

Overview of Graphics Models and Categorization

Jeppe Revall Frisvad

Technical University of Denmark (DTU)

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Survey of Models for Acquiring the X +						- 🗆	>		
\leftrightarrow \rightarrow C \triangle $$ people.compute.dtu.dk/jerf/cg-opt-p	rops.html				Ð	* 📕			
EG 2020: Overview of graphics models for acquiring the optical properties of translucent materials									
Marker taxonomy (with associated markers in parentheses):									
 Formal model based on theory(t). Experimental(x) measurements with fibres(1), flat or spherical or cylindrical surfaces(2), or arbitrary 3D surfaces(3). Colour/density(c) or wavelength(λ). Isotropic(i) or anisotropic(a) surface reflectance. Homogeneous(·) or heterogeneous(*) material. Diffuse() or directional(\) subsurface scattering. Forward simulation(→) and/or inverse technique(←). Paper title author-year ref. marker nano/micro micro/milli BSSRDF BRDF/BTDF 									
Off-specular peaks in the directional distribution of reflected thermal radiation	Torrance and Sparrow [1966]	[TS66]				x2 λ i $\cdot $			
Theory for off-specular reflection from roughened surfaces	Torrance and Sparrow [1967]	[TS67]		t λ i $\cdot ightarrow$		tλi·			
Models of light reflections for computer synthesized pictures	Blinn [1977]	[Bli77]		tci $\cdot ightarrow$		tci∙∣			
A reflectance model for computer graphics	Cook and Torrance [1981]	[CT81]		t λ i $\cdot ightarrow$		tci∙∣			

Models at different scales

- We divide the microscopic scale into
 - Nano/micro: models considering explicit microgeometry.
 - Micro/milli: models using particle size or microfacet normal distribution functions.
- We divide the macroscopic scale into
 - BSSRDF: models where the points of incidence and emergence are different.
 - BRDF/BTDF: local models for opaque/thin objects.

Formal models based on theory(t)

- Mathematical models for optical properties.
- Based on optics or radiative transfer theory.
- Early examples:
 - Torrance-Sparrow BRDF [TS67,Bli77,CT81]
 - Chandrasekhar single-scattering BRDF/BTDF for layers [Bli82,HK93]
 - Scattering properties from densities [KV84,NIDN97,DEJ*99]
 - Kirchhoff approximation BRDF [Kaj85,HTSG91,Sta99]

microsurface

volume densities

- BRDF/BTDF from ray tracing of microgeometry [CMS87,WAT92,GMN94]
 - Fibre scattering model (BCSDF) [KK89,MJC*03,ZW07]
 - Lorenz-Mie scattering properties [Cal96,JW97,FCJ07]
 - Diffusion dipole BSSRDF [JMLH01,DJ05]

scattering by spherical particles

scalar diffraction by surface elements around a plane

dipole models

Experimental(x) measurements

- Instrumentation for acquiring optical properties.
- Based on radiometry or one of the formal models.
- Early examples:
 - (x2) Gonioreflectometric BRDF measurement [TS66,War92]
 - (x2/x3) Bidirectional Texture Function (BTF)
 [DVGNK99,DHT*00,TWL*05]
 - (x3) SVBRDF on 3D surface (structured light)
 [MWL*99,LKG*01,WMP*06]
 - (x2/x3) Diffuse reflectometry for scattering properties [JMLH01,GLL*04,TWL*05]
 - (x2) BRDF from curved sample geometry [MPBM03,NDM05]
 - (x1) Fibre scattering measurement [MJC*03,ZRL*09]

structured light scanning

Colour/density(c) or wavelength(λ)

- Measurements in colour bands(c) or at particular wavelengths(λ).
- Scattering properties based on density(c) or spectral optical properties(λ).
- Methods from optics typically operate with wavelengths(λ).
- Camera-based measurements typically operate with colour bands(c).
- Graphics often convert wavelengths(λ) to colour bands(c).
- Examples:
 - (λ) Torrance-Sparrow BRDF measurement and model [TS66,TS67]
 - (c) Blinn's version of the Torrance-Sparrow model [Bli77]
 - (λ to c) Cook-Torrance version of the Torrance-Sparrow model [CT81]
 - (λ to c) Kubelka-Munk theory for calculating diffuse reflectance colours [HM92]
 - (c) BRDF/BTF measurement [War92,DVGNK99,MWL*99]

Isotropic(i) or anisotropic(a) surface reflectance

- Random rough surfaces produce isotropic reflections.
- Scattering is independent of sample orientation.
- Structured surfaces can produce anisotropic reflections.
- Example: ridged surface

Identical 2x2 cm² samples. Every ridge is 50 μ m. Slope angle is $\theta_m = 5^{\circ}$. Two samples have been rotated 90° as compared with the other two. [Luongo et al. Modeling the anisotropic reflection of surfaces with microstructure engineered to produce visible contrast after rotation. ICCVW 2017]

V-grooves

microsurface

Homogeneous(·) or heterogeneous(*) material

- Heterogeneous: spatially varying optical properties.
- Homogeneous: spatially uniform optical properties.

milk

- Surface and volume are considered disjoint sets.
- Spatial variation is considered different at different scales.
- Examples:
 - A material with homogeneous roughness can have a microsurface with explicitly defined spatial variation (heterogeneity at the nano/micro scale).
 - A material BRDF consisting of a homogeneous distribution of homogeneous spherical particles can be textured onto a surface (BRDF heterogeneity).

Diffuse() or directional(\) subsurface scattering

• Subsurface scattering depends on directions of incidence and observation.

- Diffuse subsurface scattering() assumes normal incidence ($\theta_i = 0^\circ$).
- Directional subsurface scattering(\) models directional dependency.

Forward simulation(\rightarrow)

- Computing optical properties at a more macroscopic scale.
- Formulate a measurement equation and evaluate it by simulation.
- Use microscale information to find a macroscopic function.
- Examples:
 - Microfacet normal distribution → BRDF/BTDF [TS67,Bli77,CT81,HTSG91,Sta99]
 - Explicitly defined microsurface → BRDF/BTDF [Kaj85,CMS87,WAT92,GMN94]
 - Fibre geometry \rightarrow scattering properties [KK89]
 - particle concentrations \rightarrow BRDF [HM92,Cal96]
 - Spherical particle \rightarrow scattering properties [Cal96,JW97]
 - Explicitly defined microsurface \rightarrow microfacet normal distribution [Sta99]
 - BSSRDF \rightarrow BRDF [JMLH01]

Inverse technique(←)

[Nielsen et al. SIGGRAPH Asia 2014 Posters]

Example: model parameters ← BRDF

 Compute measu microscale information by BRDI measuring at a macroscopic scale.

- Examples:
 - BSSRDF ← diffuse reflectometry [JMLH01,GLL*04,TWL*05,DWd*08]
 - Composition parameters ← BRDF/BTDF measurement [EĎKM04,NDM05,WMLT07]
 - BSSRDF ← structured light scan [PVBM*06,WMP*06,WZT*08,GHP*08]
 - Scattering properties ← photographing diluted liquid [NGD*06]
 - Fibre assembly microgeometry ← multiview photography [JMM09]

Example: spectral scattering properties ← diffuse reflectance

[Abildgaard et al. Non-invasive assessment of dairy products using spatially resolved diffuse reflectance spectroscopy. Applied Spectroscopy 69(9):1096-1105, 2015.]

Chronological table to show development

\leftrightarrow \rightarrow C \triangle \square people.compute.dtu.dk/jerf/cg-opt-p	rops.html				Ð,		:
The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance	Zeltner and Jakob [2018]	[ZJ18]				tca·∖	
Rendering specular microgeometry with wave optics	Yan et al. [2018]	[YHW*18]		t λ a $\star ightarrow$		t λ a $\star $	
Computational design of nanostructural color for additive manufacturing	Auzinger et al. [2018]	[AHB18]	tx2 λ i $\star ightarrow$			\leftarrow tx2ci \cdot	
An adaptive parameterization for efficient material acquisition and rendering	Dupuy and Jakob [2018]	[DJ18]				x2 λ a $\cdot $	
Appearance capture and modeling of human teeth	Velinov et al. [2018]	[VPB*18]	tx3ci $\star ightarrow$		\leftarrow tci $\star \setminus$	←x3ca★∖	
Microfacet BSDFs generated from NDFs and explicit microgeometry	Ribardière et al. [2019]	[RBSM19]	tx2ca $\cdot ightarrow$	$\leftarrow tca \cdot \rightarrow$		←tca∙∣	
A learned shape-adaptive subsurface scattering model	Vicini et al. [2019]	[VKJ19]			tci∙∖		
Learning generative models for rendering specular microgeometry	Kuznetsov et al. [2019]	[KHZ*19]		t λ a $\star ightarrow$		\leftarrow tx2 λ a \star	

Discussion of trends

Trend	80s	90s	00s	10s
All theory(t)	6 (100%)	11 (79%)	12 (38%)	20 (45%)
Use of experiment/measurement(x)	0 (0%)	3 (21%)	20 (63%)	24 (55%)
Anisotropy(a)	3 (50%)	5 (36%)	9 (28%)	23 (52%)
Wavelength(λ)	2 (33%)	7 (50%)	5 (16%)	10 (23%)
Directional scattering(\)	3 (50%)	6 (43%)	13 (41%)	32 (52%)
Inverse technique(←)	0 (0%)	0 (0%)	13 (41%)	13 (30%)
Multiscale modelling (a→b→c)	0 (0%)	2 (14%)	1 (3%)	4 (9%)
Explicit microgeometry (nano/micro)	3 (50%)	5 (36%)	5 (16%)	12 (27%)
Subsurface scattering model (BSSRDF)	0 (0%)	1 (7%)	15 (47%)	18 (41%)

• What trends do you see?