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Neural SSS: Lightweight Object Appearance Representation

T. TG1 , D. M. Tran1 , H. W. Jensen2, R. Ramamoorthi3 , and J. R. Frisvad1

1Technical University of Denmark, Denmark
2Keyshot, USA

3University of California, San Diego, USA

Figure 1: Three translucent objects each represented in only 0.77 MB using our neural subsurface scattering (SSS) representation. The candle
is a homogeneous medium while the mandarin and the meat are heterogeneous in nature. The flame above the candle locally illuminates the
objects while the environment is distant. The meat is a scanned object whereas the mandarin is completely synthetic. This scene illustrates
our model’s ability to capture the full 8-dimensional BSSRDF of an object and represent it faithfully as demonstrated in the FLIP error maps.

Abstract
We present a method for capturing the BSSRDF (bidirectional scattering-surface reflectance distribution function) of arbitrary
geometry with a neural network. We demonstrate how a compact neural network can represent the full 8-dimensional light
transport within an object including heterogeneous scattering. We develop an efficient rendering method using importance
sampling that is able to render complex translucent objects under arbitrary lighting. Our method can also leverage the common
planar half-space assumption, which allows it to represent one BSSRDF model that can be used across a variety of geometries.
Our results demonstrate that we can render heterogeneous translucent objects under arbitrary lighting and obtain results that
match the reference rendered using volumetric path tracing.

CCS Concepts
• Computing methodologies → Reflectance modeling; Neural networks;

1. Introduction

Subsurface scattering is a captivating visual phenomenon charac-
terised by its unique soft look. It plays a pivotal role in the ap-
pearance of a wide range of materials such as skin, fruits, minerals,
etc. However, physical simulation of this phenomenon using Monte
Carlo path tracing has always been computationally expensive due

to long chains of scattering events that occur behind a refractive
interface until the path exits the medium. Many alternative analytic
formulations based on diffusion theory have been introduced as
global formulations of subsurface scattering. Although these mod-
els are more practical than physical Monte Carlo simulations, they
introduce error since diffusion theory derives its formulation by im-

© 2024 The Authors. Computer Graphics Forum published by Eurographics - The European Asso-
ciation for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0000-0001-8995-2865
https://orcid.org/0009-0000-6002-730X
https://orcid.org/0000-0003-3993-5789
https://orcid.org/0000-0001-7756-0901


2 of 14 T. TG et al. / Neural SSS: Lightweight Object Appearance Representation

posing several assumptions such as a planar surface, homogeneity,
and isotropy that are more often than not violated in the real world.
These reasons lead rendering systems to prefer volume path tracing
despite its computational expense.

We introduce a neural subsurface scattering (SSS) method, a
compact learned volumetric light transport model based on Monte
Carlo simulations that can represent the full light transport of an
object exhibiting translucency (see examples in Figure 1). We train
our model on standard path tracing data that many existing render-
ing frameworks can generate.

As is commonly done, we distinguish between surface and sub-
surface scattering effects and evaluate them separately. While sub-
surface scattering effects are complex to model due to long chains
of Monte Carlo scattering in a path tracer, surface reflections are
local and oftentimes of high frequency. We use ray tracing and a
standard bidirectional scattering distribution function (BSDF) to
capture surface scattering and a multi-layered perceptron (MLP)
as our base for representing the subsurface scattering.

One way to formulate the subsurface scattering is as a sampled
estimate of the volumetric light transport. Having N samples per
iteration in a progressive rendering allows for better convergence
at lower sample counts and eliminates the need for commonly
used feature extraction [MST∗20, TSM∗20, TFRJ23] on low di-
mensional inputs. Our compact neural network architecture enables
our training to be conducted in parallel to an active renderer that
generates data. This approach saves time and resources by avoiding
explicit training after data generation. Despite the BSSRDF being
8-dimensional in nature (two surface positions and two directions)
and being potentially different for different wavelengths or color
bands, we find it advantageous to let our network learn a function
of 5 + N × 8 dimensions, where the first five dimensions denote
the position and direction of observation (xxxo as a 3D point and ω⃗o
as a unit length direction vector in spherical coordinates). The re-
maining N × 8 dimensions constitute N samples of positions and
directions of incidence (xxxi and ω⃗i) together with an RGB vector of
incident radiance (Li(xxxi, ω⃗i)).

Our key finding is that we do not need converged rendered obser-
vations of surface points to represent the object appearance. Each
instance of our training data is simply the result of N paths traced
from one position and direction of observation (xxxo, ω⃗o) to N posi-
tions and directions of incidence (xxxi, j, ω⃗i, j , j = 1, . . . ,N) reached
by randomly sampled paths through the volume from this outset
and the contribution to the observation of the radiance incident in
these places (Li, j). When the network has seen sufficiently many
examples of such input, it is surprisingly good at performing an N-
samples volumetric path tracing for us. Due to the ability of neural
networks to smoothly interpolate between different samples seen
during training, the network output for N samples is no longer as
when tracing N random paths but more like the BSSRDF result for
the N samples. Thus, we get less noise during progressive render-
ing and fast convergence to a surprisingly accurate result with our
N-samples subsurface light transport network.

Our model is in the outset intended for representation of the ap-
pearance of a specific object of known surface geometry and het-
erogeneous optical properties. After learning the light transport be-
tween surface positions and directions, we still need the surface

geometry to find the appropriate input positions and directions for
the model when rendering the object. To include a shape-adaptive
model similar to existing analytic BSSRDF models, we include an
option to formulate our neural subsurface scattering model on a
planar half-space to make it a function of distance and directions
instead of positions on a given 3D surface. Since our model is a
learned approximation of a surface-to-surface transport function
with full directionality and no assumption of high scattering, our
method attains better accuracy than analytic models.

For practical use of our model in a rendering, we introduce a
novel object-specific importance sampling technique for sampling
a collection of surface positions, where incident light should be
sampled, based on a normalizing flow architecture. This method
enables us to map simple distributions such as Gaussians to a more
complex distribution by attaining an invertible function that allows
exact posterior inference.

2. Related Work

2.1. Monte Carlo Ray Tracing

The reference technique for rendering of a translucent object is
volume path tracing [NGHJ18], which involves a random walk
within the medium that proceeds until it is stopped by absorption
or emerges from the medium. This quickly becomes inefficient
as many samples have no contribution. Several techniques have
been presented to mitigate this issue: bidirectional volume path
tracing [LW96], volume photon mapping [JC98], metropolis light
transport [PKK00], bidirectional lightcuts [WKB12], vertex con-
nection and merging [KGH∗14], residual ratio tracking [NSJ14],
and path guiding [MHD16, HZE∗19, DWWH20]. These methods
however still do the random walk within the medium.

To accelerate the random walk, Kallweit et al. [KMM∗17] in-
troduced Radiance-Predicting Neural Networks (RPNNs), where
the multiple scattering solution is learned for a volume density de-
scriptor in the form of a hierarchical point stencil oriented in the
direction toward a distant source. This technique has been further
accelerated with interpolation of light probes precomputed for a
distant directional light as input for the RPNN [PN19] and adapted
to volumes other than clouds [RSB∗21]. The original RPNN tech-
nique [KMM∗17, PN19] still does the random walk inside to cap-
ture single scattering and the assumption of a distant directional
light makes the method unsuitable for a local lighting environment.
In addition, it is unclear how well the density descriptors would
work for a volume with a refractive interface, as the distribution
of light would also depend on the surface shape. In the adapta-
tion of the technique for predicting the color of 3D printed ob-
jects [RSB∗21], the assumption of directional incident light is re-
placed with an assumption of diffuse incident light and observation
along the surface normal. The RPNN is thus modified to capture
a non-directional BSSRDF stencil, but the missing directionality
makes the method unsuitable for arbitrary relighting of the object.

The original BSSRDF captures all the subsurface scattering with
full directionality and thus enables us to consider only surface po-
sitions when rendering an object under arbitrary view and lighting
configurations. The only assumption is that no light sources are
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placed within the medium. This usually leads to rendering tech-
niques that are orders of magnitude faster than volumetric path
tracing. The difficulty is to accurately represent the BSSRDF as
it in principle depends on the full object surface geometry and the
variations of the optical properties inside the medium while it is
also a function of the positions and directions of incidence and ob-
servation. Our intention is to provide a neural representation that
captures this complexity without the many simplifying assumptions
used for analytic BSSRDF models.

2.2. Diffusion-Based Models

Based on diffusion theory, the light transport in a translu-
cent object can be reformulated as a partial differential
equation (PDE) problem solvable by finite element meth-
ods [Sta95, HMBVR05, WZT∗08, WWH∗10, AWB11]. Diffusion
theory however involves simplifying assumptions such as high
scattering, low absorption, and scattering taking place far from
sources and boundaries. The latter is obviously violated in
practice, leading to inaccuracies in the rendered result. Fur-
ther simplification can lead to fully analytic BSSRDF mod-
els [JMLH01, DJ05, dI11, FHK14], which further assume a planar
half-space medium or layer. Boundary conditions are difficult to
model accurately in diffusion theory, so diffusion-based models of-
tentimes also assume no dependence on the directions of incidence
and observation (or just observation [FHK14]). Extended source
models mitigate this problem by integrating an analytic solution
along a refracted ray of incident light [DJ07, YZXW12, HCJ13],
but this also misses dependence on the direction of observa-
tion. An alternative model includes full directionality of the in-
cident and emergent light by assuming a very forward-scattering
medium [FD17]. This model is not based on diffusion but de-
rived from a functional integral approximation of radiative trans-
fer, which means that an additional integration is required over all
path lengths within the medium. By assuming a half-space homo-
geneous translucent object, our method can be used in the same
way as the analytic models but without assuming high scattering,
low absorption, or limited directionality of the incident, scattered,
and emergent light. In addition, by assuming fixed surface geome-
try, we can represent an arbitrary heterogeneous translucent object
without the simplifying assumptions of diffusion theory.

2.3. Texture-Based Approximations

Texture-based approaches are useful for representing spatial vari-
ation of optical properties across a surface. Using these spa-
tially varying optical properties as input for an analytic BSS-
RDF model, one can model the appearance of heterogeneous ma-
terials [GLL∗04, PvBM∗06, CPZT12, KÖP13, Kur21, DLW∗22].
Surface variation of optical properties, however, can only roughly
approximate the 3D variation of the properties in a hetero-
geneous translucent object. A bidirectional texture function
(BTF) [DVGNK99, RGJW20, KMX∗21, KWM∗22, FWH∗23] is
a bidirectional reflectance distribution function (BRDF) spatially
extended to a flat textured patch of surface geometry. As opposed
to a spatially varying BRDF, which assumes that light is incident
and observed in the same surface position, a BTF can include sub-
surface scattering within the patch. However, the BTF assumes

light incident from one direction across a flat surface and is thus
best suited for distant lighting and scenarios where the bleeding
of light through the object is not important. Combination with an
analytic model is an option to partially mitigate the latter prob-
lem [TWL∗05]. The assumptions of distant lighting and scattering
within a patch make the BTF models unable to fully capture the ap-
pearance of a heterogeneous translucent object. Our model enables
this by considering the full object geometry as in precomputation-
based models described next.

2.4. Precomputation

Different representation techniques enable precomputation of the
light transport within a translucent object. An option is to discretize
the object surface into polygons and compute the transport be-
tween them due to subsurface light transport [LGB∗02, SSWN14].
These methods however tend to be limited by the size of the trans-
fer matrix needed to define the polygon-to-polygon transport. Ad-
ditionally, the models assume diffuse emergent light to reduce
the information that needs to be stored. To include full direc-
tionality, subsurface scattering can be precomputed across a pla-
nar surface [DLR∗09] or in a sagittal and a coronal plane for a
full object [WGH19] and stored in a multidimensional array for
look-up. These approaches, however, do not generalize well to
heterogeneous translucency. Precomputed radiance transfer (PRT)
methods represent the subsurface light transport in zonal harmon-
ics [SLS05], wavelets [WTL05], transfer functions [BDBS22], or
a neural network [TFRJ23]. While such representation can achieve
real-time rendering at run time, they are in all these cases limited to
an assumption of distant lighting. Our model does not suffer from
these limiting assumptions.

2.5. Neural Models

A neural BSSRDF was first presented by Vicini et al. [VKJ19].
They avoid the assumption of a flat surface by including an im-
plicit functional representation of the local geometry as input for
their model. However, as opposed to our work, they assume a ho-
mogeneous material and a diffuse distribution of the incident light.
The shape-adaptive version of our model could be improved by
an extension of this kind to represent variation of local geome-
try. Neural radiance fields (NeRF) [MST∗20] is a method based
on ray marching useful for representing object appearance in a
fixed lighting environment. To be useful in the context that we
consider, the NeRF must be relightable. Most relightable NeRF
models however rely on an assumption of distant lighting (as for
PRT) [SLB∗21, LGF∗22, YGF∗23, ZSB∗23] or a spatially vary-
ing BRDF [BBJ∗21, ZSD∗21, LTL∗22, ZSH∗22, YZL∗22]. Those
assuming a BRDF are unable to capture translucency effects, as
these are generally a consequence of the position of observation
being different from the position where light is incident. Some re-
lightable neural models include subsurface scattering and an option
for local illumination due to being trained with point light illumina-
tion [GCD∗20, ZCD∗23]. While being able to use captured images
to learn the appearance of physical objects, these models include
surface scattering and struggle with highlights and surface reflec-
tions. Since we work with digital objects, we can easily separate
out these effects.
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3. Method

Our objective is to represent the subsurface light transport of an
object. Like a BSSRDF, the representation should care only about
incident and emergent light at the object surface, but volume path
tracing is used to compute the subsurface scattering. After refrac-
tion through the surface of an object, the transport of light is de-
scribed by the radiative transfer equation [Pre57]:

n(s)2 d
ds

(
L(s)
n(s)2

)
=−σt(s)(L(s)+ J(s)) , (1)

where n is the refractive index of the material, s is distance traveled
along a ray defined by xxx(s) = xxxo + s ω⃗o, L(s) is the radiance at xxx(s)
in the direction of the ray ω⃗o, σt = σa +σs is the extinction coef-
ficient (absorption and out-scattering), and J is the source function
(which includes in-scattering) defined by

J(s) = α(s)
∫

4π

p(s, ω⃗i, ω⃗o)L(s, ω⃗i)dωi + ε(s) , (2)

where ε is emission (only non-zero for emissive materials) and
α = σs/σt is the scattering albedo. At a point in the medium, α

is the probability of scattering while 1−α is the probability of ab-
sorption. We note that in our case, where the path starts and ends
in the same medium surrounding an object, the squared refractive
index (n2) cancels out of Eq. 1.

The integral form of the radiative transfer equation (with n2

omitted) is sometimes referred to as the volume rendering equa-
tion [NGHJ18]. This is [Cha50]

L(s) = L(0)e−τ(0,s)+
∫ s

0
σt(s′)J(s′)e−τ(s′,s) ds′ , (3)

where τ(s′,s) =
∫ s

s′ σt(t)dt is the optical thickness of the material
and L(0) is light entering the medium at the surface. Volume path
tracing solves the integral by Monte Carlo integration. Starting at
the distance s along the ray, since we trace from the observer, the
trick is to sample the distance to the next scattering event s − s′

using the probability density function

pdf(s′) = σt(s′)e−τ(s′,s) . (4)

The probability of getting s′ ≥ s corresponds to a Russian roulette
on whether to include the first term of Eq. 3 or not. The Monte
Carlo estimator with this sampling scheme is then

LN(s) =
1
N

N

∑
j=1

{
JM(s′j) for s′j < s
L(0) for s′j ≥ s,

(5)

where JM is an M-samples Monte Carlo estimator for Eq. 2 in
which we always use M = 1.

One obstacle is that the optical properties depend on wavelength
and the path will then be different for different color bands. To solve
this problem, we uniformly sample a color band for each path that
we trace. We set the contribution of the other color bands to zero
for this path and divide the result by the probability of the sampled
band (1/3 for uniform sampling). Another problem is that we have
no control over the positions and directions of incidence reached by
the paths we trace. To evaluate the subsurface scattering for arbi-
trary positions and directions of incidence, we need the BSSRDF.
Fortunately, one way to define the BSSRDF is using an infinite col-
lection of paths traced by volume path tracing. Based on a large

enough set of samples, a neural network can be trained to represent
such an infinite collection of paths. In the following, we use this to
justify the use of a learned N-samples Monte Carlo subsurface scat-
tering function in a surface-based rendering technique that allows
us to sample surface positions and directions without performing a
random walk through the object interior.

In Sec. 3.1, we present our N-samples light transport function
that captures the subsurface-scattering effects from the full geome-
try of a heterogeneous translucent object. In Sec. 3.2, we describe
how we can also represent the light transport function of a planar
half-space. Violating the assumption of a planar half-space (as is
commonly done with analytic BSSRDFs), we can use this model
with arbitrary surface geometry. Finally, we describe importance
sampling of our light transport functions in Sec. 3.3.

3.1. Full Geometry

Suppose X is a closed object defined by its surface geometry G
and its surface and volume scattering properties. The radiance Lr
reflected towards an observer from the point xxxo ∈ G in the direction
ω⃗o is a function of all the light incident across the object surface
G. If the point of incidence is xxxi ∈ G and the direction of incidence
is ω⃗i, the BSSRDF is a function describing the part of the incident
flux Φi that contributes to Lr. The definition of the BSSRDF is
[Pre65, FJM∗20]:

S(X ;xxxi, ω⃗i;xxxo, ω⃗o) =
dLr(xxxo, ω⃗o)

dΦi(xxxi, ω⃗i)
. (6)

Using the definition of radiance [Nic63], we get the reflected radi-
ance equation:

Lr(xxxo, ω⃗o) =
∫

G

∫
2π

S(X ;xxxi, ω⃗i;xxxo, ω⃗o)Li(xxxi, ω⃗i)cosθi dωi dAi , (7)

where Li is incident radiance, 2π denotes the solid angle of the
hemisphere centered around the surface normal n⃗i at the location
xxxi and cosθi = ω⃗i · n⃗i. In the integration, dωi is a differential solid
angle around ω⃗i and dAi is a differential area around xxxi.

Rendering with a BSSRDF requires integrating it across the ob-
ject surface (as seen in Eq. 7). With a neural representation, this
becomes a very expensive operation, which is likely one of the rea-
sons why current neural techniques [GCD∗20, ZCD∗23, TFRJ23]
do not represent the full function. Instead, they assume distant light-
ing or point lighting to include the integral across the surface area
in the model. We model the full function without sacrificing effi-
cient rendering by providing our model with a distribution of sur-
face points each with associated direction of incidence and incident
radiance, that is, a collection of (xxxi, ω⃗i,Li) triplets.

For any (xxxo, ω⃗o) pair, we can perform a surface scattering event.
If the result is refraction into the medium, we use unidirectional
volume path tracing in the direction of the refracted ray without
a probabilistic stopping criterion to connect these BSSRDF argu-
ments with a position and a direction of incidence (xxxi, ω⃗i) where
the path emerges from the medium. Accounting for all the paths,
we can define a version of the S-function that takes a set of points
of incidence Gi and a set of directions of incidence Ωi as argument
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instead of a particular position and direction of incidence [Pre65]:

S(X ;Gi,Ωi;xxxo, ω⃗o) =
S[Li](xxxo, ω⃗o)

Li(Gi,Ωi)Ai(Gi)ωi(Ωi)
. (8)

The sets Gi and Ωi are infinite sets of positions and directions form-
ing an illuminated part of the object surface and a solid angle in
which light is incident. The term Li(Gi,Ωi) is the sum of radiances
incident in Gi and Ωi, Ai(Gi) is the area of the set of points Gi (cor-
responding to projected area in definitions with differential quan-
tities), and ωi is the solid angle of the set of directions Ωi, while
S[Li] is a scattering operator applied to Li denoting the sum of radi-
ance due to all paths from some starting point in Gi and Ωi reaching
the position and direction of observation (Eq. 3). The conventional
BSSRDF is the limit of this function for Gi → xxxi and Ωi → ω⃗i.

There is nothing preventing us from taking multiple disjoint lim-
its such that Gi → {xxxi,1, . . . ,xxxi,N} and Ωi → {⃗ωi,1, . . . , ω⃗i,N}. The
S-function then becomes a matrix function SSSN with an output in
RN×3 (where 3 is for RGB). Each RGB row of the matrix is ob-
tained by a volume path tracing corresponding to evaluation of
Eq. 5 divided by the incident flux. Using this notation for matri-
ces containing a discrete set of N samples, we write Eq. 7 in an
N-samples version:

Lr(xxxo, ω⃗o) =
∫

G

∫
4π

(SSSN ⊗LLLi,N)
⊤diag(nnni,N ωωω

⊤
i,N)dωi dAi , (9)

where ⊗ is elementwise mutliplication while LLLi,N , nnni,N , and ωωωi,N

are N-samples matrix versions in RN×3 of the incident radiance,
the surface normals, and the directions of incidence at the respec-
tive positions of incidence. This is the equation we evaluate during
a rendering, and (SSSN ⊗ LLLi,N)

⊤111 is the function we let our neural
network represent, where 111 = diag(I) is the diagonal of the identity
matrix.

Creating a multi-layer perceptron (MLP) fψ, with parameters ψ,
which takes one (xxxo, ω⃗o) pair and triplets (xxxi, j, ω⃗i, j,Li, j) for j =
1, . . . ,N as input and returns an RGB vector, we find parameters
ψ∗ representing the appearance of a given object by

ψ∗= argmin
ψ

E
[
( fψ − (SSSN ⊗LLLi,N)

⊤111)2
]
, (10)

To estimate (SSSN ⊗LLLi,N)
⊤111, we use the volume path tracing men-

tioned for its definition. When a path emerges from the medium,
the path would usually continue to evaluate incident radiance. For
training of the MLP, we use a random incident radiance Li, j. This
path tracing corresponds to evaluation of Eq. 5 with random L(0).
Because of the randomization during training and because the in-
cident radiances are also input to the network, the model becomes
fully relightable when used for rendering, where we evaluate Eq. 9
by Monte Carlo integration. To use the network in this Monte Carlo
integration, we set Li, j in the N triplets given as input to the network
to sampled cosine-weighted incident radiances divided by their re-
spective sample probabilities.

3.2. Planar Half-Space

For the case of an object X that is a planar half-space with a ho-
mogeneous material, we simplify our model and use N = 1. The
rest is the same as before. The difference is illustrated in Figure 2.

®𝜔𝑖

𝑥𝑖

𝒛+

®𝜔𝑜𝑥𝑜

X

®𝜔𝑖
𝑥𝑖

®𝜔𝑖

𝑥𝑖

®𝜔𝑜

𝑥𝑜

X

1

Figure 2: The difference between a half-space model (left) and the
full geometry version of our method (right). Our model implicitly
depends on the full object geometry X whereas analytic BSSRDF
methods assume a planar half-space geometry. Our method can
adapt to a planar half-space representation and then no longer de-
pends on the object geometry.

The planar half-space version of our method provides a fully direc-
tional BSSRDF function that we can apply to arbitrary geometry in
the same way as analytic BSSRDF models are used.

This geometry simplifies the problem to fewer dimensions as
compared with the full object BSSRDF, as the coordinates are in
2D space and we only need to consider xxxo − xxxi. We thus have only
six dimensions (two for each spherical direction and two for the
spatial difference vector). To use this model for arbitrary geometry,
we either project the point of incidence to a representative plane
or use only the distance between the points of incidence and ob-
servation ∥xxxo − xxxi∥ together with the directions of incidence and
observation as inputs for our network representation.

3.3. Importance Sampling

To efficiently evaluate Eq. 9 by Monte Carlo integration, we
propose an importance sampling method based on normalizing
flow [DKB15, MMR∗19]. Conventional uniform sampling of the
object surface and sampling of a cosine-weighted hemisphere for
directions of incidence can be used with our neural representation.
However, for local illumination as in the candle scene in Figure 3,
a uniform sampling would generate many position-direction pairs
without direct visibility of the light source. Importance sampling
techniques for directions have been studied extensively and most
of them are compatible with our method. Thus, we find it crucial
to have a robust scheme for importance sampling points of inci-
dence xxxi that can work alongside any direction importance sam-
pling method [MMR∗19, XWH∗23].

An importance distribution is easily generated from observed
data. Efficiently sampling such a distribution is however a chal-
lenge. Given a difficult to sample probability distribution pZ and a
distribution pY that we can efficiently sample, if we know a bijec-
tive transformation f : Z → Y then sampling z ∈ Z can be achieved
using z = f−1(y). We use a normalizing flow technique to find
the function f . A normalizing flow has the property of being dif-
feomorphic, which means that any transformation f in the flow is
invertible and both f and f−1 are differentiable. This also necessi-
tates that the input dimensions of the distribution match the output
dimensions. We use a 3D Gaussian as our base distribution for ease
of sampling and density evaluation.

© 2024 The Authors.
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RMSD :0.03

RMSD :0.02

Figure 3: Examples of our importance sampling method applied
to a locally lit object (top) and an object lit by a distant source
(bottom). The second column of images shows positions sampled
uniformly on the surface. The third column shows a distribution of
importance sampled positions xxxi, j (blue) for a given xxxo (red). The
faded blue points represent the far side of the mesh. In the candle
scene, our method learns that the important region is the concave
part with direct visibility of the flame. In the bunny scene, a broader
distribution of points is sampled where the scene is illuminated by
the directional light. Note that our method is not constrained to
sampling points strictly on the mesh surface. As an upper bound
on the distance from the sampled points to the surface, we list the
root-mean-squared deviation (RMSD) for the sampled points with
respect to the closest barycenter.

The loss function for the maximum likelihood objective
is [DKB15]

log pY (y) = log pZ(z)+ log
∣∣∣∣det

(
∂z
∂y

)∣∣∣∣ , (11)

which preserves the volume under the curve while providing exact
posterior inference (via z = f−1(y)). This loss function is used for
training the 2-layers MLP in our importance sampling architecture
sketched in Figure 4.

Our network architecture takes N positions xi and directions ωi
as input. We take advantage of the normalizing flow architecture by
generating a set of points representing the base distribution. Thus, a
single f−1 can be used to attain the samples in the real distribution
(see Figure 4). This creates a collection of good samples instead of
conducting individual inference for each sample.

4. Implementation

Our neural network has two modules, an importance sampling
module and an appearance representation module. We use a Multi
Layered Perceptron (MLP) to represent (SSSN ⊗ LLLi,N)

⊤111. A tiny
MLP is storage efficient as compared to nearly all precomputation
alternatives [LGB∗02, SSWN14, BDBS22].

Split

y1

y2
128 128

s, t

𝑧2 = f (y2, s, t)

z1

z2

concat
𝑧

Real distribution Base distribution

split

𝑥 = f −1 (z2, s, t)

Training

Inference

1

Figure 4: Our normalizing flow architecture for importance sam-
pling. We collect a set of samples from the real distribution based on
the output from our neural network. This distribution goes through
a set of diffeomorphic transformations that are invertible allowing
for exact posterior inference. We use a 3D Gaussian as a base dis-
tribution. During inference, we resample the 3D Gaussian for every
ray hit on the object and go through the inverse of the entire trans-
formation which returns a vector with N sampled 3D positions on
the object geometry. The black line in the graph is a training loop
whereas the blue lines represent the inference process.

4.1. Network Architecture

Object appearance. MLPs have demonstrated their usefulness
with respect to reliable representation of high-dimensional func-
tions. As our material representation is a function of 5+ 8×N di-
mensions, an MLP should serve our purposes well. We use a stan-
dard 3-layers fully connected MLP with 256 nodes in each layer
to represent object appearance both for full geometry and a pla-
nar half-space. We use a LeakyReLU activation function after each
layer. Furthermore, we use the mean-squared error (MSE) as the
loss function (L) for our MLP (Eq. 10). A bigger network should
in principle be able to learn the light transport function better, but
this simple architecture provided a suitable fit in all our test cases,
and we therefore use it throughout. We described two different net-
works in Sec. 3: an object-centric full geometry representation and
a half-space representation useful for arbitrary geometries. We use
the same network for the half-space formulation but with N = 1.

Importance sampling. As described in Sec. 3.3, we use a normal-
izing flow architecture with a coupling layer for our importance
sampling module. We first create a small dataset using our appear-
ance specification module by uniformly sampling points on the ob-
ject surface G. For each point, we integrate out the dependence on
the direction of incidence. In practice, we use 16× 64 uniformly
distributed direction vectors for this integration. A number of eval-
uations of the network are then converted into a distribution, such
that

pY (y) =
∫

4π
(SSSN,k ⊗LLLi,N,k)

⊤diag(nnni,N,k ωωω
⊤
i,N,k)dωi

∑k
∫

4π
(SSSN,k ⊗LLLi,N,k)⊤diag(nnni,N,k ωωω⊤

i,N,k)dωi

, (12)

where k is the index of a data point in the set, and each data point
consists of N surface samples with the direction of incidence inte-
grated out. The created distribution goes through a set of transfor-
mations such as splitting the data, a coupling transform and finally,
the concatenation of the transformations in the end, as depicted in
Figure 4. We do the data splitting in two equal subsets y1 and y2.

© 2024 The Authors.
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.



T. TG et al. / Neural SSS: Lightweight Object Appearance Representation 7 of 14

Rendering pipeline

Network pipeline

Trace ray Volume
intersection

Model
Trained?

Trace inside
Volume

Importance
Sample

Exit
intersection

Accumulate

Buffer [xi, ωi,
xo, ωo, S(⃗1)]

Data augmentation
and input pooling MLP 25

6

25
6

25
6 Compute

loss (L)

NO

YES

Rendering flow

Data Collection

Network Inference

Training

Figure 5: A process flow diagram depicting our method plugged into a standard volume path tracer. The “Model Trained” variable is
initially “NO”, and the path tracer then stores the intersection and radiance values in the training buffer. The data augmentation block takes
data from the buffer, pools it as inputs and trains the network. We set the “Model Trained” parameter to “YES” when the predicted loss is
less than 10−3 for 100 iterations in a row. When the model has been trained, we do importance sampling for the exit positions and sample
the incident radiance at each point. This is fed into the network which in turn predicts the radiance output used in the accumulation step.

We use an identity transform on y1 whereas y2 serves as input to
a 2-layers MLP with 128 neurons each and ReLU activation in-
between to provide values for the scale s and the transpose t. The
scale and the transpose are used for a linear polynomial transfor-
mation of the subset y2, such that

f (y2) = y2 ⊗ s+ t , (13)

where the transformed subset is concatenated with z1. The set is
shuffled and this iteration continues until a satisfactory fit is ob-
tained. Our importance sampling technique is a one-to-one map-
ping from a 3D Gaussian to the real distribution. However, this
only ensures that the sampled points are close to the surface and
does not necessarily ensure that they are on the surface. A point to
mesh projection technique is therefore beneficial. We project our
points on the surface by sampling a random point on the closest
triangle.

4.2. Training and Dataset

We train our network on data produced by an unbiased path tracer
with an arbitrary scene containing the object of interest. Our net-
work has a tiny memory footprint (0.77 MB), which allows us to
train while rendering any scene with negligible cost. Thus, we em-
ploy an online learning method to train our appearance specifi-
cation network, see Figure 5. The online learning attains quicker
model creation by parallelizing data generation and training.

Most online learning methods impose restrictions on the data
generation process. This limits the usability of the generated data.
Our online learning makes use of standard path-tracing data pro-
duced by a renderer without imposing any such restrictions. This
makes the online learning process more functional by saving ex-
plicit time consumed by training after data collection in an offline
method. The training data is generated by path tracing N times
through the object for every trace hit on the geometry. We keep

track of all the trace exit point-direction pairs (xxxi, ω⃗i) on the ge-
ometry while the ray hit position and the negated ray direction be-
come our xxxo and ω⃗o. We generate additional training data by scal-
ing the generated transport information (LLLi,N and the network out-
put) which is analogous to “data augmentation” in classic machine
learning. We train the model until the MSE error from the network
prediction is below 10−3 for 100 consecutive iterations.

Our planar half-space approach has a different method of data
collection where we trace a beam of light with unit radiance
through a planar half-space. Unlike the other N-samples formula-
tion, this method is a single sample representation making it low-
dimensional. For training this formulation, we trace paths through
a planar half-space from a single point xxxi at evenly distributed
16×64 spherical coordinates. Every incident ray creates a 2D map
of data consisting of xxxo, ω⃗o and exit radiance Lr. This map is used
to train our network for every incident ray. We fix xxxi to be the origin
of a 2D Cartesian coordinate system and the position of observa-
tion xxxo would be relative to the origin. Each pixel in a path traced
2D map is a data point for the network i.e., xxxi, ω⃗i, xxxo, ω⃗o. We train
this formulation offline where we collect path tracing data and train
on it independently. Once this model is trained for a medium, the
same model can be used for rendering arbitrary geometries. This
model is however less accurate than full object representation as
demonstrated in Figure 9.

4.3. Framework and Rendering

For efficient data collection and rendering, we use a custom-made
path tracing framework based on NVIDIA OptiX [PBD∗10]. The
neural network undergoes training on a C++ distribution of Py-
Torch, commonly referred to as libTorch [PGM∗19]. Network in-
ference is performed on a custom implementation of MLP for the
OptiX framework. All tests were performed on an NVIDIA RTX
4090 and an AMD Ryzen 7 5800X3D.

We implemented our models as shader code in our Monte Carlo

© 2024 The Authors.
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Figure 6: Example renderings to demonstrate that our model sup-
ports relighting and an arbitrary view. We use the same representa-
tion for all the figures. The first row of images is rendered a variety
of environment maps showing that the views can be rendered under
a variety of lighting setups. The second row of images are rendered
under the same directional source with a variety of views.

path tracer where we resample the 3D Gaussian which is translated
into xxxi positions, and we sampled ω⃗i on a cosine-weighted hemi-
sphere or directly toward light sources. This information along with
xxxo and ωo is passed through one of our two neural subsurface scat-
tering representations which return a radiance output (3-vector in
case of RGB). Note that since our planar half-space representation
is trained without data augmentation using unit incident radiance
and one position of incidence, we directly scale the network output
(instead of the input radiance) by the sampled radiance from ω⃗i at
xxxi. As the planar half-space formulation inherently disregards ge-
ometry as a whole, we use the distance between xxxi and xxxo for the
model when rendering 3D scenes.

5. Results

Figure 6 is a rendering of the same model under different lighting
conditions and viewpoints. We use average FLIP error [ANAM∗20]
to assess the perceptual difference between our result and that of a
reference path traced image. The low values demonstrate that our
model achieves high fidelity while the object appearance represen-
tation is fully relightable and view-independent.

To demonstrate that our method accurately represents the ap-
pearance of translucent objects, we compare our method with path
traced reference images. To illustrate the benefits of accounting for
the full object geometry, we also compare with related work based
on conventional analytic BSSRDF models [DLW∗22]. In addition,
we compare with a neural object-centric appearance representa-
tion technique that assumes distant lighting [TFRJ23]. Finally, we
demonstrate the effectiveness of our importance sampling method.

5.1. Comparison with Other Methods

Figure 1 shows three translucent objects rendered under environ-
ment lighting and with local illumination from the flame in the

Table 1: Training and rendering times in seconds for our models
in Figures 7 and 9, and the number of samples that we used when
rendering with our method. Note that the planar half-space for-
mulation is an offline training method which takes approximately
equal training and inference time for every material. However, the
data generation time differs from material to material. Every model
consumes 0.77 MB of storage space.

Model Training time Render time Samples
Mandarin 1513.12 36.13 2200
Meat 1392.12 32.16 2100
Candle 1312.13 18.27 1500
Croissant 1657.78 27.16 1300
Planar half-space 2118.12 83.58 5000

candle model. We compare against the reference path traced im-
age. Again, the low FLIP error attests to the high fidelity of our
model. Figure 7 is a comparison between the reference path trac-
ing, the methods of Deng et al. [DLW∗22] and TG et al. [TFRJ23],
and our method.

Deng et al. [DLW∗22] introduced an inverse rendering tech-
nique to jointly optimize spatially distributed BSSRDF parame-
ters for the standard dipole [JMLH01] using a set of images. This
method achieves a good result for a highly scattering medium such
as the croissant, however, the underlying assumption of the stan-
dard dipole model, which assumes a homogeneous half-space ma-
terial, is not a good representation of the thin heterogeneous objects
seen in the mandarin and meat scenes. Interestingly, this model also
has difficulties with the candle scene although the material is ho-
mogeneous. This is likely due to some of the other limitations of
the standard dipole model, such as the assumption of no directional
dependence of the diffuse part of the subsurface scattering.

TG et al. [TFRJ23] on the other hand achieve a good overall
representation, however, their model cannot reliably represent lo-
cal illumination effects due to their assumption of distant lighting.
This is easily seen in the candle scene where the flame does not ac-
curately contribute to the appearance of the wax. A representative
directional source can be used for this scenario in the downward
direction. However, this will incorrectly illuminate the wax melted
at the bottom with high inaccuracies. Furthermore, the other scenes
demonstrate errors due to the model being unable to account for the
indirect illumination from the floor beneath.

Our model consistently outperforms the competition for a wide
variety of object appearances substantiated quantitatively by the

FLIP mean on the bottom left of the images and the FLIP error
map on the bottom right of these images. Figure 8 shows an ab-
lation study for the N in our formulation. Each N corresponds to
five additional dimensions for the network input (two for ω⃗i and
three for xxxi). The study suggests that the model performs best when
N = 32 or N = 64. As we use a 3-layers MLP for all our experi-
ments, the higher error rate with N ≥ 128 suggests that the function
becomes too complicated to be learned with this network. This can
be easily mitigated by using an MLP with more hidden layers at the
cost of a more storage intensive method. Table 1 shows the training
and inference timings of our network for the results in Figures 7 and

© 2024 The Authors.
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Figure 7: Comparison with reference path tracing and recent work on representing the appearance of a heterogeneous translucent object:
Deng et al. [DLW∗22] using textured parameters for the standard dipole model, which was derived for homogeneous half-space materials,
and TG et al. [TFRJ23] using a neural representation limited to distant lighting. Our model most closely matches the path traced references
(see the inserted FLIP mean and error maps). The FLIP error maps clearly highlight the limitations of the models we compare with.

9. Note that the planar half-space corresponds to every material in
the 6th column of Figure 9.

5.2. Comparison with Analytic BSSRDF

To showcase our model for the planar half-space’s ability to learn
the BSSRDF we show the reflectance curve against several analytic
models. For our reference volume path tracing we simulate using
8 dimensions, in particular, we collect radiance towards a given
observation direction, ω⃗o. This will allow us a direct comparison of
our network. The analytic models presented here do not depend on
the observation direction and assume a diffuse reflectance as they
are derived under the assumption of highly scattering media. This is
one of the disadvantages of analytic models, which cannot capture
effects due to changes in the direction of observation.

This is also seen in Figure 10, where our model captures the re-
flectance curves that analytic models cannot match as accurately.
As a consequence, analytic models often lose some finer details
and tend to blur out high-frequency details. Figure 9 compares ren-
derings for a variety of materials with different albedos. Here, our
model provides better results than the analytical models for the pla-
nar half-space when comparing the FLIP scores. Rendering with a
resolution of 1280×1280 took an average of 2-3 minutes with the
analytical models to ensure a noise-free result, while photon beam

diffusion [HCJ13] took around 10 minutes due to the need to sam-
ple the integral in the model, where we used 5 samples. On the other
hand, our network rendered the images in less than two minutes and
the path traced references took 1-3 hours.

5.3. Comparison with Denoised Volume Path Tracing

In Figure 11, we compare the rendering quality of our method with
that of path tracing and denoising at equal rendering times. We use
Intel Open Image Denoise [Áfr24] as the denoiser of our choice.
Columns 2 and 4 show the output from the path tracer whereas
columns 3 and 5 show their respective denoised results. As seen
from the FLIP errors on the images, our method outperforms path
tracing in both scenarios. In path tracing (denoised), the denoiser
tends to overcorrect the output to a higher radiance than expected
due to the presence of firefly-like RGB noise, resulting in a worse

FLIP score compared to basic path tracing. In contrast, the absence
of RGB noise in our method provides a significant advantage, al-
lowing the denoiser to perform more accurate corrections.

5.4. Importance Sampling

Figure 12 demonstrates the effectiveness of our importance sam-
pling module. This module needs to be retrained for every lighting

© 2024 The Authors.
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Figure 8: We perform an accuracy analysis of our neural represen-
tation on all our models in Figure 7. This plot compares the model’s
accuracy in terms of root-mean-squared error (RMSE) with respect
to N. The plot illustrates that the model fits better when N = 32 or
N = 64. We use a 3-layers MLP for this experiments. With large N,
the data complexity increase significantly which cannot be approx-
imated with a 3-layers neural network.

environment. However, due to the small size of the network and
the small dataset obtained without path tracing, the network con-
verges to acceptable accuracy in 100 iterations which takes less
than 5 seconds on a GPU. We easily save the cost of this training
through convergence with fewer samples per pixel. The sampled
points, however, may not reside exactly on the surface. Our mitiga-
tion strategy was to replace each sample with a uniformly sampled
point in the triangle with the closest barycenter. This is computa-
tionally expensive and might not be necessary. Figure 3 shows our
sampled points with respect to the geometry and includes the root-
mean-squared deviation (RMSD) of the sampled positions from
their nearest barycenters. This RMSD is an upper bound of the er-
ror and because the object surfaces have many triangles, the RMSD
demonstrates that the sampled points are very close to the surface.
We have tested renderings without projection to the surface, and as
long as a point is not a significant outlier, the appearance represen-
tation module can still work accurately with the points that are not
exactly on the surface.

6. Discussion

The main limitation of our work is that each appearance representa-
tion network is trained and tied to its set of optical properties (and
geometry for the full geometry formulation). A small adjustment
of either requires training a new network or updating the network
with new data. Even with the benefit of faster rendering times com-
pared to analytic models, training a network for each set of optical
properties can be time-consuming. One possibility is to incorpo-
rate a latent space for either geometry or optical properties into the
network, which can be sampled. Such an approach was explored
by Vicini et al. [VKJ19] for homogeneous materials and local ge-
ometry. Exploring similar approaches for heterogeneous and full
geometry is interesting future work.

Although our importance sampling is a definite one-to-one map-
ping from a 3D Gaussian to the real distribution, this does not en-

sure that points are on the object’s surface. Our projection method
is simply to find the closest triangle and sample a point in it. While
we have not found any issue with this, it is computationally ex-
pensive and could be replaced with a better projection technique
(using for instance the gradient of a signed distance field). Even
better, the projection is not necessary if the appearance representa-
tion network is robust enough. We use projection to make sure that
this is not a source of error in the appearance representation, but we
suggest a more comprehensive analysis of whether the projection
is even necessary.

7. Conclusion

We presented a neural subsurface scattering representation tech-
nique. Our method faithfully and compactly represents the full 8-
dimensional BSSRDF of a heterogeneous translucent object. We
demonstrated how use of many small collections of sampled unidi-
rectional paths through a volume is enough to capture such a light
transport function in a tiny MLP. Furthermore, we extended our
method to a half-space medium that simulates material appearance
identical to classical analytic BSSRDF models where our method
consistently produces accurate results with better performance, but
re-training is needed when the optical properties change. Further-
more, we presented an importance sampling technique for finding
relevant points of incidences to go along with our method.
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Figure 9: Comparing the half-space (HS) and the full geometry versions of our method to various diffusion based approximations. Path
traced single scattering was added to the models not including single scattering [JMLH01, d’E12]. At the bottom of the images, we include
per pixel and mean FLIP scores (lower is better) with respect to the reference path traced images. The half-space (HS) version of our model
produces quality consistently better than the diffusion-based models, while the full geometry version matches the reference very well. The
optical properties for the materials are marble, apple, potato, and ketchup [JMLH01] as well as regular chocolate milk [NGD∗06].
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Figure 10: BSSRDF reflectance curve comparison of our planar half-space formulation and analytic diffusion-based methods. This exper-
iment was performed on a smooth plane without any surface reflections. We use isotropic scattering, extinction coefficient σt = 2.41cm−1,
a scattering albedo of 0.75, and a refractive index of n = 1.3. We compare our model with the standard dipole [JMLH01], the directional
dipole [FHK14], photon beam diffusion [HCJ13] and standard volume path tracing. We selected the reflectance curves in a direction on the
surface perpendicular to the plane of incidence. This is the reason for the symmetry of the curves on each side of the point of incidence. In
this direction perpendicular to the plane of incidence, all the diffusion-based models exhibit similar issues, and we see a similar trend for
more oblique angles of incidence.
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Figure 11: Comparing rendering quality at equal render times (20 seconds). We use Intel Open Image Denoise [Áfr24] for denoising. Our
representation does not produce any color noise which is advantageous for denoisers as compared with volume path tracing. The denoiser
overestimates the color output due to the RGB noise which in turn produces perceptually worse results than volume path tracing as affirmed
by the FLIP scores at the bottom left of the images.
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Figure 12: Comparing the effectiveness of our representation net-
work for a 1 (xxxo, ω⃗o)-sample per pixel rendering of the mandarin
without our importance sampling (left) and with our importance
sampling (right). The scene is lit by a single directional light and
our importance sampling module provides sampling positions that
have visibility to the light source, thereby providing a better esti-
mate of the appearance.
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