Subsurface scattering correction model

3DV tutorial session, September 2018 Søren K. S. Gregersen

One hour agenda:

- 1. Is it possible to scan a translucent object?
- 2. Stereovision crash-course
- 3. Subsurface scattering in structured light

Ask questions any time!

Opaque and translucent object reflection

The fundamental difference is the **penetration of light**

Many relevant translucent objects

Translucency is easily found for, for example, **plastics**, **marble**, **and skin**

Subjects of choice-plastic ball bearings

Teflon is somewhat opaque, while colorless nylon is translucent

Common reference point

Projected patterns on translucent objects

Projected patterns reveal translucency... they become blurred and shifted!!

Point cloud reconstruction of ball bearings

Cross sections of ball bearings

Systematic errors in the geometric reconstruction

Slide 8 / 45

Stereovision crash-course

Stereo view and surface reconstruction

Pinhole camera model Cameras C_1 and C_2

Position P_{α} Rotation R_{α} Focal length f_{α} Distortion parameters $\boldsymbol{\nu}_{\alpha}$... all learned through calibration

Given pixel set

 $a_1 = \{i, j\}_1$ $b_2 = \{k, l\}_2$, we can locate intersection point M... also known as surface reconstruction! Requires pixel correspondence!!

Slide 10 / 45

Structured light

Active patterning enables full image correspondence

Structured light patterns

Two important patterns for "active texturing"

Gray code (binary)

Phase shifting (continuous)

There exist many, many more!!

Slide 12 / 45

Pattern codes

Gray code

Phase shifting

Plane-line intersection!

Camera Slide 15 / 45

Influence of translucency on projected codes

Subsurface scattering in structured light

The propagation of light

Slide 18 / 45

Total light intensity in a single camera pixel

Relation between incoming and out going light:

Bidirectional scattering-surface reflectance distribution function

BSSRDF:
$$S(\mathbf{x}_i, \boldsymbol{\omega}_i, \mathbf{x}_o, \boldsymbol{\omega}_o) \approx S_d + S_s$$

Diffusion Jensen, H. W *et al.* (2001). *Proceedings SIGGRAPH '01* (pp. 511–518).

Single scattering Slide 19 / 45

Diffusive BSSRDF

Jensen, H. W et al. (2001). Proceedings SIGGRAPH '01 (pp. 511–518).

Slide 20 / 45

Diffusive BSSRDF

$$S_{d} = \frac{1}{\pi} F(\boldsymbol{\omega}_{i}) F(\boldsymbol{\omega}_{o}) R_{d}(\boldsymbol{x}_{i}, \boldsymbol{x}_{o})$$

Fresnel Diffusion

Jensen, H. W et al. (2001). Proceedings SIGGRAPH '01 (pp. 511–518).

Slide 21 / 45

Single scattering BSSRDF

Jensen, H. W et al. (2001). Proceedings SIGGRAPH '01 (pp. 511–518).

Slide 22 / 45

Single scattering BSSRDF

Jensen, H. W et al. (2001). Proceedings SIGGRAPH '01 (pp. 511–518).

Slide 23 / 45

Single scattering limit

Assuming only single scattering

$$S(\mathbf{x}_i, \boldsymbol{\omega}_i, \mathbf{x}_o, \boldsymbol{\omega}_o) \to S_s$$

An approximate model, which can explain behavior – a heuristic technique

Enables analytic models later on!

Single scattering limit on an infinite plane

All **relevant** scattering happens along a single line—the camera pixel direction!

 $\int d x_i \to \int_0^{\infty} d l$ $x_i \rightarrow x_i(l)$

Local response – parallel rays

Assuming parallel projection and a single camera ray:

$$L_i[\boldsymbol{x}_i(l), \boldsymbol{\omega}_i] = \delta(\boldsymbol{p} - \boldsymbol{\omega}_i)L_i[\boldsymbol{x}_i(l)]$$

 $\omega_i \rightarrow c$

The out going radiance now reads: Pattern

$$L_o(\mathbf{x}_o, \mathbf{c}) = \Sigma_s \int_0^\infty \exp(-\sigma_t l) L_i[\mathbf{x}_i(l)] dl$$

$$\Sigma_s = \sigma_s F(\mathbf{p}, \mathbf{c}) P(\mathbf{p}', \mathbf{c}')$$

p' and c' are the refractive rays of, respectively, p and c

Slide 26 / 45

Incident patterns

Gray code:
$$L_i(\mathbf{x}_i) = \begin{cases} 0, & 0 \le mod(2 \ \mathbf{x}_i \cdot \mathbf{K}, 2) < 1 \\ L_i, & 1 \le mod(2 \ \mathbf{x}_i \cdot \mathbf{K}, 2) < 2 \end{cases}$$

$$K = \frac{\Lambda}{|\Lambda|^2}$$
, where Λ is the periodic vector

Phase shifting:
$$L_i(\mathbf{x}_i) = L_i \left[\frac{1}{2} + \frac{1}{2}\cos(\mathbf{x}_i \cdot \mathbf{K})\right]$$

Slide 27 / 45

Hand waving derivation – gray code

Blurred edges!!

Slide 28 / 45

Hand waving derivation – phase shifting

Sum of waves = shifted wave!!

Slide 29 / 45

Back to derivation – light path

The path from incident to out going is straightforward:

$$x_{o} = x_{i} + p'l_{p} + c'l_{c}$$

$$x_{i} = x_{o} - p'l_{p} - c'l_{c}$$

$$(-p' \cdot n)l_{p} = (c' \cdot n)l_{c}$$

$$l = l_{p} + l_{c}$$

C

Back to derivation – light path

The path from incident to out going is straightforward:

$$l_p = \frac{-c' \cdot n}{p' \cdot n - c' \cdot n} l$$
$$l_c = \frac{p' \cdot n}{p' \cdot n - c' \cdot n} l$$
$$x_o = x_i + \frac{p'(c' \cdot n) - c'(p' \cdot n)}{p' \cdot n - c' \cdot n} l$$

Back to derivation – light path

The path from incident to out going is straightforward:

$$v = \frac{p'(c' \cdot n) - c'(p' \cdot n)}{p' \cdot n - c' \cdot n}$$

$$p_{x_i} x_0^{c}$$

$$p' l_p l_c / 1c'$$

221

v: surface path projection

 $x_o = x_i + v l$

Assuming large period $\sigma_t \Lambda \gg 1$, then $L_i \rightarrow \Theta(...)$

$$L_o(\boldsymbol{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\rm s} L_i \int_a^b \operatorname{Exp}(-\sigma_t l) d l$$

$$a = b = 0 \implies L_o(\mathbf{x}_o, \boldsymbol{\omega}_o) = 0$$

$$l = 0$$

$$\mathbf{x}_o$$

Slide 33 / 45

Light intensity for gray code

$$L_o(\boldsymbol{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\rm s} L_i \int_a^b \operatorname{Exp}(-\sigma_t l) dl$$

$$a = 0 \wedge b = l_0 \implies L_o(\mathbf{x}_o, \boldsymbol{\omega}_o) = \Sigma_{s} L_i \frac{1 - e^{-\sigma_t l_0}}{\sigma_t}$$

Light intensity for gray code

$$L_o(\boldsymbol{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\rm s} L_i \int_a^b \operatorname{Exp}(-\sigma_t l) d l$$

$$a = 0 \wedge b = \infty \implies L_o(\mathbf{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\rm s} L_i \frac{1}{\sigma_t}$$

Slide 36 / 45

Light intensity for gray code

$$L_o(\boldsymbol{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\rm s} L_i \int_a^b \operatorname{Exp}(-\sigma_t l) d l$$

$$a = l_0 \wedge b = \infty \implies L_o(\mathbf{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\mathrm{s}} L_i \frac{e^{-\sigma_t l_0}}{\sigma_t}$$

Gray code summery

- $\sigma_t \Lambda \gg 1$, then $L_i \rightarrow \Theta(\dots)$
- Exponential decay near boundaries: $\exp(-\sigma_t l)$
- Blurred edges!

If $\sigma_t \Lambda \preceq 1$

- Wavelike pattern instead... very blurry image!!
- Smaller Λ gives higher resolution
- Smaller Λ gives worse signal

Light intensity for phase shifting

$$L_o(\boldsymbol{x}_o, \boldsymbol{\omega}_o) = \Sigma_{\rm s} \int_a^b \operatorname{Exp}(-\sigma_t l) L_i \left(\frac{1}{2} + \frac{1}{2} \cos[(\boldsymbol{x}_i + \boldsymbol{\nu} \, l) \cdot \boldsymbol{K}]\right) dl$$

$$L_{o}(\boldsymbol{x}_{o}, \boldsymbol{\omega}_{o}) = C \begin{bmatrix} \frac{1}{2} + \frac{1}{2A}\cos(\theta_{0} + \Delta\theta) \\ \boldsymbol{1} \end{bmatrix}$$

Blurring Shift

where

$$C = \frac{\Sigma_{s}L_{i}}{\sigma_{t}} \quad \text{and} \quad A = \sqrt{\frac{(\boldsymbol{v}\cdot\boldsymbol{K})^{2}}{\sigma_{t}^{2}}} + 1$$
$$\theta_{0} = \boldsymbol{x}_{i} \cdot \boldsymbol{K} \quad \text{and} \quad \Delta\theta = \arctan\left(\frac{\boldsymbol{v}\cdot\boldsymbol{K}}{\sigma_{t}}\right)$$

Slide 40 / 45

Light intensity for phase shifting

Phase shift: $\Delta \theta = \arctan\left(\frac{\nu \cdot K}{\sigma_t}\right)$

- Bounded between $-\frac{\pi}{2} \le \Delta \theta \le \frac{\pi}{2}$
- I.e. lateral error bounded between $-\frac{\Lambda}{2} \leq Error \leq \frac{\Lambda}{2}$
- Smaller Λ gives smaller errors!!

Blurriness: A =
$$\sqrt{\frac{(\nu \cdot K)^2}{\sigma_t^2} + 1}$$

- $A \to \infty \text{ as } \Lambda \to 0$
- I.e. Smaller Λ gives worse signal

From mathematical model to "real life"

Apparent material parameters:

- Extinction coefficient $\sigma_t = 1/\tau$
 - au is the propagation length of light
- Refraction index η , which determines \boldsymbol{v}

Geometric parameters:

- Projector and camera rays p and c ----- Learned from calibration
- Surface normals $n \leftarrow$ Learned from reconstructed surface
- Periodic vectors $K \leftarrow$ Learned from calibration

Learned from scan gradients with reconstructed surface

Modeling summery

The reconstruction depends on the correction (pattern shift) The correction depends on the *true* surface geometry

Correction model is an optimization scheme:

- 1. Find the surface that recreates the observed scans given a known material
- 2. Find the material that recreates the observed scans given a known surface

Open question: How to model non-planar geometries?

Further reading

Jensen, Henrik Wann, et al. "A practical model for subsurface light transport." *Proceedings SIGGRAPH '01*. ACM, 2001.

• BSSRDF model

Holroyd, Michael, and Jason Lawrence. "An analysis of using high-frequency sinusoidal illumination to measure the 3d shape of translucent objects." *Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on*. IEEE, 2011.

• Alternative and very similar model

Rao, Li, and Feipeng Da. "Local blur analysis and phase error correction method for fringe projection profilometry systems." *Applied optics* 57.15 (2018): 4267-4276.

• A BSSRDF diffusion approximation