
Certified Soundness of Simplest Known
Formulation of First-Order Logic

John Bruntse Larsen

DTU Compute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract. In 1965, Donald Monk published a paper about an axiomatic
system for first-order predicate logic that he described as “the simplest
known formulation of ordinary logic”. In this paper we show work in
progress on certifying soundness of this system in the interactive proof
assistant Isabelle. Through this work we demonstrate the usefulness of
using proof assistants for validating mathematical results. This work also
establishes an outline for future work such as a certified completeness
proof of the axiomatic system in Isabelle.

Keywords: first-order logic, axiomatic system, soundness, proof assis-
tant, Isabelle

1 Introduction

First-order predicate logic has a fundamental role in mathematics and computer
science. It formalizes the concept of entities with properties and relations to
other entities. It provides a framework for formal reasoning and proofs which
are relevant in areas such as software engineering and AI. For this reason it is
important that formalizations of first-order logic are correct so that they do not
give erroneous results. By using an interactive proof assistant like Isabelle [2], we
can work with formalizations in a certified manner as motivated by Geuvers [7]
and Pfenning [6].

In this work we investigate using proof assistants for verifying a formulation of
first-order logic with equality by J. Donald Monk [1]. In 1965, Monk published a
paper about an axiomatic system for first-order predicate logic with equality that
he described as “the simplest known formulation of ordinary logic” [3]. Simplicity
in this context is to be understood as the simplicity of checking correctness of
a proof. In the formulation, there are 10 axioms of which 2 of them have side
conditions and the simplicity of the formulation is in particular the simplicity
of checking these side conditions. To clarify the notion of simplicity in Monk’s
formulation, we compare it with a textbook formulation of natural deduction
and a formulation of sequent calculus.

The goal of this paper is to show work in progress on using the interactive
proof assistant Isabelle to verify soundness of Monk’s formulation. The motiva-
tion for this work is to demonstrate the usefulness of working with a formulation
from the 1960’s in a modern proof assistant. We begin with introducing some

of notions from [3–5] that are crucial for understanding Monk’s formulation and
make comparisons with natural deduction and sequent calculus. We then de-
scribe how to verify soundness of the formulation in Isabelle where we use the
following approach:

1. Defining the syntax of normalized first-order logic formulas.
2. Defining the semantics of the normalized formulas.
3. Defining the axioms and rules of Monk’s axiomatic system and a proof system

for it.
4. Defining and proving soundness of the proof system.

By proving soundness of the proof system based on Monk’s axiomatic system,
we obtain certified soundness of Monk’s formulation. We found the following
Isabelle commands useful in making the formalization:

datatype for defining a grammar in a BNF-style.
abbreviation for defining abbreviations of terms such as > ≡ ¬⊥.
fun for defining recursive functions.
definition for defining non-recursive functions.
inductive for defining inductive constructs.
lemma for stating auxiliary lemmas for the soundness proof.
theorem for stating soundness.

In the following sections Isabelle commands are written in bold font. Finally we
describe our work in progress on the proof of soundness in Isabelle and relate to
other works on formalization.

2 Normalized Formulas and Axiomatic System

The formulation for the axiomatic system by Monk [3] uses notions and expres-
sions from Tarski [5], and Kalish and Montague [4]. In the context of our work,
the notion of normalized formulas is the most important notion to understand.
It relies on a logical validity in first-order predicate logic with equality that
transforms arbitrary predicates into a logically equivalent formula where the
predicate variables can be replaced with the arity of the predicate. For example,
any binary predicate can be transformed as follows.

P (x, y) ≡ ∀v0(v0 = x→ ∀v1(v1 = y → P (v0, v1)))

In the formula on the right-hand side, the variables v0 and v1 can be considered
implicit arguments of P so that it is only necessary to represent P by its name
and its arity.

To illustrate consider the case of stating that x + y = y + x where x and y
are natural numbers. Let Plus(x, y, z) be true iff x+ y = z where x, y and z are
natural numbers. The statement can then be written as ∀x, y, z(Plus(x, y, z)↔
Plus(y, x, z)). To get the normal form for Monk’s formulation, we transform it

into an equivalent expression as outlined above. Note that the term lists of the
Plus predicates in the new formula are syntactically identical.

∀x, y, z(Plus(x, y, z)↔ Plus(y, x, z)) ≡
∀x, y, z(∀v0(v0 = x→ ∀v1(v1 = y → ∀v2(v2 = z → Plus(v0, v1, v2))))↔
∀v0(v0 = y → ∀v1(v1 = x→ ∀v2(v2 = z → Plus(v0, v1, v2)))))

Monk defines the axiomatic system Λ1 shown in Table 1, where A, B, and C
are normalized formulas and x, y, and z are variables. The occurrence check in
(C51) for a predicate with arity n takes n comparisons due to the equalities in
the transformation.

Axioms

(C1) (A→ B)→ (B → C)→ A→ C

(C2) A→ ¬A→ B

(C3) (¬A→ A)→ A

(C4) ∀x(A→ B)→ ∀xA→ ∀xB
(C51) A→ ∀xA x does not occur in A

(C52) ¬∀xA→ ∀x¬∀xA
(C53) ∀x∀yA→ ∀y∀xA
(C6) ¬∀x¬(x = y)

(C7) x = y → x = z → y = z

(C8) x = y → A→ ∀x(x = y → A) x is different from y

Rules

(R1) From A and A→ B infer B

(R2) From A infer ∀xA
Table 1. Monk’s axiomatic system Λ1 for first-order predicate logic with equality. Note
that (C51) only requires checking for occurrence, no matter if x is bound or free.

3 On Simplicity Compared to Natural Deduction

In this section we compare Monk’s formulation to natural deduction, as presented
in a popular textbook on logic in computer science [11], in order to further clarify
the notion of simplicity. To begin with, we highlight the use of substitution in
natural deduction:

Given a variable x, a term t and a formula φ we define φ[t/x] to be the
formula obtained by replacing each free occurrence of variable x in φ
with t.

On top of this definition there is a definition of what it means that ’t must be
free for x in φ’:

Given a term t, a variable x and a formula φ, we say that t is free for x
in φ if no free x leaf in φ occurs in the scope of ∀y or ∃y for any variable
y occurring in t.

Having a definition of substitution the natural deduction rules are defined as
follows:

¬φ
...

⊥
φ

PBC
φ φ→ ψ

ψ
→ E

φ
...

ψ

φ→ ψ
→ I

φ ∨ ψ

φ
...

χ

ψ
...

χ

χ ∨E
φ

φ ∨ ψ ∨I1
ψ

φ ∨ ψ ∨I2

φ ∧ ψ
φ

∧E1
φ ∧ ψ
ψ

∧E2
φ ψ

φ ∧ ψ ∧I

∃xφ

x0 φ [x0/x]
...

χ

χ ∃E
φ [t/x]

∃xφ ∃I

∀xφ
φ [t/x]

∀E

x0
...

φ [x0/x]

∀xφ ∀I

Side conditions to rules for quantifiers:

∃E: x0 does not occur outside its box (and therefore not in χ).
∃I: t must be free for x in φ.
∀E: t must be free for x in φ.
∀I: x0 is a new variable which does not occur outside its box.

In addition there is a special copy rule:

A final rule is required in order to allow us to conclude a box with a
formula which has already appeared earlier in the proof. [...] The copy
rule entitles us to copy formulas that appeared before, unless they depend
on temporary assumptions whose box has already been closed.

For truth, negation and biimplication, the following equivalences can be used
where A and B are arbitrary formulas:

> ≡ ⊥ → ⊥
¬A ≡ A→ ⊥

A↔ B ≡ (A→ B) ∧ (B → A)

There are a number of ways that the above formulation of natural deduction
can be compared to Monk’s formulation in terms of the simplicity of checking
correctness of a proof:

Checking for free occurrence of variables The rules for the quantifiers rely
on side conditions that rely on checking for free occurrence of variables in a
formula. In Monk’s formulation there are no side conditions that rely on this
check. There is a check for occurrence of variables but without the condition
that they must be free.

Substitution In addition to the above, the side condition for universal quan-
tifier introduction also relies on substitution with a variable that does not
occur outside its box. Axiom scheme C51 in Monk’s formulation relies on
checking for occurrence of a variable in a formula but it does not rely on
substitution.

Copy rule The copy rule does not have any immediately corresponding rule
in Monk’s formulation. Checking correctness of the application of the copy
rule involves checking if the formula in question has appeared earlier in the
proof outside a box that has already been closed. There is some resemblance
to applying a rule in Monk’s formulation in that it also involves referring to
some previously appearing formulas but there is no copying involved.

4 On Simplicity Compared to Sequent Calculus

Having looked at how Monk’s formulation compares to natural deduction in
terms of simplicity, we make a similar comparison with sequent calculus as pre-
sented by Tom Ridge [15].

Sequent calculus is a proof system in which the intention is to start from the
goal formula to be proven and then apply rules that break down the proof into
subgoals until there are no more goals left to be proven. Initially the goal formula
is transformed into negation normal form, yielding a formula in which the only
operators are ∃, ∀, ∧, ∨, or ¬ and all negations are applied to predicates. Let
the initial current sequent be a singleton list containing this formula. A proof
is then a list of applications of the rules shown below to the current sequent,
where Γ and ∆ are possibly empty lists. Applying any of the two rules in the top

(marked with a *) removes a sequent and the other six rules replace the current
sequent with the sequent(s) in the top. The proof is completed when there are
no more sequents left.

The intention behind the system is that you start with the rules for ∃, ∀, ∧,
and ∨ until the top four rules are applicable. The two rules NoAx and NoAx are
for “skipping” through formulas in the sequent either until one of the rules Ax
or Ax can remove the sequent or possibly never.

Rule (* = high priority) Comments

Ax *
` P (vi1 , ..., vik), Γ, P (vi1 , ..., vik),∆ Leaf of the derivation tree.

Ax *` P (vi1 , ..., vik), Γ, P (vi1 , ..., vik),∆ Leaf of the derivation tree.

` Γ, P (vi1 , ..., vik)
NoAx` P (vi1 , ..., vik), Γ

` Γ, P (vi1 , ..., vik)
NoAx` P (vi1 , ..., vik), Γ

` Γ,A,B
∨` A ∨B,Γ

` Γ,A ` Γ,B
∧` A ∧B,Γ

The only branching rule.

` Γ, [vi/x]A, (∃x.A)i+1

∃
` (∃x.A)i, Γ

Superscripts are only relevant for
this rule, and allow [vi/x]A to be
instantiated for all i.

` Γ, [vr/x]A
∀` ∀x.A, Γ

vr is a fresh free variable, chosen
as r = max(S)+1, where S is the
set of subscripts already used for
the free variables in A (r = 0 if
there are no free variables in A).

We note the following when comparing the above notion of sequent calculus
and Monk’s axiomatic system in terms of simplicity of checking a proof:

Checking for free occurrence of variables Analogous to the comparison with
natural deduction, the side condition for ∀ rely on checking for free occur-
rence of a variable in formula A whereas Monk’s axiomatic system only relies
on checking for occurrence.

Substitution Similarly, the rules for ∃ and ∀ rely on substitution whereas
Monk’s axiomatic system does not.

Scope In sequent calculus all rules only refers to the current sequent. Specifi-
cally the two rules NoAx and NoAx are used for changing the current sequent
to the head of Γ . In comparison, the rules in Monk’s axiomatic system refer
to any of the previously appearing formulas.

5 Syntax and Semantics

In order to define the axiomatic system in Isabelle, we first define the syntax of
normalized formulas. We define the syntax as a type using the Isabelle keyword
datatype with two abbreviations for truth and falsity. Thus values of this
type represent normalized formulas. Note that the nat in the constructor for a
predicate refers to the arity of the predicate, while the nats in the constructors
for equality and universal formulas refer to variables.

datatype form = Pre string nat | Eq nat nat | Neg form | Imp form form | Uni nat
form

abbreviation (input) Falsity ≡ Uni 0 (Neg (Eq 0 0))

abbreviation (input) Truth ≡ Neg Falsity

Although only the syntax is necessary in order to define the axiomatic system,
we define the semantics next in order to show the meaning of the normalized for-
mulas. The semantics is defined as a recursive function: it takes an environment,
an interpretation, and a formula as input and calculates a truth value. The cases
for equality and complex formulas are straightforward but the case for predi-
cates follows from the normalized form. In this form, the number denotes the
arity n of the predicate and thus implies that the variables for the predicate are
v0, ..., vn−1. Thus we can evaluate a predicate by mapping v0, ..., vn−1 to terms
with the environment and then map the predicate name and terms to a truth
value with the interpretation. An auxiliary recursive function for calculating the
list of variables is used in this mapping.

fun vars :: nat ⇒ nat list
where
vars 0 = [] |
vars n = (vars (n−1)) @ [n−1]

fun semantics :: (nat ⇒ ′a) ⇒ (string ⇒ ′a list ⇒ bool) ⇒ form ⇒ bool
where
semantics e g (Eq x y) ←→ (e x) = (e y) |
semantics e g (Pre p arity) ←→ g p (map e (vars arity)) |
semantics e g (Neg f) ←→ ¬ semantics e g f |
semantics e g (Imp p q) ←→ (semantics e g p −→ semantics e g q) |
semantics e g (Uni x p) ←→ (∀ t . (semantics (e(x :=t)) g p))

6 Axioms and Rules

Having definitions for syntax and semantics of normalized formulas, we define
the axiomatic system and proof system.

To begin with, we define a recursive function for the occurrence check. The
function should return true only if the given variable does not occur in the
given formula. Recall that predicate formulas are defined only in terms of arity
as described earlier. Thus in the occurrence check for predicate Pre p n with
variable x, it suffices to check if x < n. In order to save space the body of the
function has been omitted.

fun not-occurs-in :: nat ⇒ form ⇒ bool

Next we define a type that represents theorems. The idea is that the axiomatic
system produces values of this type from its axiom schemes and rules, and thus
the axiomatic system produces theorems. Inapplicable use of the rules and axiom
schemes with side conditions will result in trivial truth.

datatype thm = Thm(concl : form)

abbreviation (input) fail-thm ≡ Thm Truth

The two rules of the axiomatic system are defined as functions. Given the
input theorems they produce a new theorem. We define the rules using the
Isabelle keyword definition.

definition modusponens :: thm ⇒ thm ⇒ thm
where
modusponens s s ′ ≡ case concl s of Imp p q ⇒
let p ′ = concl s ′ in if p = p ′ then Thm q else fail-thm | - ⇒ fail-thm

definition gen :: nat ⇒ thm ⇒ thm
where
gen x a ≡ Thm (Uni x (concl a))

We define the ten axioms schemes in a similar manner. These are functions
that produce a theorem given a number of formulas. For the axiom schemes
without side conditions it suffices that the formulas are well-founded (being of
the type form). For example for C1 and C2 we have

definition c1 :: form ⇒ form ⇒ form ⇒ thm
where
c1 p q r ≡ Thm (Imp (Imp p q) (Imp (Imp q r) (Imp p r)))

definition c2 :: form ⇒ thm
where
c2 p ≡ Thm (Imp (Imp (Neg p) p) p)

For the axiom schemes with a side condition we additionally require that
the formulas satisfy the side condition. This is done by using if-statements with

fail-thm as the failure value. For (C52) we perform the occurrence check with
not-occurs-in described earlier, and for (C8) we use non-equality. For example
for C8 we have

definition c8 :: nat ⇒ nat ⇒ form ⇒ thm
where
c8 x y p ≡ if x 6= y then Thm (Imp (Eq x y) (Imp p (Uni x (Imp (Eq x y) p))))

else fail-thm

Thus far we have defined the axioms schemes and rules of the axiomatic
system. We tie them all together in a proof system that given a formula returns
true if the axiomatic system can produce a theorem with it and false otherwise.
In the following section we define soundness of the axiomatic system in terms of
this proof system. In Isabelle, we define the proof system inductively with the
inductive-keyword. The annotation (` - 0) at the end states that ` can be used
as notation for OK with precedence 0 (lowest). The inductive definition states
the formulas that follow from the axiomatic system. The first two cases state
that the formulas of theorems produced by the rules follow from the axiomatic
system. The remaining ten cases state that the formulas produced by the axiom
schemes follow from the axiomatic system.

inductive OK :: form ⇒ bool (` - 0)
where
case-modusponens:
` concl f =⇒ ` concl f ′ =⇒ ` concl (modusponens f f ′) |
case-gen:
` concl f =⇒ ` concl (gen - f) |
case-c1 :
` concl (c1 - - -) |
case-c2 :
` concl (c2 -) |
case-c3 :
` concl (c3 - -) |
case-c4 :
` concl (c4 - - -) |
case-c5-1 :
` concl (c5-1 - -) |
case-c5-2 :
` concl (c5-2 - -) |
case-c5-3 :
` concl (c5-3 - - -) |
case-c6 :
` concl (c6 - -) |
case-c7 :
` concl (c7 - - -) |
case-c8 :
` concl (c8 - - -)

Thus we have defined an axiomatic system for first-order predicate logic with
normalized formulas in Isabelle based on Monk’s formulation in [3], and a proof

system that we can proceed to prove soundness of and thus certify soundness of
the axiomatic system.

7 Proving Soundness

Having defined the axiomatic system and the proof system for it in Isabelle,
we can certify soundness by using interactive proof assistance in Isabelle. Our
approach to proving soundness is by providing auxiliary lemmas about the def-
initions so that Isabelle automatically can check that soundness follows from
those lemmas and the definitions. Isabelle assists by keeping track of the proof
as it is written and what subgoals remain to be proven. These subgoals can be
used as templates for the auxiliary lemmas which in some cases can be proven
just by applying Isabelle library lemmas. For example the following lemma is
solved by applying the Isabelle library function fun-upd-idem. The hypothesis
x 6= y is not needed in the lemma. It is rather a product of using the subgoal
from Isabelle directly as a template for the lemma.

lemma update-identity : x 6= y −→ e x = e y −→ semantics e g p −→ semantics (e(x
:= e y)) g p

by (simp add : fun-upd-idem)

Finally we define soundness of the proof system as follows.

theorem soundness: ` p =⇒ semantics e g p

The proof itself is a work in progress.

8 Related Work

In this section we consider other works in the literature that investigate formal-
izing proof systems for first-order logic in proof assistants, and how they differ
from the work in this paper. The work in this paper follow in line with the work
of Villadsen, Jensen and Schlichtkrull [9], who used Isabelle to formalize and
generate code for the kernel of the LCF-style prover for first-order logic with
equality by Harrison [8]. Their work is now also part of the Archive of Formal
Proofs [10]. The work in this paper differs from their work in that we have in-
vestigated a formalization of Monk’s original formulation from 1965 rather than
Harrison’s which is based on Monk and Tarski. Other work on computer assisted
formalizations based on Monk and Tarski include the work of Normal Megill [14]
on using the Metamath language for archiving, verifying, and studying mathe-
matical proofs.

Earlier we compared Monk’s formulation with natural deduction and sequent
calculus which have already been formalized in Isabelle. Villadsen, Jensen and
Schlichtkrull [18] used Isabelle to prove soundness of a proof system for natural
deduction. They developed the browser-based software NaDeA where one could
make natural deduction proofs that would then be checked by the proof system

verified by Isabelle. For sequent calculus, Tom Ridge and James Margetson [16]
made a formalization of sequent calculus in Isabelle for which they proved sound-
ness and completeness that is now also part of the Archive of Formal Proofs [15].
The formalization was later used as a starting point by Villadsen, Schlichtkrull
and From [19] for a prover made with code-generation with the aim of being
used for teaching logic and verification to bachelor computer science students.

Looking at work with Isabelle formalizations of other proof systems we have
Blanchette et. al. [12] who investigated how codatatypes can be used for proving
soundness and completeness of different kinds of proof systems for first-order
logic in Isabelle. In comparison, we have focused on proving soundness of Monk’s
formulation, and we have not investigated the use of codatatypes in proving
soundness, although it is certainly worth considering in future work. There is also
the work of Schlichtkrull [17] about a formalization of the resolution calculus for
first-order logic that includes soundness and completeness. Looking even further
at verification of proof systems in other frameworks we have the work of Kumar,
Arthan, Myreen and Owens [13] on formalization of higher-order logic in HOL4.

9 Conclusion

The work in progress described in this paper shows the usefulness of working with
axiomatic systems in a proof assistant. We have defined syntax and semantics
of the first-order logic formulas and the axiomatic system. The proof assistant
checks for type-correctness of the definitions and provides assistance in making
a soundness proof of the axiomatic system. The soundness proof itself is a work
in progress. In this way, we can certify soundness of Monk’s axiomatic system
in Isabelle.

There is room for improvement in the current formalization. Currently we
use “truth as failure” when a rule is not applicable as a mechanism to ensure
soundness. Using a dependently-typed logical framework could potentially make
this trick redundant and also simplify some of the rules. It is also worth consid-
ering how the formalization could include other terms than just variables. Going
further, the work can be extended to show additional useful properties of the
axiomatic system, such as completeness.

Acknowledgements

This work is part of the Industrial PhD project Hospital Planning with Multi-
Agent Goals between PDC A/S and Technical University of Denmark. We are
grateful to Innovation Fund Denmark for funding and the governmental institute
Region H, which manages the hospitals in the Danish capital region, for being
a collaborator on the project. We would like to thank PDC A/S for providing
feedback on the ideas described in this paper. We would also like to thank Jørgen
Villadsen and Anders Schlichtkrull for comments on a draft. Finally we would
like to thank the referees for in-depth comments on the paper that we think
helped improving it substantially.

References

1. Monk, J.: Mathematical Logic. Graduate Texts in Mathematics, Springer (1976)
2. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL — A Proof Assistant for

Higher-Order Logic, LNCS, vol. 2283. Springer (2002)
3. Monk, J.D.: Substitutionless predicate logic with identity. Archiv Für Mathema-

tische Logik Und Grundlagenforschung 7(3-4), 102–121 (1965)
4. Kalish, D., Montague, R.: On Tarski’s formalization of predicate logic with identity.

Archiv Für Mathematische Logik Und Grundlagenforschung 7(3-4), 81–101 (1965)
5. Tarski, A.: A simplified formalization of predicate logic with identity. Archiv Für

Mathematische Logik Und Grundlagenforschung 7(1-2), 61–79 (1965)
6. Pfenning, F.: Chapter 17 - logical frameworks. In: Robinson, A., Voronkov, A.

(eds.) Handbook of Automated Reasoning, pp. 1063 – 1147. North-Holland (2001)
7. Geuvers, H.: Proof assistants: History, ideas and future. Sadhana 34(1), 3–25 (2009)
8. Harrison, J.: Handbook of Practical Logic and Automated Reasoning. Cambridge

University Press (2009)
9. Jensen, A.B., Schlichtkrull, A., Villadsen, J.: Verification of an LCF-style first-order

prover with equality. Isabelle Workshop (2016)
10. Jensen, A.B., Schlichtkrull, A., Villadsen, J.: First-order logic according to Har-

rison. Archive of Formal Proofs (Jan 2017), http://isa-afp.org/entries/FOL_
Harrison.shtml, Formal proof development

11. Huth, M., Ryan, M.: Logic in Computer Science : Modelling and Reasoning About
Systems. Second Edition. Cambridge University Press, (2004)

12. Blanchette, J.C., Popescu, A., Traytel, D.: Soundness and completeness proofs by
coinductive methods. Journal of Automated Reasoning 58(1), 149–179 (2017)

13. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order
logic: Semantics, soundness, and a verified implementation. Journal of Automated
Reasoning 56(3), 221–259 (2016)

14. Megill, N.D.: Metamath: A Computer Language for Pure Mathematics. Lulu
Press, Morrisville, North Carolina (2007), http://us.metamath.org/downloads/
metamath.pdf

15. Ridge, T.: A mechanically verified, efficient, sound and complete theorem prover
for first order logic. Archive of Formal Proofs (Sep 2004), http://isa-afp.org/
entries/Verified-Prover.shtml, Formal proof development

16. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOL’s 2005. LNCS,
vol. 3603, pp. 294–309. Springer (2005)

17. Schlichtkrull, A.: Formalization of the resolution calculus for first-order logic. In:
International Conference on Interactive Theorem Proving. LNCS, vol. 9807, pp.
341–357. Springer (2016)

18. Villadsen, J., Jensen, A.B., Schlichtkrull, A.: NaDeA: A natural deduction assistant
with a formalization in Isabelle. IfCoLog Journal of Logics and their Applications
4(1), 55–82 (2017)

19. Villadsen, J., Schlichtkrull, A., From, A.H.: Code generation for a simple first-order
prover. Isabelle Workshop (2016)

