provide sufficient conditions so that I ⊗ J and
(I ⊗ F ) + (E ⊗ J) are ideals for the injective cone, given that I ⊆ E and J ⊆ F are
ideals in the base spaces. (Similar questions in E ~F and E ⊗̃α F are also addressed.)

Recall from §10.1 that the injective cone is characterized by bipositive maps
E ⊗ F ↪→ E ~ F and E ⊗̃α F → Ẽ ~ F̃ . Given subsets X ⊆ E ~ F and Y ⊆ Ẽ ~ F̃ ,
we denote by X ∩ (E ⊗ F ) and Y ∩ (E ⊗̃α F ) the inverse images of X and Y under
these maps. (This is a slight abuse of notation, for the map E ⊗̃α F → Ẽ ~ F̃ might
fail to be injective in the absence of the approximation property, but this will cause no
confusion.) It is not hard to see that the inverse image of an ideal (resp. face) under a
bipositive map is again an ideal (reps. face) (see Proposition A.3(b)), so (E ⊗ F ) ∩X
and (E ⊗̃α F ) ∩ Y are ideals (resp. faces) whenever X and Y are ideals (resp. faces).
This is the approach that we will take: we establish ideals in E ~ F and restrict these
to ideals in the algebraic/completed tensor product.

In order to obtain ideals in E~F , we note that the faces obtained in Lemma 10.27
can sometimes be written as the positive part of a linear subspace.

Lemma 10.31. In the notation from §10.4:

(a) If M ′ ⊆ E′ and N ′ ⊆ F ′ are subsets and if M ⊆ E and N ⊆ F are linear
subspaces, then M ′ nN and M oN ′ are linear subspaces.

(b) If I ⊆ E and J ⊆ F are subspaces and if I is weakly closed, then I⊥nJ ⊆ IoJ⊥.

(c) If I ⊆ E and J ⊆ F are weakly closed subspaces, then I⊥ n J = I o J⊥ =
⊥(I⊥ ⊗ J⊥), where the orthogonal complement is taken with respect to the dual
pair 〈E ~ F,E′ ⊗ F ′〉.
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Note that ⊥(I⊥ ⊗ J⊥) ⊆ E ~ F is the set of separately weak-∗ continuous bilinear
forms E′ × F ′ → R that vanish on I⊥ × J⊥.

Proof of Lemma 10.31.

(a) If T1, T2 : E′w∗ → Fw map the subset M ′ ⊆ E′ in the subspace N ⊆ F , and if
λ, µ ∈ R are arbitrary, then λT1 + µT2 also maps M ′ in N .

(b) If b(I⊥, · ) ⊆ J , then b(I⊥, J⊥) = {0}, hence b( · , J⊥) ⊆ ⊥(I⊥) = I, since I is
weakly closed.

(c) Since J is weakly closed, one has b(I⊥, · ) ⊆ J if and only if b(I⊥, J⊥) = {0},
i.e. b vanishes on I⊥ × J⊥. Therefore I⊥ n J = ⊥(I⊥ ⊗ J⊥). The other equality
follows analogously. �

We can now formulate the following “linearization” of Lemma 10.27.

Lemma 10.32. Let M ′ ⊆ E′+ be a set of positive linear functionals, and let N ⊆ F+
w

be a face.

(a) If J ⊆ F is a weakly closed subspace such that J ∩ F+
w = N , then

(M ′ nN) ∩ (E ~ F )+ =
(

span(M ′)w∗ n J
)
∩ (E ~ F )+.

In particular, span(M ′)w∗ n J is an ideal in E ~ F .

(b) If J ⊆ F is a subspace such that J ∩ F+
w = N , then

(M ′ nN) ∩ (E ~ F )+ ∩ (E ⊗ F ) =
(

span(M ′)w∗ n J
)
∩ (E ~ F )+ ∩ (E ⊗ F ).

In particular,
(

span(M ′)w∗ n J
)
∩ (E ⊗ F ) is an ideal in E ⊗ F .

Interchanging E and F yields corresponding statements for ideals of the form I o
span(N ′)w∗ and (I o span(N ′)w∗) ∩ (E ⊗ F ).

Proof.

(a) “⊆”. If b ∈M ′nN , then we have b(M ′, · ) ⊆ N ⊆ J , so it follows by linearity and
continuity that b(span(M ′)w∗, · ) ⊆ J . This shows that M ′nN ⊆ span(M ′)w∗n
J .
“⊇”. If b ∈

(
span(M ′)w∗nJ

)
∩(E~F )+, then b(M ′, · ) ⊆ b(span(M ′)w∗, · ) ⊆ J ,

but also b(M ′, · ) ⊆ b(E′+, · ) ⊆ F+
w by positivity, so we find b(M ′, · ) ⊆

J ∩ F+
w = N .

To conclude that span(M ′)w∗ n J is an ideal, note that it is a linear subspace
(by Lemma 10.31(a)) whose positive part is a face (by Lemma 10.27).
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(b) “⊆”. If b ∈ (M ′nN)∩ (E⊗F ), then b(M ′, · ) ⊆ N ⊆ J . But b has finite rank, so
there is a finite-dimensional (hence closed) subspace Y ⊆ J such that b(M ′, · ) ⊆
Y . By linearity and continuity, it follows that b(span(M ′)w∗, · ) ⊆ Y ⊆ J , which
shows that (M ′ nN) ∩ (E ⊗ F ) ⊆ span(M ′)w∗ n J .
The reverse inclusion “⊇” and the conclusion follow as in (a). �

Recall that we call a convex cone E+ ⊆ E in a topological vector space semisimple
if E+

w is a proper cone, or equivalently, if span(E′+) is weak-∗ dense in E′ (see §8.3
and [Dob20a]). Furthermore, if I ⊆ E is a weakly closed subspace, then the quotient
E/I belongs to the dual pair 〈E/I, I⊥〉, the weak topology of E/I coincides with the
quotient topology Ew/I, and the weak-∗ topology on (E/I)′ = I⊥ ⊆ E′ coincides with
the relative σ(E′, E)-topology (see §8.2). In particular, we may unambiguously refer
to this as the weak-∗ topology on (E/I)′ ∼= I⊥.

Theorem 10.33. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs, and let E+ ⊆ E, F+ ⊆ F be
convex cones. Given subspaces I ⊆ E and J ⊆ F , we define

I > J := (I⊥ n J) ∩ (I o J⊥);

I ? J := (lin(E+
w)⊥ n J) ∩ (I o lin(F+

w)⊥).

Suppose that I and J are ideals with respect to E+
w and F+

w, respectively.3 Then:

(a) (I ? J) ∩ (E ⊗ F ) is an ideal in E ⊗ F (with respect to the injective cone);

(b) If I and J are weakly closed, then I ? J is an ideal in E ~ F ;

(c) If I is weakly closed and (E/I)+ is semisimple, or if J is weakly closed and
(F/J)+ is semisimple, then (I > J)∩ (E ⊗ F ) is an ideal in E ⊗ F (with respect
to the injective cone);

(d) If I and J are weakly closed, and if at least one of (E/I)+ and (F/J)+ is
semisimple, then I > J is an ideal in E ~ F .

Proof.

(a) Since lin(E+
w) = ⊥(E′+) (see §8.3), we have span(E′+)w∗ = lin(E+

w)⊥. Hence
it follows from Lemma 10.32(b) that (lin(E+

w)⊥ n J) ∩ (E ⊗ F ) is an ideal
in E ⊗ F . Analogously, (I o lin(F+

w)⊥) ∩ (E ⊗ F ) is an ideal in E ⊗ F . The
conclusions follows since the intersection of two ideals is an ideal.

(b) Analogous to (a), using Lemma 10.32(a) instead of Lemma 10.32(b).

(c) Assume that I is weakly closed and (E/I)+ is semisimple (the other case is
analogous). Since I is weakly closed, it follows from Lemma 10.31(b) that I>J =
I⊥nJ . Furthermore, by basic duality (as mentioned on page 111), the adjoint of
the pushforward E → E/I is the pullback (bipositive map) (E/I)′ ∼= I⊥ → E′,

3In other words, I ∩ E+
w and J ∩ F+

w are faces of E+
w and F+

w, respectively.
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so we have (E/I)′+ = I⊥ ∩ E′+. Since (E/I)+ is semisimple, its dual cone
(E/I)′+ separates points on E/I. Equivalently, the subspace span((E/I)′+) =
span(I⊥ ∩ E′+) is weak-∗ dense in I⊥. Hence it follows from Lemma 10.32(b)
that (I⊥ n J) ∩ (E ⊗ F ) is an ideal in E ⊗ F .

(d) Analogous to (c), using Lemma 10.32(a) instead of Lemma 10.32(b). �

Remark 10.34. In terms of the mapping properties, it is not surprising that the
semisimplicity of (E/I)+ and (F/J)+ plays a role in Theorem 10.33. Let πI : E → E/I
and πJ : F → F/J denote the canonical maps. If both (E/I)+ and (F/J)+ are
semisimple, then (E/I)~ (F/J) is a proper cone (by Theorem 10.22), so now evidently
ker(πI ~ πJ) = ⊥(I⊥ ⊗ J⊥) is an ideal in E ~ F .

What is surprising in Theorem 10.33 is that it is sufficient for only one of (E/I)+
and (F/J)+ to be semisimple. This could not have been predicted solely on the basis
of the mapping properties. The following example shows that we need at least one of
the quotients to be semisimple, even in the finite-dimensional case.

Example 10.35. Let E := R3 and let E+ ⊆ E be the second-order cone E+ :=
{(x1, x2, x3) :

√
x2

1 + x2
2 ≤ x3}. The injective cone E∗+ ⊗ε E+ can be identified with

the cone L+(E,E) of positive linear operators E → E. If we identify E∗ with R3 via
the standard inner product, then E+ is self-dual. The vectors (1, 0, 1), (−1, 0, 1) ∈ R3

define extremal rays of E+, so the subspaces I := span{(−1, 0, 1)} ⊆ E∗ and J :=
span{(1, 0, 1)} ⊆ E are ideals (see Proposition A.3(a)). It follows from Lemma 10.31(c)
that I > J = I⊥ n J . We show that this is not an ideal.

Let b1 ∈ E∗ ⊗ E = Bil(E,E∗) ∼= L(E,E) correspond to the identity E → E,
and let b2 ∈ E∗ ⊗ E be the bilinear form E × E∗ → R corresponding with the
linear map (x1, x2, x3) 7→ (x1,−x2, x3). Clearly b1 and b2 are positive. However, since
dim(I⊥) = 2 and dim(J) = 1, maps in I⊥ n J cannot be invertible, so in particular
we have b1, b2 /∈ I⊥ n J .

It is not hard to see that b1 + b2 ∈ I⊥ n J , and evidently we have 0 ≤ b1 ≤ b1 + b2.
This shows that I⊥ n J is not an ideal. 4

We conclude this section by providing more convenient direct formulas for the ideals
I > J and I ? J and their restrictions to E ⊗ F or E ⊗̃α F . Roughly speaking, under
certain topological assumptions we have I > J = (I ~F ) + (E ~ J) and I ? J = I ~ J .

Ideals in the algebraic tensor product
We show that the ideals (I ? J)∩ (E ⊗F ) and (I > J)∩ (E ⊗F ) from Theorem 10.33
are always equal to (I ⊗ J) + lin(E+ ⊗ε F+) and (I ⊗ F ) + (E ⊗ J), respectively

Lemma 10.36. If I ⊆ E and J ⊆ F are subspaces, then

(I⊥ n J) ∩ (I o J⊥) ∩ (E ⊗ F ) = (I ⊗ F ) + (E ⊗ J) + (I w ⊗ J w).

Proof. Choose an algebraic decomposition E ∼= E1 ⊕ E2 ⊕ E3 with E1 ∼= I and
E1⊕E2 ∼= I

w, and likewise for F ∼= F1⊕F2⊕F3. Then E⊗F ∼=
⊕3

i=1
⊕3

j=1(Ei⊗Fj).
Under this identification, (I⊥n J)∩ (E⊗F ) corresponds with those elements that are
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zero in the E3⊗F2 and E3⊗F3 components. Likewise, (IoJ⊥)∩ (E⊗F ) corresponds
with those elements that are zero in the E2 ⊗ F3 and E3 ⊗ F3 components, and the
conclusion follows. �

Corollary 10.37. Let I ⊆ E and J ⊆ F be subspaces.

(a) If at least one of I and J is weakly closed, then

(I⊥ n J) ∩ (I o J⊥) ∩ (E ⊗ F ) = (I ⊗ F ) + (E ⊗ J).

(b) If both I and J are weakly closed, then

(⊥(I⊥ ⊗ J⊥)) ∩ (E ⊗ F ) = (I ⊗ F ) + (E ⊗ J).

(c) The lineality space of the injective cone (in E ⊗ F ) is

lin(E+ ⊗ε F+) = (lin(E+
w)⊗ F ) + (E ⊗ lin(F+

w)).

Proof.

(a) If I is weakly closed, then I
w ⊗ J

w ⊆ I ⊗ F , so the result follows from
Lemma 10.36.

(b) Immediate, for now we have ⊥(I⊥⊗J⊥) = I⊥nJ = IoJ⊥, by Lemma 10.31(c).

(c) By Proposition 10.21, we have lin(E+ ⊗ε F+) = (⊥(lin(E+
w)⊥⊗ lin(F+

w)⊥))∩
(E⊗F ), where we note that lin(E+

w) and lin(F+
w) are weakly closed subspaces.

�

Theorem 10.38. Let I ⊆ E and J ⊆ F be ideals with respect to E+
w and F+

w.

(a) One has (I ? J) ∩ (E ⊗ F ) = (I ⊗ J) + lin(E+ ⊗ε F+), and this is an ideal in
E ⊗ F (with respect to the injective one);

(b) If I is weakly closed and (E/I)+ is semisimple, or if J is weakly closed and
(F/J)+ is semisimple, then one has (I > J)∩ (E ⊗F ) = (I ⊗F ) + (E ⊗ J), and
this is an ideal in E ⊗ F (with respect to the injective cone).

Proof.

(a) Every ideal contains the lineality space, so we may choose a decomposition
E ∼= E1 ⊕ E2 ⊕ E3 with E1 ∼= lin(E+

w) and E1 ⊕ E2 ∼= I, and likewise for F ∼=
F1⊕F2⊕F3. With respect to the decomposition E⊗F ∼=

⊕3
i=1
⊕3

j=1(Ei⊗Fj),
the subspace (lin(E+

w)⊥ n J) ∩ (E ⊗ F ) corresponds with those elements that
are zero in the E2⊗F3 and E3⊗F3 components, and (I o lin(F+

w)⊥)∩ (E⊗F )
corresponds with those elements that are zero in the E3 ⊗ F2 and E3 ⊗ F3
components. Since lin(E+ ⊗ε F+) = (E1⊗F ) + (E⊗F1) (by Corollary 10.37(c))
and I ⊗ J = (E1 ⊕ E2)⊗ (F1 ⊕ F2), the conclusion follows. (This is an ideal by
Theorem 10.33(a).)

(b) The formula follows from Corollary 10.37(a), and this is an ideal by Theo-
rem 10.33(c). �
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Ideals in the space of separately weak-∗ continuous bilinear forms

Let I ⊆ E and J ⊆ F be subspaces, and write I+ := I ∩ E+
w and J+ := J ∩ F+

w.
If we let I and J belong to the dual pairs 〈I, E′/I⊥〉, 〈J, F ′/J⊥〉, then the inclusions
T : I ↪→ E, S : J ↪→ F are weakly continuous (weak homomorphisms in fact; see
§8.2) and approximately bipositive. Therefore T ~ S : I ~ J → E ~ F is injective and
bipositive, by Lemma 10.15(b).4 In other words, we may interpret I ~ J as a subspace
of E ~ F , and moreover (I ~ J)+ = (I ~ J) ∩ (E ~ F )+.

Lemma 10.39. The image of I~J under the natural inclusion T ~S : I~J ↪→ E~F
is equal to (E′ n J) ∩ (I o F ′).

Proof. By definition (see §10.2), the map idE ~S : E ~ J ↪→ E ~ F is given by
((idE ~S)b)(ϕ,ψ) = b(ϕ, S′ψ). Therefore the following diagram commutes:

E ~ J Bil(E′w∗ × J ′w∗) L(E′w∗, Jw)

E ~ F Bil(E′w∗ × F ′w∗) L(E′w∗, Fw).

∼

idE ~S R 7→SR

∼

An operator T ∈ L(E′w∗, Fw) lies in the image of L(E′w∗, Jw) if and only if T [E′] ⊆ J .
Therefore a bilinear form b ∈ E ~ F is the extension of a bilinear form in E ~ J if
and only if b ∈ E′ n J . By the same argument, I ~ J = (E ~ J) ∩ (I o F ′), and the
conclusion follows. �

We will henceforth identify I ~ J with the subspace (E′ n J) ∩ (I o F ′) ⊆ E ~ F .
Next, we turn to complementary decompositions. We say that a subspace E1 ⊆ E

is weakly complemented if it is complemented in the weak topology. (Recall that
complemented subspaces and their complements are automatically closed: if P : E → E
is a continuous projection, then ker(P ) and ran(P ) = ker(idE −P ) are closed.)

Lemma 10.40. If E1 ⊆ E and F1 ⊆ F are weakly complemented subspaces with
complements E2 ⊆ E and F2 ⊆ F , respectively, then E~F decomposes as the internal
(algebraic) direct sum

E ~ F = (E1 ~ F1)⊕ (E1 ~ F2)⊕ (E2 ~ F1)⊕ (E2 ~ F2).

Proof. The complementary pairs give rise to weakly continuous complementary de-
compositions Ew ∼= (E1)w × (E2)w and Fw ∼= (F1)w × (F2)w (topological products).
Dualizing the first of these, we obtain a weak-∗ continuous complementary decomposi-
tion E′w∗ ∼= (E⊥2 )w∗ ⊕ (E⊥1 )w∗ (locally convex sum).5 Using the mapping properties of

4That T ~ S is injective follows from Remark 10.18. This is a classical result; see also [Köt79,
§44.4.(5)].

5Note that the indices are reversed when passing to the dual: we have (E1)′w∗ ∼= E′w∗/E
⊥
1
∼=

(E⊥2 )w∗ and vice versa.
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locally convex sums and topological products (see e.g. [Köt79, §39.8]), we find

E ~ F = Bil(E′w∗ × F ′w∗)
∼= L(E′w∗, Fw)

= L
(
(E⊥2 )w∗ ⊕ (E⊥1 )w∗ , (F1)w × (F2)w

)
∼=

∏
i∈{2,1}

∏
j∈{1,2}

L
(
(E⊥i )w∗, (Fj)w

)
∼=

∏
i∈{1,2}

∏
j∈{1,2}

(Ei)w ~ (Fj)w. �

Corollary 10.41.

(a) If E1 ⊆ E and F1 ⊆ F are weakly complemented subspaces with complements
E2 ⊆ E and F2 ⊆ F , respectively, then

⊥(E⊥1 ⊗ F⊥1 ) = (E1 ~ F1)⊕ (E1 ~ F2)⊕ (E2 ~ F1),

where the orthogonal complement is taken with respect to the dual pair 〈E ~ F ,
E′ ⊗ F ′〉.

(b) If lin(E+
w) and lin(F+

w) are weakly complemented with complements X and
Y , then

lin((E~F )+) =
(

lin(E+
w)~ lin(F+

w)
)
⊕
(

lin(E+
w)~Y

)
⊕
(
X ~ lin(F+

w)
)
.

We can now give concrete descriptions of the subspaces I > J and I ? J from
Theorem 10.33.

Theorem 10.42. Let I ⊆ E and J ⊆ F be weakly closed ideals with respect to E+
w

and F+
w.

(a) If lin(E+
w) and lin(F+

w) are weakly complemented, then I ? J = (I ~ J) +
lin((E ~ F )+), and this is an ideal in E ~ F .

(b) If I and J are weakly complemented, then I > J = (I ~ F ) + (E ~ J). This is
an ideal in E ~ F if at least one of (E/I)+ and (F/J)+ is semisimple.

Proof.

(a) “⊇”. It follows from Theorem 10.33(b) that I ? J is an ideal. Since every ideal
contains the lineality space, we have lin((E ~ F )+) ⊆ I ? J . Furthermore, we
have E′ n J ⊆ lin(E+

w)⊥ n J and I o F ′ ⊆ I o lin(F+
w)⊥, and therefore

I ~ J ⊆ I ? J (by Lemma 10.39).
“⊆”. The orthogonal complement of a weakly complemented subspace is weak-∗
complemented in the dual, so we may choose weak-∗ continuous projections P :
E′ → lin(E+

w)⊥ ↪→ E′ and Q : F ′ → lin(F+
w)⊥ ↪→ F ′. Let b1 ∈ I?J be given,

and define b2(ϕ,ψ) = b1(Pϕ,Qψ). Evidently b2 is separately weak-∗ continuous,
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so b2 ∈ E ~ F . Furthermore, b1 and b2 agree on lin(E+
w)⊥ × lin(F+

w)⊥ =
span(E′+)w∗ × span(F ′+)w∗, so b2 is positive and b1 − b2 ∈ lin((E ~ F )+) (by
Proposition 10.21). Finally, since b1 ∈ (lin(E+

w)⊥ n J) ∩ (I o lin(F+
w)⊥),

we have b2 ∈ (E′ n J) ∩ (I o F ′) = I ~ J . Therefore, b1 = b2 + (b1 − b2) ∈
(I ~ F ) + lin((E ~ F )+).

(b) By Lemma 10.31(c), we have I > J = ⊥(I⊥ ⊗ J⊥), so the direct formula follows
from Corollary 10.41(a). The conditions for I > J to be an ideal follow from
Theorem 10.33(d). �

Corollary 10.43. If E+
w and F+

w are proper cones, and if I ⊆ E and J ⊆ F are
weakly closed ideals with respect to E+

w and F+
w, then I ~ J is an ideal in E ~ F .

Ideals in completed locally convex tensor products

Finally, we turn our attention to ideals in the completed tensor product E ⊗̃α F . The
ideals I>J and I?J obtained in Theorem 10.33 can be restricted to ideals in E ⊗̃α F
(with respect to the injective cone). However, although we were able to find more
convenient formulas for the intersections of I > J and I ? J with the algebraic tensor
product E⊗F (see Theorem 10.38), there are no similar formulas for the intersections
with E ⊗̃α F . To illustrate the obstruction, we first rephrase the problem in the more
common terminology of normed tensor products.

Let E and F be Banach spaces, let E+ ⊆ E and F+ ⊆ F be closed proper cones,
and let J ⊆ F be a closed order ideal. Then E ~ F ∼= L(E′w∗, Fw) ⊆ L(E′, F ) is the
subspace of those operators T : E′ → F for which the range of the adjoint T ′ : F ′ → E′′

is contained in E. By Theorem 10.33, the subspace {0}> J = E ? J = E′ n J is an
ideal in E ~ F . The elements of this ideal are simply the weak-∗-to-weak continuous
operators E′ → F whose range is contained in J . In particular, if α is a tensor norm,
then (E′ n J) ∩ (E ⊗̃α F ) = L(E′, J) ∩ (E ⊗̃α F ). It is well-known that this can be
different from E ⊗̃α J . We give two examples.

Example 10.44. If F has the approximation property but J does not, then one has
E′ ⊗̃ε J 6= K(E, J) for some appropriate Banach space E, but also E′ ⊗̃ε F = K(E,F )
(see [DF93, §5.3]). Therefore L(E, J) ∩ (E′ ⊗̃ε F ) = K(E, J) is strictly larger than
E′ ⊗̃ε F . 4

Example 10.45. It is well-known that the operator ideal of nuclear operators is not
injective: if J ⊆ F is a closed subspace and if T : E → J is nuclear as a map E → F ,
then it does not necessarily follow that T is also nuclear as a map E → J (see [DF93,
§9.7]). Even if all spaces have the approximation property, so that E′ ⊗̃π F = N(E,F )
and E′ ⊗̃π J = N(E, J), it can happen that L(E, J) ∩N(E,F ) 6= N(E, J), so that
L(E, J) ∩ (E′ ⊗̃π F ) 6= E′ ⊗̃π J . 4

The obstruction is a purely topological one, and has nothing to do with cone-
theoretic issues. Therefore we only sketch the proofs of the following special cases,
where a convenient formula can be obtained.
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Theorem 10.46 (Injective topology; approximation property). Let E and F be
complete locally convex spaces, let E+ ⊆ E, F+ ⊆ F be closed proper cones, and let
I ⊆ E, J ⊆ F be closed ideals. If I or J has the approximation property, then I ⊗̃ε J
is an ideal in E ⊗̃ε F .

Proof sketch. The ε-product EεF is the subspace of E~F consisting of those operators
b ∈ Bil(E′w∗, F ′w∗) ∼= L(E′w∗, Fw) ∼= L(F ′w∗, Ew) that map equicontinuous subsets of
E′ in relatively compact sets in F , or equivalently, that map equicontinuous subsets
of F ′ in relatively compact sets in E (see [Köt79, §43.3.(2)]). This property is passed
to subspaces, so (E ε F ) ∩ (I ~ J) ⊆ I ε J .

Since E and F are complete, we have E ⊗̃ε F ⊆ E ε F (see [Köt79, §43.3.(5)]).
Furthermore, since I and J are complete and I or J has the approximation property,
we have I ⊗̃ε J = I ε J (see [Köt79, §43.3.(7)]). It follows that

(I ~ J) ∩ (E ⊗̃ε F ) ⊆ (I ~ J) ∩ (E ε F ) ⊆ I ε J = I ⊗̃ε J.

On the other hand, one clearly has I ⊗̃ε J ⊆ (I ~ J) ∩ (E ⊗̃ε F ), so we have equality.
By Corollary 10.43, I ~ J is an ideal in E ~ F , so it follows that I ⊗̃ε J is an ideal in
E ⊗̃ε F . �

If E and F are Banach spaces, then the ε-product in the proof of Theorem 10.46
can be replaced by a suitable space of compact operators.

The second situation where a more convenient formula can be obtained is if the
subspaces are complemented. Let us say that a locally convex tensor topology is a
locally convex topology α defined on E ⊗ F for every pair (E,F ) of locally convex
spaces such that:

(i) α is a compatible topology on E ⊗ F for every pair (E,F );

(ii) α satisfies the continuous mapping property: if T : E → G and S : F → H are
continuous, then T ⊗ S : E ⊗α F → G⊗α H is also continuous.

Examples of locally convex tensor topologies include the projective topology π and the
injective topology ε. More generally, every tensor norm gives rise to a locally convex
tensor topology that even satisfies the equicontinuous mapping property; see [DF93,
§35.2].

Theorem 10.47 (Arbitrary topology; complemented subspaces). Let E and F be
complete locally convex spaces, let E+ ⊆ E, F+ ⊆ F be convex cones, let α be a locally
convex tensor topology, and let I ⊆ E, J ⊆ F be closed ideals with respect to E+ and
F+.

(a) If I, J , lin(E+) and lin(F+) are complemented, then (I ? J) ∩ (E ⊗̃α F ) =
(I ⊗̃α F ) + lin(E+ ⊗̃εα F+), and this is an ideal in E ⊗̃α F (with respect to the
injective cone).

(b) If I and J are complemented, then (I > J) ∩ (E ⊗̃α F ) = (I ⊗̃α F ) + (E ⊗̃α J).
This is an ideal in E ⊗̃α F (with respect to the injective cone) if at least one of
(E/I)+ and (F/J)+ is semisimple.
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Proof sketch. Given closed subspaces E1, . . . , En ⊆ E, we say that E ∼=
⊕n

i=1Ei topo-
logically if the canonical map

⊕n
i=1Ei → E is a topological isomorphism. Equivalently,

if E ∼=
⊕n

i=1Ei algebraically, then one has E ∼=
⊕n

i=1Ei topologically if and only if
every projection E → Ei is continuous (see [Sch99, Theorem 2.2]).

If E ∼=
⊕n

i=1Ei topologically and F ∼=
⊕m

j=1 Fj topologically, then E ⊗̃α F ∼=⊕
i,j(Ei ⊗̃α Fj) topologically. Analogously, Lemma 10.40 can be extended to prove

that E ~ F ∼=
⊕

i,j(Ei ~ Fj), and the following diagram commutes:

E ⊗̃α F E ⊗̃ε F E ~ F

⊕
i,j(Ei ⊗̃α Fj)

⊕
i,j(Ei ⊗̃ε Fj)

⊕
i,j(Ei ~ Fj).

∼ ∼ ∼

In particular, for every subset A ⊆ [n]× [m] we have( ⊕
(i,j)∈A

(Ei ~ Fj)
)
∩ (E ⊗̃α F ) =

⊕
(i,j)∈A

(Ei ⊗̃α Fj).

Therefore the result follows from Theorem 10.42, using the following decompositions:

(a) E ∼= E1⊕E2⊕E3 and F ∼= F1⊕F2⊕F3 (topologically), where E1 = lin(E+), E1⊕
E2 = I, F1 = lin(F+), F1⊕F2 = J ; andA = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (3, 1)}.

(b) E ∼= E1⊕E2 and F ∼= F1⊕F2, where E1 = I, F1 = J ; andA = {(1, 1), (1, 2), (2, 1)}.
�

10.6 Extremal rays of the injective cone

As an application of the results from §10.5, we show that the tensor product of two
extremal rays defines an extremal ray of the injective cone. In §11.1 we will prove that
all rank one extremal directions of the injective cone are of this form, but Example 10.51
will show that there might be extremal directions of larger rank.

Proposition 10.48. If x0 ∈ E+
w \ {0} and y0 ∈ F+

w \ {0} define extremal rays of
E+

w and F+
w, then x0 ⊗ y0 ∈ E ⊗ F ⊆ E ~ F defines an extremal ray of (E ~ F )+.

In other words:
rext(E+

w)⊗s rext(F+
w) ⊆ rext((E ~ F )+).

Proof. Let M := {λx0 : λ ≥ 0} denote the ray generated by x0. Then M is an
extremal ray, so in particular a face. Every face contains the minimal face lin(E+

w),
but M does not contain a non-trivial subspace, so E+

w is a proper cone. Furthermore,
I := span(M) = span(x0) is an ideal by Proposition A.3(a), and is weakly closed
because it is finite-dimensional. Analogously, J := span(y0) is a weakly closed ideal
in F , so it follows from Corollary 10.43 that I ⊗ J defines an ideal in E ~ F . To
complete the proof, note that x0 ⊗ y0 ∈ (E ~ F )+, and that −x0 ⊗ y0 /∈ (E ~ F )+
because (E ~ F )+ is a proper cone. In other words, (I ⊗ J)+ is the ray generated by
x0 ⊗ y0. �
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Corollary 10.49. If 〈E,E′〉, 〈F, F ′〉 are dual pairs and if E+ ⊆ E, F+ ⊆ F are
convex cones, then

rext(E+
w)⊗s rext(F+

w) ⊆ rext(E+ ⊗ε F+).

Corollary 10.50. If E, F are complete locally convex spaces, if E+ ⊆ E, F+ ⊆ F
are convex cones, and if α is a compatible locally convex topology on E ⊗ F for which
the natural map E ⊗̃α F → E ⊗̃ε F is injective, then

rext(E+
w)⊗s rext(F+

w) ⊆ rext(E+ ⊗̃εα F+).

Note: if E ⊗̃α F → E ⊗̃ε F is not injective, then E+ ⊗̃εα F+ does not have extremal
rays, since it is not a proper cone (see Corollary 10.23).

In Theorem 9.22, we found that the extremal rays of the projective cone are
precisely the tensor products of the extremal rays of the base cones. This is not true for
the injective cone; the following example shows that the inclusion from Corollary 10.49
can be strict.

Example 10.51 (cf. Example 9.7, Example 10.20). Let E be finite-dimensional,
and let E+ ⊆ E be a proper, generating, polyhedral cone which is not a simplex
cone. Then both E∗+ ⊗π E+ and E∗+ ⊗ε E+ are proper, generating, polyhedral cones
(use that the class of proper, generating, polyhedral cones is closed under taking
duals and projective tensor products). As such, they are generated by their extremal
rays. However, it follows from [BL75, Proposition 3.1] (see also Theorem 13.2 below)
that E∗+ ⊗π E+ 6= E∗+ ⊗ε E+, so in particular rext(E∗+ ⊗ε E+) 6= rext(E∗+ ⊗π E+) =
rext(E∗+)⊗s rext(E+).

It will follow from Corollary 11.4(b) below that the additional extremal directions
of the injective cone must necessarily have rank ≥ 2. 4

Remark 10.52. It is somewhat remarkable that the injective cone preserves extremal
rays, because the injective norm does not preserve extreme points (of the closed unit
ball). Indeed, if E = F = R2 with the Euclidean norm, then E ⊗ε F ∼= R2×2 with the
operator norm (i.e. the Schatten ∞-norm). But the extreme points of the unit ball for
the operator norm are the orthogonal matrices, which in particular have full rank. In
other words, no rank 1 operator is an extreme point, so in this case ext(BE⊗εF ) is
disjoint from ext(BE)⊗s ext(BF ).

This discrepancy can be explained as follows. In §9.6, we proved that the projective
unit ball preserves extreme points (at least in the finite-dimensional case). The proof
used homogenization: given finite-dimensional normed spaces E and F , we considered
the respective “ice cream cones” in E ⊕ R and F ⊕ R. However, the tensor product
(E ⊕ R) ⊗ (F ⊕ R) ∼= (E ⊗ F ) ⊕ E ⊕ F ⊕ R is larger than (E ⊗ F ) ⊕ R, so the
projective cone is larger than the homogenization of the projective unit ball. In order
to recover an extreme point of the projective unit ball, we had to work with a two-
dimensional face of the projective cone. Thus, extremal rays of the projective cone do
not correspond directly with extreme points of the projective unit ball. Apparently,
the two-dimensional face used in this argument has no analogue in the injective cone.



Chapter 11
Reasonable cross-cones

In this chapter, we give three applications of the results from Chapter 9 and
Chapter 10 to other ‘reasonable’ cones in the tensor product.

This chapter is based on Chapter 5 of [Dob20b].

Introduction

Apart from the projective and injective cone, there are many other reasonable cones in
the tensor product. Depending on the application, other choices may be appropriate
as well. For instance, the tensor product of two spaces of hermitian matrices is
again a space of hermitian matrices, but if the spaces are equipped with the positive
semidefinite cone, then neither the projective nor the injective cone is equal to the
positive semidefinite cone in the tensor product (see e.g. [And04, §2]).

In this chapter, mirroring an analogous definition in the normed theory, we study
the broader class of ‘reasonable crosscones’ in the tensor product.

Definition 11.1. Let 〈E,E′〉 and 〈F, F ′〉 be dual pairs, and let E+ ⊆ E and F+ ⊆ F
be convex cones. We say that a convex cone K ⊆ E ⊗F is a reasonable cross-cone if it
satisfies the following criteria:

(i) For all x ∈ E+ and y ∈ F+ one has x⊗ y ∈ K;

(ii) For all ϕ ∈ E′+ and ψ ∈ F ′+, one has ϕ⊗ ψ ∈ K′.

Here K′ denotes the dual cone of K with respect to any reasonable dual G of E ⊗ F
(that is, E′ ⊗ F ′ ⊆ G ⊆ Bil(E × F ); see §8.2). The definition does not depend on the
choice of reasonable dual, because ϕ⊗ ψ ∈ E′ ⊗ F ′.

Reasonable cross-cones in the completed tensor product E ⊗̃α F (E and F locally
convex, α a compatible locally convex topology on E ⊗ F ) are defined analogously.

The following proposition shows that a cone in E ⊗ F is a reasonable crosscone if
and only if it lies somewhere between the projective and injective cones.

Proposition 11.2. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs and let E+ ⊆ E, F+ ⊆ F
be convex cones. Then E+ ⊗π F+ and E+ ⊗ε F+ are reasonable cross-cones, and
E+ ⊗π F+ ⊆ E+ ⊗ε F+. Furthermore, a convex cone K ⊆ E ⊗ F is a reasonable
cross-cone if and only if E+ ⊗π F+ ⊆ K ⊆ E+ ⊗ε F+.
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Proof. For x ∈ E+, y ∈ F+, ϕ ∈ E′+, ψ ∈ F ′+ we have 〈x, ϕ〉 ≥ 0 and 〈y, ψ〉 ≥ 0, and
therefore 〈x⊗ y, ϕ⊗ψ〉 = 〈x, ϕ〉 · 〈y, ψ〉 ≥ 0. It follows that E+ ⊗π F+ and E+ ⊗ε F+
are reasonable cross-cones and that E+ ⊗π F+ ⊆ E+ ⊗ε F+.

For a general convex cone K ⊆ E ⊗ F , clearly Definition 11.1(i) is equivalent to
E+ ⊗π F+ ⊆ K, and Definition 11.1(ii) is equivalent to K ⊆ E+ ⊗ε F+. �

Likewise, a convex cone K ⊆ E ⊗̃α F is a reasonable cross-cone if and only if
E+ ⊗̃πα F+ ⊆ K ⊆ E+ ⊗̃εα F+. If this is the case, then in particular K ∩ (E ⊗ F ) is a
reasonable cross-cone in the algebraic tensor product E ⊗ F .

In this chapter, we give three applications of the results from the previous chapters
to arbitrary reasonable crosscones. We show that all reasonable crosscones have the
same rank one tensors whenever E+ and F+ are weakly closed and proper (§11.1), we
show that ideals and extremal rays are preserved by reasonable crosscones (§11.2), and
we show that every reasonable crosscone in E ⊗ F is semisimple with respect to any
reasonable dual space if E+ and F+ are semisimple (§11.3). Finally, in §11.4, we study
the related problem of semisimplicity in completed locally convex tensor products, but
there things are a bit more complicated.

11.1 Rank one tensors of reasonable crosscones

The definition of reasonable crosscones is based on two criteria regarding rank one
tensors in E ⊗ F and E′ ⊗ F ′. We show that, if E+ and F+ are sufficiently nice,
then all reasonable crosscones contain the same rank one tensors (Corollary 11.4).
Using this, we will classify all rank one tensors in the projective and injective cones
(Proposition 11.6).

If 〈E,E′〉 is a dual pair, then we say that a convex cone E+ ⊆ E is approximately
generating (or total) if span(E+) is weakly dense in E.

If K ⊆ E ⊗ F is a convex cone, then we understand K′ to be the dual cone with
respect to some reasonable dual G of E ⊗ F . The choice of G does not matter, for we
will restrict our attention to K′ ∩ (E′ ⊗ F ′).

The following result is an extension of [Bar76, Theorem 3.3].

Proposition 11.3. Let 〈E,E′〉, 〈F, F ′〉 be dual systems, let E+ ⊆ E, F+ ⊆ F be
convex cones, and let K ⊆ E ⊗ F be a reasonable crosscone.

(a) If E+ and F+ are weakly closed proper cones, then a rank one tensor x0 ⊗ y0 ∈
E⊗F belongs to K if and only if either x0 ∈ E+ and y0 ∈ F+ or −x0 ∈ E+ and
−y0 ∈ F+.

(b) If E+ and F+ are approximately generating, then a rank one tensor ϕ0 ⊗ ψ0 ∈
E′ ⊗ F ′ defines a positive linear functional on K if and only if either ϕ0 ∈ E′+
and ψ0 ∈ F ′+ or −ϕ0 ∈ E′+ and −ψ0 ∈ F ′+.

Proof.

(a) “⇐=”. If x0 ∈ E+ and y0 ∈ F+, then x0 ⊗ y0 ∈ K by definition. If −x0 ∈ E+
and −y0 ∈ F+, note that x0 ⊗ y0 = −x0 ⊗−y0 ∈ K.
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“=⇒”. Let x0 ⊗ y0 ∈ K be of rank one (i.e. with x0, y0 6= 0). Weakly closed
proper cones are semisimple, so the dual cones E′+ and F ′+ separate points on
E+ and F+, respectively. Choose ϕ0 ∈ E′+, ψ0 ∈ F ′+ such that 〈x0, ϕ0〉 6= 0 and
〈y0, ψ0〉 6= 0. Then ϕ0 ⊗ ψ0 defines a positive linear functional on K, so we have
〈x0, ϕ0〉〈y0, ψ0〉 = 〈x0 ⊗ y0, ϕ0 ⊗ ψ0〉 ≥ 0. It follows that 〈x0, ϕ0〉 and 〈y0, ψ0〉
have the same sign. Since −x0 ⊗−y0 = x0 ⊗ y0, we may assume without loss of
generality that 〈x0, ϕ0〉, 〈y0, ψ0〉 > 0.
If ϕ ∈ E′+ is arbitrary, then ϕ ⊗ ψ0 is a positive linear functional on K, so
we have 〈x0, ϕ〉〈y0, ψ0〉 = 〈x0 ⊗ y0, ϕ ⊗ ψ0〉 ≥ 0. Since 〈y0, ψ0〉 > 0, it follows
that 〈x0, ϕ〉 ≥ 0 for all ϕ ∈ E′+, which shows that x0 ∈ (E′+)′ = E+

w = E+.
Analogously, we find y0 ∈ F+.

(b) In this case E+ and F+ separate points on E′ and F ′, so the same proof can
be carried out. (If ϕ0 ⊗ ψ0 ∈ K′ has rank one, then we may choose x0 ∈ E+,
y0 ∈ F+ such that 〈x0, ϕ0〉〈y0, ψ0〉 > 0, and use these to show that ϕ0 ∈ E′+ and
ψ0 ∈ F ′+ or −ϕ0 ∈ E′+ and −ψ0 ∈ F ′+.) �

Corollary 11.4. Let 〈E,E′〉, 〈F, F ′〉 be dual systems, and let E+ ⊆ E, F+ ⊆ F be
convex cones.

(a) If E+ and F+ are weakly closed proper cones, then all reasonable crosscones in
E ⊗ F agree on the rank one tensors.

(b) The set of rank one extremal directions of the injective cone E+ ⊗ε F+ ⊆ E ⊗F
is given by rext(E+

w)⊗s rext(F+
w).

(c) If E+ and F+ are weakly closed proper cones, and if K ⊆ E ⊗ F is a reasonable
crosscone, then the set of rank one extremal directions of K is given by rext(K) =
rext(E+)⊗s rext(F+).

Proof.

(a) Immediate from Proposition 11.3(a).

(b) If x0 ∈ E+
w and y0 ∈ F+

w are extremal directions, then x0 ⊗ y0 is an extremal
direction of E+ ⊗ε F+, by Corollary 10.49. For the converse, suppose that x0⊗y0
is a rank one extremal direction of E+ ⊗ε F+. Then E ⊗ F 6= {0} (since there
exist rank one tensors), so E 6= {0} and F 6= {0}. Similarly, E+ ⊗ε F+ is a proper
cone (since it has extremal directions), so now it follows from Theorem 10.22 that
E+

w and F+
w are proper cones. Since E+ ⊗ε F+ = E+

w ⊗ε F+
w, it follows

from (a) that x0⊗ y0 ∈ E+
w ⊗π F+

w. Clearly x0⊗ y0 is automatically extremal
in this (smaller) cone, so it follows from Theorem 9.22 that x0 and y0 (or −x0
and −y0) are extremal directions of E+

w and F+
w.

(c) By (a), every rank one extremal direction of a reasonable crosscone is also
an extremal direction of every smaller reasonable crosscone. By (b) and Theo-
rem 9.22, the projective and injective cones have the same rank one extremal
directions. �
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Remark 11.5. In general E+ ⊗π F+ and E+ ⊗ε F+ do not agree on the rank one
tensors. For example, if E+ is not weakly closed, then all non-zero tensors in E⊗R ∼= E
have rank one, but E+ ⊗π R≥0 = E+ whereas E+ ⊗ε R≥0 = E+

w. As a more
extreme example, let E+ = E and F+ = {0}; then E+ ⊗π F+ = {0}, whereas
E+ ⊗ε F+ = E ⊗ F .

Using Proposition 11.3, we can determine exactly which rank one tensors belong
to the projective and injective cones (without additional assumptions on E+ and F+).

Proposition 11.6. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs and let E+ ⊆ E, F+ ⊆ F be
convex cones.

(a) A rank one tensor x0 ⊗ y0 ∈ E ⊗ F belongs to the projective cone E+ ⊗π F+ if
and only if at least one of the following applies:

(i) x0 ∈ lin(E+) and y0 ∈ span(F+);
(ii) x0 ∈ span(E+) and y0 ∈ lin(F+);

(iii) x0 ∈ E+ and y0 ∈ F+;
(iv) −x0 ∈ E+ and −y0 ∈ F+.

(b) A rank one tensor x0 ⊗ y0 ∈ E ⊗ F belongs to the injective cone E+ ⊗ε F+ if
and only if at least one of the following applies:

(i) x0 ∈ lin(E+
w);

(ii) y0 ∈ lin(F+
w);

(iii) x0 ∈ E+
w and y0 ∈ F+

w;
(iv) −x0 ∈ F+

w and −y0 ∈ F+
w.

Proof.

(a) “⇐=”. If x0 ∈ E+ and y0 ∈ F+, then clearly x0 ⊗ y0 ∈ E+ ⊗π F+. If x0 ∈
lin(E+) and y0 ∈ span(F+), then it follows from Corollary 9.17 that x0 ⊗ y0 ∈
lin(E+ ⊗π F+) ⊆ E+ ⊗π F+. The other two cases are analogous.
“=⇒”. Let x0 ⊗ y0 ∈ E+ ⊗π F+ be of rank one (i.e. with x0, y0 6= 0), and write
x0 ⊗ y0 =

∑k
i=1 xi ⊗ yi with x1, . . . , xk ∈ E+, y1, . . . , yk ∈ F+. Note that we

must have y0 ∈ span(F+): choose ϕ ∈ E′ such that ϕ(x0) = 1, then

y0 = (ϕ⊗ idF )(x0 ⊗ y0) = (ϕ⊗ idF )
(

k∑
i=1

xi ⊗ yi

)
=

k∑
i=1

ϕ(xi)yi ∈ span(F+).

Analogously, x0 ∈ span(E+).
Let πlin(E+) : E → E/ lin(E+) and πlin(F+) : F → F/ lin(F+) be the canonical
maps. Since lin(E+) and lin(F+) are ideals, the quotient cones are proper
(see Appendix A.1). For notational convenience, let x′0, . . . , x′k and y′0, . . . , y

′
k

denote the images of x0, . . . , xk and y0, . . . , yk in the respective quotients. Now
x′0 ⊗ y′0 ∈ (E/ lin(E+))+ ⊗π (F/ lin(F+))+ has rank at most one. If it has rank
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zero, then x0 ∈ lin(E+) or y0 ∈ lin(F+), so we are done. Assume therefore that
x′0 ⊗ y′0 has rank one.
Define X := span{x′0, . . . , x′k} ⊆ E/ lin(E+), and let X+ ⊆ X ∩ (E/ lin(E+))+
be the convex cone generated by x′1, . . . , x′k. Then X is finite-dimensional and
X+ is closed (because it is finitely generated) and proper (since it is contained
in the proper cone (E/ lin(E+))+). Define Y+ ⊆ F/ lin(F+) and Y ⊆ F/ lin(F+)
analogously.
Since x′0, . . . , x′k and y′0, . . . , y

′
k belong to X and Y , it follows that x′0 ⊗ y′0 =∑k

i=1 x
′
i ⊗ y′i holds in X ⊗ Y , so we have x′0 ⊗ y′0 ∈ X+ ⊗π Y+. Since X+ and

Y+ are closed and proper, it follows from Proposition 11.3(a) that x′0 ∈ X+ and
y′0 ∈ Y+ or −x′0 ∈ X+ and −y′0 ∈ Y+. Since the quotient maps πlin(E+) and
πlin(F+) are bipositive (see Proposition A.6), it follows that x0 ∈ E+ and y0 ∈ F+
or −x0 ∈ E+ and −y0 ∈ F+.

(b) “⇐=”. If x0 ∈ E+
w and y0 ∈ F+

w, then

x0 ⊗ y0 ∈ E+
w ⊗π F+

w ⊆ E+
w ⊗ε F+

w = E+ ⊗ε F+.

If x0 ∈ lin(E+
w), y0 ∈ F , then x0 ⊗ y0 ∈ lin(E+ ⊗ε F+) ⊆ E+ ⊗ε F+, by

Corollary 10.37(c). The other two cases are analogous.
“=⇒”. Let x0 ⊗ y0 ∈ E+ ⊗ε F+ be of rank one (i.e. with x0, y0 6= 0). If x0 ∈
lin(E+

w) or y0 ∈ lin(F+
w), then we are done, so assume x0 /∈ lin(E+

w) and
y0 /∈ lin(F+

w). Since lin(E+
w) = ⊥(E′+), this means that we may choose

ϕ0 ∈ E′+, ψ0 ∈ F ′+ such that 〈x0, ϕ0〉 6= 0 and 〈y0, ψ0〉 6= 0. Now it follows
from the argument of Proposition 11.3 that either x0 ∈ E+

w and y0 ∈ F+
w, or

−x0 ∈ E+
w and −y0 ∈ F+

w. �

Proposition 11.6 can be paraphrased as follows: every rank one tensor in the
projective or injective cone is either positive for obvious reasons (conditions (iii) and
(iv)) or belongs to the lineality space (conditions (i) and (ii)).

11.2 Ideals and faces of reasonable crosscones

An ideal with respect to the injective cone is also an ideal with respect to every smaller
cone, and a face of the injective cone is also a face of every smaller cone containing
that face. Therefore the results from Chapter 10 immediately give rise to the following
consequences (among others).

Proposition 11.7. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs, let E+ ⊆ E, F+ ⊆ F be convex
cones, and let K ⊆ E ⊗ F be a reasonable crosscone. Then:

(a) If E+ and F+ are weakly closed and if I ⊆ E, J ⊆ F are ideals, then (I ⊗ J) +
lin(E+ ⊗ε F+) is an ideal with respect to K. Additionally, if I is weakly closed
and (E/I)+ is semisimple, or if J is weakly closed and (F/J)+ is semisimple,
then (I ⊗ F ) + (E ⊗ J) is an ideal with respect to K.
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(b) The lineality space of K satisfies

(lin(E+)⊗ span(F+)) + (span(E+)⊗ lin(F+)) ⊆ lin(K)
⊆ (lin(E+

w)⊗ F ) + (E ⊗ lin(F+
w)).

(c) If E+ and F+ are weakly closed and if x0 ∈ E+, y0 ∈ F+ define extremal rays,
then x0 ⊗ y0 defines an extremal ray of K.

11.3 Semisimplicity of reasonable crosscones in the algebraic
tensor product

Recall that a convex cone E+ is semisimple if it is contained in a weakly closed proper
cone, or equivalently, if E′+ separates points on E. In this section, we prove that every
reasonable crosscone in E ⊗ F is semisimple if E+ and F+ are semisimple, and we
determine necessary and sufficient criteria for the projective and injective cones to
be semisimple. Similar results in completed locally convex tensor products will be
discussed in §11.4.

We start by setting up a partial converse, using the following proposition.

Proposition 11.8. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs, and let E+ ⊆ E, F+ ⊆ F be
convex cones. If G is a reasonable dual of E ⊗ F and if K ⊆ E ⊗ F is a reasonable
crosscone, then

E+
w ⊗π F+

w ⊆ Kw
,

where Kw denotes the σ(E ⊗ F,G)-closure of K.

Proof. Let Ti denote the finest compatible topology on the tensor product Ew ⊗ Fw
(known as the inductive topology, not to be confused with the injective topology).
Then the natural map E × F → E ⊗ F is separately continuous as a map Ew × Fw →
(E ⊗ F,Ti), and the dual of (E ⊗ F,Ti) is Bil(Ew × Fw) = Bil(E × F ); see [Köt79,
§44.1.(5)]. In particular, since G ⊆ Bil(E × F ), it follows that w = σ(E ⊗ F,G) is
weaker than Ti. Therefore: K i ⊆ Kw.

To complete the proof, we show that E+
w ⊗π F+

w ⊆ K i. Since K is a reasonable
crosscone, we have E+ ⊗π F+ ⊆ K ⊆ K

i. Since Ew × Fw → (E ⊗ F,Ti) is separately
continuous, for every x0 ∈ E+ one has x0⊗F+

w ⊆ K i. (The inverse image of K i under
the map y 7→ x0 ⊗ y contains F+, and therefore F+

w.) Then, by the same argument,
for every y0 ∈ F+

w we have E+
w ⊗ y0 ⊆ K

i. It follows that E+
w ⊗s F+

w ⊆ K i, and
the result follows by taking positive combinations. �

For clarity, let us say that K is G-semisimple if it is semisimple for the dual pair
〈E⊗F,G〉 (i.e. if K σ(E⊗F,G) is a proper cone), where G is a reasonable dual of E⊗F .

Theorem 11.9. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs, let E+ ⊆ E, F+ ⊆ F be convex
cones, let G be a reasonable dual of E⊗F , and let K ⊆ E⊗F be a reasonable crosscone.

(a) If E+ and F+ are semisimple, then K is G-semisimple.
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(b) If E+ 6= {0} and F+ 6= {0}, and if K is G-semisimple, then E+ and F+ are
semisimple.

Proof.

(a) Semisimplicity means that E+
w and F+

w are proper cones, so it follows from
Theorem 10.22 that E+ ⊗ε F+ is a proper cone. Furthermore, E+ ⊗ε F+ is
weakly closed (see Remark 10.1), so it follows that K is contained in a weakly
closed proper cone.

(b) It follows from Proposition 11.8 that E+
w ⊗π F+

w ⊆ Kw, where Kw is a
proper cone (by semisimplicity). In particular, E+

w ⊗π F+
w is a proper cone.

By assumption, we have E+
w
, F+

w 6= {0}, so it follows from Theorem 9.10
that E+

w and F+
w must be proper cones as well. Equivalenty: E+ and F+ are

semisimple. �

Remark 11.10. We note that the partial converse given in Theorem 11.9(b) is the
best we can do. If one of the cones is trivial, then the outcome depends on the other
cone. Indeed, let E,F 6= {0} with convex cones E+ ⊆ E, F+ ⊆ F , such that E+ = {0}
and F+ is not semisimple. Then E+ ⊗π F+ = {0}, which is semisimple, but E+ ⊗ε F+
is not semisimple by Theorem 10.22.

More can be said if we choose the cone beforehand. The injective cone is already
weakly closed with respect to any reasonable dual, so Theorem 10.22 tells us exactly
when E+ ⊗ε F+ is semisimple. For the projective cone, we obtain necessary and
sufficient criteria very similar to those in Theorem 9.10.

Corollary 11.11. Let 〈E,E′〉, 〈F, F ′〉 be dual pairs, let E+ ⊆ E, F+ ⊆ F be convex
cones, and let G be a reasonable dual of E ⊗ F . Then E+ ⊗π F+ is G-semisimple if
and only if E+ = {0}, or F+ = {0}, or both E+ and F+ are semisimple.

Proof. If E+ = {0} or F+ = {0}, then E+ ⊗π F+ = {0}, which is semisimple. The
rest follows from Theorem 11.9. �

Remark 11.12. Barring corner cases, we find that E+ ⊗π F+ is semisimple if and
only if E+ ⊗ε F+ is a proper cone. It is tempting to conjecture that the projective
cone is always dense in the injective cone. For locally convex lattices, Birnbaum [Bir76,
Proposition 3] found a positive answer, but in general this is far from being true.
Counterexamples have been known for a long time (e.g. [Bir76, Example following
Proposition 3]; [BL75, Proposition 3.1]). Very recently, Aubrun, Lami, Palazuelos and
Plávala [ALPP21] proved that this fails for all closed, proper, generating cones in
finite-dimensional spaces, unless at least one of the cones is a simplex cone. We will
prove a large class of special cases of this result in Chapter 13.

Remark 11.13. Fremlin [Fre72] developed a theory of tensor products of Archimedean
Riesz spaces, which was further developed by Grobler and Labuschagne [GL88], and
van Gaans and Kalauch [GK10] to a theory of tensor products of Archimedean cones.
In this setting, the challenge is to extend the projective cone to a proper Archimedean
cone. In [GK10], van Gaans and Kalauch showed that the projective tensor product of
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two generating Archimedean cones is always contained in a proper Archimedean cone
(see [GK10, Lemma 4.2]).

Our results are parallel to this. If the given cones E+ ⊆ E and F+ ⊆ F are not
only Archimedean but also closed in some locally convex topology (this is a stronger
assumption), then their projective tensor product is contained in a closed (hence
Archimedean) proper cone. In other words, we start with a stronger assumption, and
end up with a stronger conclusion.

The preceding results are no substitute for the methods developed in [GK10]. For
example, the space Lp[0, 1] with p ∈ (0, 1) does not admit a non-trivial positive linear
functional, so here we have an Archimedean cone which fails to be semisimple in a
rather dramatic way. Consequently, our results fail to prove that the projective tensor
product Lp+[0, 1]⊗π Lp+[0, 1] is contained in a proper Archimedean cone, which we
know to be true by the results of [GK10]. (In fact, since Lp+[0, 1] is a lattice cone, this
follows already from Fremlin’s original result [Fre72, Theorem 4.2]).

11.4 Semisimplicity of reasonable crosscones in completed
locally convex tensor products

In the completed setting, semisimplicity turns out to be more subtle. This is because
there is one additional requirement for the injective cone to be proper: not only do
E+

w and F+
w need to be proper, but the natural map E ⊗̃α F → E ⊗̃ε F must be

injective. (See Corollary 10.23.) This leads to the following analogue of Theorem 11.9.

Theorem 11.14. Let E, F be complete locally convex spaces, E+ ⊆ E, F+ ⊆ F
convex cones, α a compatible locally convex topology on E ⊗ F , and K ⊆ E ⊗̃α F a
reasonable crosscone.

(a) If E+ and F+ are semisimple and if E ⊗̃α F → E ⊗̃ε F is injective, then K is
semisimple.

(b) If E+ 6= {0} and F+ 6= {0}, and if K is semisimple, then E+ and F+ are
semisimple.

Proof.

(a) It follows from the assumptions and Corollary 10.23 that the injective cone
E+ ⊗̃εα F+ is proper, so K is contained in a closed proper cone.

(b) If K is semisimple, then in particular K ∩ (E ⊗ F ) is semisimple, so the result
follows from Theorem 11.9(b). �

The gap between the necessary and sufficient conditions in Theorem 11.14 is even larger
than it was in Theorem 11.9. We show that this gap is related to the approximation
property. For simplicity, we restrict our attention to Banach spaces.

We recall some generalities. Let α be a finitely generated tensor norm, then we say
(following [DF93, §21.7]) that a Banach space E has the α-approximation property
if for all Banach spaces F the natural map E ⊗̃α F → E ⊗̃ε F is injective. The π-
approximation property (where π denotes the projective tensor norm) is simply called
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the approximation property. If a Banach space E has the approximation property, then
E also has the α-approximation property for every finitely generated tensor norm α
(see [DF93, Proposition 17.20]).

Some tensor norms α have the property that every Banach space has the α-
approximation property (and therefore E ⊗̃α F → E ⊗̃ε F is always injective). One of
these is the injective tensor norm ε, for obvious reasons. More generally, this is true for
every totally accessible tensor norm α; see [DF93, Proposition 21.7(2)]. This includes
all tensor norms which are (left and right) injective; see [DF93, Proposition 21.1(3)].

Corollary 11.15. Let E and F be Banach spaces, let E+ ⊆ E, F+ ⊆ F be convex
cones, and let α be a finitely generated tensor norm. If E or F has the α-approximation
property, then the projective cone E+ ⊗̃πα F+ ⊆ E ⊗̃α F is semisimple if and only if
E+ = {0}, or F+ = {0}, or both E+ and F+ are semisimple.

Proof. The α-approximation property guarantees that E ⊗̃α F → E ⊗̃ε F is injective.
If E+ = {0} or F+ = {0}, then E+ ⊗̃ππ F+ = {0}. The other cases follow from
Theorem 11.14. �

The proofs of Corollary 11.11 and Corollary 11.15 rely on the injective cone to
draw conclusions about the projective cone. However, in general these two can be far
apart (see Remark 11.12). If the map E ⊗̃α F → E ⊗̃ε F is not injective, then the
injective cone E+ ⊗̃εα F+ is not proper, but that does not mean that the projective
cone E+ ⊗̃πα F+ cannot be semisimple. This leaves open the following interesting
question, to which we do not know the answer:

Question 11.16. Let E,F be real Banach spaces, and let E+ ⊆ E, F+ ⊆ F be closed
proper cones. Is the projective cone E+ ⊗̃ππ F+ in the completed projective tensor
product E ⊗̃π F necessarily contained in a closed proper cone?

Equivalently: if the positive continuous linear functionals separate points on E
and F , then do the positive continuous bilinear forms E × F → R separate points on
E ⊗̃π F?

By Corollary 11.11, the positive continuous bilinear forms separate points on E⊗πF ,
but that is not enough. Furthermore, if E or F has the approximation property, then
the positive bilinear forms of rank one already separate points on E ⊗̃π F , but this
technique does not work in the absence of the approximation property.
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Chapter 12
Basic additional properties in the

finite-dimensional case

In this chapter, we give an overview of the most important additional prop-
erties in the finite-dimensional case. This will be used extensively in the next
chapter, where we give many examples where the projective cone is not dense in
the injective cone.

This chapter is based on Chapter 6 of [Dob20b].

Introduction

In the previous chapters, we studied tensor products of convex cones in general
(possibly infinite-dimensional) real vector spaces. In that setting, not many results had
been known in the literature, and several basic questions had been unanswered. In
the finite-dimensional setting, the situation is very different. In a different part of the
literature, completely separate from the functional analysis literature, questions around
tensor products of closed, proper and generating cones have been studied by many
authors in a variety of different fields, such as linear algebra, operator theory, geometry,
approximation theory, and theoretical physics. (For a comprehensive overview of these
connections, see §7.1.)

In this chapter, we give a brief overview of the most important additional properties
in the finite-dimensional case. We give new, streamlined proofs of several known results,
and we extend them to general convex cones in finite-dimensional spaces (i.e. cones
which are not necessarily closed, proper, or generating). In §12.2, we show that the
projective and injective cones can be interpreted as certain cones of positive operators,
at least when E+ and F+ are closed. In §12.3, we show that the closure E+ ⊗π F+
of the projective cone E+ ⊗π F+ is equal to the projective cone E+ ⊗π F+. Finally,
in §12.4, we look more closely at the concept of retracts, which was already covered
briefly in §8.3. Here we prove some basic properties of retracts, and we provide many
examples of retracts in standard cones, which we will use in the next chapter.

12.1 Additional notation

We follow notation from Chapter 8; see also the glossary of notation on page 201.
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In this chapter (and the next), all vector spaces will be finite-dimensional. Recall
that the lineality space of a convex cone K ⊆ E is the subspace lin(K) = K ∩−K. We
say that K is proper if lin(K) = {0}, and generating if K −K = E.

The (algebraic) dual cone K∗ ⊆ E∗ is the set of positive linear functionals:

K∗ :=
{
ϕ ∈ E∗ : 〈x, ϕ〉 ≥ 0 for all x ∈ K

}
.

This is a closed cone in the (finite-dimensional) space E∗, and the natural isomorphism
E∗∗ ∼= E identifies the double dual cone K∗∗ with the closure K.

If K is a convex cone, then a base of K is a convex subset B ⊆ K \ {0} such that
each x ∈ K \ {0} can be written uniquely as x = λb with λ > 0 and b ∈ B. If K
is generating, then the bases of K are in bijective correspondence with the strictly
K-positive linear functionals on E (see [AT07, Theorem 1.47]). Furthermore, every
closed proper cone in a finite-dimensional space admits a compact base (e.g. [AT07,
Corollary 3.8]).

We say that a convex cone E+ ⊆ E is a simplex cone (or Yudin cone) if it is
generated by a basis of E, or equivalently, if every base of E+ is a simplex. A simplex
cone turns E into a Dedekind complete Riesz space (see [AT07, Theorem 3.17]).
Furthermore, a cone in a finite-dimensional space is a simplex cone if and only if it is
a closed lattice cone (see [AT07, Theorem 3.21]).

We fix notation for a number of standard cones. For n ≥ 1, we let Ln ⊆ Rn denote
the n-dimensional second-order cone (or Lorentz cone, or ice cream cone),

Ln :=
{

(x1, . . . , xn) ∈ Rn :
√
x2

1 + · · ·+ x2
n−1 ≤ xn

}
.

(By convention, L1 is just the standard cone R+ ⊆ R.) Furthermore, let Sn ⊆ Rn×n
and Hn ⊆ Cn×n denote the spaces of real symmetric and complex hermitian n × n
matrices, respectively. We denote the respective positive semidefinite cones by Sn+ and
Hn+:

Sn+ := {n× n real positive semidefinite matrices};

Hn+ := {n× n complex positive semidefinite matrices}.

Recall that S2
+ is isomorphic with the Lorentz cone L3, for instance via the isomorphism

S2 → R3,

(
a b
b c

)
7→ (a− c, 2b, a+ c).

(Use that A ∈ S2 is positive semidefinite if and only if tr(A) ≥ 0 and det(A) ≥ 0.)

12.2 Simplex-factorable positive linear maps

For the remainder of this chapter (and the next), it will be convenient to reformulate
questions regarding the projective and injective cones in terms of positive linear
operators.
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If E and F are preordered by convex cones E+ ⊆ E, F+ ⊆ F , then a positive
linear operator T : E → F is called separable1 if it can be written as T =

∑k
i=1 ϕi⊗yi,

where ϕ1, . . . , ϕk ∈ E∗+ are positive linear functionals and y1, . . . , yk ∈ F+ are positive
elements.

If G is another finite-dimensional real vector space, preordered by a convex cone
G+ ⊆ G, then we say that a positive linear map T : E → F factors through G is there
exist positive linear maps R : E → G and S : G → F such that T = S ◦ R. We say
that T factors through a simplex cone2 if it factors through some Rn, ordered by the
standard cone Rn≥0.

Proposition 12.1. A positive linear map T : E → F is separable if and only
if it factors through a simplex cone Rn≥0. If this is the case, then one may take
n ≤ dim(E)× dim(F ).

Proof. “=⇒”. Write T =
∑k
i=1 ϕi ⊗ yi with ϕ1, . . . , ϕk ∈ E∗+, y1, . . . , yk ∈ F+. By

Carathéodory’s theorem for cones (see e.g. [Roc70, Corollary 17.1.2]), we may assume
without loss of generality that k ≤ dim(E∗ ⊗ F ) = dim(E) × dim(F ). Now define
R : E → Rk and S : Rk → F by

R(x) := (ϕ1(x), . . . , ϕk(x));
S(λ1, . . . , λk) := λ1y1 + · · ·+ λkyk.

Then R and S are positive (Rk equipped with the standard cone Rk≥0), and T = S ◦R.
“⇐=”. Suppose that T factors as

E Rn F,R S

with R and S positive (Rn equipped with the standard cone Rn≥0). Let e1, . . . , en ∈ Rn
denote the standard basis of Rn, and e∗1, . . . , e

∗
n the corresponding dual basis. Define

ϕ1, . . . , ϕn ∈ E∗ and y1, . . . , yn ∈ F by setting ϕi := e∗i ◦ R and yi := S(ei). Then
ϕ1, . . . , ϕn ∈ E∗+, y1, . . . , yn ∈ F+, and T =

∑n
i=1 ϕi ⊗ yi. �

Corollary 12.2. If E+ and F+ are closed, then:

(a) E∗+ ⊗ε F+ is the set of all positive linear maps E → F ;

(b) E∗+ ⊗π F+ is the set of all positive linear maps E → F that factor through a
simplex cone.

Proof. It is well known that E∗+ ⊗ε F+ can be identified with the cone of linear maps
T : E → F satisfying T [E+] ⊆ F+ (see Remark 10.2). Since E+ and F+ are closed,
these are simply the positive linear maps E → F .

Under this identification, it is clear from the definition that E∗+ ⊗π F+ is the subset
of separable positive linear maps E → F . By Proposition 12.1 these are precisely the
positive linear maps E → F that factor through a simplex cone. �

1The terminology was introduced by other authors in connection with quantum theory (e.g. [Hil08,
ALP19]).

2More accurately, we should say that T factors through a finite-dimensional Archimedean Riesz
space, but this is too wordy.
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12.3 The closure of the projective cone

In this section, we prove that the closure of the projective cone E+ ⊗π F+ is equal
to the projective tensor product of E+ and F+. In particular, the projective tensor
product of closed convex cones is closed. In the case where E+ and F+ are closed,
proper, and generating, this was already established by Tam [Tam77b].

The proof is carried out in three steps. First we prove the result for closed proper
cones, thereby giving another proof of the aforementioned result by Tam. Secondly,
we extend this to all closed convex cones by decomposing a closed convex cone as the
sum of a closed proper cone and a subspace. After this, it will be relatively simple to
deduce the general formula for the closure of the projective cone.

The projective tensor product of closed proper cones
Recall that a base (of E+) is a convex subset B ⊆ E+ with 0 /∈ B such that every
x ∈ E+ \ {0} can be written uniquely as x = λb with λ > 0 and b ∈ B. A key property
is that a subset B ⊆ E+ is a base if and only if there is a strictly positive linear
functional f : E → R such that B = {x ∈ E+ : f(x) = 1}; see e.g. [AT07, Theorem
1.47].

Not every proper cone has a base. However, every closed proper cone in a finite-
dimensional space has a compact base (e.g. [AT07, Corollary 3.8]), and conversely the
convex cone generated by a compact convex set S ⊆ Rn \ {0} is a closed proper cone
(e.g. [AT07, Lemma 3.12]).

Proposition 12.3. Let E,F be real vector spaces, and let E+ ⊆ E, F+ ⊆ F be
convex cones having bases BE+ ⊆ E+, BF+ ⊆ F+. Then conv(BE+ ⊗BF+) is a base of
E+ ⊗π F+.

Proof. Let f : E → R and g : F → R be strictly positive linear functionals such that
BE+ = {x ∈ E+ : f(x) = 1} and BF+ = {y ∈ F+ : g(y) = 1}. Then f ⊗ g is a strictly
positive linear functional on E ⊗ F (with respect to the projective cone), and we have

BE+ ⊗ BF+ ⊆ {z ∈ E+ ⊗π F+ : (f ⊗ g)(z) = 1}.

Since the right-hand side is convex, it follows that

conv(BE+ ⊗ BF+) ⊆ {z ∈ E+ ⊗π F+ : (f ⊗ g)(z) = 1}. (12.4)

On the other hand, every non-zero element of E+ ⊗π F+ can be written as a positive
multiple of an element in conv(BE+ ⊗ BF+), so we must have equality in (12.4). �

Corollary 12.5 ([Tam77b]). If E+ ⊆ E, F+ ⊆ F are closed proper cones, then
E+ ⊗π F+ is also a closed proper cone.

Proof. Choose compact bases BE+ ⊆ E+ and BF+ ⊆ F+. Then, by Proposition 12.3,
conv(BE+ ⊗ BF+) is a base for E+ ⊗π F+. In particular, 0 /∈ conv(BE+ ⊗ BF+).

The natural map E×F → E⊗F is continuous, so BE+ ⊗BF+ is compact in E⊗F .
Since the convex hull of a compact set in Rn is also compact (e.g. [Rud91, Theorem
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3.20(d)]), it follows that conv(BE+ ⊗ BF+) is compact. Thus, E+ ⊗π F+ is generated
by a compact convex set not containing 0, so it follows that E+ ⊗π F+ is a closed
proper cone. �

Remark 12.6. The proof of Corollary 12.5 shows directly that E+ ⊗π F+ is proper
whenever E+ and F+ are closed proper cones. As such, this provides yet another
way to prove that the projective tensor product of proper cones is always proper, in
addition to the different ways discussed in Remark 9.12.

The projective tensor product of closed convex cones
In order to extend Corollary 12.5 to all closed convex cones, we decompose each of
E+ and F+ as the sum of a closed proper cone and a subspace. The (straightforward)
proof of the following classical result is omitted.

Proposition 12.7. Let E be a finite-dimensional, and let E+ ⊆ E be a closed convex
cone. Let lin(E+) := E+ ∩ −E+ be the lineality space of E+, and let lin(E+)⊥ be
any complementary subspace of lin(E+). Then lin(E+)⊥+ := lin(E+)⊥ ∩E+ is a closed
proper cone, and one has

E+ = lin(E+) + lin(E+)⊥+.

Conversely, the sum of a closed proper cone and a subspace need not be closed.
(Example: let E+ be the cone generated by {(x, y, 1) ∈ R3 : (x − 1)2 + y2 ≤ 1},
and X := span{(0, 0, 1)} ⊆ R3.) However, we have the following partial converse of
Proposition 12.7.

Proposition 12.8. Let E be a finite-dimensional, let E+ ⊆ E be a closed convex
cone, and let X ⊆ E be a subspace. If span(E+) ∩X = {0}, then E+ +X is a closed
convex cone.

Proof. Extend span(E+) to a complementary subspace X⊥ of X. Let P : E → X⊥

be the projection x+ x⊥ 7→ x⊥. Then P is continuous, and E+ +X = P−1[E+], so
E+ +X is closed. �

The preceding propositions give us a way to decompose the cones and later put
them back together. To see what happens when we lift the pieces separately, we use
the following observation.

Proposition 12.9. Let E,F be real vector spaces, and let E+ ⊆ E, F+ ⊆ F be convex
cones. If at least one of E+ and F+ is a subspace, then E+ ⊗π F+ is a subspace as
well.

Proof. A convex cone G+ is a subspace precisely when one has s ∈ G+ if and only if
−s ∈ G+. This property is preserved by the projective tensor product. �

We can now extend Corollary 12.5 to all closed convex cones.

Theorem 12.10. Let E,F be finite-dimensional, and let E+ ⊆ E, F+ ⊆ F be closed
convex cones. Then E+ ⊗π F+ is closed as well.
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Proof. Choose complementary subspaces lin(E+)⊥ ⊆ E and lin(F+)⊥ ⊆ F of lin(E+)
and lin(F+). Then, by Proposition 12.7, we have E+ = lin(E+) + lin(E+)⊥+ and
F+ = lin(F+) + lin(F+)⊥+, with lin(E+)⊥+ and lin(F+)⊥+ closed proper cones. It follows
that

E+ ⊗π F+ =

subspace︷ ︸︸ ︷(
lin(E+)⊗π lin(F+)

)
+

subspace︷ ︸︸ ︷(
lin(E+)⊗π lin(F+)⊥+

)
+

subspace︷ ︸︸ ︷(
lin(E+)⊥+ ⊗π lin(F+)

)
+
(
lin(E+)⊥+ ⊗π lin(F+)⊥+

)︸ ︷︷ ︸
closed proper cone

.

(The first three terms are subspaces by Proposition 12.9; the fourth is a closed proper
cone by Corollary 12.5.) The three subspaces in the preceding formula are contained in
the subspace (lin(E+)⊗lin(F+))+(lin(E+)⊗lin(F+)⊥)+(lin(E+)⊥⊗lin(F+)), whereas
lin(E+)⊥+ ⊗π lin(F+)⊥+ is a closed proper cone contained within lin(E+)⊥ ⊗ lin(F+)⊥.
These containing subspaces are complementary, so it follows from Proposition 12.8
that E+ ⊗π F+ is closed. �

Remark 12.11. We should point out that nothing like Theorem 12.10 is true in the
infinite-dimensional setting. In fact, the projective tensor product of closed proper
cones in Banach spaces might not even be Archimedean (see e.g. [PTT11, Remark
3.12]).

The closure of the projective cone; duality
Using Theorem 12.10, it is now relatively easy to prove the following.

Theorem 12.12. Let E and F be finite-dimensional real vector spaces, and let
E+ ⊆ E, F+ ⊆ F be convex cones. Then the closure of the projective cone E+ ⊗π F+
is the projective cone E+ ⊗π F+.

Proof. “⊇”. Given x ∈ E+, y ∈ F+, choose sequences {xn}∞n=1 and {yn}∞n=1 in E+ and
F+ converging to x and y, respectively. Then x⊗ y = limn→∞ xn ⊗ yn ∈ E+ ⊗π F+.
(Alternatively, use Proposition 11.8.)

“⊆”. Evidently, E+ ⊗π F+ ⊆ E+ ⊗π F+. By Theorem 12.10, E+ ⊗π F+ is closed,
so we also have E+ ⊗π F+ ⊆ E+ ⊗π F+. �

Other consequences of Theorem 12.10 include the following.

Corollary 12.13. Let E,F be finite-dimensional, and let E+ ⊆ E, F+ ⊆ F be convex
cones. Then:

(a) E+ ⊗π F+ is dense in E+ ⊗ε F+ if and only if E+ ⊗π F+ = E+ ⊗ε F+;

(b) (E+ ⊗ε F+)∗ = E∗+ ⊗π F ∗+.

Proof.

(a) It is clear from the definition that E+ ⊗ε F+ = E+ ⊗ε F+, and that this cone
is always closed. Thus, the conclusion follows immediately from Theorem 12.12.
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(b) We have (E∗+ ⊗π F ∗+)∗ = E∗∗+ ⊗ε F ∗∗+ = E+ ⊗ε F+. Using again that E+ ⊗ε F+ =
E+ ⊗ε F+, we find that (E∗+ ⊗π F ∗+)∗ = E+ ⊗ε F+. By Theorem 12.10, E∗+ ⊗π F ∗+
is closed, so the result follows by duality. �

In other words, if the spaces are finite-dimensional and the cones are closed, then
we have full duality between the projective and injective cones.

12.4 Retracts

In Chapter 13, we will look at the problem of determining whether or not E+ ⊗π F+
and E+ ⊗ε F+ coincide. This problem can sometimes be reduced to lower dimensional
spaces by using retracts.

Let (F, F+) be a finite-dimensional preordered vector space. Then a subspace
E ⊆ F is called an order retract if there exists a positive projection F → E. More
generally, another preordered space (G,G+) is isomorphically an order retract if there
exist positive linear maps T : G→ F and S : F → G such that S ◦T = idG. Note that
in this case T is automatically bipositive (i.e. a pullback) and S is automatically a
pushforward, and ran(T ) ⊆ F is a retract of F which is order isomorphic to G.

For simplicity, we shall omit the word order when talking about retracts, for there
is minimal chance of confusion with other types of retracts (e.g. from topology).

Although retracts do not appear to be a very common notion in the theory of ordered
vector spaces, some of the results from this section were discovered independently by
Aubrun, Lami and Palazuelos [ALP19].

Remark 12.14. Some basic properties of retracts:

(a) if E is a retract of (F, F+) and F+ is a proper cone, then E+ := E ∩ F+ is a
proper cone (after all, E+ is a subcone);

(b) if E is a retract of (F, F+) and F+ is generating, then E+ is generating in E
(after all, there exists a surjective positive operator F → E);

(c) if (E,E+) is isomorphically a retract of (F, F+), and if (F, F+) is isomorphically
a retract of (G,G+), then (E,E+) is isomorphically a retract of (G,G+).

(d) If (E,E+) is isomorphically a retract of (F.F+), then (E∗, E∗+) is isomorphically
a retract of (F ∗, F ∗+). After all, if T : E → F and S : F → E are positive linear
maps with idE = S ◦ T , then S∗ : E∗ → F ∗ and T ∗ : F ∗ → E∗ are positive
linear maps with

idE∗ = (idE)∗ = (S ◦ T )∗ = T ∗ ◦ S∗.

By Remark 12.14(b), if F+ ⊆ F is generating, then a retract E ⊆ F is uniquely
determined by its positive part E+ := E ∩ F+, so instead of saying that E is a retract
of (F, F+) we will simply say that E+ is a retract of F+.
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Example 12.15. We present some examples of retracts.

(a) If E is finite-dimensional and E+ is a closed and proper convex cone, then every
(not necessarily extremal) ray in E+ is a retract. Indeed, let x0 ∈ E+ \ {0}
be arbitrary, and let ϕ0 ∈ E∗+ be a strictly positive linear functional. Then

1
ϕ0(x0) · ϕ0 ⊗ x0 defines a positive projection onto span(x0).

(b) If n ≤ m, then Rn≥0 is a retract of Rm≥0, for instance via the maps Rn → Rm and
Rm → Rn given respectively by padding with zeroes and projecting onto the
first n coordinates. Although (a) shows that these are not the only retracts, we
will show in Lemma 13.5 that every retract of a simplex cone is once again a
simplex cone.

(c) In the same manner, if n ≤ m, then Sn+ is a retract of Sm+ , and Hn+ is a retract
of Hm+ .

(d) If n ≤ m, then Ln is a retract of Lm via the maps T : Rn → Rm, S : Rm → Rn
given by

T (x1, . . . , xn) = (x1, . . . , xn−1, 0, . . . , 0, xn);

S(y1, . . . , ym) = (y1, . . . , yn−1, ym).

(e) Rn≥0 is a retract of Sn+ via the map T : Rn → Sn that maps x to the diagonal
matrix whose entries are specified by x, and the map S : Sn → Rn that maps A
to the diagonal of A.

(f) Sn+ is a retract of Hn+, via the maps T : Sn → Hn, A 7→ A and S : Hn → Sn,
A 7→ 1

2 (A+A).

(g) Hn+ is a retract of S2n
+ , via the maps T : Hn → S2n and S : S2n → Hn given by

T (A+ iB) =
(
A −B
B A

)
, S

(
A1 A2
A3 A4

)
= 1

2(A1 +A4) + i

2(A3 −A2). 4

A more advanced example occurs in polyhedral cones. If E+ is a proper and
generating polyhedral cone with extremal directions {x0, . . . , xk}, then a vertex figure
at x0 is a subcone of the form E+ ∩ ker(ϕ0), where ϕ0 ∈ E∗ is a linear form such that
ϕ0(x0) < 0 and ϕ0(xi) > 0 for all i > 0. Vertex figures are combinatorially dual to
facets (e.g. [Brø83, Theorem 11.5]).

Proposition 12.16. Let E be finite-dimensional and let E+ ⊆ E be a proper and
generating polyhedral cone. Then every vertex figure and every facet of E+ is a retract.

Proof. Let x0, . . . , xk be the extremal directions of E+, and suppose that ϕ0 ∈ E∗
defines a vertex figure at x0 (i.e. ϕ0(x0) < 0 and ϕ0(xi) > 0 for all i > 0). We show
that E+ ∩ ker(ϕ0) is a retract.
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By scaling, we may assume without loss of generality that ϕ0(x0) = −1. Define
Pϕ0 : E → E by y 7→ y + ϕ0(y)x0. We show that Pϕ0 is a positive projection onto
ker(ϕ0). For all y ∈ E we have

ϕ0(Pϕ0(y)) = ϕ0(y) + ϕ0(y)ϕ0(x0) = ϕ0(y)− ϕ0(y) = 0,

which shows that ran(Pϕ0) ⊆ ker(ϕ0). Furthermore, if y ∈ ker(ϕ0), then Pϕ0(y) =
y + 0 = y, so Pϕ0 is a projection onto ker(ϕ0). To prove positivity, it suffices to show
that Pϕ0(xi) ∈ E+ for all i. We distinguish two cases:

• For i = 0, we have Pϕ0(x0) = x0 + ϕ0(x0)x0 = x0 − x0 = 0 ∈ E+.

• For i > 0, we have ϕ0(xi) > 0, hence Pϕ0(xi) = xi + ϕ0(xi)x0 ∈ E+.

This shows that every vertex figure is a retract. Additionally, note that ker(Pϕ0) =
span(x0); this will be used in the second part of the proof.

Now let M ⊆ E+ be a facet. Then M corresponds with an extremal direction
ψ0 ∈ E∗+ \ {0} of the dual cone, in such a way that M⊥ = span(ψ0). Choose a
vertex figure N ⊆ E∗+ at ψ0. The preceding argument shows that there are positive
linear maps T : span(N) ↪→ E∗ and S : E∗ � span(N) such that idspan(N) = ST .
Furthermore, the construction gives us the additional property that ker(S) = span(ψ0).
Dualizing the retract (see Remark 12.14(d)) shows that span(N)∗ is isomorphically
a retract of E, by means of the maps S∗ : span(N)∗ ↪→ E and T ∗ : E � span(N)∗.
Since ran(S∗) = ⊥ ker(S) = ⊥{ψ0} = span(M), this shows that M is a retract of
E+. �

Remark 12.17. In fact, retractions give a geometric duality between facets and
vertex figures (in addition to the well-known combinatorial duality). If M ⊆ E+ is a
facet corresponding to the extremal direction ψ0 ∈ E∗+ \ {0} of the dual cone, then
one can show that:

• every vertex figure at ψ0 admits a unique positive projection (namely, the one
from the proof of Proposition 12.16);

• there is a bijective correspondence between vertex figures at ψ0 and positive
projections E → span(M) that map every element of E+ \M in the relative
interior of M .

As we have no use for this, the proof is omitted.

Retracts can be useful in the theory of ordered tensor products. For instance,
in Example 9.7 and Example 10.20 we proved that the projective cone does not
preserve subspaces and the injective cone does not preserve quotients, but retracts are
sufficiently rigid to be preserved by both (a similar role is played by complemented
subspaces in the theory of normed tensor products). The following result shows that
retracts can also be useful for comparing the projective and injective cones.

Proposition 12.18 (cf. [ALP19, Proposition 8]). Let G and H be finite-dimensional
real vector spaces, let G+ ⊆ G, H+ ⊆ H be closed convex cones, and let E ⊆ G and
F ⊆ H be retracts. If E+ ⊗π F+ 6= E+ ⊗ε F+, then G+ ⊗π H+ 6= G+ ⊗ε H+.
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Proof. We prove the contrapositive: assuming that G+ ⊗π H+ = G+ ⊗ε H+, we prove
that E+ ⊗π F+ = E+ ⊗ε F+. By Remark 12.14(d), we may identify E∗ with a retract
of G∗. Choose positive projections πE∗ : G∗ � E∗ and πF : H � F .

Let T : E∗ → F be a positive linear map. Since every positive operator G∗ → H
factors through a simplex cone, we may choose positive operators S1 : G∗ → Rm and
S2 : Rm → H (where Rm carries the standard cone Rm≥0) so that the following diagram
commutes:

G∗ Rm H

E∗ E∗ F F.

πE∗

S1 S2

πF

idE∗

T

T idF

Now T : E∗ → F factors through a simplex cone, so T ∈ E+ ⊗π F+. �

In Chapter 13, we will show that G+ ⊗π H+ 6= G+ ⊗ε H+ for a large class of
cones. For combinations of standard cones, we will use Proposition 12.18 to reduce the
problem to 3-dimensional cones (see Theorem 13.13). However, it was shown in [ALP19,
Lemma S14] that most convex cones do not have retracts3, so having retracts is an
exceptional property. Hence, for non-standard cones G+ and H+, different strategies
are needed to show that G+ ⊗π H+ 6= G+ ⊗ε H+. Several such techniques will be
discussed in the next chapter.

3More precisely, for n ≥ 4, the set of (n− 1)-dimensional convex bodies whose homogenizations
have an (n− 1)-dimensional retract is meagre with respect to the Hausdorff measure.



Chapter 13
Many examples where the projective

and injective cone differ

In this chapter, we provide many examples where the projective cone is closed
and strictly contained in the injective cone. This proves a conjecture of Barker
for nearly all closed, proper and generating convex cones in finite-dimensional
spaces. Independently, the conjecture was proved in full in simultaneous work by
Aubrun, Lami, Palazuelos and Plávala [ALPP21].

This chapter is based on Chapter 7 of [Dob20b].

Introduction

A question which has attracted considerable attention is under which circumstances
the projective cone E+ ⊗π F+ is dense in the injective cone E+ ⊗ε F+. Birnbaum
[Bir76, Prop. 3] showed that this is always the case if E and F are locally convex
lattices, and gave an example which shows that it is not true in general. However, the
infinite-dimensional version of this problem does not appear to be well understood.

A lot more is known in the finite-dimensional case (with closed, proper and
generating cones). In this setting, the projective cone is automatically closed, so the
question is now whether or not the two cones coincide. In [Bar76, p. 197], Barker asked
to find precise necessary and sufficient conditions for the two cones to coincide, and
later formulated the following conjecture:

Conjecture 13.1 (Barker, [Bar81, p. 277]). Let E,F be finite-dimensional, and let
E+ ⊆ E, F+ ⊆ F be closed, proper and generating convex cones. Then E+ ⊗π F+ 6=
E+ ⊗ε F+ unless at least one of E+ and F+ is a simplex cone.

Various partial results in this direction have been obtained over the years. Before
Barker formulated his conjecture, it had already been proved in the case that F+ = E∗+
by Barker and Loewy [BL75], and in the case that E+ and F+ are polyhedral by Poole
[Poo75, Thm. 5.15]. More recently, Huber and Netzer [HN21] proved it in the case
that E+ is polyhedral and F+ is a positive semidefinite cone (or vice versa).

173
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In this chapter, we prove Conjecture 13.1 for nearly all1 convex cones, thereby
also providing new proofs for each of the aforementioned known cases. First, in §13.1,
we give another proof for the case F+ = E∗+, and we extend the aforementioned
result of Barker and Loewy [BL75] to non-proper closed cones. Then, in §13.2, we
give another proof for the polyhedral case, originally due to Poole [Poo75, Thm.
5.15]. Our main contribution comes in §13.3, where we prove the conjecture when
dim(E) ≥ dim(F ) and E+ is smooth or strictly convex. Finally, in §13.4, we prove it
for all possible combinations of standard cones (polyhedral cones, second-order cones,
and positive semidefinite cones), thereby also providing a new proof of the mixed
polyhedral/positive semidefinite case settled by Huber and Netzer [HN21].

Although some of the cases we prove had been known before, all proofs in this
chapter are original. However, as the manuscript [Dob20b] upon which this part is
based was being written, the results from this chapter were superseded by independent
work of Aubrun, Lami, Palazuelos and Plávala [ALPP21], who were able to prove
Conjecture 13.1 in full generality. Our results were obtained independently around the
same time, and the proofs are completely different.

13.1 The tensor product of a closed convex cone with its dual

The simplest case where the projective and injective cone are different occurs when
considering the tensor product of a closed convex cone with its dual. The main result
of this section, Theorem 13.2, is a slight extension of a well-known result of Barker
and Loewy [BL75, Prop. 3.1] (see also [Tam77b, Thm. 4]), who proved it for convex
cones that are closed, proper and generating. The proof below is much simpler than
the original proof in [BL75], since it was not realized at the time that the projective
tensor product of closed convex cones is automatically closed, but comparable in size
with Tam’s alternative proof [Tam77b, Thm. 4].

If E+ and F+ are closed, then by Corollary 12.2 one has E∗+ ⊗π F+ = E∗+ ⊗ε F+
if and only if every positive linear map E → F factors through a simplex cone. This
language makes it much easier to think about the difference between projective and
injective cones.

If T or S factors through a simplex cone, then so does the composition S ◦ T . This
shows that the separable positive operators form an ideal in the semiring of positive
operators. (Ideals of operators also play an important role in the theory of normed
tensor products; e.g. [DF93]. We won’t make much use of this terminology.)

Theorem 13.2 (cf. [BL75, Prop. 3.1], [Tam77b, Thm. 4]). Let E be finite-dimensional
and let E+ ⊆ E be a closed convex cone. Then the following are equivalent:

(i) E+ is a simplex cone;

(ii) idE : E → E is separable (i.e. factors through a simplex cone);

(iii) for every positive linear map T : E → E, one has tr(T ) ≥ 0;
1The term ‘nearly all’ has a precise meaning; namely, up to a σ-porous set. Since the set of closed,

proper and generating convex cones which are not smooth or not strictly convex form a σ-porous set
[Zam87], the results in this chapter prove Conjecture 13.1 for nearly all E+ and F+.
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(iv) for every finite-dimensional real vector space F and every closed convex cone
F+ ⊆ F , one has E∗+ ⊗π F+ = E∗+ ⊗ε F+;

(v) for every finite-dimensional real vector space F and every closed convex cone
F+ ⊆ F , one has F+ ⊗π E+ = F+ ⊗ε E+;

(vi) E∗+ ⊗π E+ = E∗+ ⊗ε E+.

Proof. (i) =⇒ (ii). Let x1, . . . , xd be a basis of E which generates E+, and
let x∗1, . . . , x∗d be the corresponding dual basis. Then x∗1, . . . , x

∗
d ∈ E∗+, and idE =∑d

i=1 x
∗
i ⊗ xi.

(ii)⇐⇒ (iii). The trace tr ∈ L(E,E)∗ = (E∗ ⊗ E)∗ = E ⊗ E∗ is the transpose of
the identity idE ∈ L(E,E) = E∗ ⊗ E. Since (E∗+ ⊗ε E+)∗ = E+ ⊗π E∗+, we see that
the trace defines a positive linear functional (i.e. tr ∈ (E∗+ ⊗ε E+)∗) if and only if idE
is separable (i.e. idE ∈ E∗+ ⊗π E+).

(ii) =⇒ (iv) and (ii) =⇒ (v). Since idE : E → E factors through a simplex cone,
so do all positive linear maps to or from E:

Rm Rm

or

F ∗ E E E E F.
idE idE

Therefore F+ ⊗π E+ = F+ ⊗ε E+ and E∗+ ⊗π F+ = E∗+ ⊗ε F+.
(iv) =⇒ (vi) and (v) =⇒ (vi). Clear.
(vi) =⇒ (ii). Note that idE : E → E is positive.
(ii) =⇒ (i). Write idE =

∑k
i=1 ϕi ⊗ xi with ϕ1, . . . , ϕk ∈ E∗+, x1, . . . , xk ∈ E+.

For arbitrary x ∈ E+ we have x = idE(x) =
∑k
i=1 ϕi(x)xi with ϕ1(x), . . . , ϕk(x) ≥ 0,

so we see that E+ is generated by x1, . . . , xk. In particular, it follows that E+ is a
polyhedral cone. Furthermore, since we have E = ran(idE) ⊆ span(x1, . . . , xk), it
follows that x1, . . . , xk must span E, so E+ is generating. Dually, if x,−x ∈ E+, then
ϕ1(x) = . . . = ϕk(x) = 0, hence x = idE(x) =

∑k
i=1 ϕi(x)xi = 0, which shows that E+

is a proper cone.
Since both E+ and E∗+ are proper polyhedral cones, each has a finite number of

extremal rays generating the cone. Let {ψi}ni=1 and {yj}mj=1 be (representatives of)
the extremal directions of E∗+ and E+, respectively. Writing every ϕi and every xj as
a positive combination of the extremal rays, we can expand our expression of idE to

idE =
n∑
i=1

m∑
j=1

λijψi ⊗ yj , with λij ≥ 0 for all i and all j.

For every j we have yj = idE(yj) =
∑n
i=1
∑m
k=1 λikψi(yj)yk =

∑n
i=1 λijψi(yj)yj , for

by extremality of yj the terms λikψi(yj)yk with k 6= j must be zero. It follows that∑n
i=1 λijψi(yj) = 1 for all j. Therefore:

dim(E) = tr(idE) = tr

 n∑
i=1

m∑
j=1

λijψi ⊗ yj

 =
m∑
j=1

n∑
i=1

λijψi(yj) =
m∑
j=1

1 = m.
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Since span(y1, . . . , ym) = span(E+) = E, it follows that y1, . . . , ym is a basis of E.
This proves that E+ is a simplex cone. �

Remark 13.3. Taking the tensor product of a space with its dual is also a common
technique in the theory of normed tensor products. For instance, Theorem 13.2 is very
similar to a result about the approximation property; see [DF93, Theorem 5.6].

The following corollary is immediate.

Corollary 13.4. Let E+ ⊆ Rn be a self-dual cone. Then E+ ⊗π E+ = E+ ⊗ε E+ if
and only if E+ is a simplex cone.

In particular, it follows that Sn+ ⊗π Sn+ 6= Sn+ ⊗ε Sn+ and Hn+ ⊗π Hn+ 6= Hn+ ⊗ε Hn+
whenever n ≥ 2. This has been known for a long time in relation to quantum theory
and C∗-algebras, and is related to the difference between positive and completely
positive operators. The interested reader is encouraged to refer to the expository article
by Ando [And04, §2].

13.2 Tensor products of polyhedral cones

In this section, we prove Conjecture 13.1 for polyhedral cones (see Theorem 13.8 below).
This was originally proved by Poole in 1975 [Poo75, Thm. 5.15], and rediscovered
recently by Aubrun, Lami, and Palazuelos [ALP19, Result 2] and (independently) by the
author [Dob20b]. We follow the proof of [Dob20b], which uses a simple combinatorial
argument in terms of the face lattice.

First, we use retracts to reduce the problem to the 3-dimensional case. Using the
results from §12.4 and §13.1, we can prove the following lemmas.

Lemma 13.5. Every retract of a finite-dimensional simplex cone is a simplex cone.

Proof. Let F+ be a finite-dimensional simplex cone and let E+ be a retract of F+. By
Theorem 13.2, we have E∗+ ⊗π F+ = E∗+ ⊗ε F+, so it follows from Proposition 12.18
that E∗+ ⊗π E+ = E∗+ ⊗ε E+. Another application of Theorem 13.2 shows that E+ is
a simplex cone. �

Lemma 13.6. Let E be finite-dimensional and let E+ ⊆ E be a proper and generating
polyhedral cone. Then E+ is a simplex cone if and only if every 3-dimensional retract
of E+ is a simplex cone.

Proof. If dim(E) ≤ 2, then E+ is automatically a simplex cone, and there are no
3-dimensional retracts, so the statement is vacuously true.

Assume dim(E) ≥ 3. If E+ is a simplex cone, then every retract of E+ is a simplex
cone, by Lemma 13.5. Conversely, if E+ is not a simplex cone, then one of the following
must be true (use [Brø83, Theorem 12.19] and homogenization):

• dim(E+) = 3;

• E+ has a facet that is not a simplex cone;
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• E+ has a vertex figure that is not a simplex cone.

Since facets and vertex figures are retracts (Proposition 12.16), it follows by induction
that E+ has a 3-dimensional retract that is not a simplex cone. �

All that remains is to prove that the projective and injective tensor products of
two 3-dimensional polyhedral cones are different, unless one of the two is a simplex
cone. For this we use a combinatorial argument, based on the results from Chapter 9.
(For a different proof, see [ALP19].)

The proof essentially boils down to finding a combinatorial obstruction. The high-
level idea behind the proof is that, if E+ ⊗π F+ = E+ ⊗ε F+, then (E+ ⊗π F+)∗ =
E∗+ ⊗π F ∗+, so by Theorem 9.22 we known exactly what the extremal rays of E+ ⊗π F+
and (E+ ⊗π F+)∗ are. This gives us enough information to determine the face lattice
of E+ ⊗π F+. However, if both E+ and F+ have at least 4 extremal rays, then it turns
out that the lattice thus obtained is not graded (in other words, it contains maximal
chains of different lengths), which contradicts a well-known property of polyhedral
cones.

The proof below uses slightly different terminology than the preceding high-level
idea, and does not proceed by contradiction.

Lemma 13.7. Let E+ and F+ be proper and generating polyhedral cones in R3. Then
E+ ⊗π F+ = E+ ⊗ε F+ if and only if at least one of E+ and F+ is a simplex cone.

Proof. A proper and generating polyhedral cone in R3 is the homogenization of a
polygon. Let v1, . . . , vm ∈ R3 be (representatives of) the extremal directions of E+ in
such a way that the neighbours of vi are vi−1 and vi+1 (modulo m). In the same way,
let w1, . . . , wn ∈ F+ be the extremal directions of F+ (in cyclic order). Furthermore,
let ϕ1, . . . , ϕm ∈ E∗+ and ψ1, . . . , ψn ∈ F ∗+ be the extremal directions of E∗+ and F ∗+,
in such a way that ϕi (resp. ψj) represents the facet of E+ (resp. F+) that contains vi
and vi+1 (resp. wj and wj+1).

If E+ or F+ is a simplex cone, then E+ ⊗π F+ = E+ ⊗ε F+ by Theorem 13.2. So
assume that neither E+ nor F+ is a simplex cone, i.e. m,n ≥ 4. We show by a combina-
torial argument that (E+ ⊗π F+)∗ must be larger than E∗+ ⊗π F ∗+ = (E+ ⊗ε F+)∗.

By Theorem 9.22, the extremal directions of the projective cone E+ ⊗π F+ are given
by {vi ⊗ wj : i ∈ [m], j ∈ [n]}, and the extremal directions of E∗+ ⊗π F ∗+ are given by
{ϕi⊗ψj : i ∈ [m], j ∈ [n]}. Furthermore, by Corollary 11.4(b), the extremal directions
of E∗+ ⊗π F ∗+ are also extremal for the (larger) cone (E+ ⊗π F+)∗ = E∗+ ⊗ε F ∗+. To
complete the proof, we show that this larger cone must have extremal directions
which are not of the form ϕi ⊗ ψj . (By Corollary 11.4(b), these must have rank ≥ 2.)
Equivalently, the projective cone E+ ⊗π F+ must have facets which cannot be written
as the tensor product of a facet in E+ and a facet in F+.

Given k ∈ [m] and ` ∈ [n], let Fk,` denote the facet of E+ ⊗π F+ corresponding to
the extremal direction ϕk ⊗ ψ` ∈ (E+ ⊗π F+)∗ = E∗+ ⊗ε F ∗+. The extremal directions
in Fk,` are those vi⊗wj with i ∈ {k, k+ 1} or j ∈ {`, `+ 1}, for one has vi⊗wj ∈ Fk,`
if and only if 0 = 〈vi ⊗ wj , ϕk ⊗ ψ`〉 = 〈vi, ϕk〉〈wj , ψ`〉. In particular, Fk,` contains
2m+ 2n− 4 extremal rays.
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We proceed to consider a specific intersection of the Fk,`, namely

C := F1,1 ∩ F1,2 ∩ F3,3 ∩ F3,4.

Clearly C is a face of E+ ⊗π F+. We claim that C contains only 4 extremal rays. To
that end, note that F1,1 ∩ F3,3 contains exactly 8 extremal rays, namely vi ⊗ wj with
(i, j) ∈ ({1, 2} × {3, 4})∪ ({3, 4} × {1, 2}). This is illustrated in the figure below (with
m = 6 and n = 8).

m

n

F1,1 F3,3 F1,1 ∩ F3,3

∩ =

Similarly, F1,2∩F3,4 has the same pattern, but shifted one step in the second coordinate,
so we see that the intersection of F1,1 ∩ F3,3 and F1,2 ∩ F3,4 contains 4 extremal rays:

m

n

F1,1 ∩ F3,3 F1,2 ∩ F3,4 C

∩ =

(We have to be aware of a subtlety here: if n = 4, then the pattern of F1,2 ∩ F3,4 is
“wrapped around” from right to left, but this does not affect the conclusion.)

Since C contains 4 extremal rays, we have dim(C) ≤ 4. However, note that the
only Fk,` containing C are the four facets defining C. Since we know from classical
polyhedral geometry that C must be contained in at least 9 − dim(C) ≥ 5 facets,
this shows that E+ ⊗π F+ has facets which are not of the form Fk,`. Equivalently,
the dual cone (E+ ⊗π F+)∗ = E∗+ ⊗ε F ∗+ has extremal directions which are not of
the form ϕi ⊗ ψj , so we have E∗+ ⊗ε F ∗+ 6= E∗+ ⊗π F ∗+. By duality, it follows that
E+ ⊗π F+ 6= E+ ⊗ε F+. �

Theorem 13.8 ([Poo75, Thm. 5.15]). Let G,H be finite-dimensional and let G+ ⊆ G,
H+ ⊆ H be proper and generating polyhedral cones. Then G+ ⊗π H+ = G+ ⊗ε H+ if
and only if at least one of G+ and H+ is a simplex cone.

Proof. If G+ or H+ is a simplex cone, then it follows from Theorem 13.2 that
G+ ⊗π H+ = G+ ⊗ε H+. So assume that neither G+ nor H+ is a simplex cone.
By Lemma 13.6, we may choose 3-dimensional retracts E+ (resp. F+) of G+ (resp.
H+) such that neither E+ nor F+ is a simplex cone. It follows from Lemma 13.7 that
E+ ⊗π F+ 6= E+ ⊗ε F+, hence it follows from Proposition 12.18 that G+ ⊗π H+ 6=
G+ ⊗ε H+. �
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13.3 Tensor product with a smooth or strictly convex cone

In this section, we prove Conjecture 13.1 in the case that dim(E) ≥ dim(F ) and E+
is smooth or strictly convex. (This is Theorem J from Chapter 7.) The argument is
based on a generalized John’s decomposition of the identity.

We recall some common terminology. A convex body is a compact convex set
C ⊆ Rn with non-empty interior. The (one-sided) polar of C is the set C◦ = {y ∈
(Rn)∗ : 〈x, y〉 ≤ 1 for all x ∈ C}. An affine transformation is an invertible affine map
Rn → Rn; that is, a map of the form x 7→ T0x+ y0 with T0 ∈ GLn(R) and y0 ∈ Rn
fixed.

If C1, C2 ⊆ Rn are convex bodies, then a compactness argument shows that there
is an affine transformation T such that T [C1] ⊆ C2 and vol(T [C1]) is maximal among
all affine transformations T ′ for which T ′[C1] ⊆ C2. If the maximum is attained for
T = In (the identity transformation), then we say that C1 is in a maximum volume
position inside C2. Furthermore, we say that C1 is in John’s position inside C2 if
C1 ⊆ C2 and there exist m ∈ N, x1, . . . , xm ∈ ∂C1 ∩∂C2, y1, . . . , ym ∈ ∂C◦1 ∩∂C◦2 and
λ1, . . . , λm > 0 such that 〈xi, yi〉 = 1 for all i, and

In =
m∑
i=1

λixi ⊗ yi and 0 =
m∑
i=1

λixi =
m∑
i=1

λiyi.

Gordon, Litvak, Meyer and Pajor [GLMP04] proved the following result, building on
earlier extensions ([GPT01, BR02]) of Fritz John’s classical theorem ([Joh48]).

Theorem 13.9 ([GLMP04, Theorem 3.8]). Let C1, C2 ⊆ Rn be convex bodies such
that C1 is in a maximum volume position inside C2. Then there exists z ∈ int(C1)
such that C1 − z is in John’s position inside C2 − z.

For our purposes, we will only need the following (much weaker) corollary.

Corollary 13.10. Let C1, C2 ⊆ Rn be convex bodies. Then there is an affine trans-
formation T : Rn → Rn such that T [C1] ⊆ C2 and ∂T [C1] ∩ ∂C2 contains an affine
basis of Rn.

(Equivalently, there is a T such that T [C1] ⊆ C2 and the set of points where T [C1]
and C2 touch is not contained in an affine hyperplane.)

Proof of Corollary 13.10. Let T : Rn → Rn be an affine transformation such that
T [C1] is in a maximum volume position inside C2. By Theorem 13.9, we may choose z ∈
int(T [C1]), m ∈ N, x1, . . . , xm ∈ ∂(T [C1]−z)∩∂(C2−z), y1, . . . , ym ∈ ∂(T [C1]− z)◦∩
∂(C2 − z)◦ and λ1, . . . , λm > 0 such that 〈xi, yi〉 = 1 for all i, and

In =
m∑
i=1

λixi ⊗ yi and 0 =
m∑
i=1

λixi =
m∑
i=1

λiyi. (∗)

After an appropriate rescaling of the λi, the second formula in (∗) shows that 0 ∈
aff(x1, . . . , xm), so it follows that aff(x1, . . . , xm) = span(x1, . . . , xm). Moreover, it
follows immediately from the first formula in (∗) that span(x1, . . . , xm) = Rn, so we
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conclude that {x1, . . . , xm} contains an affine basis, say x1, . . . , xn+1. Consequently,
x1 + z, . . . , xn+1 + z is an affine basis in ∂T [C1] ∩ ∂C2. �

Since every closed and proper convex cone has a compact base, the following
homogenization of Corollary 13.10 follows immediately.

Corollary 13.11. Let E and F be finite-dimensional real vector spaces with dim(E) =
dim(F ), and let E+ ⊆ E, F+ ⊆ F be closed, proper, and generating convex cones.
Then there exists a positive linear transformation T : E → F such that ∂T [E+] ∩ ∂F+
contains a (linear) basis of F .

Using the preceding results, we can prove the main result of this section.

Theorem 13.12. Let E, F be finite-dimensional real vector spaces, and let E+ ⊆ E,
F+ ⊆ F be closed, proper, and generating convex cones. If dim(E) ≥ dim(F ), and if
E+ is strictly convex or smooth, then one has E+ ⊗π F+ = E+ ⊗ε F+ if and only if
F+ is a simplex cone.

Proof. First assume that E+ ⊗π F+ = E+ ⊗ε F+, with E+ strictly convex and
dim(E) ≥ dim(F ). Choose an interior point x0 ∈ E+ and a linear subspace G ⊆ E of
dimension dim(F ) through x0. Then G+ := G ∩E+ is closed, proper, and generating,
so by Corollary 13.11 we may choose a positive linear isomorphism T : F ∗ → G
such that ∂T [F ∗+] ∩ ∂G+ contains a basis {b1, . . . , bm} of G. Note that every bi is
also a boundary point of E+ (this a basic property of topological boundaries), and
therefore an extremal direction of E+ (since E+ is strictly convex). For all i, write
ai := T−1(bi) ∈ ∂F ∗+; then {a1, . . . , am} is a basis of F ∗.

If ι : G ↪→ E denotes the inclusion, then ι◦T : F ∗ → E is positive, so by assumption
we may write ι ◦ T =

∑k
i=1 yi ⊗ xi with x1, . . . , xk ∈ E+ and y1, . . . , yk ∈ F+ (where

the yi act as linear functionals on F ∗). Since bi is extremal and

bi = T (ai) =
k∑
j=1
〈yj , ai〉xj ,

it follows that at least one of the xj is a positive multiple of bi, and 〈yj , ai〉 = 0
whenever xj is not a positive multiple of bi. In particular, if xj is not a positive
multiple of any one of the bi, then 〈yj , ai〉 = 0 for all i, so yj = 0 (since {a1, . . . , am}
is a basis of F ∗). Thus, after removing the zero terms, every xj is a positive multiple
of some bi, and so in particular belongs to T [F ∗+]. This shows that not only ι ◦ T , but
also T is separable, and not only with respect to the cones F ∗+ and G+, but even with
respect to the cones F ∗+ and T [F ∗+]. Since idF∗ = T−1 ◦ T , it follows from the ideal
property of separable operators that idF∗ is also separable. Hence, by Theorem 13.2,
F ∗+ is a simplex cone. Since F+ is closed, it follows that F+ = F ∗∗+ is also a simplex
cone.

Now assume that E+ ⊗π F+ = E+ ⊗ε F+ with E+ smooth and dim(E) ≥ dim(F ).
By duality (see Corollary 12.13(b)), it follows that

E∗+ ⊗π F ∗+ = (E+ ⊗ε F+)∗ = (E+ ⊗π F+)∗ = E∗+ ⊗ε F ∗+.
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Since E+ is smooth, the dual cone E∗+ is strictly convex, so it follows from the first
part of the proof that F ∗+ must be a simplex cone. Since F+ is closed, it follows that
F+ = F ∗∗+ is also a simplex cone. �

13.4 Tensor products of standard cones; applications to
operator systems

In this section, we prove Conjecture 13.1 for all combinations of standard cones, thereby
proving Theorem K and Corollary M from Chapter 7. Just as in §13.2, we use retracts
(see §12.4) to reduce the problem to the three-dimensional case.

Standard cones
By combining the results obtained thus far, we can easily prove Conjecture 13.1 for
all combinations of standard cones.

Theorem 13.13 (cf. [Poo75, HN21]). Let G, H be finite-dimensional real vector
spaces, and let G+ ⊆ G, H+ ⊆ H be closed, proper, and generating convex cones.
Assume that each of G+ and H+ is one of the following (all combinations allowed):

(i) a polyhedral cone;

(ii) a second-order cone Ln;

(iii) a (real or complex) positive semidefinite cone Sn+ or Hn+.

Then one has G+ ⊗π H+ = G+ ⊗ε H+ if and only if at least one of G+ and H+ is a
simplex cone.

Proof. Suppose that neither G+ nor H+ is a simplex cone. We claim that G+ (resp. H+)
has a three-dimensional retract E+ (resp. F+) which is isomorphic with one of the
following:

• the three-dimensional Lorentz cone L3 (which is isomorphic to S2
+);

• a proper and generating polyhedral cone P ⊆ R3 that is not a simplex cone.

To prove the claim, we distinguish three cases:

• If G+ is polyhedral, then this follows from Lemma 13.6.

• If G+ = Ln, then the assumption that G+ is not a simplex cone forces n ≥ 3.
Hence it follows from Example 12.15(d) that L3 is a retract of G+.

• If G+ = Sn+ or Hn+, then the assumption that G+ is not a simplex cone forces
n ≥ 2, so it follows from Example 12.15(c) and Example 12.15(f) that S2

+ (∼= L3)
is a retract of G+.

Next, we show that E+ ⊗π F+ 6= E+ ⊗ε F+, again distinguishing three cases.
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• If E+ = F+ = L3, then this follows from Corollary 13.4, since the Lorentz cone
is self-dual.

• If E+ = L3 and F+ is polyhedral (or vice versa), then this follows from Theo-
rem 13.12, since L3 is strictly convex and dim(E) = dim(F ).

• The case where both E+ and F+ are polyhedral follows from Lemma 13.7.

Since E+ and F+ are retracts of G+ and H+ satisfying E+ ⊗π F+ 6= E+ ⊗ε F+, it
follows from Proposition 12.18 that G+ ⊗π H+ 6= G+ ⊗ε H+. �

Operator systems

Some of our results can be reformulated in terms of operator systems. Let C ⊆ Rd
be a closed, proper, and generating convex cone, and let n ∈ N1 be a positive
integer. Following notation from [FNT17], we denote the projective and injective
tensor products Hn+ ⊗π C and Hn+ ⊗ε C by Cmin

n and Cmax
n , respectively, and we

write Cmin = {Cmin
n }∞n=1 and Cmax = {Cmax

n }∞n=1.

Corollary 13.14 (Special case of [ALPP21, Corollary 2]). Let C ⊆ Rd be a closed,
proper, and generating convex cone. If d ≤ 4, or if C is strictly convex, or smooth, or
polyhedral, or (real or complex) positive semidefinite, then the following are equivalent:

(i) C is a simplex cone;

(ii) the minimal and maximal operator systems Cmin and Cmax are equal;

(iii) there exists n ≥ 2 for which Cmin
n = Cmax

n ;

(iv) one has Cmin
2 = Cmax

2 .

Proof. (i) =⇒ (ii). This follows from Theorem 13.2.
(ii) =⇒ (iii). Trivial.
(iii) =⇒ (iv). If Hn+ ⊗π C = Hn+ ⊗ε C for some n ≥ 2, then it follows from

Proposition 12.18 that H2
+ ⊗π C = H2

+ ⊗ε C, since H2
+ is a retract of Hn+, by Exam-

ple 12.15(c).
(iv) =⇒ (i). First we prove that H2

+ is strictly convex. Indeed, the interior points
of H2

+ are the positive definite matrices, so the boundary points are the singular 2× 2
positive semidefinite matrices. Consequently, a non-zero boundary point of H2

+ must
be a rank one positive semidefinite matrix, which is known to be extremal (it is a
positive multiple of a rank one orthogonal projection).

Now suppose that C is of one of the forms described in the theorem, but not
a simplex cone. If d ≤ dim(H2) = 4, or if C is smooth or strictly convex, then it
follows from Theorem 13.12 that H2

+ ⊗π C 6= H2
+ ⊗ε C. If C is positive semidefinite

or polyhedral (but not a simplex cone), then it follows from Theorem 13.13 that
H2

+ ⊗π C 6= H2
+ ⊗ε C. Either way, we have Cmin

2 6= Cmax
2 . �
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13.5 Closing remarks

As mentioned before, Aubrun, Lami, Palazuelos and Plávala [ALPP21] independently
proved Conjecture 13.1 in full generality.

Theorem 13.15 ([ALPP21, Theorem A]). Let E, F be finite-dimensional real vector
spaces, and let E+ ⊆ E, F+ ⊆ F be closed, proper, and generating convex cones. Then
one has E+ ⊗π F+ = E+ ⊗ε F+ if and only if at least one of E+ and F+ is a simplex
cone.

The following example shows that this is no longer true if we omit the requirement
that E+ or F+ is proper or generating.

Example 13.16. Let F+ ⊆ F be a “partial simplex cone”; that is, a cone generated
by m < dim(F ) linearly independent vectors x1, . . . , xm ∈ F . Furthermore, let E be
another finite-dimensional space, and let E+ ⊆ E be an arbitrary closed, proper, and
generating cone.

Since E+ is generating, every positive linear map T : E → F has its range contained
in span(F+). Since span(F+) is ordered by a simplex cone, this shows that every positive
linear map E → F is simplex-factorable, hence E∗+ ⊗π F+ = E∗+ ⊗ε F+. 4

In the preceding example, E∗+ and F+ are closed and proper and E∗+ is generating,
so the requirement that F+ is generating cannot be omitted from Theorem 13.15.
Furthermore, by duality, we also have E+ ⊗π F ∗+ = E+ ⊗ε F ∗+, which shows that the
requirement that F+ is proper cannot be omitted either.

In a sense, a partial simplex cone (or its dual) is almost a simplex cone. In fact,
we can extend Theorem 13.15 to show that all examples must be of this form. If E+
is a closed convex cone, then we define the proper reduction prop(E+) of E+ as the
positive cone of span(E+)/ lin(E+). Equivalently, choose subspaces E1, E2, E3 ⊆ E
such that E1 = lin(E+), E1⊕E2 = span(E+), and E1⊕E2⊕E3 = E; then the proper
reduction of E+ is the positive cone (E2)+ := E2 ∩ E+ of E2, viewed as a closed,
proper, and generating cone in E2. It is readily verified that the projection E → E2,
(e1, e2, e3) 7→ e2 is positive (every projection onto span(E+) is positive, and adding or
subtracting elements of the lineality space does not affect positivity), so prop(E+) is a
retract of E+. Therefore Theorem 13.15 has the following extension.

Corollary 13.17. Let E, F be finite-dimensional real vector spaces, and let E+ ⊆ E,
F+ ⊆ F be closed convex cones. If E+ ⊗π F+ = E+ ⊗ε F+, then at least one of
prop(E+) and prop(F+) is a simplex cone.

Proof. Since prop(E+) and prop(F+) are retracts of E+ and F+, it follows from Propo-
sition 12.18 that prop(E+)⊗π prop(F+) = prop(E+)⊗ε prop(F+). But prop(E+) and
prop(F+) are closed, proper, and generating, so it follows from Theorem 13.15 that at
least one of prop(E+) and prop(F+) must be a simplex cone. �

The converse is not true; it can happen that prop(E+) and prop(F+) are sim-
plex cones but E+ ⊗π F+ 6= E+ ⊗ε F+. This is because prop(E+)⊗π prop(F+) =
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prop(E+)⊗ε prop(F+) does not necessarily imply E+ ⊗π F+ = E+ ⊗ε F+; the impli-
cation of Proposition 12.18 only runs in the other direction. As an extreme example,
consider the case where E+ = {0} and F+ = F ; then one has E+ ⊗π F+ = {0} but
E+ ⊗ε F+ = E⊗F . More generally, Theorem 13.2 shows that E∗+ ⊗π E+ 6= E∗+ ⊗ε E+
whenever E+ is not proper or not generating, regardless of whether or not prop(E+)
is a simplex cone.



Chapter 14
Open problems for Part III

We conclude Part III with a few open problems.

This chapter is based on Chapter 8 of [Dob20b].

Does the closure of the projective cone preserve higher faces? We showed
in §9.4 that the projective cone preserves faces. Furthermore, it follows from Propo-
sition 11.7 that the closure of the projective cone preserves extremal rays (provided
that E+ and F+ are weakly closed). However, we suspect that this result is of limited
use in practice, because infinite-dimensional cones often do not have sufficiently many
extremal rays. Does the closure of the projective cone also preserve higher faces, in a
sense similar to Theorem 9.13? In particular, if E+ and F+ are weakly closed proper
cones and M ⊆ E+ and M ⊆ F+ are faces, then is M ⊗π N w a face of E+ ⊗π F+

w?
As a partial result, it follows from Proposition 11.7(a) that (span(M)⊗ span(N))∩

E+ ⊗π F+
w is a face of E+ ⊗π F+

w, but this can in principle be larger than
M ⊗π N w.

Does the projective norm preserve extreme points? We showed in §9.6 that
the algebraic tensor product conv(C⊗sD) of symmetric convex sets C and D preserves
proper faces. Is this still true if we pass to the closure of conv(C ⊗s D)? In particular,
we do not known whether the projective norm preserves extreme points of the closed
unit ball. See also Remark 9.32.

Is the projective cone still semisimple in the completed projective tensor
product? We showed in §11.3 that every reasonable crosscone in the algebraic tensor
product E⊗F is semisimple whenever the base cones E+ and F+ are semisimple. This
is no longer true if we pass to the completed locally convex tensor product E ⊗̃α F ,
because the injective cone E+ ⊗̃εα F+ is not proper if the natural map E⊗̃αF → E⊗̃εF
fails to be injective (see Corollary 10.23). However, we don’t know the answer if we
match the projective cone with the projective norm; see Question 11.16.

Is there a way to determine all extremal rays of the injective cone? In
§10.6, we showed that the injective cone preserves extremal rays. Corollary 11.4(b)
shows that all extremal rays of tensor rank one are of this form, but Example 10.51

185
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shows that there may be extremal rays of higher rank. Is there a way to determine all
extremal rays of the injective cone?

We note that it was already pointed out earlier by Tam [Tam92, p. 75] that this
appears to be a difficult problem. In fact, it is already difficult for proper and generating
polyhedral cones in finite-dimensional spaces; see [BCG13]. Sufficient conditions for
some z ∈ E ⊗ F to be an extremal direction of the injective cone were studied by
various authors in the context of positive operators; see for instance [Tam95] and the
references contained therein.

Are there other interesting tensor cones? In this paper, we have drawn parallels
between normed and ordered tensor products. Taking this a step further, we may define
a tensor cone as a way of choosing for each pair of preordered vector spaces (E,E+)
and (F, F+) a reasonable crosscone E+ ⊗α F+ in the tensor product E ⊗ F , in such a
way that positive linear maps are preserved; that is, (T ⊗S)[E+ ⊗α F+] ⊆ G+ ⊗α H+
whenever T [E+] ⊆ G+ and S[F+] ⊆ H+. The projective/injective cone defines a tensor
cone which behaves similarly to its normed counterpart. Many more tensor norms
are known, but to our knowledge no other tensor cones have been studied in the
literature.1 Are there other interesting and/or natural tensor cones?

Every tensor cone defines a tensor norm via a construction similar to Proposi-
tion 9.25. Conversely, can every tensor norm be extended to a tensor cone in a natural
way? Are there cone-theoretic analogues of Grothendieck’s 14 natural tensor norms?

An important difference between cones and norms is that there is no notion of two
cones being equivalent. So even if this programme would succeed, the resulting theory
might not be as nice as the normed theory. It is unclear if a cone-theoretic analogue
of, say, Grothendieck’s inequality, can exist. Therefore it is also conceivable that there
are more than 14 natural tensor cones.

Our findings about faces and extremal rays of the injective cone already show that
ordered tensor products are not completely analogous to normed tensor products (see
Remark 10.52), so perhaps there are limits to the analogy.

Is there a full proof of Theorem 13.15 without relying on computer algebra?
In [ALPP21], Aubrun, Lami, Palazuelos and Plávala proved a very general result about
the difference between the projective and injective cone (stated as Theorem 13.15
above), which contains all our results from Chapter 13 as a special case. Their proof
uses an ingenious geometric argument, but one step in their proof relies on a couple of
large computations, which the authors verified using computer algebra. On the other
hand, the special cases that we proved in this paper only rely on relatively simple
geometric arguments. Can we find an alternative proof of Theorem 13.15 which does
not rely on computer algebra?

Is there an infinite-dimensional version of Theorem 13.15? The theorem of
Aubrun, Lami, Palazuelos and Plávala (stated as Theorem 13.15 above) provides precise

1A few other cones have been defined in the tensor product of specific types of ordered vector spaces
(e.g. for Archimedean Riesz spaces [Fre72], or for Archimdean ordered vector spaces [GL88, GK10]),
but not for arbitrary ordered vector spaces, and rarely in connection with a positive mapping property.
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necessary and sufficient conditions for the projective cone to be equal to the injective
cone, when the base cones are closed, proper and generating in finite-dimensional
spaces. Can this be extended to infinite-dimensional spaces? Are there examples where
the projective cone E+ ⊗π F+ is dense in the injective cone E+ ⊗ε F+ (with respect
to some compatible topology on E ⊗ F ) where E+ and F+ are weakly closed but
neither is a lattice cone? How about in the completed locally convex tensor product?

Apart from Theorem 13.15, very few results in this direction are known. A small
positive result is [Bir76, Prop. 3], which shows that E+ ⊗π F+ is dense in E+ ⊗ε F+
with respect to the projective topology whenever E and F are locally convex lattices.



188



Appendix A
Ideals, faces, and duality

This appendix discusses the basic properties of faces and ideals in preordered
vector spaces. Although many of these results are known in some form, the
connections between these concepts are not particularly well-known. The main
body of Part III of this dissertation draws heavily on these connections, especially
on the results from §A.1.

This chapter is based on Appendix A of [Dob20b].

Introduction

Certain special subsets of a convex set, the so-called faces, play an important role in
convex geometry. For instance, convex polytopes are commonly studied in terms of
their face lattice, and the extreme points and extremal rays of convex sets play an
important role in convex analysis and optimization. The face structure of a convex
cone has also been studied extensively; see for instance [SW70, §2.13] and the works
of Barker and Tam [Bar73, Bar78a, Tam85, Tam92].

Similarly, certain special subspaces, the so-called order ideals, play a special role in
the theory of ordered vector spaces. In [Kad51], Kadison used maximal order ideals in
the proof of his celebrated representation theorem, and Bonsall continued the study
of order ideals in [Bon54]. However, as attention shifted from general ordered vector
spaces to lattice-ordered (i.e. Riesz) spaces, order ideals appear to have been forgotten
in favour of lattice ideals (sometimes also called order ideals). As a result, the theory
of order ideals is not so well-known.

In this appendix, we develop/recall the basics of order ideals in a general preordered
vector space. In §A.1, we give several different equivalent definitions of an order ideal,
and we show that the order ideals of a preordered vector space (E,E+) are closely
related to the faces of the positive cone E+. This is very useful, as it allows us to
quotient out a face, which is one of the main tools in the construction of faces of the
projective cone in §9.4.

In §A.2, we outline the homomorphism and isomorphism theorems for ideals in
ordered vector spaces. As an application, we show that the maximal order ideals are
precisely the supporting hyperplanes of the positive cone. This shows that general
(non-maximal) order ideals can be thought of as being the “supporting subspaces” of
the positive cone.

189
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Finally, in §A.3, we extend the theory of dual faces (see [Bar78a, Tam85]) to cones
in infinite-dimensional spaces. We show that it is now necessary to make a distinction
between dual and exposed faces, although the two notions coincide if the ambient
space is a separable normed space.

A.1 Faces and ideals

Let E be a preordered vector space with positive cone E+ ⊆ E, and let ≤ be the
vector preorder corresponding with E+. A subset M ⊆ E is full (or order-convex)
if x ≤ y ≤ z with x, z ∈ M implies y ∈ M . A non-empty subset M ⊆ E+ that is a
convex cone in its own right is called a subcone. Recall that a face (or extremal set) of
E+ is a (possibly empty) convex subset M ⊆ E+ such that, if M intersects the relative
interior of a line segment in E+, then M contains both endpoints of that segment.

Proposition A.1. A non-empty subset M ⊆ E+ is a face if and only if it is a full
subcone.

Proof. “=⇒”. Suppose that M is a face. First we show that M is a convex cone. If
x ∈M and λ > 1, then the line segment from 0 to λx contains x in its relative interior,
so the endpoints 0 and λx must also belong to M . Then, since M is convex, for all
λ ∈ [0, 1] we also have λx ∈ M . Since a face is convex by assumption, we conclude
that M is a convex cone.

To see that M is full, suppose that x ≤ y ≤ z with x, z ∈M . Then x, z ∈ E+, so
in particular we have y ≥ x ≥ 0, or in other words, y ∈ E+. Furthermore, we have
z− y ∈ E+ (since y ≤ z), so it follows that y+ 2(z− y) ∈ E+. Since z = y+ (z− y) is
in the relative interior of the line segment from y to y+ 2(z− y), we must have y ∈M ,
which proves that M is full.

“⇐=”. Suppose that M ⊆ E+ is a full subcone, and suppose that x, z ∈ E+ and
λ ∈ (0, 1) are such that y := λx + (1 − λ)z belongs to M . If x = z, then evidently
x = z = y ∈ M , so assume x 6= z. Then y lies in the relative interior of the line
segment between x and z, so for small enough µ < 0 the point µx+ (1− µ)y also lies
on this line segment. In particular, µx+ (1− µ)y ≥ 0, or equivalently, y ≥ −µ

1−µx. But
we have −µ

1−µ > 0 and x ≥ 0, so we find 0 ≤ −µ
1−µx ≤ y. Since M is full, it follows that

−µ
1−µx ∈M , and therefore x ∈M . Analogously, z ∈M . �

Note that the lineality space lin(E+) = E+ ∩ −E+ = {x ∈ E+ : 0 ≤ x ≤ 0} and
the cone E+ itself are full subcones, and therefore faces of E+. Furthermore, clearly
every face contains lin(E+) and is contained in E+, so these are the unique minimal
and maximal faces of E+.1

Next we come to the subject of ideals. If I ⊆ E is a subspace, then we define the
quotient cone (E/I)+ to be the image of E+ under the canonical map E → E/I.

Proposition A.2 (Equivalent definitions of an order ideal). Let (E,E+) be a pre-
ordered vector space. For a linear subspace I ⊆ E, the following are equivalent:

1In order-theoretic terms, these are the least and the greatest element in the set of faces (ordered
by inclusion).
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(i) I is full;

(ii) if −y ≤ x ≤ y and y ∈ I, then x ∈ I;

(iii) if 0 ≤ x ≤ y and y ∈ I, then x ∈ I;

(iv) I+ := I ∩ E+ is a face of E+;

(v) the quotient cone (E/I)+ is proper.

Proof. (i) =⇒ (ii). Clear.
(ii) =⇒ (iii). Suppose that 0 ≤ x ≤ y and y ∈ I. Then we also have −y ≤ 0 ≤ x,

so we find −y ≤ x ≤ y. It follows that x ∈ I.
(iii) =⇒ (iv). Every linear subspace is a convex cone, and the intersection of two

convex cones is a convex cone, so I+ ⊆ E+ is a subcone. If x ≤ y ≤ z with x, z ∈ I+,
then in particular 0 ≤ y ≤ z with z ∈ I, so we have y ∈ I. Furthermore, we have
y ≥ x ≥ 0, so y ∈ I+, which shows that I+ is full. By Proposition A.1, I+ is a face of
E+.

(iv) =⇒ (v). Let z ∈ (E/I)+ ∩ −(E/I)+ be given, then we may choose x, y ∈ E+
such that z = π(x) = π(−y). It follows that π(x+ y) = 0, so x+ y ∈ I. As such, we
have 0 ≤ x ≤ x+ y and 0 ≤ y ≤ x+ y with 0, x+ y ∈ I+, so we find x, y ∈ I+ (since
I+ is full). It follows that z = 0, which shows that (E/I)+ is a proper cone.

(v) =⇒ (i). Clearly the natural map π : E → E/I is positive. Suppose that
x ≤ y ≤ z with x, z ∈ I, then 0 = π(x) ≤ π(y) ≤ π(z) = 0, so it follows that π(y) = 0
(since (E/I)+ is a proper cone). Therefore: y ∈ I. �

A subspace I satisfying any one (and therefore all) of the conditions of Proposi-
tion A.2 is called an order ideal, or simply ideal if no ambiguity can arise (i.e. if the
space does not have additional algebraic structure). Order ideals have been studied
since the 1950s (e.g. [Kad51, Bon54]), but the link between ideals and faces does not
appear to be well-known.

We give a few useful ways to obtain ideals or faces:

Proposition A.3. Let E,F be vector spaces and let E+ ⊆ E, F+ ⊆ F be convex
cones.

(a) If M ⊆ E+ is a non-empty face, then span(M) is an ideal satisfying M =
span(M) ∩ E+.

(b) If T : E → F is a positive linear map and if J ⊆ F is an ideal, then T−1[J ] ⊆ E
is an ideal.

Proof.

(a) Clearly M ⊆ span(M) ∩ E+. Moreover, since M is a convex cone, every x ∈
span(M) can be written as x = m1 − m2 with m1,m2 ∈ M . If furthermore
x ∈ E+, then we find 0 ≤ x ≤ m1 (because m1 − x = m2 ≥ 0), and therefore
x ∈M (because M is full). This shows that M = span(M)∩E+. It follows from
Proposition A.2(iv) that span(M) is an ideal.
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(b) If x ≤ y ≤ z and x, z ∈ T−1[J ], then T (x) ≤ T (y) ≤ T (z) with T (x), T (z) ∈ J .
Since J is full, it follows at once that T (y) ∈ J , which shows that T−1[J ] is also
full. �

It follows from Proposition A.2(iv) and Proposition A.3(a) that the map I 7→ I+
defines a surjective many-to-one correspondence between the ideals and the non-empty
faces.

A first (and rather important) application of this correspondence is given in
Proposition A.4(b) below. If ϕ : E → R is a positive linear functional, then ker(ϕ)∩E+
is easily seen to be a face, and faces of this type are called exposed. This can be
generalized in the following way: if F is any vector space with a proper cone F+ ⊆ F ,
and if T : E → F is a positive linear map, then it is still relatively easy to see that
ker(T ) ∩ E+ is a face. (It is crucial that F+ is proper!) Although not every face is
exposed, the following result shows that this slight extension already captures all faces.

Proposition A.4. Let E be a vector space and let E+ ⊆ E be a convex cone.

(a) (cf. [Bon54, §2, p. 403]) A subspace I ⊆ E is an ideal if and only if it occurs as
the kernel of a positive linear map T : E → F with F+ proper.

(b) A non-empty subset M ⊆ E+ is a face if and only if it can be written as
M = ker(T ) ∩ E+ with T : E → F positive and F+ proper.

Proof.

(a) If I ⊆ E is an ideal, then (E/I)+ is a proper cone (by Proposition A.2(v)), the
map T : E → E/I is positive, and I = ker(T ).
Conversely, if T : E → F is a positive linear map with F+ ⊆ F a proper
cone, then {0} ⊆ F+ is an ideal (because F+ is proper), so it follows from
Proposition A.3(b) that ker(T ) is an ideal in E.

(b) If M ⊆ E+ is a face, then I := span(M) is an ideal with M = I ∩ E+ (by
Proposition A.3(a)), so (E/I)+ is a proper cone, the map T : E → E/I is
positive, and M = ker(T ) ∩ E+.
Conversely, if T : E → F is a positive linear map with F+ ⊆ F a proper cone,
then it follows from (a) that ker(T ) is an ideal, so ker(T ) ∩ E+ is a face. �

Remark A.5. Just as lin(E+) and E+ are the smallest and the largest face of E+, the
smallest and the largest ideals of E are lin(E+) and E. Apart from this, the maximal
ideals 6= E are of some interest; see Corollary A.12 below.

For now, we show that the smallest ideal has the following special property.

Proposition A.6. Let E be a vector space, E+ ⊆ E a convex cone, and I ⊆ E a
subspace. Then the quotient πI : E → E/I is bipositive if and only if I ⊆ lin(E+).

In particular, the only ideal I ⊆ E for which the quotient πI : E → E/I is bipositive
is the minimal ideal I = lin(E+).
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Proof. Bipositivity of the quotient E → E/I means that, if x ∈ E+ and x+ I = y+ I,
then y ∈ E+. Equivalently: if x ∈ E+ and z ∈ I, then x+ z ∈ E+. Evidently this is
the case if and only if I ⊆ E+ (use that 0 ∈ E+). But I is a subspace, so we have
I ⊆ E+ if and only if I ⊆ lin(E+).

If I is an ideal, then we have lin(E+) ⊆ I (every ideal contains the minimal ideal),
so the second conclusion follows immediately. �

Remark A.7. If E+ is proper and if F+ is arbitrary, then every bipositive map
T : E → F is automatically injective, since ker(T ) = T−1[{0}] ⊆ T−1[F+] = E+ is a
subspace contained in E+, which must therefore be {0}. The preceding proposition
shows that this is no longer true if E+ is not proper.

A.2 The homomorphism and isomorphism theorems

In connection with the ideal theory, we investigate to which extent the homomorphism
and isomorphism theorems hold for ordered vector spaces.

The homomorphism theorem and the third isomorphism theorem hold true for
ordered vector spaces.

Proposition A.8 (Homomorphism theorem). Let E, F be vector spaces, E+ ⊆ E,
F+ ⊆ F convex cones, T : E → F a positive linear map, and I ⊆ E a subspace with
I ⊆ ker(T ). Then there is a unique positive linear map T̃ : E/I → F for which the
following diagram commutes:

E F.

E/I

T

πI T̃

Proof. Since I ⊆ ker(T ), there is a unique linear map T̃ : E/I → F for which the
diagram commutes. This map is automatically positive: if y ∈ (E/I)+, then there is
some x ∈ E+ such that y = πI(x), and it follows that T̃ (y) = T (x) ∈ T [E+] ⊆ F+. �

Proposition A.9 (Third isomorphism theorem). Let E be a vector space, E+ ⊆ E a
convex cone, and I ⊆ J ⊆ E subspaces. Then the natural isomorphism (E/I)/(J/I) ∼=
E/J is bipositive for the respective quotient cones. Furthermore, the bijective cor-
respondence J 7→ J/I between the subspaces I ⊆ J ⊆ E and the subspaces of E/I
restricts to a bijective correspondence of order ideals (in other words, J is an ideal in
E if and only if J/I is an ideal in E/I).

Proof. We have the following commutative diagram of linear maps:

E E/J.

E/I

πJ

πI πJ/I
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To see that the natural isomorphism (E/I)/(J/I) ∼= E/J is bipositive, note that
pushforwards commute: an element of E/J belongs to either one of the pushforward
cones (E/J)+ and ((E/I)/(J/I))+ if and only if it has a positive element of E in its
preimage.

Since a subspace is an ideal if and only if the quotient cone is proper, it follows
immediately that J is an ideal in E if and only if J/I is an ideal in E/I. �

Analogous results hold for closed ideals in ordered topological vector spaces. (We
assume no compatibility between the positive cone and the topology, so questions of
continuity and positivity are completely separate from one another.)

Contrary to the preceding results, the first and second isomorphism theorems fail
for ordered vector spaces. We only have the following weaker statements, of which the
(simple) proofs are omitted.

Proposition A.10 (Partial first isomorphism theorem). Let E, F be vector spaces,
E+ ⊆ E, F+ ⊆ F convex cones, and T : E → F a positive linear map. Then the natural
linear isomorphism E/ ker(T ) ∼−→ ran(T ) is positive, but not necessarily bipositive.

Counterexample against bipositivity: E = F and T = idE , but E+ strictly contained
in F+.

Proposition A.11 (Partial second isomorphism theorem). Let F be a vector space,
F+ ⊆ F a convex cone, E ⊆ F a subspace, and I ⊆ F an order ideal. Then E + I
is a subspace of F , E ∩ I is an order ideal of E, and the natural linear isomorphism
E/(E∩ I) ∼−→ (E+ I)/I, x+ (E∩ I) 7→ x+ I is positive, but not necessarily bipositive.

Counterexample against bipositivity: F = R2 with standard cone, and E, I ⊆ F
two different one-dimensional subspaces, each of which meets F+ only in 0. Then
E+ := E ∩F+ = {0}, so the cone of E/(E ∩ I) is {0}, whereas the cone of (E+ I)/I =
R2/I is generating.

Classification of maximal order ideals
As an application of the preceding results, we show that the third isomorphism theorem
gives a geometric characterization of the maximal order ideals.

Following common terminology from algebra, we say that an order ideal I ⊆ E
is proper if I 6= E, and maximal if it is proper and not contained in another proper
ideal. Furthermore, we say that a preordered vector space E is simple if E+ is proper
and if E has exactly two order ideals (namely, the trivial ideals {0} and E). Bonsall
[Bon54, Theorem 2] proved that an ordered vector space is simple if and only if it is
one-dimensional (with either the standard cone or the zero cone).2 Combining this
with Proposition A.9, we find:

Corollary A.12. The maximal order ideals of E are precisely the supporting hyper-
planes of E+.

2Bonsall also includes {0} among the simple ordered spaces, but we require exactly two ideals.
(Similarly, we believe that 1 is not prime, the empty topological space is not connected, etc.) This is
just a matter of convention.
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Proof. It is easy to see that the supporting hyperplanes of E+ are precisely the kernels
of the non-zero positive linear functionals. (For a proof, see e.g. [Dob20a, Proposition
4.1].) Furthermore, it follows from Proposition A.9 that an ideal I ⊆ E is maximal if
and only if E/I is simple.

If ϕ : E → R is a non-zero positive linear functional, then ker(ϕ) is an ideal, which
is maximal since E/ ker(ϕ) is one-dimensional and therefore simple.

Conversely, if I ⊆ E is a maximal ideal, then E/I is simple, so dim(E/I) = 1
and the quotient cone (E/I)+ is either {0} or isomorphic to the standard cone R≥0.
Either way, we can choose a linear isomorphism E/I

∼−→ R which is positive (but
not necessarily bipositive), so that the composition ϕ : E → E/I → R is a non-zero
positive linear functional with I = ker(ϕ). �

For more on maximal ideals, see [Bon54, §4].

A.3 Dual and exposed faces

In the finite-dimensional setting (with closed cones), dual faces are well studied in the
literature (see e.g. [Bar78a, Wei12]). We outline a theory of face duality in dual pairs.

A positive pairing is a dual pair 〈E,F 〉 of (real) preordered vector spaces such that
〈x, y〉 ≥ 0 whenever x ∈ E+, y ∈ F+. In this case we say 〈E+, F+〉 is a positive pair.3

Given a positive pair 〈E+, F+〉 and a non-empty subset N ⊆ F+, we define the
(pre)dual face

�N := E+ ∩ ⊥N =
{
x ∈ E+ : 〈x, y〉 = 0 for all y ∈ N

}
.

Analogously, for a non-empty subset M ⊆ E+ we define the dual face

M � := F+ ∩M⊥ =
{
y ∈ F+ : 〈x, y〉 = 0 for all x ∈M

}
.

Note that �N (resp. M �) depends not only on N (resp. M), but also implicitly on E+
(resp. F+).

Proposition A.13. Let 〈E+, F+〉 be a positive pair.

(a) If N ⊆ F+ is non-empty, then �N is a face of E+.

(b) If N1 ⊆ N2 ⊆ F+ are non-empty, then �N1 ⊇ �N2.

(c) If N ⊆ F+ is non-empty, then N ⊆ (�N)� and �N = �((�N)�).

Similar statements hold with N and �N replaced by M and M �.

Proof.

(a) Every y ∈ F+ defines a positive linear functional ϕy : E → R, x 7→ 〈x, y〉. As
such, the set E+ ∩ ker(ϕy) is a face, by Proposition A.3(b). Since we can write

�N =
⋂
y∈N

(E+ ∩ ker(ϕy)),

3There is a slight abuse of notation here, for if E+ and F+ are not generating, then the positive
pair depends not only on E+ and F+, but also on E and F (but this will cause no confusion).
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it follows that �N is also a face of E+.

(b) This follows from the definition, since ⊥N1 ⊇ ⊥N2.

(c) If y ∈ N , then by definition one has 〈x, y〉 = 0 for all x ∈ �N , so it follows that
y ∈ (�N)�. This proves the inclusion N ⊆ (�N)�.
Write M := �N . It follows from the preceding argument that M ⊆ �(M �) =
�((�N)�). On the other hand, combining the inclusion N ⊆ (�N)� with (b), we
find M = �N ⊇ �((�N)�), so we conclude that equality holds. �

A face M ⊆ E+ is said to be an 〈E+, F+〉-dual face if M = �N for some non-empty
subset N ⊆ F+, and an 〈E+, F+〉-exposed face if there is some y0 ∈ F+ such that
M = E+ ∩ ker(ϕy0), or equivalently, if M is the 〈E+, F+〉-dual face of a singleton.
Likewise, the faces N ⊆ F+ of the form N = M � (resp. N = {x0}�) are the 〈F+, E+〉-
dual (resp. 〈F+, E+〉-exposed) faces of F+.

The operations M 7→M � and N 7→ �N define a so-called Galois connection (see
e.g. [Ber15, §6.5] for the definition). It follows that the set of 〈E+, F+〉-dual faces,
ordered by inclusion, forms a complete lattice, which we denote as F〈E+,F+〉.

If 〈E+, G+〉 is a positive pair and if F ⊆ G and F+ ⊆ F ∩G+, then evidently one
has F〈E+,F+〉 ⊆ F〈E+,G+〉, but the inclusion F〈E+,F+〉 ↪→ F〈E+,G+〉 should not be
expected to be a lattice homomorphism.

Given a dual pair 〈E,E′〉 and a convex cone E+ ⊆ E, the most natural lattice
of dual faces in E+ is the lattice F〈E+,E′+〉, where E′+ ⊆ E′ is the dual cone of
E+. (This is the largest of all lattices F〈E+,F+〉 with F+ ⊆ E′.) The 〈E+, E

′
+〉-dual

(resp. 〈E+, E
′
+〉-exposed) faces will simply be called the dual (resp. exposed) faces of

E+.

The difference between dual and exposed faces
If E is finite-dimensional and if E+ is closed, then every dual face is exposed, so
F〈E+,E∗+〉 is simply the lattice of exposed faces (see e.g. [Bar78a]). We intend to show
that things become more complicated in the infinite-dimensional case. We illustrate
these subtleties by establishing various equivalent definitions of dual and exposed
faces.

For notational simplicity, we formulate the results in the remainder of this appendix
not for dual pairs but for locally convex spaces. We recall some basic theory. If T is a
locally convex topology on E that is compatible with the dual pair 〈E,E′〉, then a
subspace I ⊆ E is T-closed if and only if it is weakly closed. If this is the case, then
the quotient E/I is once again a (Hausdorff) locally convex space, and (E/I)′ ∼= I⊥

as vector spaces. Furthermore, if T is the weak topology σ(E,E′), then E/I carries
the weak topology σ(E/I, I⊥) (see e.g. [Con07, §V.2] or [Köt83, §22]).

We shall say that a convex cone E+ ⊆ E is quasi-semisimple if E′+ separates points
on E+; that is, if for every x ∈ E+ there is some ϕx ∈ E′+ such that 〈x, ϕx〉 > 0.
This is equivalent to the (geometric) requirement that E+ ∩ lin(E+ ) = {0}, since
lin(E+ ) = ⊥(E′+). It follows that a quasi-semisimple cone is automatically proper.
Clearly every semisimple cone (in particular, every closed proper cone in a locally
convex space) is quasi-semisimple.
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Proposition A.14. Let E be locally convex. For a face M ⊆ E+ the following are
equivalent:

(i) M is exposed.

(ii) There exists some ϕ0 ∈M � such that for all x ∈ E+ \M one has 〈x, ϕ0〉 > 0.

(iii) M = E+ ∩ span(M), and the quotient (E/ span(M))+ admits a strictly positive
continuous linear functional.

Proof. (i) =⇒ (iii). Choose ϕ0 ∈ E′+ such that M = E+ ∩ ker(ϕ0). Then span(M) ⊆
ker(ϕ0), so it follows that M = E+∩span(M) and that ϕ0 factors through E/span(M):

E R

E/span(M)

ϕ0

π

ψ0

If E/span(M) is equipped with the quotient cone, then ψ0 : E/span(M) → R is
strictly positive.

(iii) =⇒ (ii). We have (E/span(M))′ ∼= span(M)⊥ = M⊥. Consequently, if
ψ0 : E/span(M) → R is continuous and strictly positive, then the composition
ϕ0 : E π−→ E/span(M) ψ0−→ R is continuous and positive, and belongs to M⊥.
It follows that ϕ0 ∈ E′+ ∩ M⊥ = M �. Furthermore, every x ∈ E+ \ M satisfies
〈x, ϕ0〉 = 〈πx, ψ0〉 > 0, since ψ0 is strictly positive.

(ii) =⇒ (i). The requirement {ϕ0} ⊆M � ensures that M ⊆ �(M �) ⊆ �{ϕ0}, and
the assumption that 〈x, ϕ0〉 > 0 for all x ∈ E+ \M guarantees that �{ϕ0} ⊆M . �

Proposition A.15. Let E be locally convex. For a face M ⊆ E+ the following are
equivalent:

(i) M is a dual face.

(ii) For every x ∈ E+ \M there is some ϕx ∈M � such that 〈x, ϕx〉 > 0.

(iii) M = E+ ∩ span(M), and the quotient (E/ span(M))+ is quasi-semisimple.

Proof. (i) =⇒ (iii). Choose some non-empty N ⊆ E′+ such that M = �N = E+ ∩ ⊥N .
Then span(M) ⊆ ⊥N , so it follows that M = E+ ∩ span(M) and that every ϕ ∈ N
factors through E/span(M):

E R

E/span(M)

ϕ

π

ψ

Write K for the positive cone of E/span(M), and let y ∈ K be such that 〈y, ψ〉 = 0 for
all ψ ∈ K′. Choose x ∈ E+ such that y = π(x), then for every ϕ ∈ N we may choose
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some ψ ∈ K′ such that ϕ = ψ ◦ π, and therefore 〈x, ϕ〉 = 〈y, ψ〉 = 0. It follows that
x ∈M , and therefore y = 0, showing that K is quasi-semisimple.

(iii) =⇒ (ii). Let x ∈ E+ \ M be given. Then x is mapped to a non-zero
positive vector in E/span(M), so there is a positive continuous linear functional
ψx : E/span(M) → R such that 〈πx, ψx〉 > 0 (by quasi-semisimplicity). Now
the composition ϕx : E π−→ E/span(M) ψx−→ R is continuous and positive, and
〈x, ϕx〉 = 〈πx, ψx〉 > 0.

(ii) =⇒ (i). We have M ⊆ �(M �), and the assumption that every x ∈ E+ \M
admits some ϕx ∈M � such that 〈x, ϕx〉 > 0 guarantees that �(M �) ⊆M . �

The subtle difference between exposed and dual faces becomes apparent by com-
paring Proposition A.14(ii) with Proposition A.15(ii): the only difference is the order
of the quantifiers!

In the finite-dimensional setting, it is well-known that the dual faces are precisely
the exposed faces (see e.g. [Bar78a]). We extend this to separable normed spaces.
Counterexamples in other settings will be given below.

Theorem A.16 (Compare [Sch60, Proposition 15.2]). Let E be locally convex, and
let M ⊆ E+ be a face of the form E+ ∩ I, where I ⊆ E is a closed subspace. If E/I
admits a separable norm compatible with the dual pair 〈E/I, (E/I)′〉 ( = 〈E/I, I⊥〉 ),
then M is a dual face if and only if M is exposed.

Proof. Every exposed face is dual. For the converse, suppose that M is a dual face,
and let ‖ · ‖ be a separable norm compatible with the dual pair 〈E/I, I⊥〉. We shall
understand E/I and (E/I)′ to be equipped with the respective norm topologies. Since
E/I is separable, its dual (E/I)′ and every subset thereof is weak-∗ separable (this is
because it can be written as the union of a countable family of separable metrizable
spaces; see [Köt83, §21.3.(5)]). As such, we may choose a weak-∗ dense countable subset
N = {ϕk}∞k=1 in the dual cone (E/I)′+. Define ψ :=

∑∞
k=1

ϕk
2k‖ϕk‖ ; this is well-defined

because (E/I)′ is a Banach space.4 Since (E/I)′+ is a closed convex cone, we have
ψ ∈ (E/I)′+.

We claim that ψ is a strictly positive functional. To that end, let x ∈ (E/I)+ be such
that ψ(x) = 0. For all k we have ϕk(x) ≥ 0, but ψ(x) =

∑∞
k=1

ϕk(x)
2k‖ϕk‖ = 0, so we must

have ϕk(x) = 0. It follows that x ∈ ⊥N = ⊥((E/I)′+) = lin( (E/I)+ ). Since M is a
dual face, the quotient face (E/I)+ is quasi-semisimple, so (E/I)+∩lin( (E/I)+ ) = {0}.
It follows that x = 0, which shows that ψ is a strictly positive functional. We conclude
that M is exposed. �

Corollary A.17. A face of finite codimension is dual if and only if it is exposed.

Corollary A.18. In a separable normed space, the dual faces are precisely the exposed
faces.

Corollary A.19. If E is a separable normed space and if E+ is closed, then lin(E+)
is exposed.

4Technically this is not entirely well-defined; if ϕk = 0, then we must replace ϕk
2k‖ϕk‖

by 0.
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After all, lin(E+) = lin(E+ ) = ⊥(E′+) = �(E′+) is a dual face.

Corollary A.20. Every quasi-semisimple cone (in particular, every closed proper
cone) in a separable normed space admits a strictly positive continuous linear functional.

In general, not every dual face is exposed. As a generic example, let E+ be a cone
that is semisimple but does not admit a strictly positive functional. Then {0} is a dual
face, for by semisimplicity, E′+ separates points, so �(E′+) = ⊥(E′+) = {0}. However,
{0} is not exposed, since there is no strictly positive functional.

We give two concrete realizations of this generic example: one in an inseparable
Hilbert space, and one in a separable Fréchet space. These examples show that the
preceding corollaries cannot easily be extended beyond the setting of separable normed
spaces.

Example A.21. Let Ω be an uncountable set, and consider the Hilbert space E =
`2R(Ω) with the non-negative cone E+ = {x ∈ `2R(Ω) : xω ≥ 0 for all ω ∈ Ω}. Then E+
is semisimple, so {0} is a dual face. However, E+ does not admit a strictly positive
functional, since every vector in E′ = `2R(Ω) is zero in all but at most countably many
coordinates. 4

Example A.22. Let s be the space of all (real) sequences with the topology of
pointwise convergence. Then s is a separable Fréchet space with topological dual
s′ = c00, the space of sequences of finite support. (The last statement is a special case
of duality between products and locally convex direct sums; see [Köt83, §22.5.(2)].)
The non-negative cone in s is closed and proper, so {0} is a dual face. However, there
is no strictly positive functional. 4

As a final remark, we point out that certain faces stand no chance of being either
exposed or a dual face. We know from Proposition A.3(a) that every face is the positive
part of an ideal, but a dual or exposed face must be the positive part of a closed ideal.
It may happen that E+∩span(M) is larger than M , in which case Proposition A.15(iii)
(resp. Proposition A.14(iii)) shows that M cannot be a dual (resp. exposed) face.

As a concrete example, let E = `∞R with its usual cone and norm, and let M =
E+ ∩ c00 be the set of all non-negative sequences with finite support. Then M is a
face, but E+ ∩ span(M) = E+ ∩ c0 is the (larger) set of all non-negative sequences
converging to 0. Therefore M is not exposed or a dual face.
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Bil(E × F ) the space of all bilinear forms E × F → R 107
Bi`(E × F ) the space of continuous bilinear forms E × F → R 107
Bil(E × F ) the space of separately continuous bilinear forms E×F → R 107
b(M, · ) the set {b(x, · ) : x ∈M} 138
b( · , N) the set {b( · , y) : y ∈ N} 138
b(x0, · ) the linear functional y 7→ b(x0, y) 107
b( · , y0) the linear functional x 7→ b(x, y0) 107

C (C) the homogenization of C 126
C◦ the one-sided polar of C 179

E∗ the algebraic dual space of E 105
E′ the topological dual space of E 105
〈E,E′〉 dual pair 106
E ⊗̃α F the completion of E⊗F with respect to a compatible locally

convex topology α on E ⊗ F
109

E ~ F the space of separately weak-∗ continuous bilinear forms
E′ × F ′ → R

130

E+ the positive cone of a preordered vector space E 110
E+

w the weak closure of E+ (= the bipolar cone with respect to
〈E,E′〉)

110

E∗+ the algebraic dual cone of E+ 110, 164
E′+ the topological dual cone of E+ 110
E+ ⊗ε F+ the injective cone in the algebraic tensor product E ⊗ F 93, 94, 129
E+ ⊗̃εα F+ the injective cone in the completed locally convex tensor

product E ⊗̃α F
94, 129

E+ ⊗π F+ the projective cone in the algebraic tensor product E ⊗ F 93, 94, 115
E+ ⊗̃πα F+ the projective cone in the completed locally convex tensor

product E ⊗̃α F
115

Ew the space E equipped with the σ(E,E′)-topology 106
E′w∗ the space E′ equipped with the σ(E′, E)-topology 106
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Hn the real vector space of complex n× n hermitian matrices 164
Hn+ the cone of complex n× n positive semidefinite matrices 164

I > J the upper ideal of E ~ F defined by the ideals I and J 144
I ? J the lower ideal of E ~ F defined by the ideals I and J 144

L(E,F ) the space of linear maps E → F 106
L(E,F ) the space of continuous linear maps E → F 106
lin(E+) the lineality space lin(E+) = E+ ∩ −E+ of the convex cone

E+

93, 110, 164

Ln the second-order (= Lorentz) cone Ln ⊆ Rn 164

M
w the weak closure of the set M 106

M⊥ the set {ϕ ∈ E′ : 〈x, ϕ〉 = 0 for all x ∈M}
M � the dual face of M 195
M ⊗s N the entry-wise tensor product of the sets M and N 107
M >ε N the upper face of (E ~ F )+ defined by the faces M and N 139
M >π N the upper face of E+ ⊗π F+ defined by the faces M and N 120
M ?ε N the lower face of (E ~ F )+ defined by the faces M and N 139
M ?π N the lower face of E+ ⊗π F+ defined by the faces M and N 120
M ′ nN the set {b ∈ E ~ F : b(M ′, · ) ⊆ N} 138
M oN ′ the set {b ∈ E ~ F : b( · , N ′) ⊆M} 138

N
w∗ the weak-∗ closure of the set N 106

⊥N the set {x ∈ E : 〈x, ϕ〉 = 0 for all ϕ ∈ N}
�N the predual face of N 195

rext(E+) the set of extremal directions of E+ 113

σ(E,E′) the weak topology on E 106
σ(E′, E) the weak-∗ topology on E′ 106
Sn the space of real n× n symmetric matrices 164
Sn+ the cone of real n× n positive semidefinite matrices 164

T ∗ the algebraic adjoint F ∗ → E∗ of a linear map T : E → F 106
T ′ the topological adjoint F ′ → E′ of a continuous linear map

T : E → F
106

T ⊗ S the linear map E ⊗ F → G ⊗H determined by the linear
maps T : E → G and S : F → H

116, 133

T ~ S the linear map E ~ F → G ~H determined by the linear
maps T ∈ L(Ew, Gw) and S ∈ L(Fw, Hw)

133

T � S the linear map Bil(E′ × F ′)→ Bil(G′ ×H ′) determined by
the linear maps T ∈ L(Ew, Gw) and S ∈ L(Fw, Hw)

133
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affine transformation, 179
algebraic dual space, 105
α-approximation property, 160
approximate pullback, 94, 111
approximate pushforward, 94, 111
approximately bipositive linear map, see

approximate pullback
approximately positive linear map, 111,

130
approximation property, 161

base of a convex cone, 164, 166
bipolar cone, 110
bipolar theorem, 110
bipositive linear map, see pullback

convex body, 179
convex cone, 93, 110

approximately generating, 154
G-semisimple, 158
generating, 110, 164
proper, 93, 110, 164
quasi-semisimple, 196
semisimple, 93, 110

dual cone, 110, 164
algebraic, 110, 164
with respect to a dual pair, 110

dual pair, 106

extremal direction, 112
extremal ray, 112
extremal set, see face

face, 112, 190
dual, 113, 195

with respect to a positive pairing,
196

exposed, 112, 192
with respect to a positive pairing,

196
maximal, 112, 190
minimal, 112, 190
predual, 195

full, see order-convex

homogenization, 126

ice cream cone, see second-order cone
ideal, see order ideal
injective cone, 93, 129

John decomposition, 179

lineality space, 93, 110, 164
Lorentz cone, see second-order cone

order ideal, 113, 191
maximal, 194
proper, 194

order retract, 112, 169
order-convex, 190
ordered (topological) vector space, 110

simple, 194

positive bilinear map, 112
positive linear map, 94, 111

separable, 165
positive pairing, 195
positive semidefinite cone, 164
preordered (topological) vector space, 110
projective cone, 93, 115
pullback, 94, 111
pushforward, 94, 111

quotient cone, 190
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reasonable dual space, 109
retract, see order retract

second-order cone, 164
simplex cone, 164
subcone, 190

top-retract, see topological order retract
topological dual space, 105
topological order retract, 112
topological vector space, 105

locally convex, 105
topology

bi-equicontinuous, see injective
inductive, 109, 158
injective, 131
weak, 106
weak-∗, 106

vector preorder, 110
vertex figure, 170

wedge, see convex cone

Yudin cone, see simplex cone
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[RS06] V. Rödl and J. Skokan. Applications of the regularity lemma for uniform hyper-
graphs. Random Structures & Algorithms, 28(2):180–194, 2006. doi:10.1002/
rsa.20108.
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Summary

This dissertation addresses three different topics on the interface of combinatorics,
algebra, and geometry.

In Part I, we study divisorial gonality of graphs, a relatively new graph parameter
which has its roots in algebraic geometry. This parameter dates back to around
2007, when Baker initiated a programme to translate results from classical algebraic
geometry into statements about chip-firing games on finite graphs. By then, it had
been known for a while that graphs behave in many ways as discrete analogues of
Riemann surfaces (e.g. [BHN97, Ura00]), but Baker took this one step further by
providing a concrete way to specialize divisors from curves to graphs [Bak08], and
by formulating and proving (together with Norine) a combinatorial analogue of the
classical Riemann–Roch theorem from geometry [BN07]. This ushered in a period of
fruitful interplay between algebraic geometry, tropical geometry, and graph theory,
whose highlights include various combinatorial Riemann–Roch theorems [BN07, MZ08,
GK08, AM10, AC13, CLM15, Bac17], a combinatorial proof of the Brill–Noether
non-existence theorem in algebraic geometry [CDPR12], and unexpected connections
with structural graph theory and parametrized complexity [DG20, BCW22b].

In this dissertation, we make two contributions to the theory of divisors on graphs.
First, besides its connections with algebraic geometry, divisorial gonality of graphs
is also closely related to treewidth, a graph parameter that plays an important role
in structural graph theory and parametrized complexity. In 2014, Gijswijt and the
author showed that treewidth is a lower bound for the divisorial gonality [DG20], but
the proof was not constructive. In this dissertation, we give a constructive proof of the
same fact, by exhibiting a polynomial time algorithm that converts a positive rank
effective divisor of degree k into a tree decomposition of width at most k. This sheds
new light on the connection between gonality and treewidth, and makes it easy to
apply dynamic programming techniques from parametrized complexity in the context
of graphs with bounded gonality.

Second, we look at the Brill–Noether conjecture for graphs, originally formulated
by Baker [Bak08] as a combinatorial analogue of classical Brill–Noether theory. This
conjecture consists of two parts: an ‘existence’ and a ‘non-existence’ statement. The
non-existence part was settled by Cools, Draisma, Payne and Robeva [CDPR12], but
the existence part is still wide open. Since Brill–Noether existence is known to be true
for metric graphs, the most obvious approach towards a proof for graphs is to show
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that the gonality of a graph is equal to the gonality of the associated metric graph
with unit lengths. This was another conjecture of Baker [Bak08], called the subdivision
conjecture. In this dissertation, we disprove the subdivision conjecture, by giving a
family of examples where the gonality of the graph is strictly larger than the gonality
of the associated metric graph. This shuts down the most obvious approach towards a
proof of the Brill–Noether conjecture, and makes it unclear whether or not the latter
is likely to be true. We have not been able to prove or disprove the Brill–Noether
conjecture.

In Part II, we study an application of the slice rank polynomial method to the
problem of avoiding affine configurations in subsets of Fnq . For a long time, it had
been an open problem to determine whether or not there is a constant c < 3 such
that every subset of Fn3 without non-trivial 3-term arithmetic progressions has size at
most cn. This problem, known as the cap set problem, was solved in 2016 by Ellenberg
and Gijswijt [EG17], building on a new technique within the polynomial method
introduced earlier that same year by Croot, Lev, and Pach [CLP17]. Their proof was
subsequently recast by Tao [Tao16] in terms of a new rank function for tensors, called
slice rank, and this new set of techniques is now known as the slice rank polynomial
method. This method has been very successful in solving the cap set problem and a
few related problems, but the more general problem of avoiding non-trivial k-term
arithmetic progressions in subsets of Fnp is still wide open for k ≥ 4.

In this dissertation, we make partial progress towards this problem, by studying
the broader problem of avoiding affine configurations in subsets of Fnq . Here, instead
of avoiding non-trivial k-term arithmetic progressions, we seek to avoid non-trivial
solutions to a system of balanced linear equations,

a11x1 + · · ·+ a1kxk = 0,
...

am1x1 + · · ·+ amkxk = 0;
(?)

where aij ∈ Fq are scalars such that ai1 + · · ·+ aik = 0 for all i ∈ [m], and x1, . . . ,xk
are vectors in the affine space Fnq as n→∞. If the number of variables is sufficiently
large (k ≥ 2m+ 1), then a routine application of the slice rank method shows that
there is a constant Cq,m,k < q such that every subset A ⊆ Fnq of size |A| ≥ (Cq,m,k)n
contains a solution (x1, . . . ,xk) ∈ Ak of (?) where the xi are not all equal. Our
contribution is that, for certain classes of balanced linear systems, we extend this
to find a solution (x1, . . . ,xk) ∈ Ak of (?) where the xi are pairwise distinct, or
even maximally affinely independent (in the sense that x1, . . . ,xk do not satisfy any
balanced linear equation over Fq that is not a linear combination of the rows of (?)).
This generalizes earlier results by Mimura and Tokushige [MT19a, MT19b, MT20],
but was later superseded by a more general result by Gijswijt [Gij21].

In Part III, we study tensor products of convex cones. This topic has recently come
up in many different areas of mathematics (and beyond), ranging from functional
analysis and operator theory to approximation theory and theoretical physics. How-
ever, most of the existing literature focuses on one of two particular cases, namely
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Archimedean lattice cones (in the functional analysis literature) or closed, proper and
generating cones in finite-dimensional spaces (in linear algebra and most applications to
other fields). This excludes most cones from being considered, including even standard
cones such as infinite-dimensional positive semidefinite cones and lexicographical cones.
For general cones, results are few and far between, and many basic questions remain
unanswered.

In this dissertation, we address this gap in the literature by studying the problem
in full generality. We generalize a few known results to the general case, and we prove
many results which are altogether new. Our main contributions are the following: (i)
We show that the projective/injective cone has mapping properties analogous to those
of the projective/injective norm; (ii) We establish direct formulas for the lineality
space of the projective/injective cone, in particular providing necessary and sufficient
conditions for the cone to be proper; (iii) We prove that the projective/injective tensor
product of two closed proper cones is contained in a closed proper cone; (iv) We show
how to construct faces of the projective/injective cone from faces of the base cones, in
particular providing a complete characterization of the extremal rays of the projective
cone. As an application, we also show that the tensor product of two symmetric
convex sets preserves proper faces; (v) For closed cones in finite-dimensional spaces,
we show that the projective cone is closed, and almost always strictly contained in the
injective cone, thereby confirming a conjecture of Barker for nearly all convex cones.
As this dissertation was being written, this last result was superseded by simultaneous
discovery by Aubrun, Lami, Palazuelos and Plávala [ALPP21], who independently
proved Barker’s conjecture in full generality (for all closed, proper and generating
cones in finite-dimensional spaces). We recover their result for a large class of cones,
using completely different techniques.
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Samenvatting

Dit proefschrift gaat over drie verschillende onderwerpen op het raakvlak tussen
combinatoriek, algebra en meetkunde.

In Deel I bestuderen we de divisoriale gonaliteit van grafen, een relatief jonge
graafparameter die zijn wortels heeft in de algebräısche meetkunde. Deze parameter
vond zijn oorsprong omstreeks 2007, toen Baker een onderzoek opzette dat probeert
resultaten uit de klassieke algebräısche meetkunde te vertalen naar uitspraken over
een spel met fiches op een eindige graaf (‘chip-firing games’). Het was destijds al enige
tijd bekend dat grafen zich op meerdere manieren gedragen als het discrete analogon
van Riemannoppervlakken (bijv. [BHN97, Ura00]), maar Baker ging nog een stap
verder door een concrete manier te geven om divisoren te ‘specialiseren’ van krommen
naar grafen [Bak08], en door (samen met Norine) een combinatorisch analogon van
de klassieke Riemann–Roch stelling uit de meetkunde te formuleren en bewijzen
[BN07]. Dit leidde een periode in van succesvolle kruisbestuiving tussen algebräısche
meetkunde, tropische meetkunde en grafentheorie, met als hoogtepunten onder meer
verschillende combinatorische Riemann–Roch stellingen [BN07, MZ08, GK08, AM10,
AC13, CLM15, Bac17], een combinatorisch bewijs van de Brill–Noether non-existentie
stelling uit de algebräısche meetkunde [CDPR12], en onverwachte dwarsverbanden
met structurele grafentheorie en geparametriseerde complexiteit [DG20, BCW22b].

In dit proefschrift leveren we twee bijdragen aan de theorie van divisoren op grafen.
Ten eerste: naast zijn verband met algebräısche meetkunde is divisoriale gonaliteit ook
nauw verwant aan boombreedte, een graafparameter die een belangrijke rol speelt in
de structurele grafentheorie en de geparametriseerde complexiteit. In 2014 bewezen
Gijswijt en de auteur van dit proefschrift dat de boombreedte een ondergrens is
voor de divisoriale gonaliteit [DG20], maar het bewijs was niet-constructief. In dit
proefschrift geven we een constructief bewijs van hetzelfde resultaat. Dat doen we door
een algoritme te geven dat een gegeven effectieve divisor van positieve rang en graad
k in polynomiale tijd omzet naar een boomdecompositie van breedte hoogstens k. Dit
geeft een nieuw inzicht in de relatie tussen gonaliteit en boombreedte, en maakt het
bovendien eenvoudig om bestaande algoritmen uit de geparametriseerde complexiteit,
gebaseerd op dynamisch programmeren op een boomdecompositie, toe te passen op
grafen met begrensde gonaliteit.

Ten tweede bestuderen we het Brill–Noether vermoeden voor grafen, oorspronkelijk
geformuleerd door Baker [Bak08] als een combinatorisch analogon van klassieke Brill–
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Noether theorie. Dit vermoeden bestaat uit twee delen: een ‘existentie’ en een ‘non-
existentie’ gedeelte. Het non-existentie gedeelte is opgelost door Cools, Draisma, Payne
en Robeva [CDPR12], maar het existentie gedeelte is nog steeds open. Gezien Brill–
Noether existentie bewezen is voor metrische grafen, is de meest voor de hand liggende
strategie om te bewijzen dat de gonalilteit van een graaf gelijk is aan de gonaliteit van
de bijbehorende metrische graaf waarin iedere zijde lengte 1 heeft. Dit is eveneens een
vermoeden van Baker [Bak08], dat we het onderverdelingsvermoeden zullen noemen. In
dit proefschrift geven we een tegenvoorbeeld voor het onderverdelingsvermoeden door
een familie van voorbeelden te construeren waarin de gonaliteit van de graaf strikt
groter is dan de gonaliteit van de bijbehorende metrische graaf. Dit sluit de meest
voor de hand liggende route naar een bewijs van het Brill–Noether vermoeden af, en
maakt het bovendien onduidelijk of het laatstgenoemde überhaupt waar is. We zijn er
niet in geslaagd om een bewijs of tegenvoorbeeld voor het Brill–Noether vermoeden te
vinden.

In Deel II bestuderen we een toepassing van de slice rank methode op het begren-
zen van de maximale grootte van een verzameling van Fnq waarin bepaalde affiene
configuraties worden vermeden. Gedurende lange tijd was het een open probleem om
te bepalen of er een constante c < 3 bestaat zodat elke deelverzameling van Fn3 van
grootte minstens cn een niet-triviale rekenkundige rij van lengte 3 bevat. Dit probleem,
dat bekend staat als het cap set probleem, werd in 2016 opgelost door Ellenberg en
Gijswijt [EG17], door voort te borduren op een nieuwe techniek binnen de polynomiale
methode die eerder dat jaar was gëıntroduceerd door Croot, Lev en Pach [CLP17].
Hun bewijs werd vervolgens herschreven door Tao [Tao16] in termen van een nieuwe
rangfunctie voor tensoren, genaamd slice rank (‘plakjesrang’), en sindsdien staan deze
technieken bekend als de slice rank methode. Deze methode is zeer succesvol gebleken
in het oplossen van het cap set probleem en een aantal gerelateerde problemen, maar
het bredere probleem van vermijden van niet-triviale rekenkundige rijen van lengte k
in deelverzamelingen van Fnp is nog steeds open voor k ≥ 4.

In dit proefschrift maken enige vooruitgang bij dit probleem door te kijken naar
het algemenere probleem van vermijden van affiene configuraties in deelverzamelingen
van Fnq . In plaats van een rekenkundige rij van lengte k willen we nu niet-triviale
oplossingen van een stelsel van gebalanceerde lineaire vergelijkingen vermijden. Met
andere woorden, we hebben een stelsel

a11x1 + · · ·+ a1kxk = 0,
...

am1x1 + · · ·+ amkxk = 0;
(?)

met aij ∈ Fq scalairen zodat ai1 + · · ·+ aik = 0 voor alle i ∈ [m], en met x1, . . . ,xk
vectoren in de affiene ruimte Fnq , waarbij n→∞. Als het aantal variabelen voldoende
groot is (k ≥ 2m + 1), dan kan men middels een eenvoudige toepassing van de
slice rank methode laten zien dat er een constante Cq,m,k < q bestaat zodat iedere
deelverzameling A ⊆ Fnq van grootte |A| ≥ (Cq,m,k)n een oplossing (x1, . . . ,xk) ∈ Ak
van (?) bevat waarin de vectoren xi niet allemaal hetzelfde zijn. Onze bijdrage is dat we
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dit voor bepaalde klassen van gebalanceerde lineaire stelsels uitbreiden om een oplossing
(x1, . . . ,xk) ∈ Ak van (?) te vinden waarin de vectoren xi paarsgewijs verschillend
zijn, of zelfs maximaal affien onafhankelijk (in die zin dat de vectoren x1, . . . ,xk aan
geen enkele gebalanceerde lineaire vergelijking voldoen die niet een lineaire combinatie
van de rijen van (?) is). Dit is een generalisatie van eerdere resultaten van Mimura en
Tokushige [MT19a, MT19b, MT20], maar is sindsdien alweer verder veralgemeniseerd
door Gijswijt [Gij21].

In Deel III bestuderen we tensorproducten van convexe kegels. Dit onderwerp is
de afgelopen jaren langsgekomen in allerlei verschillende takken van wiskunde (en
daarbuiten), variërend van functionaalanalyse en operatorentheorie tot benaderings-
theorie en theoretische fysica. Desalniettemin richt het overgrote deel van de bestaande
literatuur zich enkel op één van de volgende twee speciale gevallen: Archimedische
traliekegels (in de functionaalanalylse), of gesloten, echte, voortbrengende kegels in
eindig-dimensionale ruimten (in de lineaire algebra en in de meeste toepassingen in
andere vakgebieden). Hierdoor worden de meeste kegels buiten beschouwing gelaten,
waaronder zelfs standaardkegels zoals oneindig-dimensionale positief semidefiniete
kegels en lexicografische kegels. Voor algemene kegels zijn de resultaten schaars en zijn
veel basisvragen vooralsnog onbeantwoord.

In dit proefschrift vullen we dit gat in de literatuur door het probleem zo algemeen
mogelijk te bestuderen. We generaliseren een aantal bekende resultaten naar het alge-
mene geval en we bewijzen veel resultaten die überhaupt nieuw zijn. Onze belangrijkste
bijdragen zijn als volgt: (i) We bewijzen dat de projectieve/injectieve kegel afbeeldings-
eigenschappen heeft die analoog zijn aan die van de projectieve/injectieve norm; (ii) We
geven directe formules voor de ruimte van linealiteit van de projectieve/injectieve kegel,
en geven daarmee in het bijzonder noodzakelijke en voldoende voorwaarden voor het
echt zijn van de kegel; (iii) We bewijzen dat het projectieve/injectieve tensorproduct
van twee gesloten echte kegels bevat is in een gesloten echte kegel; (iv) We laten zien
hoe men zijvlakken van de projectieve/injectieve kegel kan construeren uit zijvlakken
van de oorspronkelijke kegels, wat in het bijzonder leidt tot een volledige beschrijving
van de extremale halflijnen van de projectieve kegel. Als toepassing hiervan laten we
tevens zien dat het tensorproduct van symmetrische convexe verzamelingen niet-triviale
zijvlakken bewaart; (v) Voor gesloten kegels in eindig-dimensionale vectorruimten
bewijzen we dat de projectieve kegel gesloten is, en nagenoeg altijd strikt bevat in
de injectieve kegel. Hiermee bewijzen we een vermoeden van Barker voor nagenoeg
alle convexe kegels. Terwijl dit proefschrift werd geschreven, werd dit laatste resultaat
overtroffen door gelijktijdig werk van Aubrun, Lami, Palazuelos en Plávala [ALPP21],
die onafhankelijk van ons erin slaagden om Barker’s vermoeden volledig te bewijzen
(voor alle gesloten, echte, voortbrengende kegels in eindig-dimensionale vectorruimten).
We bevestigen hun resultaat voor een grote klasse van convexe kegels, met totaal
andere bewijzen.
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