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1 Introduction

In recent research, several results from the theory of Riemann surfaces have been related to
similar results on graphs. For instance, the Riemann–Roch theorem for Riemann surfaces has
an analogue for graphs, and the theory of (principal) divisors can also be applied to graphs. In
that fashion, gonality has been defined for graphs as well. It turns out that the gonality of a
graph is also related to winning strategies in certain chip-firing games on graphs, which have
been studied since the 1980s.

In this thesis, the most important results and techniques are constructed in Section 3, most
notably lower and upper bounds on the gonality. Some examples of graphs and their gonalities
can be found in Section 4.

Finally we will conduct an in-depth analysis of an algorithm for computing the reduced divisor
in Section 5. We also briefly discuss algorithms for other, related tasks, such as computing the
rank of a divisor and computing the gonality of a graph.

This thesis gives an overview of some of the recent developments in the area of graph gonality,
aimed at undergraduates in their final year as well as graduate students in mathematics. Some
prior knowledge of graph theory and group theory might be useful, but in general the text is
accessible for anyone with a general mathematical background (naive set theory, linear algebra).
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2 Basic definitions

The theory of graph gonality is based upon various notions, which will briefly be discussed here.

2.1 Graph theory

Within this thesis, only finite, undirected, loopless multigraphs will be considered, which we
will assume to be non-empty and connected. That is, a graph is a triple G = (V,E, φ) of finite
disjoint sets V,E and a map φ : E → [V ]2, where [V ]2 denotes the set of 2-element subsets of
V . The elements of the set V are called vertices and the elements of E are called edges. By
definition, every edge e ∈ E maps to a set {a, b} ⊂ V consisting of exactly two distinct vertices,
called the ends of e. For every v ∈ V , we let E(v) denote the set of edges incident with v, that
is: E(v) = {e ∈ E : v ∈ φ(e)}. The degree d(v) of a vertex v ∈ V is the number of edges incident
with v. In other words, we have d(v) = |E(v)|.

Throughout the majority of this text, we will only consider one graph at a time, which we will
simply denote by G. Moreover we will call the vertex set V , the edges E and the edge map φ.

2.2 Divisors

A key concept in the theory of gonality is the concept of divisors.

Definition 2.1. The set Div(G) of divisors on G is the set of all functions f : V → Z. This
becomes an abelian group by (f + g)(v) := f(v) + g(v).

Definition 2.2. The degree deg(D) of a divisor D ∈ Div(G) is the sum of its entries:

deg(D) =
∑
v∈V

D(v).

For convenience, we make three more definitions.

Definition 2.3. For any k ∈ Z, the set Divk(G) is given by

Divk(G) = {D ∈ Div(G) : deg(D) = k} .

Note that Div0(G) is a subgroup of Div(G). For any other k ∈ Z, Divk(G) is a coset of Div0(G).

Definition 2.4. We define a partial order ≤ on Div(G) by writing D ≤ D′ if and only if
D(v) ≤ D′(v) holds for all v ∈ V . This uniquely determines the partial orders <, ≥ and >. Note
that D < D′ ⇐⇒ D ≤ D′ ∧D 6= D′, hence D < D′ doesn’t imply that D(v) < D′(v) holds for
all v ∈ V ; strict inequality only has to hold for some v ∈ V .

Definition 2.5. A divisor D ∈ Div(G) is said to be effective if D ≥ 0. The set containing all
effective divisors is denoted by Div+(G). For any effective divisor D ∈ Div+(G), we let supp(D)
denote the support of D, that is:

supp(D) = {v ∈ V : D(v) > 0} .

Definition 2.6. For all k ∈ Z we define

Divk+(G) = Divk(G) ∩Div+(G).

That is, Divk+(G) is the set of all effective divisors of degree k on G.
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2.3 The Laplacian matrix and principal divisors

One of the main elements of gonality theory is the Laplacian matrix of a graph, often simply
referred to as the Laplacian. The easiest way to define the Laplacian of G is in terms of two
other matrices A and D associated with G: D is the diagonal matrix given by Dv,v = d(v) for
all v ∈ V , and A is the adjacency matrix of G, which is given by

Av,w =


∣∣∣{e ∈ E : φ(e) = {v, w}

}∣∣∣ if v 6= w,

0 otherwise.

It is obvious from the definition that A is symmetric.

Definition 2.7. The Laplacian matrix Q of G is given by Q = D − A. The homomorphism
∆ : Div(G)→ Div(G) associated with the Laplacian matrix is called the Laplace operator.

Example 2.8. The complete bipartite graph K2,3 has the following Laplacian matrix:

v1

v2

v3

v4

v5


3 0 −1 −1 −1
0 3 −1 −1 −1
−1 −1 2 0 0
−1 −1 0 2 0
−1 −1 0 0 2

 .

Note that the drawing of Q may depend on the order we choose to represent the vertices, however
the abstract matrix Q is uniquely defined by the graph G. �

Lemma 2.9. Let 1 denote the all-ones vector. The Laplacian matrix Q, when viewed as a matrix
over Q, satisfies ker(Q) = span(1) and rank(Q) = |V | − 1

Proof. As Q has zero row sums, we have 1 ∈ ker(Q). For |V | = 1 the result is obvious, for now
we have QV = span(1) ⊂ ker(Q). Assume |V | > 1 and let f ∈ QV be given with f /∈ span(1).
We set m = max{f(v) : v ∈ V } and define U ⊂ V by setting U = {v ∈ V : f(v) = m}. Note
that U 6= V holds because f /∈ span(1). Because G is connected, we can choose some u ∈ U
which has a neighbour w ∈ V \ U . Now we have Au,w > 0, so Au,w · f(w) < Au,w ·m, hence

(Qf)(u) = d(u) · f(u)−
∑
v∈V

(Au,v · f(v))

> d(u) · f(u)−m ·
∑
v∈V

Au,v

= d(u) ·m−m · d(u) = 0.

Hence Qf 6= 0. This holds for all f ∈ QV \ span(1). Therefore we have ker(Q) = span(1) and
rank(Q) = |V | − 1, which concludes the proof.

Remark 2.10. Henceforth, we let Q denote the Laplacian matrix viewed as a matrix over any
field of characteristic 0 (in particular Q). On the other hand, ∆ will exclusively be used to denote
the homomorphism Div(G)→ Div(G).

Definition 2.11. The divisors in the image of the homomorphism ∆ are called principal divisors.
The subgroup of principal divisors is denoted by Prin(G). In other words, we have

Prin(G) = ∆ [Div(G)] .
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Since every column of Q has total sum 0, every principal divisor has degree 0, so we have

Prin(G) ⊂ Div0(G).

Since both Prin(G) and Div0(G) are subgroups of Div(G), the above inclusion tells us that
Prin(G) is in fact a subgroup of Div0(G). This leads us to the next definition.

Definition 2.12. The Jacobian Jac(G) ofG is defined to be the quotient group Div0(G)/Prin(G).

Theorem 2.13. Let κ(G) denote the number of spanning trees in G. The group Jac(G) is finite
of order κ(G).

Proof. Choose some v0 ∈ V . Now we define a map ϕ : ZV \{v0} → Div0(G) by

ϕ(D)(v) =


D(v) if v ∈ V \ {v0},

−
∑
w 6=v0

D(w) if v = v0.

That is, we set φ(D)(v0) such that deg(φ(D)) = 0 holds. This is obviously an isomorphism. Let
Qv0 be the matrix obtained fromQ by deleting the v0-th row and column. Now the |V |−1 columns
of Qv0 span a lattice Λ ⊂ ZV \{v0} of maximal rank. It follows that det(Qv0) = [ZV \{v0} : Λ].
On the other hand, it follows from the matrix tree theorem that det(Qv0) = κ(G). Moreover,
the deleted column is an integer multiple of the other columns (since G is connected), hence we
have ϕ[Λ] = Prin(G). Therefore we have [Div0(G) : Prin(G)] = [ZV \{v0} : Λ] = κ(G).

2.4 Linear equivalence and dimension

We define a relation ∼ on Div(G) by having D ∼ D′ if and only if D−D′ ∈ Prin(G). Note that
this is an equivalence relation. This is often referred to as linear equivalence (e.g. in [2]), hence
we will use that terminology as well.

Definition 2.14. The linear system associated to a divisor D ∈ Div(G) is defined to be the set
|D| containing all effective divisors that are equivalent to D, that is:

|D| = {D′ ∈ Div+(G) : D ∼ D′} .

The equivalence class of a divisor D ∈ Div(G) (with respect to linear equivalence) will be denoted
by [D]. Note that |D| = [D] ∩Div+(G).

Definition 2.15. The dimension r(D) of the linear system |D| is defined to be

r(D) = max
{
s ∈ Z : |D − F | 6= ∅ for all F ∈ Divs+(G)

}
.

Remark 2.16. Note that the maximum is always attained, since r(D) ≤ deg(D) holds. That
is, for every F ∈ Div+(G) with deg(F ) > deg(D) we have deg(D − F ) < 0, hence |D − F | = ∅.
Moreover, observe that r(D) = −1 if and only if |D| = ∅.

Remark 2.17. Neither the linear system |D| nor its dimension r(D) depend on the choice of
its representative D. That is, if D ∼ D′, then obviously we have |D| = |D′|. Moreover, for all
F ∈ Div(G) we have D − F ∼ D′ − F , hence r(D) = r(D′).
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2.5 Gonality

As a special case of Remark 2.16, we have deg(D) ≥ 1 for all D ∈ Div(G) with r(D) ≥ 1.
Moreover, note that in every graph there is a divisor D ∈ Div(G) such that r(D) ≥ 1; consider
for instance the all-ones divisor D = 1. Now we can make the following definition.

Definition 2.18. The gonality gon(G) of a graph G is defined by

gon(G) = min {deg(D) : D ∈ Div(G), r(D) ≥ 1} .

This minimum is guaranteed to exist, as the set {deg(D) : D ∈ Div(G), r(D) ≥ 1} is non-empty
and bounded from below by 1.

Corollary 2.19. For any graph G we have gon(G) ≥ 1. �

Example 2.20. Let G be a tree. By Theorem 2.13 the Jacobian Jac(G) is trivial, so we have
Prin(G) = Div0(G). Thus for any D,D′ ∈ Div(G) with deg(D) = deg(D′) we have D ∼ D′.
In particular, for any D,D′ ∈ Div1

+(G) we have 0 ∈ |D − D′|, so r(D) ≥ 1. Now observe

that Div1
+(G) is not empty as for every v ∈ V the unit divisor ev, which is one in v and zero

elsewhere, is an element of Div1
+(G). Therefore we have gon(G) ≤ 1. By Corollary 2.19 we have

gon(G) ≥ 1, hence gon(G) = 1 must hold. �

More examples will follow in Section 4. We will close this section with the following lemma,
which is actually quite surprising. As it turns out, we can limit ourselves to effective divisors D
in Definition 2.18. This is not immediately obvious from the definition, but it severely reduces
the number of divisors we have to consider if we attempt to determine gon(G).

Lemma 2.21. There exists some D ∈ Div+(G) such that deg(D) = gon(G) and r(D) ≥ 1.

Proof. Let D′ ∈ Div(G) be a divisor such that deg(D′) = gon(G) and r(D′) ≥ 1. Now fix v ∈ V .
Since r(D′) ≥ 1, there is some effective divisor F ∈ Div(G) such that D′ − ev ∼ F . But now we
have D′− ev−F ∈ Prin(G), so it follows that D′ ∼ F + ev. Since both F and ev are effective, so
is F+ev. Thus we set D = F+ev. Obviously, we have D′ ∼ D and deg(D) = deg(D′) = gon(G).
Moreover, we can conclude from D ∼ D′ that r(D) = r(D′) ≥ 1.

Corollary 2.22. We have gon(G) = min {deg(D) : D ∈ Div+(G), r(D) ≥ 1}. �
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3 Further techniques

3.1 Chip-firing games

The abstract concepts of the previous chapter can also be viewed in the context of chip-firing
games. In a chip-firing game, we consider a graph G with any integer number of chips (commonly
dollars, although other currencies are not at all uncommon) on its vertices, which can be moved
about following certain rules. In the Norine–Baker chip-firing game ([2]), the rules are as follows:

1. The game is played by two people, you and an evil adversary. A graph G is given.

2. First, you have to divide a number of chips among the vertices of G. Vertices are allowed
to have a negative number of chips; such vertices are said to be in debt.

3. The opponent then chooses any one vertex and subtracts one chip from that vertex. This
vertex may already be in debt.

4. Subsequently, you are allowed to move the chips about. However, there is only one type of
move you can do: you can move deg(v) chips from node v to all its neighbours by giving
each of them 1 chip. You are not allowed to leave certain neighbours out or give some
of them multiple chips! Using a sequence of moves of this type (called firing moves or
borrowing moves), you have to make sure that all vertices are out of debt.

5. If you succeed, you win. Otherwise, the adversary wins.

We assume that the opponent plays his optimal strategy: he will win whenever he can. Thus,
whether or not there will be a winning strategy for the remainder of the game depends on the
choice of initial conguration in step 2.

Note that we can denote the state of G (that is, the number of chips on the vertices of G) at
any moment during the game as a divisor on G. Now we have the following lemma, leading to
an important theorem.

Lemma 3.1. The firing moves correspond to subtracting principal divisors, and the initial divisor
is equivalent to the resulting divisor. Moreover, every equivalent divisor can be reached via a finite
sequence of firing moves.

Proof. Let D be the initial divisor. Let ev be the unit divisor corresponding to some vertex
v ∈ V , then −Qev is the vector containing −deg(v) on the v-th coordinate, +1 on each of the
neighbours of v and 0 on all other vertices. Thus D − Qev is the divisor resulting from firing
from vertex v to all of its neighbours.

In order to see why every equivalent divisor can be reached using a finite sequence of firing moves,
let D1 be the initial divisor and D2 an equivalent divisor. There exists some f ∈ Div(G) such
that D2 = D1 −∆f , however the entries of f do not have to be positive. Now if we recall that
1 ∈ ker(∆), we see that we can add any constant divisor k ·1 to f in order to obtain f ′ ∈ Div+(G)
which also satisfies D2 = D1 −∆f ′. Now f ′ corresponds to a finite sequence of firing moves, so
every equivalent divisor can in fact be reached using a finite sequence of firing moves.1

1The point is that the game only allows a positive number of firing moves on each vertex, whereas principal
divisors may arise from a negative number of firing moves. The above argument assures us that even those
principal divisors can be achieved within the rules of the chip-firing game.

7



Theorem 3.2. The gonality of G equals the minimum number of chips in a winning initial
configuarion in step 2 of the Norine–Baker chip-firing game.

Proof. Assume that the game is winning for us if we start out with some divisor D ∈ Div(G).
Subsequently, the opponent subtracts one chip from a vertex he chooses. Regardless of the chip
he subtracts, there is a winning strategy for us (for the remainder of the game). That is: for
every F ∈ Div1

+(G), there is some effective divisor F ′ ∈ Div(G) such that D− F ∼ F ′. In other
words: |D − F | 6= ∅. Hence we have r(D) ≥ 1.

On the other hand, if the game is not winning for us after choosing some initial configuration
D ∈ Div(G), then there must be some F ∈ Div1

+(G) such that |D − F | = ∅, so now we have
r(D) < 1. All in all, the game is winning after choosing some initial divisor D ∈ Div(G) if and
only if r(D) ≥ 1.

As a result, we can think of gonality in terms of this chip-firing game. This helps our under-
standing of gonality and provides us with a useful toolkit for proving lemmata and theorems.

3.2 Firing from subsets

Apart from firing from a single vertex, one might also consider firing once from every vertex in
some subset A ⊂ V . We will denote the indicator function of A as 1A, that is:

1A(v) =

{
1 if v ∈ A,

0 if v /∈ A.

Thus, henceforth the process of starting with some initial configuration D ∈ Div(G) and firing
from a subset A ⊂ V will be denoted by D − ∆ 1A. When firing from a subset A, the edges
between two vertices v, w ∈ A will have one chip going from v to w and one chip going from w
to v, so they cancel out. Hence we only have to worry about edges leaving A.

Definition 3.3. Let A ⊂ V be a subset of vertices. The outdegree outdegA(v) of a vertex v ∈ A
with respect to A is the number of edges leaving A through v, that is:

outdegA(v) =
∣∣∣{e ∈ E : φ(e) ∩A = {v}

}∣∣∣.
Moreover, we let outdegA(A) denote the total outdegree of A. Similarly, the indegree indegA(v)
of a vertex v ∈ V \A with respect to A is the number of edges entering V \A through v:

indegA(v) =
∣∣∣{e ∈ E : φ(e) ∩ (V \A) = {v}

}∣∣∣.
Remark 3.4. Note that the only difference is that outdeg only applies to vertices in A whereas
indeg only applies to vertices in V \A. That is, for all v ∈ A we have outdegA(v) = indegV \A(v)
and for all v ∈ V \A we have indegA(v) = outdegV \A(v).

Example 3.5. Assume that D2 = D1−∆ 1A. For all v ∈ A we have D2(v) = D1(v)−outdegA(v)
and for all v ∈ V \A we have D2(v) = D1(v) + indegA(v). It is now apparent from ∆1 = 0 that
firing from a subset A can be undone by subsequently firing from V \A. In particular, one could
reverse fire into a vertex v ∈ V by firing from every vertex in V \ {v}. Starting with an initial
divisor D ∈ Div(G), we then end up with the divisor D′ = D + ∆ev. This is also the main idea
of the proof of Lemma 3.1. �
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Example 3.6. Let G be a tree and let D ∈ Div1
+(G) be the effective divisor of degree 1 given

by D = ev for some v ∈ V . For any neighbour w of v, the edge e with φ(e) = {v, w} induces a
cut (U, V \U) separating v and w. By firing from U , we send one chip from v to w. All the firing
moves on interior edges of U get leveled out by another firing move in the opposite direction, so
the only thing that changes is the chip traveling from v to w. This corresponds with the finding
that Jac(G) is trivial for any tree. �

A major advantage of considering firing from subsets rather than firing from single vertices
becomes apparent when we look at level sets.

Definition 3.7. Let D,D′ ∈ Div(G) be two equivalent divisors with D′ = D − ∆f for some
f ∈ Div(G). Define m = max{f(v) : v ∈ V } and k = m − min{f(v) : v ∈ V }. The level set
decomposition of f is the sequence of sets A0 ⊂ A1 ⊂ · · · ⊂ Ak = V given by

Ai = {v ∈ V : f(v) ≥ m− i} .

The sequence of divisors D0, D1, . . . , Dk ∈ [D] given by D0 = D and Di+1 = Di −∆ 1Ai
for all

i ∈ {0, 1, . . . , k − 1} is called the divisor sequence associated with the level set decomposition.

Remark 3.8. Note that f is not uniquely determinded as we are free to add or subtract any
integer multiple of 1, but the choice of f does not affect the level sets. Therefore we will usually
assume that f(v) ≥ 0 holds for all v ∈ V in such a way that f(v0) = 0 holds for at least one v0 ∈ V .
In that case we have k = m, so for all i ∈ {0, 1, . . . , k} we have Ai = {v ∈ V : f(v) ≥ k − i}.

Lemma 3.9. For all i ∈ {0, 1, . . . , k − 1} we have Ai 6= V .

Proof. By the definition of k, there is some v ∈ V such that f(v) = m − k. Moreover, for all
i ∈ {0, 1, . . . , k − 1} and all w ∈ Ai we must have f(v) ≥ m− i > m− k, hence v /∈ Ai.

Theorem 3.10. Let D,D′ ∈ Div(G) be two equivalent divisors with D′ = D − ∆f for some
f ∈ Div(G). Let A0 ⊂ A1 ⊂ · · · ⊂ Ak be the level set decomposition of f and D0, D1, . . . , Dk the
associated divisor sequence. Then for all i ∈ {0, 1, . . . , k} we have Di(v) ≥ min

(
D(v), D′(v)

)
(for all v ∈ V ). Moreover, we have Dk = D′.

Proof. Define fi ∈ Div(G) recursively by f0 = f and fi+1 = fi − 1Ai
. Inductively, it is not hard

to see that D′ = Di −∆fi holds for all i ∈ {0, 1, . . . , k}.

• For i = 0, we have D0 = D and f0 = f , so we have D′ = D −∆f = D0 −∆f0.

• Let i ∈ {0, 1, . . . , k−1} be given such that D′ = Di−∆fi. Now note that Di+1 = Di−∆ 1Ai

and fi+1 = fi − 1Ai
, so we find

D′ = Di −∆fi = Di −∆ (fi+1 + 1Ai) = Di −∆ 1Ai −∆fi+1 = Di+1 −∆fi+1.

Hence the property holds for j = i+ 1 as well.

Moreover, we will prove (once again by induction) that for all i ∈ {0, 1, . . . , k}, any v ∈ Ai
satisfies fi(v) = m− i, whereas any v ∈ V \Ai satisfies fi(v) < m− i.

• For i = 0, this follows from the definition of Ai.

• Let i ∈ {0, 1, . . . , k−1} be given such that fi(v) = m−i holds for all v ∈ Ai and fi(v) < m−i
holds for all v ∈ V \Ai. Let v ∈ V be given. We distinguish three cases.
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– If v ∈ Ai, then we have fi(v) = m− i by the induction hypothesis. Because we have
fi+1 = fi − 1Ai

, we must have fi+1(v) = m− i− 1.

– If v ∈ Ai+1 \Ai, then we have fi+1(v) ≤ fi(v) < m− i. Note that we have v /∈ Aj for
all j ≤ i, so we have fi(v) = f0(v). Moreover, by definition we have f0(v) ≥ m− i−1,
so fi+1(v) ≥ m− i− 1. Combining these results, we find fi+1(v) = m− i− 1.

– If v ∈ V \ Ai+1, then we have f0(v) < m − i − 1. Since fi+1 ≤ f0, it follows that
fi+1(v) < m− i− 1.

All in all, we have fi+1(v) ≤ m − (i + 1) for all v ∈ V , and equality holds if and only if
v ∈ Ai+1. Thus the property holds for j = i+ 1 as well.

Now we will prove that Di(v) ≥ min
(
D(v), D′(v)

)
holds for all i ∈ {0, 1, . . . , k} and all v ∈ V .

Once again, we shall do so by induction on i.

• For i = 0, we have D0(v) = D(v) ≥ min
(
D(v), D′(v)

)
for all v ∈ V .

• Let i ∈ {0, 1, . . . , k − 1} be given such that Di(v) ≥ min
(
D(v), D′(v)

)
holds for all v ∈ V .

Recall that Di+1 = Di − ∆ 1Ai
. Now consider moving directly from Di to D′. By the

preceding discussion, we haveD′ = Di−∆fi. Moreover, for all v ∈ Ai we have fi(v) = m−i,
whereas for all v ∈ V \ Ai we have fi(v) < m − i. Therefore, when moving directly
from Di to D′, any v ∈ Ai loses (m − i) · outdegAi

(v) chips whereas it receives at most
(m− i− 1) · outdegAi

(v) chips. Thus for all v ∈ Ai we have

Di(v)− (m− i) · outdegAi
(v) + (m− i− 1) · outdegAi

(v) ≥ D′(v),

hence Di(v) ≥ D′(v) + outdegAi
(v). Now that we know this, we fire from Ai in order to

get to Di+1. Let v ∈ V be given. We distinguish two cases.

– If v ∈ Ai, then we have Di+1(v) = Di(v)− outdegAi
(v) ≥ D′(v) ≥ min

(
D(v), D′(v)

)
.

– If v ∈ V \Ai, then we have Di+1(v) ≥ Di(v) ≥ min
(
D(v), D′(v)

)
.

Hence for all v ∈ V we have Di+1(v) ≥ min
(
D(v), D′(v)

)
.

Finally, note that Ak = V holds, so it follows from the preceding discussion that fk(v) = m− k
holds for all v ∈ V . Therefore we have fk ∈ ker(∆), so now it follows from D′ = Dk −∆fk that
D′ = Dk. This concludes the proof.

This means that we can go from D to D′ via a sequence of subset-firing moves without ever going
below the pointwise minimum of the two. One particularly useful consequence is the following.

Corollary 3.11. Let D,D′ ∈ Div+(G) be two equivalent (effective) divisors. Then there exists
a finite sequence of subset-firing moves that transform D into D′ without ever going into debt.

Proof. This follows immediately from the previous theorem, as for all v ∈ V we have D(v) ≥ 0
and D′(v) ≥ 0, hence min

(
D(v), D′(v)

)
≥ 0.

Remark 3.12. Note that no such sequence is guaranteed to exist if one merely considers firing
from single vertices one at a time. For instance consider the following counterexample. Let
G = K1,k for some k ≥ 2 be a star centered around c ∈ V and let v, w ∈ V \ {c} be two vertices
different from the center (see figure below). Then we set D = ev and D′ = ew. As we saw
before in both Example 2.20 and Example 3.6, Jac(G) is trivial, hence we have D ∼ D′. Any
intermediate divisor in a sequence of single chip-firing moves transforming D into D′ without
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going into debt, contains only one chip. However at some point we have to pass through the
center c in order to get from v to w. Unfortunately, firing from c would cause all of its neighbours
(more than one) to receive a chip, hence c has to go into debt. Indeed, no sequence of single
chip-firing moves exists transforming D into D′ without ever going into debt.

c v

w

Example: the star K1,9.

In Example 3.6 we already found a sequence of subset-firing moves transforming D into D′

without ever going into debt, as the star K1,k is a tree. Corollary 3.11 assures us that such a
sequence exists, indeed (however these two sequences are not guaranteed to be the same).

3.3 Reduction of a divisor

As Lemma 2.21 suggests, we can make quite some strong assumptions on our divisors. For
instance, when looking for divisors D ∈ Div(G) of minimum degree with r(D) ≥ 1, we can limit
ourself to effective divisors. This severely reduces the number of divisors we have to consider, as
Divk+(G) is finite for any k ∈ Z whereas Divk(G) is infinite. A similar result is the reduction of
divisors with respect to some vertex v0 ∈ V .

Definition 3.13. For any v0 ∈ V , a divisor D ∈ Div(G) is said to be v0-reduced if both of the
following conditions hold:

• D(v) ≥ 0 for all v ∈ V \ {v0}.

• For any non-empty A ⊂ V \ {v0} there is some v ∈ A such that D(v) < outdegA(v).

Moreover, a divisor is said to be v0-semi-reduced if it only satisfies the first property.

Reduced divisors can be interpreted as follows: every vertex other than v0 is out of debt and we
cannot fire from any non-empty subset (not containing v0) without ruining the first property.
The following results illustrate the importance of reduced divisors.

Lemma 3.14. For any given v0 ∈ G and D ∈ Div(G), there exists a v0-semi-reduced divisor
D′ ∈ Div(G) such that D ∼ D′.

Proof. We define F ∈ QV by setting F = 1− |V | · ev0 . Note that F ∈ Div0(G) holds. As Jac(G)
is finite, the order of [F ] in Jac(G) is finite as well. Hence there is some k ∈ Z>0 such that
[kF ] = [0] holds. But now kF is a representative of [0], hence a principal divisor. Thus we can
add some multiple of kF to D in order to obtain a v0-semi-reduced divisor D′ ∼ D: simply add
kF as many times as needed to take all vertices other than v0 out of debt.

Theorem 3.15 (Proposition 3.1 in [2]). For any given v0 ∈ G and D ∈ Div(G), there exists a
unique v0-reduced divisor D′ ∈ Div(G) such that D ∼ D′.

11



Proof. For any v ∈ V , let l(v) denote the length of the shortest path between v and v0. Moreover,
we define d ∈ Z≥0 and Sk ⊂ V for all k ∈ {0, 1, . . . , d} as follows:

d = max
v∈V

l(v);

Sk = {v ∈ V : l(v) = k} .

Now we define β : Div(G)→ Zd+1 by setting

β(F ) =

(∑
v∈S0

F (v),
∑
v∈S1

F (v), . . . ,
∑
v∈Sd

F (v)

)
.

Recall that there exists a v0-semi-reduced divisor D′ ∈ [D] by Lemma 3.14. Now let F ∈ [D] be
a v0-semi-reduced divisor such that

β(F ) = max
{
β(F ′) : F ′ ∈ [D] is v0-semi-reduced

}
, (1)

where we take the maximum with respect to the lexicographical order. Note that the maximum
exists, as every coordinate is bounded by deg(D). (Moreover we have β(F ′) ≤

(
deg(D), 0, 0, . . . , 0

)
for all F ′ ∈ Div(G) with deg(F ′) = deg(D), so this holds in particular for every F ′ ∈ [D] that
are v0-semi-reduced.)

Now assume that there is some non-empty subset A ⊂ V \ {v0} such that F (v) ≥ outdegA(v)
holds for all v ∈ A. We define F ′ = F − ∆(1A), that is: we fire from the entire subset A.
Furthermore, we define dA = min{l(v) : v ∈ A}. For all v ∈ A we have

F ′(v) = F (v)− outdegA(v) ≥ 0, (2)

so F ′ is v0-semi-reduced as well. Now let v′ ∈ V be a node with l(v′) < dA with a neighbour in
A, for instance by taking the second node we encounter on a shortest path from A to v0. (Such
a node is guaranteed to exist, but it might be v0). Now we have F ′(v′) > F (v′), since v′ receives
at least one chip as it has a neighbour in A. Moreover, for all w ∈ V \A with l(w) < dA we have
F ′(w) ≥ F (w), so we must have β(F ′) > β(F ). However this contradicts our choice of F . We
can conclude that F already satisfies both of the properties from Definition 3.13, hence it is a
v0-reduced divisor. The choice D′ = F suffices for our main theorem.

In order to show that this v0-reduced divisor is unique, suppose that both D,D′ ∈ Div(G)
are v0-reduced with D 6= D′ and D ∼ D′. Let f ∈ Div(G) be given with D′ = D − ∆f , let
A0, A1, . . . , Ak be its level set decomposition and let D0, D1, . . . , Dk be the associated sequence
of divisors. Note that v0 ∈ A0 must hold because D is v0-reduced, so for all i ∈ {0, 1, . . . , k} we
have v0 ∈ Ai. Moreover, since D 6= D′ holds by assumption, we have k ≥ 1. By Lemma 3.9 we
have Ak−1 6= V , so we get from Dk−1 to D′ by firing from some subset Ak−1 ( V with v0 ∈ Ak−1.
Hence we can get from D′ back to Dk−1 by firing from V \ Ak−1, but this is a non-empty set
not containing v0. This contradicts the assumption that D′ is v0-reduced. Therefore we can
conclude that there is only one v0-reduced divisor D′ ∼ D.

Because of the uniqueness of reduced divisors, we can make the following definition.

Definition 3.16. For any D ∈ Div(G) and v0 ∈ V , we let Redv0(D) ∈ [D] denote the unique
v0-reduced divisor of D.

12



Lemma 3.17. For any vertex v0 ∈ V and every v0-semi-reduced divisor D ∈ Div(G), we have
D′(v0) ≥ D(v0), where D′ = Redv0(D) denotes the unique v0-reduced divisor of D.

Proof. This follows from our construction of D′ in (1), as S0 = {v0} holds.

The following theorem illustrates the importance of reduced divisors (and, to a lesser extent, the
tools created in the proof of Theorem 3.15).

Theorem 3.18. Let D ∈ Div(G) and v0 ∈ G be given and let D′ = Redv0(D) be the v0-reduced
divisor of D. Then r(D) ≥ 0 if and only if D′(v0) ≥ 0.

Proof. If r(D) ≥ 0, then there exists some F ∈ Div+(G) with D ∼ F . Note that F ∼ D′,
so now it follows from Theorem 3.15 that D′ = Redv0(F ). Moreover, note that F is already
v0-semi-reduced. It follows from Lemma 3.17 that D′(v0) ≥ F (v0) ≥ 0.

On the other hand, if D′(v0) ≥ 0, then D′ is effective, so D′ ∈ |D| and r(D) ≥ 0.

This theorem has a nice algorithmic application: finding the v0-reduced divisor Redv0(D) for
some given D ∈ Div(G) and v0 ∈ G yields an algorithm for determining whether or not r(D) ≥ 0
holds. The steps in the proofs of Lemma 3.14 and Theorem 3.15 already provide an outline for
the algorithm, but improvements in running time can be made. We will extensively study an
algorithm for reducing divisors in Section 5.

Another nice little property of reduced divisors is given by the following lemma.

Lemma 3.19. For any given D ∈ Div(G), v0 ∈ V and k ∈ Z, we have

Redv0(D + k · ev0) = Redv0(D) + k · ev0 .

Proof. Note that Redv0(D)+k ·ev0 is a v0-reduced divisor, as Redv0(D) is one. The result follows
from the uniqueness of v0-reduced divisors, since Redv0(D) + k · ev0 ∼ D + k · ev0 holds.

Theorem 3.20. For any D ∈ Div(G), we have r(D) ≥ 1 if and only if Redv(D)(v) ≥ 1 holds
for all v ∈ V .

Proof. If Redv(D)(v) ≥ 1 holds for all v ∈ V , then we have Redv(D − ev)(v) ≥ 0 for all v ∈ V
by Lemma 3.19, hence r(D − ev) ≥ 0 for all v ∈ V by Theorem 3.18. Therefore we now have
|D − ev| 6= ∅ for all v ∈ V , so r(D) ≥ 1.

On the other hand, if r(D) ≥ 1 holds, then for every v ∈ D we have |D − ev| 6= ∅, hence
r(D − ev) ≥ 0. Theorem 3.18 now assures us that Redv(D − ev)(v) ≥ 0 holds for all v ∈ V . It
follows from Lemma 3.19 that Redv(D)(v) ≥ 1 holds for all v ∈ V .

If we combine the theory of reduced divisors with level set decompositions, we find some more
results. Firstly, there is a nice little lemma which assures us that we never have to fire from v0

in order to reduce a v0-semi-reduced divisor D ∈ Div(G) with respect to v0.

Lemma 3.21. Let D ∈ Div(G) be v0-semi-reduced and let D′ = Redv0(D) be the reduced divisor
of D. Furthermore, let f ∈ Div+(G) be such that D′ = D−∆f (with f(w) = 0 for some w ∈ V ),
and let A0, A1, . . . , Ak be the level set decomposition of f . Then for all i ∈ {0, 1, . . . , k − 1} we
have v0 /∈ Ai.
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Proof. Assume that there is some i ∈ {0, 1, . . . , k− 1} such that v0 ∈ Ai holds. By definition we
have Ai ⊂ Ak−1, hence v0 ∈ Ak−1. Moreover, Lemma 3.9 assures us that Ak−1 6= V . Now let
D0, D1, . . . , Dk be the sequence of divisors associated with the level set decomposition, satisfying
D0 = D and Dk = D′. Now Dk is obtained from Dk−1 by firing from some set Ak−1 6= V
which contains v0. But then Dk−1 can be obtained from Dk by firing from V \Ak−1, which is a
non-empty set not containing v0. This contradicts the assumption that D′ is v0-reduced, hence
we can conclude that v0 /∈ Ai holds for all i ∈ {0, 1, . . . , k − 1}.

Finally, there is one more nice theorem with a topological interpretation, which uses level set
decomposition as well as the above lemma. First we need to make one more definition.

Definition 3.22. For any vertex v0 ∈ V and any divisor D ∈ Div+(G), the v0-component
Gv0(D) of D is the component containing v0 in G − supp(D) if v0 /∈ supp(D), or the empty
graph otherwise.

Example 3.23. In order to illustrate the above definitions, consider the following divisor.
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The v0-component of D consists of the grey vertices and v0 is highlighted by a thick black border.
The vertices from supp(D) are highlighted by a thick red circle and those of them that bound
Gv0(D) are also filled out in red. �

Theorem 3.24. Let D,D′ ∈ Div+(G) be given with D′ = Redv0(D) and let D0, D1, . . . , Dk be
the sequence of divisors associated with the level set decomposition (with D0 = D and Dk = D′).
Then we have Gv0(Dj) ⊂ Gv0(Di) whenever i ≤ j.

Proof. It suffices to show that the inclusion holds whenever j = i + 1. If Gv0(Di+1) is empty,
then the inclusion obviously holds. Moreover, if Gv0(Di) is empty, then we have Di(v0) = 0,
hence also Di+1(v0) = 0. It follows that Gv0(Di+1) is empty as well. For the remainder of this
proof, we will assume that both Gv0(Di) and Gv0(Di+1) are not empty.

Suppose, for the sake of contradiction, that there is some vertex w0 ∈ V with w0 ∈ V (Gv0(Di+1))
and w0 /∈ V (Gv0(Di)). Let P = w0w1w2 · · ·wl be some w0-v0-path in Gv0(Di+1) with wl = v0

(such a path is guaranteed to exist as Gv0(Di+1) is connected), and let wr be the last node on
P which does not belong to Gv0(Di). Then we must have Di(wr) > 0 and Di(wq) = 0 for all
q ∈ {r + 1, r + 2, . . . , l}. Now we must have wr ∈ Ai, because wr loses at least one chip when
we move from Di to Di+1. However wr+1 must also be in Ai, for otherwise it would receive
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at least one chip and give none away (which can not be true as wr+1 belongs to Gv0(Di+1)).
Inductively (by using the same exact argument as q increases) we see that wq ∈ Ai must hold
for all q ∈ {r + 1, r + 2, . . . , l}. In particular, we have v0 ∈ Ai, but this contradicts the result of
Lemma 3.21. It follows from this contradiction that every w0 ∈ Gv0(Di+1) must also belong to
Gv0(Di), which concludes the proof.

In terms of the reduction process, this means that Gv0(Di) will only shrink as we move towards
Dk using the respective firing moves given by level set decomposition. Moreover, the preceding
theorem tells us that we can imagine reduction with respect to v0 as a process of moving chips
closer to v0 in an attempt to make them land on v0. (However this is not very accurate when
e.g. supp(D) = V \ {v0} holds, or when D(v0) > 0 holds right from the start: in these cases the
preceding theorem only assures us that ∅ ⊂ ∅ holds.)

3.4 A lower bound on gon(G)

In most graphs, it is relatively easy to find an upper bound for the gonality: you have to find a
divisor D ∈ Div(G) and prove that r(D) ≥ 1. On the other hand, in order to find a lower bound
l ∈ Z>0, you would have to prove that every divisor D ∈ Div(G) with deg(D) < l has r(D) ≤ 0.
For some specific graphs, that might be possible within a reasonable amount of time, however in
most graphs this simply takes too long. Moreover, even when you find a lower bound, it is not
guaranteed to be tight: you might just as well be way off. Hence it is desirable to develop a set
of tools that provide us with lower bounds on the gonality.

Definition 3.25. A bramble is a non-empty set B ⊂ P(V ) with ∅ /∈ B and satisfying both of
the following properties:

• For all B ∈ B, the induced subgraph G[B] is connected;

• For all B,C ∈ B, we have B ∩ C 6= ∅ or there is some edge e ∈ E between B and C.

Thus, a bramble is a set of mutually touching connected vertex sets. The order ‖B‖ of B is the
minimum cardinality of a cover of B:

‖B‖ = min {|S| : S ⊂ V such that S ∩B 6= ∅ for all B ∈ B} .

Definition 3.26. A strict bramble (or strictly intersecting bramble) is a bramble B, which
additionally satisfies the following, slightly stronger condition:

• For all B,C ∈ B, we have B ∩ C 6= ∅.

Definition 3.27. Let D ∈ Div+(G) be a divisor and B ⊂ P(V ) a bramble. We define #B(D)
and mB(D) by

#B(D) =
∣∣ {B ∈ B | ∀b ∈ B : D(b) = 0.}

∣∣;
mB(D) = min {#B(D′) : D′ ∈ |D|} .

That is, #B(D) is the number of connected vertex sets in the bramble that contain not a single
chip at all. Note that the minimum mB(D) is guaranteed to exist as #B(D) ≥ 0 holds for every
D ∈ Div+(G).

Regarding strict brambles, we have the following theorem, which is based on unpublished work
by M. Derickx.
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Theorem 3.28. Let B be a strict bramble. Then gon(G) ≥ ‖B‖.

Proof. Suppose that gon(G) < ‖B‖ holds. Then there exists some D ∈ Div+(G) with r(D) ≥ 1
and deg(D) < ‖B‖. Without loss of generality, we may assume that D is minimal in the sense that
mB(D) = #B(D). Note that #B(D) ≥ 1 holds, as deg(D) < ‖B‖. Hence there is some B ∈ B
which contains no chips. Now we choose an arbitrary vertex v0 ∈ B and we let D′ = Redv0(D)
be the v0-reduced divisor of D. Corollary 3.11 (level set decomposition) gives us a finite sequence
D0, D1, . . . , Dk of effective divisors which can be obtained by subsequently firing from subsets
Ai ⊂ V such that D0 = D and Dk = D′. Now let i ∈ {0, 1, . . . , k} be the smallest index such
that B contains at least one chip in Di, that is:

i = min
{
l ∈ {0, 1, . . . , k} | ∃b ∈ B : Dl(b) > 0

}
.

(Note that Dk(v0) > 0 holds because Dk is v0-reduced and r(D) ≥ 1 holds.) By minimality of
D, we have #B(Di) ≥ #B(D). However, since B is now covered by at least one chip, there must
be some other C ∈ B which is not covered anymore, but which was covered by the divisor D.
Let Dj be the last divisor with j < i in which C is still covered by a chip. Let Aj denote the set
from which we fire to get from Dj to Dj+1. We will now prove the following two claims in order
to get to a contradiction.

Claim: we must have C ⊂ Aj. If we were to have w /∈ Aj for some w ∈ C, then there must be
some vertex w′ ∈ C with w′ /∈ Aj which has a neighbour in Aj (as the induced subgraph G[C]
is connected). However, this vertex w′ now receives at least one chip and does not lose a single
chip, so we have Dj+1(w′) > 0. This contradicts the assumption that C is not covered by any
chip whatsoever in Dj+1. We can conclude that C ⊂ Aj must hold.

Claim: we also have B ⊂ Aj. Note that B ∩ C 6= ∅ holds, so we have Aj ∩ B 6= ∅. Now
assume that there is some w ∈ B with w /∈ Aj , then there must be some vertex w′ ∈ B with
w′ /∈ Aj which has a neighbour v′ in Aj ∩ B. Note that Dj(v

′) = 0 holds because j < i.
However, now this vertex v′ loses at least one chip when moving from Dj to Dj+1, because we
have outdegAj

(v′) ≥ 1, but this contradicts the assumption that Dj+1 is effective.

It follows from the previous discussion that B ⊂ Aj must hold. However this contradicts Lemma
3.21, which assures us that we never have to fire from v0 ∈ B. Therefore we can conclude that
gon(G) ≥ ‖B‖ must hold.

Remark 3.29. Every graph contains a strict bramble, for instance B = {V }. Unfortunately,
this is not a very useful bramble, as we already knew that gon(G) ≥ 1 holds.

Remark 3.30. In general, no strict bramble B with gon(G) = ‖B‖ is guaranteed to exist. For
instance, consider the following counterexample: fix some n ≥ 4 and let G = Kn be the complete
on n vertices. As we will see in Theorem 4.3, we have gon(G) = n− 1. Now suppose that there
is some strict bramble B on G with ‖B‖ = n− 1. Then for any S ⊂ V with |S| = n− 2 there is
a B ∈ B such that S ∩ B = ∅ holds, but this means that |B| ≤ 2. Now we choose S′ ⊂ V with
|S′| = n − 2 such that B ⊂ S′ holds (here we use that n ≥ 4, as otherwise such a set S′ would
not exist). Once again, there is some B′ ∈ B such that S′ ∩B′ = ∅, but as B ⊂ S′ we now have
B ∩ B′ = ∅. This is a contradiction because we assumed that B is a bramble. Therefore there
does not exist a strict bramble B on G with gon(G) = ‖B‖ in this case.
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3.5 An upper bound on gon(G)

We can also device a few tricks for finding an upper bound to the gonality.

Definition 3.31. A strong separator is a non-empty vertex set S ⊂ V such that each component
C in G− S is a tree and every s ∈ S satisfies

∣∣ {e ∈ E(s) : φ(e) ∩ V (C) 6= ∅}
∣∣ ≤ 1.

In order to further illustrate this concept, consider the following example.

Example 3.32. Consider the Petersen graph P with the vertices of S drawn red.

Now P − S consists of three components, each of which is a path of length 1. Moreover, every
s ∈ S has exactly one edge going into each component, as can be seen in the figure. �

Theorem 3.33. Let S ⊂ V be a strong separator, then gon(G) ≤ |S|.

Proof. Let D ∈ Div(G) be given by D = 1S . Choose any v ∈ V . If v ∈ S holds, then D − ev is
already effective, so now we obviously have |D−ev| 6= ∅. Assume for the remainder of this proof
that v /∈ S holds. Let C be the component of G− S that v belongs to. Now let D′ = Redv(D)
be the v-reduced divsor of D and suppose that D′(v) = 0 holds. Then we let H ⊂ G be the
component containing v in the graph G− supp(D′), and let B = V (H). By Theorem 3.24, H is
an (induced) subgraph of the component in G − supp(D) that v belongs to, which happens to
be the component C. Now let B′ ⊂ supp(D′) be given by

B′ = {b′ ∈ supp(D′) | ∃e ∈ E(b′) : φ(e) ∩B 6= ∅} .

That is: B′ consists of all the G-neighbours of B that lie outside B. Let b′ ∈ B′ be given. We
must now distinguish two cases in order to show that b′ has exactly one neighbour in B.

• If b′ ∈ V (C), then we do not have to worry about multiple edges, because C is a tree.
Suppose b′ has two or more neighbours in B; let u,w ∈ V (B) be two different neighbours
of b′. Now as B is connected, both a v-u-path P1 and a v-w-path P2 must exist in B,
but then there must be some cycle in C, which passes through b, u and w (given by
(P14P2) ∪ P3, where 4 denotes the edge-symmetric difference and P3 is the path ubw).
This contradicts the assumption that C is a tree, hence b′ has only one neighbour in B.

• If b′ /∈ V (C), then we must have b′ ∈ S. Recall that
∣∣ {e ∈ E(b′) : φ(e) ∩ V (C) 6= ∅}

∣∣ ≤ 1,
so b′ has at most one incident edge going into C. Combine this with the fact that b′ has at
least one neighbour in B ⊂ C, so we can conclude that b′ has exactly one neighbour in B.

All in all, we see that
∣∣{e ∈ E : φ(e) ∩ V (B) = {b′}

}∣∣ = 1 holds for all b′ ∈ B′. Therefore we
have outdegB(B) = |B′|. But now we can fire from V \B, without sending any vertex into debt,
as only the vertices in B′ lose chips (and each of them loses only one). However this contradicts
the assumption that D′ is v-reduced, as we can still fire from the non-empty set V \ B, which
does not contain v, without going into debt. Hence D′(v) 6= 0 must hold. Recall from Lemma
3.17 that D′(v) ≥ D(v) holds, so now we must have D′(v) > 0. Therefore we have |D− ev| 6= ∅,
so r(D) ≥ 1 and gon(G) ≤ |S|.
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Remark 3.34. For any graph G the set S = V is a strong separator. Moreover, for any simple
vertex v ∈ V (not incident with double edges) in a graph with two or more vertices, the set
S = V \ {v} is a strong separator.

Remark 3.35. Equality gon(G) = |S| does not have to hold, not even if we take a minimal
strong separator in G. For instance, consider the following graph.

v0

Now the divisor D = 2ev0 has rank (at least) one, as we can continue to move the chips on v0

to the right by subsequently firing from all points from v0 up to (and including) supp(Di). The
figure below illustrates this method. However, no two vertices form a strong separator, so we
have gon(G) < |S| for every strong separator S.

A0

2
v0

A1

1

1

A2

2

A3

1

1

...
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4 Examples

Now that we have constructed a set of tools, it is time to try and determine gon(G) for some
specific cases, including trees, cycles, graphs with only one cycle, complete graphs, complete
bipartite graphs, the Petersen graph and two-dimensional grid graphs.

4.1 Trees

As we have seen on several occasions (Example 2.20 and Example 3.6), for any tree G the
Jacobian is trivial and we have gon(G) = 1. As it turns out, trees are the only graphs with
gonality zero.

Theorem 4.1. Let G be a graph with gon(G) = 1. Then κ(G) = 1.

Proof. There is some D ∈ Div1
+(G) with r(D) ≥ 1. We can write D = ev for some v ∈ V .

Since r(D) ≥ 1, we have ev − ew ∈ Prin(G) for all w ∈ V . Now let F ∈ Div0(G) be any
divisor of degree zero, and set F ′ = Redv(F ). Now we have F ′(w) ≥ 0 for all w ∈ V \ {v} and
F ′(v) = −

∑
w 6=v F

′(w). It follows that

F =
∑

w∈V \{v}

F ′(w) · (ew − ev),

so we must have F ∈ Prin(G). However this holds for all F ∈ Div0(G), so we must have
Div0(G) = Prin(G). It follows from Theorem 2.13 that κ(G) = 1.

Corollary 4.2. For any graph G we have gon(G) = 1 if and only if G is a tree. �

4.2 Cycles

The next graph we might want to consider, is the cycle Cn for n ≥ 2. Because Cn is not a tree,
it follows from the preceding corollary that gon(Cn) ≥ 2. On the other hand, it is easy to see
that any two vertices v, w ∈ V with v 6= w form a strong separator S = {v, w}, so it follows from
Theorem 3.33 that gon(Cn) ≤ 2. Therefore we have gon(Cn) = 2 for all n ≥ 2.

Threorem 3.33 provides with a divisor D ∈ Div+(G) of rank at least one, given by D = ev + ew.
Using the basic technique of the proof of said theorem, we see how we can move the two chips
towards any chosen v0 ∈ V . This is illustrated in the following figure.

A0 v0

v

w

A1 v0 v0

The same argument goes in fact to show that any graph containing only one cycle has gonality
two: oviously any two vertices on that cycle form a strong separator, hence gon(G) ≤ 2. Once
again it follows from Corollary 4.2 that gon(G) > 1, hence we must have gon(G) = 2.
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4.3 Complete graphs

The complete graph Kn allows a strong separator S ⊂ V with |S| = n − 1 for all n ≥ 2 by
Remark 3.34, hence for all n ≥ 2 we have gon(Kn) ≤ n− 1. We can show that equality holds.

Theorem 4.3. For all n ≥ 2 we have gon(Kn) = n− 1.

Proof. For n = 2, equality obviously holds. If n ≥ 3, we let D ∈ Div+(G) be any divisor of
degree at most n− 2. Now there are at least two vertices v, w ∈ V such that D(v) = D(w) = 0
holds (but we will use only one of them). Note that D is v-semi-reduced. Let A ⊂ V \ {v} be
any non-empty subset not containing v and let a ∈ Z>0 be given by a = |A|. Now we have

outdegA(A) = a(n− a) = an− a2.

Thus we have outdegA(A)−n+1 = an−a2−n+1 = −(a−1)(a−n+1). Because 1 ≤ a ≤ n−1
holds, we have (a− 1) ≥ 0 and (a− n+ 1) ≤ 0, so we have outdegA(A)− n+ 1 ≥ 0. It follows
that outdegA(A) ≥ n − 1. Now recall that the total number of chips in A is at most n − 2, so
we cannot fire from A without going into debt. As this holds for all non-empty A ⊂ V \ {v}, we
see that D is v-reduced. It follows from Theorem 3.20 that r(D) ≤ 0 must hold. This holds for
every divisor of degree at most n − 2, so we have gon(Kn) ≥ n − 1. Recall from the preceding
remark that gon(Kn) ≤ n− 1, so in fact we have gon(Kn) = n− 1.

Remark 4.4. As a result, for every k ∈ Z>0 there is a graph of gonality k: simply consider the
complete graph Kk+1 on k + 1 vertices.

4.4 Complete bipartite graphs

For any given m,n ∈ Z>0, consider the complete bipartite graph Km,n. Let V1, V2 ⊂ V denote
the two parts of Km,n. We will assume that |V1| ≤ |V2| holds. Now we define D ∈ Div(G)
by setting D(v) = 1V1

. It is easy to see that r(D) ≥ 1 holds, as for any v ∈ V2 we have
D + ∆ev = deg(D) · ev. That is, we can simply fire from V \ {v}, as every w ∈ V1 loses exactly
one chip (which goes to v) and every w ∈ V2 \ {v} remains unchanged. Now r(D) ≥ 1 holds,
indeed. Therefore we have gon(G) ≤ min(m,n). Once again, equality holds.

Theorem 4.5. For any given m,n ∈ Z>0 we have gon(Km,n) = min(m,n).

Proof. This goes analogously to the proof of Theorem 4.3. If min(m,n) = 1 holds, then equality
obviously holds, so assume that min(m,n) > 1. We will prove that outdegA(A) ≥ min(m,n)
holds for all A ⊂ V with 0 < |A| < |V |. Without loss of generality, we can assume that m ≤ n
holds, hence |V1| = m and |V2| = n. We define a = |V1 ∩A| and b = |V2 ∩A|. Now we have

outdegA(A) = a(n− b) + b(m− a).

Obviously we have 0 ≤ a ≤ m and 0 ≤ b ≤ n. If either a = 0 or n− b = 0 holds (or both), then
we must have b > 0 and m − a > 0. In both cases this yields outdegA(A) ≥ m. Similarly, if
b = 0 or m − a = 0 holds (or both), then we must have a > 0 and n − b > 0, so now we have
outdegA(A) ≥ m as well. Finally, if the four of them (a, b, n− a and n− b) are all nonzero, then
we have outdegA(A) ≥ a+ (m− a) = m. Thus, we have outdegA(A) ≥ m in any case.

Let D ∈ Div+(G) be any divisor of degree at most min(m,n) − 1. There is some v ∈ V with
D(v) = 0, because deg(D) < m + n. However we cannot fire from any non-empty A ⊂ V \ {v}
without going into debt, as outdegA(A) ≥ m holds for all A ⊂ V with 0 < |A| < |V |. Hence D
is v-reduced, so it follows from Theorem 3.20 that r(D) ≤ 0. This holds for all D ∈ Div+(G)
with deg(D) < min(m,n), so we have gon(G) ≥ min(m,n).
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4.5 Two-dimensional grids

Let Gm,n for m,n ∈ Z>0 be the two-dimensional m× n grid graph. We can assume that m ≤ n
holds, for otherwise we could simply interchange m with n. We can define a divisor D ∈ Div+(G)
satisfying deg(D) = m by setting D(v) = 1 for every v ∈ V in the leftmost column of the grid
and D(v) = 0 for every other v. We have r(D) ≥ 1 because we can move a chip to every vertex
in the following way:

, , . . .

Therefore, we have gon(Gm,n) ≤ m. Now let Ri ⊂ V for i ∈ {1, 2, . . . ,m} denote the i-th row
and let Cj for j ∈ {1, 2, . . . , n} denote the j-th column. We define the sets Bi,j ⊂ V by setting
Bi,j = Ri ∪ Cj . For example, the subset B3,5 ⊂ G4,6 is given in the figure below.

All the Bi,j are connected. Moreover, for any i, k ∈ {1, 2, . . . ,m} and any j, l ∈ {1, 2, . . . , n} we
have {vi,l, vk,j} ⊂ Bi,j ∩ Bk,l, so in particular the intersection is not empty. Therefore the set
B = {Bi,j : i ∈ {1, 2 . . . ,m}, j ∈ {1, 2, . . . , n}} is a strict bramble.

Suppose that ‖B‖ < m. Then there is some S ⊂ V such that S ∩ Bi,j 6= ∅ holds for all
i ∈ {1, 2, . . . ,m} and all j ∈ {1, 2, . . . , n}. Since |S| < m ≤ n holds, there must be some row Ri
such that S∩Ri = ∅ and some column Cj such that S∩Cj = ∅. But now the set Bi,j = Ri∪Cj
satisfies Bi,j ∩S = ∅: we have a contradiction. Therefore we must have ‖B‖ ≥ m. Indeed, when
we take S = C1, then we clearly cover every Bi,j . In both cases, this set S satisfies |S| = m, so
we have ‖B‖ = m. Now it follows from Theorem 3.28 that gon(Gm,n) ≥ m.

All in all, we have seen that gon(Gm,n) ≤ m and gon(Gm,n) ≥ m, so we must have equality.
That is: gon(Gm,n) = m holds for all m,n ∈ Z>0 with m ≤ n. Thus for any m,n ∈ Z>0 (not
necessarily satisfying m ≤ n) we have gon(Gm,n) = min(m,n).

The divisor D can be generalised to higher dimensional grids, so we have gon(G) ≤ |G| /maximi

for every d-dimensional grid graph G of size m1 ·m2 · · ·md. However a strict bramble of such high
order is not guaranteed to exist. (For instance, if we take Bi,j,k analogously in a three dimensional
grid, then not every pair has a common vertex.) Thus we have the following conjecture.

Conjecture 4.6. For every grid graph G of size m1 ·m2 · · ·md, we have gon(G) =
|G|

max
i≤d

mi
.
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5 Algorithmic approach

In Section 4 we saw that the gonality can be established for certain classes of graphs that are
sufficiently nice in one way or another, but in general it is quite a difficult task to establish
the gonality of any given graph with the tools developed so far. Therefore it might be worth
our while to look for an algorithm to determine the gonality of a given graph. Unfortunately,
no polynomial time algorithm is known to exist. However we can make life a little easier by
providing algorithms for related problems.

5.1 Divisor reduction

The reduction of a divisor D ∈ Div(G) with respect to some base vertex v0 ∈ V has already
proven itself to be a useful representative of D in the equivalence class [D]. In order to find the
v0-reduced divisor D′ ∈ [D], consider the following pseudo-algorithm.

1. Find a v0-semi-reduced divisor D′ ∼ D such that 0 < D′(v) < 2d(v) for all v ∈ V \ {v0}.

2. Find some non-empty set A ⊂ V \{v0} with D(v) ≥ outdegA(v) for all v ∈ A and fire from
that particular subset (replace D by D −∆1A). Repeat this step until no such A exists.

We will elaborate on both steps in detail.

Algorithm 5.1 (semi-reduction). The first step of the reduction algorithm is executed as follows.

1. Define x ∈ Div(G) by setting x(v) = d(v) −D(v) for all v ∈ V \ {v0} and choosing x(v0)
such that deg(x) = 0 holds. (Recall that d(v) denotes the degree of v.)

2. Now find some y ∈ QV with y(v0) = 0 such that x = Qy holds. Note that there is a unique
y ∈ QV which satisfies this property, as we have ker(Q) = span {1}. This can be done by
Gaussian elimination (which can be done in polynomial time, see [8]).

3. Finally, we define D′ ∈ [D] by setting D′ = D + ∆ byc, where byc is obtained by rounding
down all the entries in y.

The point of this first step in the main reduction algorithm is not only to find a semi-reduced
divisor D′ ∈ [D], but also to limit the values of D′ in order to reduce the number of firing moves
we need to make in the second part of the reduction algorithm. The following lemma quantifies
the bounds on D′.

Lemma 5.2. Let D′ ∈ [D] be obtained by Algorithm 5.1. Then for all v ∈ V \ {v0} we have

0 < D′(v) < 2d(v). (3)

Proof. Define z ∈ QV by setting z = y − byc and note that 0 ≤ z(v) < 1 holds for all v ∈ V .
Moreover, we have

D′ +Qz = D + ∆ byc+Q (y − byc) = D +Qy = D + x,

hence by our definition of x we have (D′ +Qz) (v) = d(v) for all v ∈ V \ {v0}. Moreover, for all
v ∈ V \ {v0} we have

(Qz)(v) = −d(v)z(v) +
∑
e∈E

φ(e)={v,w}

z(w).
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Because 0 ≤ z(u) < 1 holds for all u ∈ V (and d(v) > 0), it follows that

(Qz)(v) ≥ −d(v)z(v) > −d(v).

Moreover, we use 0 ≤ z(u) < 1 to find

(Qz)(v) < −d(v)z(v) +
∑
e∈E
v∈φ(e)

1 = −d(v)z(v) + d(v) ≤ d(v).

Thus for all v ∈ V \{v0} we have D′(v) = d(v)−(Qz)(v) > 0 and D′(v) = d(v)−(Qz)(v) < 2d(v),
which concludes the proof.

An outline for the remainder of the algorithm has already been provided in the proof of Theorem
3.15: find a set A ⊂ V \ {v0} such that D(v) ≥ outdegA(v) holds for all v ∈ A (and fire from
that set) until no such set exists. However it is not immediately obvious how we can proceed to
find such a set in polynomial time, as there are 2|V |−1 subsets of V \ {v0} to consider. However,
as we will see, the following algorithm will do.

Algorithm 5.3 (further reduction). We split the second step into two pieces.

(a) Find a non-empty subset A ⊂ V \ {v0} such that we can fire from A without going into
debt. That is, we have to assure that D(v) ≥ outdegA(v) holds for all v ∈ A. We will do
this by building a sequence A0, A1, . . . , Ak of sets obtained by subsequently removing a
single vertex. In doing so, we can easily keep track of the indeg and outdeg of every vertex
in V \Ai and Ai, respectively. We color the vertices: every vertex is white as long as it is
included in Ai, it becomes grey when it is scheduled to be removed and it becomes black
as soon as it has actually been removed from Ai.

Part 2a: FindPossibleSet(G = (V,E, φ), D ∈ Div(G), v0 ∈ V )

Require: D(v) ≥ 0 for all v ∈ V \ {v0}
1. A0 ← V
2. i← 0
3. Enqueue(q, v0)
4. for all v ∈ V do
5. state[v]←White
6. indeg[v]← 0
7. outdeg[v]← 0
8. end for
9. while not Queue-Empty(q) do

10. v ←Dequeue(q)
11. Ai+1 ← Ai \ {v}
12. i← i+ 1
13. state[v]← Black
14. for all neighbours w of v do
15. j ← |{e ∈ E : φ(e) = {v, w}}|
16. if w ∈ Ai then
17. indeg[v]← indeg[v] + j
18. outdeg[w]← outdeg[w] + j
19. if state[w] = White and outdeg[w] > D[w] then
20. Enqueue(q, w)
21. state[w]← Grey
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22. end if
23. else
24. indeg[w]← indeg[w]− j
25. end if
26. end for
27. end while
28. k ← i
29. return (Ak, indeg, outdeg)

(b) If the final set Ak is empty, the algorithm terminates. Otherwise, we fire from A as many
times as we can (that is, min{D(v)/ outdegA(v) : v ∈ A, outdegA(v) > 0} times) and start
over with part 2a. The following procedure puts it all together.

Part 2b: FurtherReduce(G = (V,E, φ), D ∈ Div(G), v0 ∈ V )

Require: D(v) ≥ 0 for all v ∈ V \ {v0}
1. repeat
2. (A, indeg, outdeg)← FindPossibleSet(G,D, v0)
3. if A 6= ∅ then
4. l← min{D[v]/ outdeg[v] : v ∈ A and outdeg[v] > 0}
5. for all v ∈ V do
6. if v ∈ A then
7. D[v]← D[v]− l · outdeg[v]
8. else
9. D[v]← D[v] + l · indeg[v]

10. end if
11. end for
12. end if
13. until A = ∅
14. return D

Lemma 5.4. If FindPossibleSet returns a set Ak ⊂ V , then we have v0 /∈ Ak. Moreover,
the variable outdeg[v] corresponds to the actual value of outdegAk

(v) for all v ∈ Ak.

Proof. Firstly, observe that v0 is enqueued in line 3, so it is guaranteed to be dequeued and
removed in lines 10–11. In order to see that outdeg[v] = outdegAi

[v] holds at the end of each
iteration of the while loop (lines 9–27), we use induction on i.

• For i = 0, we have A0 = V , hence outdegA0
(v) = 0 for all v ∈ A0. This is indeed correct.

• Let i ∈ {0, 1, . . . , k} be given such that the statement is true for all j ∈ {0, 1, . . . , i}. In
iteration j + 1, we set Aj+1 = Aj \ {v}, where v comes fresh off the queue. Since we only
removed one vertex from Aj , for all w ∈ Aj+1 we have

outdegAj+1
(w) = outdegAj

(w) +
∣∣ {e ∈ E : φ(e) = {v, w}}

∣∣.
For every neighbour w ∈ A of v, this corresponds to the amount we are adding in line
18. Moreover, for every non-neighbour w ∈ A, we have

∣∣ {e ∈ E : φ(e) = {v, w}}
∣∣ = 0, so

outdeg[w] should remain unchanged. Indeed it does.

In particular, we have outdegAk
(v) = outdeg[v] by the end of FindPossibleSet.

Remark 5.5. Analogously, the variable indeg[v] corresponds to the actual indegAk
(v) for all

v ∈ V \ Ak by the end of the procedure. In order to make this work, we have to increase
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indeg[v] once for every neighbour that is still in Ak (this happens when v is removed from Ai)
and decrease indeg[w] if we find a neighbour w which has already been excluded from Ai.

Lemma 5.6. If FindPossibleSet returns a non-empty set Ak, then for all v ∈ Ak we have
D(v) ≥ outdegAk

(v).

Proof. Assume that there is some w ∈ Ak such that outdegAk
(v) > D(v) holds by the end

of FindPossibleSet. Note that w cannot have been enqueued, as we remove elements that
have been enqueued from the set Ai at some point. Now in particular there is some point
in time where we increment outdeg[w] to become larger than D(w), because initially we had
outdeg[w] = 0 ≤ D(w). The only increment is made in line 18, so this must have happened at
that time. Immediately afterwards, outdeg[w] > D[w] holds, so either state[w] = White and
we enter into lines 20–21 or we must have had state[w] 6= White. Note that w has never been
enqueued, so apparently we must have had state[w] 6= White in line 19. However line 21 is
the only line where elements that have not been dequeued yet change state, but this happens
immediately after Enqueue(q, w). This is a contadiction, as w has not been enqueued, so we
can conclude that D(v) ≥ outdegAk

(v) holds for all v ∈ Ak.

Lemma 5.7. Let Ak ⊂ V \ {v0} be a set returned by FindPossibleSet. If there exists some
non-empty subset B ⊂ V \ {v0} such that D(b) ≥ outdegB(b) holds for all b ∈ B, then B ⊂ Ak.

Proof. Suppose that B 6⊂ Ak holds. Let i ≤ k be the smallest index such that B 6⊂ Ai+1 and let
b ∈ B be the element that is to be removed from Ai. Note that outdegAj

(v) ≤ outdegB(v) holds
for all j ≤ i, hence in particular we have D(b) ≥ outdegAj

(b) for all j ≤ i. It follows from (the
proof of) Lemma 5.4 that outdeg[b] corresponds with the actual value of outdegAj

(b) at every
time j ≤ i during the algorithm, so at any stage of the algorithm before b is removed we have
D[b] ≥ outdeg[b]. But now b has never passed the test in line 19, hence has never been enqueued
in line 20. This is a contradiction, so we can conclude that B ⊂ Ak must hold.

Remark 5.8. It follows from Lemma 5.7 (combined with Lemma 5.6) that the set Ak returned
by FindPossibleSet is the maximal set M ⊂ V \ {v0} satisfying D(v) ≥ outdegM (v) for all
v ∈M . Moreover, for all v ∈ V \ (Ak ∪ {v0}) we must have D(v) < d(v), for otherwise we would
have {v} ⊂ Ak by Lemma 5.7.

Corollary 5.9. The procedure FindPossibleSet will return a non-empty set Ak ⊂ V \ {v0}
such that D(v) ≥ outdegAk

(v) holds for all v ∈ Ak if and only if such a set exists.

Proof. If such a set exists, then FindPossibleSet will return a non-empty set by Lemma 5.7.
It follows from Lemma 5.6 that Ak satisfies the required property (recall that v0 /∈ Ak holds).
On the other hand, if no such set exists, then Ak must be empty by Lemma 5.6.

This assures us that the procedure FindPossibleSet does exactly what it is supposed to do.
We will look at the correctness of FurtherReduce later on, but first we will establish some
bounds on the running time of FindPossibleSet.

Lemma 5.10. The lines 10–13 in FindPossibleSet will be executed at most |V | times and the
lines 15–25 will be executed at most 2 · |E| times.

Proof. Note that every vertex is enqueued at most once, hence the lines 10–13 will be executed
at most once for each vertex. Moreover, the lines 15–25 will be executed d(v) times for every v
that is dequeued in line 10, so these lines are executed at most∑

v∈V
d(v) = 2|E|
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times. If we use edge lists with multiplicities to represent the graph G (that is, we have a list
of neighbours for each vertex as well as a list of multiplicities of the edges), then these lines are
executed at most 2 · ‖E‖ times, where ‖E‖ =

∣∣φ[E]
∣∣ is the number of pairs {v, w} ∈ [V ]2 that

are connected by one or more edges.

In order to determine the total running time of the algorithm, we will henceforth assume that
arithmetic operations can be executed in constant time.

Corollary 5.11. Using an efficient implementation, the procedure FindPossibleSet can run
in O(‖E‖) worst-case running time.

Proof. All the operations in lines 10–26 can be implemented to run in constant time. For instance,
we might save Ai as an array of bits indicating whether or not the vertex at index v is an element
of Ai. Queueing and dequeueing can be done in constant time as well, and the value of j can
simply be a constant in an edge list-implementation of multigraphs, where each edge is bundled
with a cardinality (rather than storing seperate copies for different edges sharing the same ends).
All the other operations can obviously be executed in constant time. Note that ‖E‖ ≥ |V | − 1,
as G is connected, hence we have O(‖E‖+ |V |) = O(‖E‖) worst-case running time.

Now we have a look at the procedure FurtherReduction, which puts it all together.

Theorem 5.12. The procedure FurtherReduction will find the unique v0-reduced divisor
Redv0(D) given any v0-semi-reduced divisor D and base vertex v0 ∈ V .

Proof. We saw in the proof of Theorem 3.15 that firing from a vertex set A ⊂ V \ {v0} yields
an equivalent divisor D′ ∈ [D] with β(D′) > β(D). It follows from the proof of Theorem 3.15
that the number of steps we have to take in this fashion is finite, hence FurtherReduction
terminates. It follows from Corollary 5.9 that such a set exists if and only if the set Ak returned
by FindPossibleSet is not empty. Thus, the divisor D is v0-reduced if and only if A is empty
in line 3 (and subsequently in line 13) of FurtherReduction.

Now that we have seen that FindPossibleSet runs in O(‖E‖) time, it would be nice to find
some upper bound for the number of times we have to call that procedure in order to finish
the reduction process. Indeed, when we first use Algorithm 5.1 in order to find a v0-semi-
reduced divisor D′ ∼ D (which satisfies the property from Lemma 5.2), then we can devise a
bound on the number of times we have to call the procedure FindPossibleSet in line 2 of
FurtherReduction.

Lemma 5.13. Let D′ be the divisor producer by Algorithm 5.1, let F = Redv0(D′) and let
f ∈ Div+(G) be such that F = D′ −∆f and f(v0) = 0. Then deg(f) ≤ 4 · |E| · |V | · (|V | − 1).

Proof. Let A0, A1, . . . , Ak be the level set decomposition of f and let B0, B1, . . . , Bl be the sub-
sequence of A0, A1, . . . , Ak−1 consisting of the sets that are actually different from one another,
in their respective order (note that we exclude Ak because Ak = V ). Now we have

f = 1A0
+ 1A1

+ . . .+ 1Ak−1
= c0 1B0

+c1 1B1
+ . . .+ cl 1Bl

,

where each ci denotes the number of times that Bi occurs among A0, . . . , Ak−1. Now when
we subsequently fire ci times from Bi, then every intermediate divisor Fi is an element of the
sequence D0, D1, . . . , Dk of divisors associated with the level set decomposition. Therefore, in
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particular, every intermediate divisor is v0-semi-reduced. As every Bi loses at least one chip
every time it fires, it follows that

ci ≤
∑
v∈Bi

Fi(v) ≤
∑

v∈V \{v0}

Fi(v) = deg(Fi)− Fi(v0)

≤ deg(D)−D(v0) =
∑

v∈V \{v0}

D′(v) ≤
∑

v∈V \{v0}

2 · d(v) ≤ 4 · |E|.

As we have ∅ ( B0 ( B1 ( · · · ( Bl ( V , we must have l ≤ |V | − 2. Therefore we have

max{f(v) : v ∈ V } ≤
l∑
i=0

ci ≤ 4 · |E| · (l + 1) ≤ 4 · |E| · (|V | − 1).

As f ≥ 0, it follows that deg(f) ≤ 4 · |E| · |V | · (|V | − 1).

Corollary 5.14. Let D′ be obtained by Algorithm 5.1. Then the procedure FindPossibleSet is
executed at most 4·|E|·|V |·(|V |−1) times within the procedure FurtherReduce(G,D′, v0). �

Corollary 5.15. Let D′ be obtained by Algorithm 5.1. The worst-case running time of the
procedure FurtherReduce(G,D′, v0) is O(|V |2|E| · ‖E‖). �

Therefore, we can reduce any divisor in polynomial time. Note that the matrix inversion from
Algorithm 5.1 has a lower worst-case time complexity than the final reduction from Algorithm
5.3, so the total worst-case running time for reducing a divisor is O(|V |2|E| · ‖E‖).

Another upper bound on the number firing moves in FurtherReduce is found by F. Shokrieh
in [9], who devised an algorithm very similar to the algorithm presented here.

Theorem 5.16 (of F. Shokrieh). Let λ2 denote the smallest eigenvalue of the matrix Qv0 , which
is obtained from Q by removing both the v0-th row and column. Then the total number of vertex

firing moves in FurtherReduction is at most
8|E|
√
|V |

λ2
.

5.2 Rank of a divisor

Theorem 3.18 and Theorem 3.20 immediately provide us with algorithm for deciding whether
r(D) ≥ 0 and r(D) ≥ 1 hold, respectively.

Algorithm 5.17. In order to check whether r(D) ≥ 0 and r(D) ≥ 1 hold, consider the following
algorithms.

• DimensionNonNegative(G = (V,E), D ∈ Div(G))

Choose some v0 ∈ V .
D ← SemiReduce(G,D, v0)
D ← FurtherReduce(G,D, v0)
if D(v0) ≥ 0 then

return true
else

return false
end if
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• DimensionPositive(G = (V,E), D ∈ Div(G))

for all v0 ∈ V do
F ← SemiReduce(G,D, v0)
F ← FurtherReduce(G,F, v0)
if F (v0) ≤ 0 then

return false
end if

end for
return true

Remark 5.18. Corectness of these algorithms is assured by Theorem 3.18, Theorem 3.20
and Theorem 5.12. Moreover, by Corollary 5.15, the worst-case running time of the former
is O(|V |2|E| · ‖E‖), whereas the worst-case running time of the latter is O(|V |3|E| · ‖E‖).

5.3 Gonality

In order to compute the gonality of a given graph, it suffices to run DimensionPositive(G,D)
for every D ∈ Div+(G) with deg(D) ≤ |V |, or even just deg(D) ≤ |V | − 1 if G contains a
simple vertex (this follows from Remark 3.34), and then return the lowest degree divisor such
that DimensionPositive returns true. In order to get a grasp of the amount of divisors we
would have to check, we determine the number of elements in Divk+(G) for all k ∈ Z.

Lemma 5.19. For any k ∈ Z we have
∣∣∣Divk+(G)

∣∣∣ =

(
|V |+ k − 1

|V | − 1

)
.

Proof. When k = 0, then Divk+(G) = {0}, hence the statement holds. For k < 0 the statement

is trivial, as Divk+(G) = ∅ and
(|V |+k−1
|V |−1

)
= 0. Thus we assume that k > 0 holds. Write every

divisor D ∈ Divk+(G) as a string of |V | + k letters v and c, where v represents a new vertex
and c represents a chip on the preceding vertex. The first letter always has to be v, so we could
just as well leave it out. Now we have an injective map ψ : Divk+(G) → {v, c}|V |+k−1 such that

ψ(D) contains exactly |V | − 1 times letter v and k times letter c for any D ∈ Divk+(G). On the
other hand, every string which contains |V | − 1 times letter v and k times letter c results from
some divisor D as we can easily reconstruct D from this string. Therefore

∣∣Divk+(G)
∣∣ equals the

number of said sequences, which yields the result.

Remark 5.20. This is also known in combinatorics as the problem of putting k indistinguishable
balls into n distinguishable boxes.

Thus, computing the gonality in the manner just explained can not always be done in polynomial
time, that is: the algorithm has superpolynomial worst-case complexity.

Conjecture 5.21. There does not exist a polynomial time algorithm for calculating gon(G).
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6 Further reading

Baker and Norine provide a nice proof of the Riemann–Roch theorem for graphs in [2], as well
as some other interesting results. The Riemann–Roch theorem for graphs uses the cannonical
divisor K ∈ Div(G) given by K(v) = d(v)− 2 and states the following.

Theorem 6.1. Let G be a graph, and let D be a divisor on G. Then

r(D)− r(K −D) = deg(D) + 1− g,

where g = |E| − |V |+ 1 is the genus of G.

This is in fact the graph theoretic analogue of the Riemann–Roch theorem for Riemann surfaces.
Moreover, they define the Abel–Jacobi maps Skv0 : Div(G)→ Jac(G) by

Skv0(D) =
[
D − k · ev0

]
.

This leads to the following two theorems.

Theorem 6.2. The map Sk is surjective if and only if k ≥ g. (As in the previous theorem, g
denotes the genus of G.)

Theorem 6.3. The map Sk is injective if and only if G is (k + 1)-edge-connected.

Hladký, Král and Norine ([5]) relate divisors on a graph G to its corresponding divisors on the
corresponding metric graph Γ, in which every edge has length one.

Theorem 6.4. Let D be a divisor on a graph G and let Γ be the metric graph corresponding to
G. Then, rG(D) = rΓ(D).

This leads them to the following corollary, which is all discrete.

Theorem 6.5. Let D be a divisor on a graph G and let Gk be the graph obtained from G by
subdividing each edge of G exactly k times. The ranks of D in G and in Gk are the same.

Their paper also established a connection between divisors on tropical curves and metric graphs.
Other works in this direction include [1] by Baker, [6] by Luo and [7] by van der Pol. The
results are interesting, but cannot easily be expressed in the context of discrete (that is, regular,
non-metric) graphs.

Björner, Lovász and Shor ([3]) study a chip-firing game first introduced by J. Spencer in 1986
([10]). In terms of divisors, this game can be described as follows.

• We start with an initial divisor D ∈ Div+(G) on a finite, simple, loopless graph, which is
assumed to be non-empty and connected.

• The only moves allowed are firing from a single chip such that it does not go into debt.

Among their results are the following.

Theorem 6.6. Given a connected graph and an initial distribution of chips, either every legal
game can be continued infinitely, or every legal game terminates after the same number of moves
with the same final position. Moreover, the number of times a given node is fired is the same in
every legal game.

29



Theorem 6.7. Let N = deg(D) denote the number of chips, n = |V | the number of vertices and
m = |E| the number of edges.

(a) If N > 2m− n then the game is infinite.

(b) If m ≤ N ≤ 2m−n then there exists an initial configuration guaranteeing finite termination
and also one guaranteeing infinite game.

(c) If N < m then the game is finite.

For further reading on graph theory, [4] is a very nice textbook.

6.1 A conjecture

In every graph we encountered so far, the gonality equals the tree width. A well known property
of brambles (which is proven in [4]) is the following.

Theorem 6.8 (Seymour & Thomas 1993). Let k ≥ 0 be an integer. A graph has tree width ≥ k
if and only if it contains a bramble of order > k.

This leads us to the following conjecture.

Conjecture 6.9. If B is a bramble, then gon(G) ≥ ‖B‖ − 1.

This would imply that gon(G) ≥ tw(G). As we have seen in Theorem 3.28, a very similar result
holds if we only allow strictly intersecting brambles. However the proof of said theorem does not
extend to brambles, as for instance any tree on |V | ≥ 2 vertices allows a bramble of order 2.
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