
Agent Programming Languages and Logics in
Agent-Based Simulation

John Bruntse Larsen

DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
jobla@dtu.dk

Abstract. Research in multi-agent systems has resulted in agent pro-
gramming languages and logics that are used as a foundation for engi-
neering multi-agent systems. Research includes reusable agent program-
ming platforms for engineering agent systems with environments, agent
behavior, communication protocols and social behavior, and work on
verification. Agent-based simulation is an approach for simulation that
also uses the notion of agents. Although agent programming languages
and logics are much less used in agent-based simulation, there are suc-
cessful examples with agents designed according to the BDI paradigm,
and work that combines agent-based simulation platforms with agent
programming platforms. This paper analyzes and evaluates benefits of
using agent programming languages and logics for agent-based simula-
tion. In particular, the paper considers the use of agent programming
languages and logics in a case study of simulating emergency care units.

Keywords: multi-agent systems, logic, simulation

1 Introduction

Agent-Oriented Programming (AOP) is a programming paradigm where pro-
grams are composed of agents. Similar to objects in Object-Oriented Program-
ming (OOP), agents maintain a mental state and react to input by performing
actions and changing their mental state. Some agents are also assumed to be
intelligent agents, meaning that they pursue goals and exhibit social behavior
by communicating with other agents. Agent programming languages are pro-
gramming languages that are designed for development of multi-agent systems
with AOP. Examples of platforms that use agent programming languages in-
clude Agent-0 [1], 3APL [2], 2APL [3], Jason [4], JACK [5, 6] and GOAL [7].
The notions of belief, desire and intention (BDI) are key components in these
languages, as they respectively denote what the agent believes, what the agent
would like to achieve, and what the agent is currently working towards achiev-
ing. Formalizations of a BDI model in modal logics provide syntax and semantics
for the model. Thus logic provides a theoretic framework for specification and
verification of agent programs.

The BDI paradigm has also been used in agent-based simulation (ABS). The
purpose of ABS compared to multi-agent systems is to gain insight into how



2

global properties emerge from a system of local interacting processes. Examples
of ABS platforms include Mason [8], Repast [9] and GAMA [10]. ABS platforms
generally do not use above mentioned agent programming languages but some
of them provides a framework for making models with the BDI paradigm [11]. A
BDI model allows agents to exhibit more complex behavior than purely reactive
models but without the computational overhead of cognitive architectures. It is
generally also easier for domain experts to specify their knowledge in terms of a
BDI model compared to an equations-based model, and a BDI model supports
explainable behavior. Adam and Gaudou [12] present an extensive analysis and
evaluation of approaches to integrating BDI models in ABS. They highlight the
previously mentioned benefits of BDI models as a way to implement descriptive
agents which use richer and more complex models than reactive agents.

This paper presents an analysis and evaluation of using recent advances in
agent programming languages and logics, in particular frameworks for imple-
menting social behavior, in ABS. The paper first presents a summary of AOP,
ABS platforms and work on integrating BDI models in simulation platforms
based on the work of Adam and Gaudou [12]. It then describes research in
frameworks and meta-models for implementing virtual environments and social
behavior in agent programming languages. It evaluates potential benefits of using
a framework for implementing agent organizations in ABS, and finally discusses
further use of MAOP in ABS. The criteria used in the evaluation are in terms
of:

1. How the framework supports descriptive agents.
2. How reusable the framework or meta-model is.
3. How useful the framework or meta-model is for analysis.

The evaluation is based on previous work on using the agent organization frame-
work AORTA [13] to create a simulation model for an emergency care unit [14].

2 AOP, Logic and Agent-Based Simulation

AOP was originally proposed by Shoham [1] as a specialization of OOP. Shoham
motivated AOP with cases in which multiple entities interacted with each other
in order to manufacture cars and reserve plane tickets. In AOP, each entity (now
called an agent) maintains a mental state of beliefs, capabilities and decisions
that have dedicated terms with a formal syntax. Communication with other
agents occurs through speech-act inspired messages. Some of the approaches to
programming languages designed for AOP include:

– AgentSpeak(L) [15] and Agent-0 [15] in which an agent has a database of
plans or rules for choosing actions that match its current mental state. The
agent programming platform Jason [4] implements AgentSpeak(L).

– Languages based on logic programming such as 3APL [2], 2APL [3], and
GOAL [7].

– Jack [5, 6] which extends Java with agent programming keywords.



3

– A combination of XML and Java. This approach is used in the agent pro-
gramming platform Jadex [16].

These programming languages use BDI as a common paradigm for a mental
model but as it can be seen, they have very different approaches to implementing
it. The BDI paradigm comes from philosophy and the mental model can be given
formal syntax and semantics with epistemic logics. Other logics such as first-
order logic and temporal logics can be used to specify world models of concepts
and dynamics. Given a specification it is then possible to use logic reasoning to
verify properties of the specification. Thus logic provides a theoretical framework
for specifying and verifying properties of agent programs. In the programming
languages AgentSpeak(L), 3APL, 2APL and GOAL, the agents also use logic to
do reasoning in their decision making.

ABS is an approach to simulation that takes the perspective of the individuals
that inhabit the simulated system. ABS is useful in cases where it is easier to
describe a system in terms of interacting agents rather than as a global process
[17]. A critical part of ABS is a scheduling mechanism which ensures that all
agents are synchronized in a finite sequence of time steps. ABS platforms provide
frameworks for ABS and typically features tools for visualizing the simulation,
data extraction tools and analysis tools. Commonly used ABS platforms include:

– Mason [8] which is a Java based discrete-event simulation platform that has
been extended with ABS.

– Repast [9] which is a suite of tools in multiple programming languages for
implementing ABS.

– GAMA [10] which features an XML based language GAML for implementing
agents. GAMA also features tools for using GIS data in the simulation.

The ABS platforms typically have tools for implementing reactive agents but lit-
tle support for implementing proactive behavior. This works well for many cases
but as argued by Adam and Gaudou [12], there are also cases, often those involv-
ing human agents, where more descriptive agent models are useful for gaining
insight into the decision making. The BDI paradigm provides a framework for
implementing descriptive agents that are still fairly efficient. There have been
three general approaches to implementing BDI in ABS:

– Extending agent programming platforms with ABS features. Bordini and
Hübner does this with Jason [18].

– Extending ABS platforms with BDI modeling features. Caballero et al. does
this with Mason [19].

– Combining ABS platforms with agent programming platforms. Padgham et
al. [20] does this with Repast and JACK, and Singh et al. [21] designs a
framework for integrating any two platforms with each other.

The benefit of the last approach is that it leverages features from both platforms
but with a cost of computational power in keeping agents synchronized between
the platforms. Besides mental models for the individual agents, there is also work
on implementing meta-models for the environment and social behavior such as



4

the MASQ meta-model by Dignum et al. [22]. Meta-models for environments
and social behavior are covered further in the following section.

3 From AOP to MAOP

Much of the early research in agent programming languages has been focused
on the internal agent architectures with different approaches to programming
languages based on the BDI paradigm and speech-act communication. Both the
environment that the agents inhabit and the social skills of the agents have been
designed and programmed for specific domains. Recent research has gone into
making more reusable frameworks and meta-models for creating environments
and agent societies [23,24]. Notable examples include:

– CArtAgO (Common Artifact Infrastructure for Agent Open environment)
[25] which is a Java-based framework for developing and running virtual
environments based on the Agents & Artifacts meta-model. In this meta-
model, the agents use artifacts to communicate with other rather than only
by speech-acts. The artifacts provide an interface for the communication
that allows for also non-BDI agents to communicate with BDI agents. The
framework has been integrated with Jason, 2APL and JADEX [26,27].

– EIS (Environment Interface Standard) which is a Java-based framework for
connecting agent programming platforms with environments. It is not a
meta-model for environments but it acts as an interface for agent program-
ming platforms to environment platforms such as CArtAgO-based platforms.

– OperA [28] which is a meta-model for agent organizations. In agent orga-
nizations, the agents are assigned roles that puts a structure on how the
agents can use their abilities to communicate and carry out actions. The
Eclipse plugin Operetta [29] is a tool for design, verification and simulation
of OperA models.

– Moise+ [30] which is also a meta-model for implementing agent organi-
zations. Moise+ is integrated with CArtAgO and Jason in the JaCaMo
platform [31].

– AORTA [13, 32] which is a meta-model that enables individual agents to
reason about organizations described in OperA. It is designed for adding
organizational reasoning capabilities to BDI agents and has been integrated
with Jason [33].

Table 1 summarizes the main characteristics of these frameworks and meta-
models. A common feature of the examples is that they support more open
heterogeneous systems of agents: agents can enter and exit the system freely
even though they use different internal mechanisms for decision making. The
frameworks and meta-models put an emphasis on Multi-Agent Oriented Pro-
gramming (MAOP) with system level frameworks rather than traditional AOP
with agent-level mental models and speech-act communication. Use of MAOP is
not common in ABS literature. A possible reason for this might be that open-
ness is less important in simulation where the purpose is to gain insight in a



5

Framework/meta-model Main characteristic

CArtAgO Virtual environments with Agents & Artifacts meta-model.

EIS Interface between AOP platform and environment.

OperA Agent organization meta-model.

Moise+ Agent organization meta-model.

AORTA Meta-model for enabling reasoning with OperA in agents.
Table 1. Summary of main characteristics of MAOP frameworks and meta-models.

given system. A potential benefit of MAOP though is that it can offer reusable
tools for implementing environments and social behavior. Using MAOP with
a foundation in logic would also allow for specification and validation of sim-
ulation models similar to the work presented by Jensen [34] on verification of
organization-aware agents in AORTA.

4 Case Study: Emergency Care Units

In this section, the use of agent programming languages and logic in simulation
is analyzed and evaluated in a case study with emergency care units based on
previous work [14]. Emergency care units are responsible of providing care for
acute patients. Hospitals often have an entire department dedicated to emer-
gency care and the number of incoming patients has been increasing in recent
years. Due to limited funding, it is necessary for the department to work ef-
ficiently by establishing clear guidelines including work procedures, roles and
responsibilities. Such guidelines are not complete though and the doctors and
nurses are flexible in taking actions that comply with the guidelines. In some
cases they might even go against the guidelines. For example if there are no
nurses available and a secretary has no other currently urgent tasks, the secre-
tary might help a patient with taking a urine sample even though that is the
job of a nurse. The dynamic nature of the decision making makes it difficult to
keep track of what consequences the decisions can have and what can be done
to avoid potential issues such as long waiting lists or staff overwork hours. Sim-
ulation could provide insight into these things given that the simulation model
describes the interaction in the emergency department with sufficient accuracy.

The first thing to notice in this case study is that it involves quite different
kinds of actors. There are individual human actors such as doctors, nurses and
patients that show goal achieving behavior. The doctors and nurses are respon-
sible for providing emergency care and the patients arrive at the department
with the goal of receiving emergency care. The human actors also make use of
various tools and IT-systems. Finally secretaries, nurses and doctors communi-
cate with institutions such as other departments in the hospital or rescue teams.
A BDI model offers flexibility to implement these different actors. The human
actors can be implemented as agents that show proactive behavior, the tools and
IT-systems can be implemented as reactive agents, and the other departments
and institutions can be implemented as agents that have goals and can send



6

requests to the emergency department. Such a model can be implemented in an
agent programming platform with simulation features such as Jason or an ABS
platform with a BDI model extension such as Mason.

The second thing to notice in this case study is the significance of established
work procedures, roles and responsibilities, which serve as guidelines rather than
complete plans. The staff are expected to follow the guidelines but also to fill out
with details not covered by the guidelines. The staff are assumed to be intelli-
gent and be able to act independently a manner that fits the situation, deviating
from the guidelines in extraordinary situations. In other words, the guidelines
describe norms and goals that the agents are obliged but not enforced to ad-
here to. The BDI paradigm on its own does not offer a formalism for modeling
such behavior. While BDI agents are flexible and act toward solving goals, they
are enforced to follow the plans they are given. Instead it makes sense to apply
meta-models for agent organizations that have frameworks for encoding organi-
zational knowledge explicitely in the model. As mentioned earlier, some of these
meta-models are already integrated with agent programming platforms. Previous
work presented an AORTA model of the acute patient treatment process [14].
In the AORTA meta-model, we can encode organizational knowledge in terms
of roles, objectives and sub-objectives, role dependencies and conditions. Each
agent then maintains two knowledge bases: one with personal knowledge and one
with organizational knowledge. The organizational knowledge base describes the
stages that the patient goes through, which staff members are involved in each
stage and a selection conventions that the agents are expected to follow. When
deliberating which action to perform, an agent can then reason about if an ac-
tion complies or violates any obligations of the agent. Updating the knowledge
base is done accordingly to general rules of the meta-model when the agents
perform actions. The agents can also perform organizational actions, such as
enacting roles, which will update their knowledge base accordingly. In addition,
the explicit representation of organizational knowledge supports specification
and verification of the organizational agent model. To summarize the evaluation
in accordance to the criteria proposed in the introduction, using an AORTA
model in ABS would give:

1. Descriptive agents that have a mechanism to include organizational reason-
ing in their decision making. They are descriptive in the sense that they
implement complex social behavior and support explainable behavior. An
agent can use AORTA to reason about what other agents expect of the
agent, and what it can expect of the other agents.

2. A reusable meta-model that can be integrated in any agent programming
platform.

3. Formal syntax and semantics in logic that can used for specification and
verification of the organizational agent model. Logic reasoning can provide
insight into social relations which are otherwise hard to identify or reason
about.



7

5 Discussion

The BDI paradigm on its own only provides generalized methods for imple-
menting internal agent reasoning. It does not provide generalized methods for
implementing important aspects of multi-agent systems such as organizations
and environments. The previous section analyzed potential benefits that the
AORTA meta-models can provide for ABS in the emergency care unit scenario.
In this section we recap that analysis and discuss potential benefits of applying
the other frameworks and meta-models listed in table 1 for ABS.

CArtAgO provides a framework for implementing agent environments in
Java, which is commonly used in ABS platforms, using the Agents & Artifacts
meta-model. In domains where people interact through physical objects such as
whiteboards or telephones, CArtAgO would provide a generalized framework for
encoding these objects. In the case study with emergency care units, the physical
location and availability of information communication technologies can have a
major influence on the workflow. CArtAgO has been implemented in Jason and
has been used to an increasing extent in MAS. As it is Java based, it could
potentially also be implemented for dedicated ABS platforms that support BDI
models. The Agents & Artifacts meta-model also provides theoretical foundation
for specification and verification of agent environments.

EIS provides a Java framework for integrating agent programming platforms
with environments. This is useful for implementing systems where the internal
agent reasoning logic and the environment logic are separated from each other.
The separation allows for more openness, as agents can then be integrated in
the environment no matter how their internal reasoning works like. As men-
tioned earlier, openness is less of a concern in ABS than MAS so, although the
framework is reusable, we do not see an immediate benefit of using EIS in ABS.

OperA provides a meta-model for designing and analyzing agent organiza-
tions. As the evaluation in the previous sections shows, there are clear benefits of
applying organization meta-models to domains with human organizations. Mak-
ing a model of the organization in OperA would provide a basis for implementing
ABS with AORTA agents that perform organizational reasoning. Moise+ pro-
vides an alternative meta-model for agent organizations. Its integration with
CArtAgO and Jason in JaCaMo could provide a framework for implementing
ABS with both environment and organization models.

The AORTA meta-model, which was evaluated in the previous section, pro-
vides a basis for implementing organizationally aware agents in ABS platforms.
Doing so would give ABS that supports descriptive agents that replicate organi-
zational behavior in terms of roles and norms. In domains with human organiza-
tions, such as in the hospital case, simulation with organizationally aware agents
should provide more accurate outcomes than with only the BDI paradigm. There
are already implementations of AORTA in Jason, which to some degree supports
ABS, and since AORTA has well defined semantics and operational rules, it can
be implemented in dedicated ABS platforms that support BDI models. The for-
mal syntax and semantics in logic also supports specification and verification of
the organizational agent model.



8

In ABS of social systems, there is also a growing interest in frameworks and
meta-models for social values. A social value represents a concept that an agent
cares about and it will generally perform actions that promotes its social values.
Simulation with social value models have gained interest as a way to implement
social behavior that agents do exhibit without explicitely reasoning about them.
Although there is work on meta-models for social values, there still remains much
to be done in terms of formalization and implementation in ABS platforms.

6 Conclusion and Future Work

There is active research into providing better frameworks for implementing BDI
models in ABS. They generally use one of the methods:

– Implementing simulation features in agent programming platforms [18].
– Implementing BDI models in ABS platforms [19].
– Combining ABS platforms with agent programming platforms [20,21].

The third method has the advantage that it can make use of advances in tools
for both ABS and AOP platforms. As argued by Adam and Gaudou [12], the
cost of high computational power might also become negligible as computers
get more powerful. Research in agent programming languages and logics has
given frameworks and meta-models for implementing environments and social
behavior. These are designed to be reusable and their logical foundation can be
used for specification and verification of ABS models. The paper has given an
analysis and evaluation of using agent programming languages and logics in a
case study based on emergency care with the AORTA meta-model. The meta-
model gives descriptive agents that can include organizational reasoning in their
decision making, is reusable, and has a formal syntax and semantics in logic
that can be used for specification and verification. We also discussed potential
benefits of using some of the other MAOP frameworks shown in table 1 for ABS,
as well as .

To the author’s knowledge, there are still few reusable frameworks and meta-
models for implementing social behavior in ABS. Future work include imple-
menting an ABS of the emergency care unit scenario with agents that exhibit
social behavior, and using logic for specifying and verifying properties of meta-
models for social behavior.

Acknowledgements

This work is part of the Industrial PhD project Hospital Staff Planning with
Multi-Agent Goals between PDC A/S and Technical University of Denmark.
I am grateful to Innovation Fund Denmark for funding and the governmental
institute Region H, which manages the hospitals in the Danish capital region, for
being a collaborator on the project. I would also like to thank Jørgen Villadsen,
Rijk Mercuur and Virginia Dignum for comments on the ideas described in this
paper and comments on a draft.



9

References

1. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60(1) (1993)
51–92

2. Hindriks, K.V., De Boer, F.S., Van Der Hoek, W., Meyer, J.J.C.: Agent program-
ming in 3APL. Autonomous Agents and Multi-agent Systems 2(4) (1999) 357–401

3. Dastani, M.: 2APL: a practical agent programming language. Autonomous Agents
and Multi-agent Systems 16(3) (2008) 214–248

4. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems
in AgentSpeak using Jason. (2007) 1–273

5. Winikoff, M.: Jack intelligent agents: An industrial strength platform. In Bordini,
R.H., Dastani, M., Dix, J., El allah Seghrouchni, A., eds.: Multi-Agent Program-
ming: Languages, Platforms and Applications. Springer (2005) 175–193

6. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agents -
components for intelligent agents in Java. AgentLink News Letter 2 (1999) 2–5

7. Hindriks, K.V.: Programming rational agents in goal. In El Fallah Seghrouchni, A.,
Dix, J., Dastani, M., Bordini, R.H., eds.: Multi-Agent Programming: Languages,
Tools and Applications. Springer (2009) 119–157

8. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multia-
gent simulation environment. Simulation-transactions of the Society for Modeling
and Simulation International 81(7) (2005) 517–527

9. North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M.,
Sydelko, P.: Complex adaptive systems modeling with Repast Simphony. Complex
Adaptive Systems Modeling 1(1) (2013) 3

10. Amouroux, E., Chu, T.Q., Boucher, A., Drogoul, A.: GAMA: an environment
for implementing and running spatially explicit multi-agent simulations. Lecture
Notes in Computer Science 5044 (2009) 359–371

11. Kravari, K., Bassiliades, N.: A survey of agent platforms. Jasss-the Journal of
Artificial Societies and Social Simulation 18(1) (2015) 11

12. Adam, C., Gaudou, B.: BDI agents in social simulations: a survey. Knowledge
Engineering Review 31(3) (2016) 207–238

13. Jensen, A.S., Dignum, V.: AORTA: adding organizational reasoning to agents.
Proceedings of the 13th International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2014) 2(3) (2014) 1493–1494

14. Larsen, J.B., Villadsen, J.: An approach for hospital planning with multi-agent
organizations. In: Rough Sets: International Joint Conference, IJCRS 2017, Part
II, Springer (2017) 454–465

15. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In Van de Velde, W., Perram, J.W., eds.: Agents Breaking Away: 7th European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW
’96 Eindhoven, The Netherlands, January 22–25, 1996 Proceedings. Springer (1996)
42–55

16. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In
Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A., eds.: Multi-Agent
Programming: Languages, Platforms and Applications. Springer (2005) 149–174

17. Siebers, P.O., Macal, C.M., Garnett, J., Buxton, D., Pidd, M.: Discrete-event
simulation is dead, long live agent-based simulation! Journal of Simulation 4(3)
(2010) 204–210

18. Bordini, R.H., Hübner, J.F.: Agent-based simulation using BDI programming in
Jason. In: Multi-Agent Systems: Simulation and Applications, CRC Press (2009)
451–476



10

19. Caballero, A., Botia, J., Gomez-Skarmeta, A.: Using cognitive agents in social
simulations. Engineering Applications of Artificial Intelligence 24(7) (2011) 1098–
1109

20. Padgham, L., Scerri, D., Jayatilleke, G., Hickmott, S.: Integrating BDI reasoning
into agent based modeling and simulation. Proceedings of the Winter Simulation
Conference (2011) 345–356

21. Singh, D., Padgham, L., Logan, B.: Integrating BDI agents with agent-based
simulation platforms. Autonomous Agents and Multi-agent Systems 30(6) (2016)
1050–1071

22. Dignum, V., Tranier, J., Dignum, F.: Simulation of intermediation using rich
cognitive agents. Simulation Modelling Practice and Theory 18(10) (2010) 1526–
1536

23. Birna Van Riemsdijk, M.: 20 years of agent-oriented programming in distributed
AI: History and outlook. Splash 2012: Agere 2012 - Proceedings of the 2012 Acm
Workshop on Programming Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions (2012) 7–10

24. Weiss, G.: Multiagent Systems – 2nd Edition. MIT Press (2013)
25. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: a framework for prototyping artifact-

based environments in MAS. Environments for Multi-agent Systems Iii. Third
International Workshop, E4mas 2006. Selected Revised and Invited Papers (Lec-
ture Notes in Artificial Intelligence Vol. 4389) (2006) 67–86

26. Piunti, M., Ricci, A., Braubach, L., Pokahr, A.: Goal-directed interactions in
artifact-based MAS: Jadex agents playing in CARTAGO environments. 2008 In-
ternational Conference on Intelligent Agent Technology 2 (2008) 207–213

27. Ricci, A., Bordini, R.H., Piunti, M., Hbner, J.F., Acay, L.D., Dastani, M.: Inte-
grating heterogeneous agent programming platforms within artifact-based environ-
ments. Proceedings of the International Joint Conference on Autonomous Agents
and Multiagent Systems 1 (2008) 222–229

28. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series 2004-1. Utrecht University (2004) PhD Thesis.

29. Aldewereld, H., Dignum, V.: OperettA: organization-oriented development envi-
ronment. Lecture Notes in Computer Science 6822 (2011) 1–18

30. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems
using the MOISE+ model: Programming issues at the system and agent levels. Int.
J. Agent-Oriented Softw. Eng. 1(3/4) (December 2007) 370–395

31. Hübner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent or-
ganisations with organisational artifacts and agents. Autonomous Agents and
Multi-Agent Systems 20(3) (2010) 369–400

32. Jensen, A.S., Dignum, V., Villadsen, J.: A framework for organization-aware
agents. Autonomous Agents and Multi-Agent Systems 31(3) (2017) 387–422

33. Jensen, A.S., Dignum, V., Villadsen, J.: The AORTA architecture: Integrating
organizational reasoning in Jason. Lecture Notes in Computer Science 8758(3)
(2014) 127–145

34. Jensen, A.S.: Model checking AORTA: verification of organization-aware agents.
CoRR abs/1503.05317 (2015)


