
Proceedings

AMAPS2011

Algolog Multi-Agent Programming Seminar

2011

2 December 2011

DTU Informatics

Technical University of Denmark

.

Editor

Jørgen Villadsen

Algolog refers to the Algorithms and Logic section at DTU Informatics.

The focus of the seminar is on tools and techniques for programming multi-agent systems.

Key topics are multi-agent programming competitions and genuine multi-agent challenges

such as organization, communication and agreement as well as algorithms and logics for

multi-agent systems.

Contents

"I wouldn't have thought of it myself" / Emergence and Unexpected Intelligence
in Theater Performances Designed as Self-Organizing Critical Systems

3

Troels Christian Jakobsen

Announcement: Alan Turing Year 2012 10

Google AI Challenge 2011: Ants 11

Kasper Hjorth Holdum, Christian Kaysø-Rørdam, Christopher Østergaard de Haas

Collaboration and Agreement in Multi-Agent Systems 19

Mikko Berggren Ettienne

Inconsistency Handling in Multi-Agent Systems 27

John Bruntse Larsen

Developing Web Application Clients Using Multi-Agent Programming Patterns 33

Niklas Christoffer Petersen

"I wouldn't have thought of it myself"

Emergence and unexpected intelligence in theater

performances designed as self-organizing critical systems

by Troels Christian Jakobsen, artistic director at Teater 770° Celsius

Realizing the systemic nature of theater, changed the paradigm for my work. Most
theater is designed and governed by the idea of the newtonian machine, attempting to
reproduce the exact same procedure and the exact same results at every
performance. Cause and effect in one linear chain of events. If you realize that a
theater performance in reality is a self-organizing critical (SOC) system, and you begin
to design them governed by this idea, a whole new world opens up.

In this text I will seek to cover my road of discovery following a biographical path, the
perspectives I see in further exploring the insights from SOC-systems, both artistically,
philosophically and politically - and eventually connect it all to one of my new heroes,
Alan Turing, who realized the simple, but amazing fact, that mistakes leads to
intelligence. A realization which could stand as a credo for Teater 770° Celsius.

And before I dive into that, I want to remind you of a passage Alan Turing wrote, shortly
before his untimely death in 1954:

Messages from an unseen world:

Hyperboloids of wondrous Light

Rolling for aye through Space and Time

Harbour those Waves which somehow Might

Play out God's holy pantomime.

In which he shows, that apart from a scientific mind, he was also capable of poetry at
an almost Shakespearean level - just as a reminder for everyone, scientist or artist, not
to forget the other side of the moon.

3

In 2003 I was going through a personal crisis; my passion for theater was threatened
by the fact, that I got really, really bored by most theater. I began a search to find out,
what was wrong; with me or the theater. My first clue was, that I liked the moments in
performances, where things go wrong, where the plans fail and the actors are left in
the unknown. I analyzed why these moments appealed to me - it was the question
"what happens now?", which excited me. That exact moment when nobody in the
room will or can know what happens right now or in the moment right after. This made
me realize, that most theater makes a huge mistake by designing their performances
as newtonian machines, which run like clockworks; where they plan with the ambition
of making the exact same thing happen night after night, performance after
performance. Their ambition is to eliminate the mistake and the unexpected,
understandably enough in the effort to strive for perfection, but they end up eliminating
the basic appeal of drama; actions unfolding in time; which is expressed in questions
like: "What will happen next?", "Who will succeed, who will fail?". At the most primary
level we watch and follow a dramatic performance to see what happens next. In
theater, where this happens in a space which contains both audience and performers,
we should almost be able to feel this uncertainty in our bodies, if it really exists in the
bodies the performers, and in the space between performers and audience. In most
performances, it has sadly been eliminated in all, except as pretense and plot.

I had my insights into dramaturgy, directing and acting to help me in my initial
exploration of the problem; the basic mechanics of how drama works. My first steps
were to redefine those insights. Instead of looking at dramaturgy as models, static
form-descriptions of "how an ideal play should look", I began to search for the
principles behind those forms. The first biologists described nature as forms - "this is
how an xx-mushroom should look" - but as anyone knows who has been out hunting
mushrooms in nature, the exact form of the real mushrooms you find often differ a lot
from the description in the book. As science developed, instruments became better
and curiosity sharpened, science found the DNA, which give rise to those forms.
Because I was unsatisfied with the ideal model-descriptions of drama, not the
particular models in themselves, as they can have many good point to them, but the
whole idea of trying to catch the truth with a static model, as it seemed a part of the
striving for perfection, which made theater performances boring in the first place. So I
began to look for the DNA of drama; those very basic principles which forever tangle
and dance which each other, and in their interplay create the forms, we see and
experience as reality.

4

In the design of drama I have found one primary and four basic principles, which
govern the development of well-functioning play, films and tv-series.

1. The principle of conflict is the primary principle. Without conflict there is no drama.
Conflict creates both uncertainty of what will happen next and it generates the
development of story and plot. The basic conflict of a drama is the defining aspect of a
drama as a system.

2. The principle of character is tightly connected to the primary principles, because it is
characters with an objective, which will be the agents of conflict. Therefore characters
with well-designed objectives will be of more importance than a clever plot - as the
clever plot will arise from the characters.

3. The principles of unity dates back to Aristotle, but in his days, it meant more or less
that the action, the time and the location should be contained in one single unit – for
example a day in a courthouse, where a man is falsely convicted - whereas I
understand it as a principle for designing a system, where all elements obviously have
to be connected as much as possible. I think of it as feedback-connections - the more
all elements of a drama deliver feedback to each other, the more complex and fulfilling
it will be. Both in terms of feeling like a real, convincing world and in terms of being.

4. The principle of mystery deals with something very arcane. Drama developed from
the mystery plays of ancient Greece which dealt with the great mysteries of life, death
and other paradoxical truths. The point of enacting a mystery is that the insight into a
mystery is something which cannot be told, explained or delivered to others, except by
action and self-experience. By watching a play we can get so close to the mystery as
possible without having to go through the real life version. So when designing a
drama, you have to be aware of what fundamental mystery it deals with. You'll
recognize a mystery on its paradoxical nature; that it will contain two great truths which
negates each other.

5. The principle of tonality deals with an often overlooked aspect in the design of
drama; how comedy and tragedy acts like the two complementary tonalities, almost
exactly like B minor and B major does in music, and as such is fundamental to the
construction and design of a piece of drama. This means you have to make the initial
decision for a piece, if it basically plays in the tonality of comedy or tragedy.
Design-wise will this mean that the first and last tone of your piece has to be sounded
in that tonality.

5

All these principles was stuff I had been working on since around 2000, but more and
more dedicated and thoroughly as I began my quest for the answer about boring
theater. For a more detailed description of the principles visit:

http://thatdramathing.blogspot.com/search/label/major%20principle

It was only when I read "How Nature Works" by Danish scientist Per Bak and later a
well-written popular science book, "Ubiquity" by Mark Buchanan, that I found a
theoretical framework for my new understanding of theater. This lead me to develop a
new method for the design of theater performances as self-organizing critical systems,
where meaning and intelligence emerge unexpectedly.

"Ubiquity" begins with a great question: Why did First World War begin? It tells the
story of how Prince Ferdinand was driving through Sarajevo and by chance took a
wrong turn, and how by chance a young anarchist was on that wrong road, and how he
exactly that day was carrying a gun, so he in the spur of the moment could shoot
Prince Ferdinand - which was the incident that set off world war one. But is this then
the real explanation of the cause of world war one? No, and there have been countless
books by historians, where they each claim to have found the real reason, but they
can't all be right? No, because as Per Bak and others discovered, in complex systems
where many units interact across the system, the newtonian understanding of cause
and effect seems to become irrelevant, when you look at the whole system. Locally
cause and effect is still very valid indeed, but systemwide something else is going on.

I could immediately connect the descriptions of Per Bak's sandpile-experiment and
Mark Buchanan's real life examples of SOC-systems at work, with my experience of
drama and theater. In my world, the theater world, we often talk of the magic moment,
the magic night, when everything in a performance happens in an extraordinary way,
and gives a new level or new dimension of meaning to the performance - and one of
the traits of these moments and nights, is that they are unpredictable and
unrepeatable - as is the events in a SOC-system. No matter how hard actors and
performers try, they can never repeat the exact same performance. The theater
performance is obviously a SOC-system. So my question became, what happens if
instead of trying to eliminate the unexpected, we begin to design the performance with
the aim of allowing the unexpected? Couldn't we perhaps achieve more 'magic
moments'? If instead of focusing on controlling every moment of the performance, we
began to create a framework, a system, where within its borders, there would be real

6

http://thatdramathing.blogspot.com/search/label/major%20principle

feedback, real interaction between the elements of the performance, allowing them to
influence each other, allowing them to change course, attitude, color or what aspects
they might have, under the influence of the events.

In 2007 I made the first full-scale performance with 5 actors, trying to use
SOC-principles. Before that I had experimented in a workshop environment, where I
had experienced difficulties, as the actors found it difficult not to know exactly where
the performance should end, what the meaning and artistic message was - they felt
scared and wanted answers; answers I couldn't or wouldn't give them - because the
method was the message: That we live in an unpredictable world, that theater should
mirror that reality by being unpredictable itself. But in 2007 everything succeeded. I
began the rehearsals full of fear, having spent the previous 3 months avoiding
planning too much and feeling anxious because I couldn't plan and have that security.

I began rehearsals only with a basic conflict for the performance, a basic conflict for
each character, and the method: which in all its simplicity is to constantly work at the
local level, the interaction between characters in specific situations within the
framework of the basic conflict. What does each character want, how do they try to
achieve that objective at the local level - as repeated improvisations, where we let
each and every improvisation be just another experience of how these characters
could act and behave, an experience we of course evaluate, but never approve or
disapprove of as a final and correct version. In this way experience begins to
accumulate; almost as an AI developing by making its own experiences, the actors
gradually build an operative system of behavioral and technical knowledge of both
their characters personality and of how to play it.

While the actors are focused on the local, contained situations, I begin to build the
performance as a whole, by discovering the natural patterns, which arise as we
improvise with the situations, and bringing them together in a framework to build a
gradual escalation in the basic conflict, often with a kind of gateway situations, where
the characters will be forced to develop and take new steps - which so to speak bring
them to the next level of basic conflict. So far this is the only element of what in
roleplaying world is referred to as 'railroading', meaning; artificially keeping the players
on the right track. But the way to build an organic, less artificial gateway, is to allow it to
be open-ended.

It should only be a gate-way, leading from one level to anywhere on the next, not an

7

escalator which brings them to an exact point at the next level. Each level is what we
call 'an act' in drama. I normally operate with four acts, but a drama could have any
number of acts. What are important to understand about the function of the act are
only two things; they establish a rhythm throughout the drama and, through a
tightening of the basic conflict, they bring the characters to a new level of that conflict.
You could think of each act as a sub-system, or as sandboxes within a larger
sandbox-system. In each act or sandbox different rules apply to the world of that
sandbox and the players are relatively free to explore it, until they meet and enter a
new gateway. Then they are forced into some kind of confrontation with the world,
where those rules change exactly because the conflict goes to a new level.

After 3 weeks of rehearsals we played our first performance for a test audience, and
even though it was far from 'finished', the audience experienced it as very finished,
very fulfilling - exactly because more 'magic moments' happened, because the
characters seemed alive, because the actors were not pretending, but were in reality
acting in the word's fundamental meaning - to act, to do something - because there
were no pre-made arrangements, no plans, except to follow the basic conflict of both
the performance and the characters. At the same time, the performance seemed to
uphold the exact rules the models advocate, even though we were not trying to uphold
them. The performance took a satisfying, meaningful form, because we followed the
basic principles of drama in the construction of our performance-system. And as a
scriptwriter and director, I often found myself thinking that the words that came out the
actors' mouths, the way they played the situation, were much better than anything I
could have written, or at least it was much more effortless, organically and convincing
than if I had written the scenes and directed them in the traditional fashion.

So far I have made three very successful performances following this method, which
has now been named the IRL-method, because a lot of the elements in the method is
basically about doing as in real life, not as much in style, as in the mental approach to
the work. Reality is as it is, no matter how we want it to be - the unexpected will always
happen, mistakes and errors pop up, and instead of fighting them and reality, we take
advantage of them. And when you begin to work like this, you'll experience - as you let
go of the fear of not controlling things and you open your mind to the unexpected - that
you will get more inspiration, will discover more things and best of all, be constantly
surprised by yourself and others, because the things, you couldn't have thought of
yourself, they happen. And this is where Alan Turing enters the picture, in more ways
than one.

8

When Alan Turing began to think about the human consciousness, and asked himself
the question, how machines could acquire intelligence? Well, actually he used the
idea of “thinking machines”, as a gateway to begin understanding what human

consciousness really is. Mainly because a friend of his had died, and he was
wondering what happened to this friend’s beautiful mind after death, and this let him to
the bigger question; what is consciousness? The machines were to be a kind of simple
mechanisms, that he could experiment with, as an approach to an understanding of
consciousness. And in this work he stumbled on the very basic insight, that the
machines should be allowed to make mistakes, in order to become intelligent. If they
were only programmed to do the right thing, they could only do that, and nothing else.
The difference between a newtonian and an organic machine is the possibility of the
mistake, and of learning from the mistake, or integrating the mistake as a purposeful
part of the organism. This is how we program our theater performances. It is extremely
demanding and often difficult, because we humans tend to dislike mistakes, and we
prefer to be perfect, but the more we work with this method, the more we realize, that
real intelligence happens as emergence in a complex system in a critical state. I think
Alan Turing would have been excited about SOC-systems, and that in it, he would see
yet another piece of the puzzle of how consciousness and intelligence work. To me
Alan Turing is a great, modern hero. The first, apart from Bohr and his likeminded
scientists, who really allowed himself to let go of the newtonian worldview. From my
own experience, I know it is difficult and also a bit scary. Maybe this is also, why these
insights of how the world works, haven’t become everyman’s knowledge - and even
why still to this day, you can still find people, who think we can predict earthquakes, the
stockmarket and other SOC-systems.

In a broader perspective, not only the theater worlds, it seems to me that all systems,
which behave as SOC-systems, especially the human social systems, could benefit
from a re-design based on scientific insights. I believe, and for me as a non-scientist, it
can only be a belief, that a dedicated exploration of how to design different systems,
could be of immense help for humanity. I know that when I combined it with my area of
expertise, it yielded surprisingly strong results - and I look very much forward to
emerging one of my next projects, a performance inspired by Alan Turing.

9

Announcement

Alan Turing Year 2012

The Alan Turing Year 2012 will be a celebration of the life and

scientific influence of Alan Turing on the occasion of the centenary of

his birth on 23 June 1912.

Turing had an important influence on computing, computer science,

artificial intelligence, developmental biology, and the mathematical

theory of computability and made important contributions to

code-breaking during the Second World War.

Source: http://en.wikipedia.org/wiki/Alan_Turing_Year

Released under CC-BY-SA http://creativecommons.org/licenses/by-sa/3.0/

See also http://www.turingcentenary.eu/

AMAPS2011 Organization Committee

10

http://en.wikipedia.org/wiki/Alan_Turing_Year
http://creativecommons.org/licenses/by-sa/3.0/
http://www.turingcentenary.eu/

Google AI Challenge 2011: Ants

Kasper Hjorth Holdum, Christian Kaysø-Rørdam, and Christopher Østergaard
de Haas

DTU Informatics

Abstract. This year’s Google AI Challenge is a multiplayer game on a
2-dimensional map. All players are given a short time frame each turn to
do calculation and issue orders to all owned units. This paper identifies
the key problems for a well performing AI system. Solutions to each
problem are proposed and discussed.

1 Introduction

Google AI Challenge is an open annual contest, hosted on http://aichallenge.org/.
When the annual challenge is announced contestants have a few months to create,
modify and perfect a bot. A bot is an AI system to control your ants. During the
contest, contestants can upload their bot to the contest servers where they will
play against other bots and be given a running rank according to performance.
The contest supports any language that can write to the standard I/O. These
conditions make a perfect environment for a large varity of people, strategies
and skill levels.

We will take a look at which solutions we have found for each of the sub
problems.

2 Problem Description

This years Google AI Challenge is called Ants, which is a turn-based AI game.
Each turn an ant may move up, down, left or right on the grid-based map.
The map is shaped like torus, meaning there are no edges on the map. Maps
may include obstacles, which cannot be directly passed. Each player has one or
more hills, on which new ants spawn. Additional ants are acquired by collecting
food, which is randomly spawned on the map. Ants can attack enemy ants or
hills, where only attacking a hill rewards points. The visibility is limited for each
player. Each ant provides vision for the player in a constant radius around the
ant. There exists several conditions in which the game will end. A few noticable of
these are when a certain turn limit is hit, or when all enemy ants are eliminated.
The game is won by the player who gathered the most points.

Each turn every bot is given 500ms to do all calculations and issue orders for
all its ants. The time limit imposed on all bots greatly alters the problem from

11

finding optimal solutions for each sub problem, which will likely take much longer
than the given time limit. Instead we will have to find approximate solutions
that are as optimal as possible while staying within the time limit. The most
significant problems for the bot are reproduction, exploration, attacking enemy
ants/hills and defending hills.

3 Tools

During development of our bot we make use of several tools to assist us in
debugging and estimating the quality of the current algorithms. The host of the
challenge provides two tools: An application that will run a single match with
test bots and/or bots given as input and a visualizer that will display the match
turn by turn after it has ended. While both of these are a tremendous help, they
do restrict the development a bit. It is not possible to start a bot in our IDE
and expect to debug it while a match is playing. Neither is it possible to do
any custom visualization. Furthermore, since it is only possible to play against
simple test bots and your own bots it is hard to estimate the quality of the
gameplay delivered by the bot.

It is possible to upload a bot to the contest page after which it will start to
play games against the other uploaded bots. However, due to the large amount
of contestants and low amount of server capacity this is a very slow process.
At the time of this writing each bot plays about 3-4 games every day. Several
people decided to create their own servers and ranking systems where you can
connect via TCP. The advantage of these servers are that each bot owner uses
the processing power of the computer from which the bot is connected. Since
the server no longer has to use it’s CPU cores for the bots, it can now host a
much larger amount of games. So by utilizing the TCP servers it is possible to
play games against real players much faster.

3.1 HPA Visualizer

We implemented the hierarchyal pathfinding algorithm [BMS2004] to improve
the running time of path finding. HPA will be covered under in section 4.5.
Due to the involved nature of the implementation of HPA, we decided to make
a visualizer for debugging. It shows us the map split into the zones and the
transition points for each of the zones, and we may ask for a path from one
point to another and have it shown in the visualizer as well. Being able to see
the actual path generated is a big help, as the path is likely to not be optimal
and being able to clearly see what causes this sub optimality is useful when
we will design the path smoothing for HPA. Path smoothing will be covered in
section 4.5

A screenshot of the visualizer can be seen in the appendix, fig 1.

4 Solution

We have identified several key problems in the challenge:

12

– Spreading out ants,

– finding and eating food,

– attacking enemy hills,

– and defending own hills.

We will discuss each of these problems and our proposed solution in the following
sections. Since each turn is limited in time to 500 ms (subject to change) all
algorithms and solutions must be designed with this limit in mind. For more
complex solutions we have been forced to implement advanced data structures to
minimize the running time. The data structures are briefly mentioned section 4.5.

4.1 Spreading Out Ants

The final objective of the game is to eliminate as many enemy hills as possible.
To achieve this goal we need to know the locations of the hills and have a large
number of ants to attack them. Both require that we explore the map. Since food
randomly spawns on the entire map (taking symmetry into account) we would
optimally want to have sight of every single field on the map, and minimize the
distance from our closests ant to each field. This is not possible, at least in the
early game, due to lack of ants.

We have tried two approaches. One that focused on which part of the map
that is not currently visible to us, and the other which ignores visibility and
simply uses a simple model of representing ants as magnetic entities that repel
each other.

Visibility Spread Out Our first approach is to send every ant to the spot
closest to that ant which is not visible. This approach requires information about
which fields are visible as well as a method to find the nearest invisible field and a
method to find invisible fields in a certain radius of a field. These two operations
are provided by the Kd-tree and covered in section 4.5.

The basic algorithm iterates over all the available ants (ants that has not
been occupied elsewhere), finds the closest invisible spot, tries to find a path to
this spot and then issues an order for the ant to move there.

Algorithm 1 Visibility Spread Out

for i = 1 → count(availableAnts) do
currentAnt ← availableAnts[i]
closestInvisibleSpot ← findClosestInvisSpotTo(currentAnt)
pathToGoal ← findPath(currentAnt, closestInvisibleSpot)
if pathToGoal != null then

moveAnt(currentAnt, pathToGoal.nextStep)
end if

end for

13

The algorithm has been modified afterwards to improve several aspects. First
of all, we have added caching so, that if an ant is still heading for the same
location, then the whole path should not be recalculated. This issue is trickier
than first expected though, since parts of the map might be discovered and
invalidate the path. Likewise, ants might get in the way of the calculated path.
However, once we finish the HPA data structure, this should (hopefully) no
longer be an issue.

The other issue, is the way the closest invisible spot is selected. Instead of
just selecting the closest invisble spot, we have had success with instead selecting
the closest invisible spot which has not been seen for some amount of turns.

Magnetic Spread Out If an ant has nothing to do, we want it to go explore.
But since an ant may only move a single tile per turn, generating and storing
a path to some destination becomes slow and ineffective, as many events may
occur prior to that ant reaching its destination, making it a bad destination.
Generating paths can also be very time consuming, so we wanted a way to
spread out our ants without using too much time on it.

The idea is quite simple; we make all our ants repel each other if they are
in close proximity and unlike actual magnets they never attract each other.
This repulsion should somehow scale with the distance between two ants, to
allow some ants to be squeezed closer together. This will cause all the ants to
eventually end up in an evenly spaced grid, covering most of the map, giving
us as much information about food and enemy locations as possible. When we
get new ants from eating food, the grid will automatically adjust and expand to
match the new number of ants.

The algorithm for this looks as follows:

Algorithm 2 Magnetic Spread Out
antForce ← 10
for i = 1 → count(availableAnts) do

currentDirection ← (0, 0)
for j = 1 → count(antsInRange) do

scaledForce ← antForce/distanceTo(ant[i], ant[j])
directionToJ ← getV ector(ant[j], ant[i])
currentDirection ← currentDirection+ directionToJ ∗ scaledForce

end for
currentDirection ← normalize(currentDirection)
moveAntInDirection(ant[i], currentDirection)

end for

For assigning a direction for all our ants the running time of this approach
can be as high as O(N2) (where N is the number of ants), which happens if all
the ants were clumped up next to each other.

14

Once the ants were able to behave in a fashion similar to magnets, we wanted
to try and see if it was possible to make them perform other strategies by further
extending the magnet concept. Since the repulsion is based on a positive number,
we could easily add an auxilary ”ant”, or attraction point, who attracted other
ants. Such attraction points could then be placed on food locations or in narrow
choke points to safe guard an area. This does cause a few problems though, as
many ants could potentially go for a single food and then end up repelling each
other such no ant ever reached the food. For guarding choke points we would
face much the same problem as we would simply have an area with high density
of ants but this does not ensure that any of the ants are safe from attackers.

4.2 Finding Food

Food spawns randomly on the map at the beginning of every turn. Being able
to effeciently collect food and build up an army of ants is one the key aspects of
a good bot. Half of the work is done by initially exploring the map and thereby
finding the food.

Once the food has been discovered the bot needs to collect it by sending one
or more ants to eat it. In our initial and current algorithm for deciding which
ants should collect which food we use the stable marriage algorithm [GS1962]
though slightly modified. Each pair of ant/food has the same preference for each
other, however, we only form the pair where the distance between them is lesser
than twice the view radius of the ant. This is a performance optimization. After
we have found the ant/food pairs we find the path between every ant and its
food and order the ant to start moving along it.

Enemy ants close to the food potentially pose a problem. If they are closer to
the food than our closest ant, then we might as well give up, since it will always
reach the food before us given that taking the food is the optimal solution
and he plays optimally. If we are equally far from the food, then we have the
possibility of sending several ants. Both of these considerations have not yet been
implemented, but still remain as viable options for further improvement.

Furthermore, when two or more pieces of food are close to each other, it
would make sense to only send a single ant to collect all of them.

4.3 Attacking Enemy Hills and Ants

Attacking is a hard and very important problem for the bot. Given the grid-
based movement, we must rely on very precise collaboration of two or more ants
in order to carry out a successful attack. We must have at least two ants attacking
a single enemy ant simultaneously in order to avoid sacrificing an ant. Sacrificing
ants is certainly an option, but it is associated with defense, not offence.

Correctly placing ants around an enemy ant, in order to attack it, requires
precise timing. Furthermore it involves some prediction of the enemy ant’s future
movement. As ants can attack each other within a given radius (read circle), we
cannot guarantee sacrificing one for one when attacking with just two ants. We
can prevent losses in 3 of 4 cases of enemy ant movement. Using three ants in an

15

attack, we can ensure no losses of our own, yet there is still the possibility of the
enemy ant fleeing. All of this requires that only one enemy ant is within attack
radius. This is mostly fine, as an attack on a single enemy ant is likely due to
collecting food, otherwise we will be attacking an enemy hill which obviously
cannot move.

Attacks require a number of ants doing basically the same thing for a number
of turns. During this time, these ants will not be collecting food, thus reproducing
further ants. This makes it hard to determine when an attack is appropriate, and
just as important, which ants to use. As the game goes on and the density of ants
increase this quickly becomes a complex and time-consuming problem to solve.
For the current version of the bot, we rely on only looking at a small subset of
closely located ants in order to carry out an attack. We are not yet sure how to
prioritize attacks vs. finding food or exploring the map.

4.4 Hill Defence

When an ant moves on top of an enemy hill, the hill is destroyed and can no
longer produce ants. Furthermore the owner loses two points.

We work with two zones of danger: Very close and thus dangerous and
medium close, possibly dangerous. If an enemy ant is in very close proximity
to one our hills, we assign the closest ant to move next to this ant which leads
to a one to one trade off. If enemy ants are in medium range we assign an ant
to move close to our hill for each enemy ant in this zone.

Algorithm 3 Simple Hill Defence

for i = 1 → count(myHills) do
currentHill ← myHills[i]
dangerousAnts ← enemyAnts.F indInRange(currentHill, dangerThresholdRange)

for j = 1 → count(dangerousAnts) do
nearestAvailableAnt ← myAvailableAnts.F indNearest(currentHill)
goal
if distanceTo(dangerousAnts[j], currentHill) > criticalThreshold then

goal ← dangerousAnts
else

goal ← myHill
end if
pathToGoal ← findPath(nearestAvailableAnt, goal)
moveAntAlongPath(nearestAvailableAnt, pathToGoal)

end for
end for

16

4.5 Data Structures

During the development of the bot we have actively used common data structures
such as hash arrays and dynamic arrays. Besides these we have implemented
three data structures to minimize the running time of our algorithms.

The first, SortList, is a dynamic array which allows us to insert elements and
then it keeps them sorted in accordance to a certain logic which is provided when
the data structure is created. SortList sorts itself by utilizing a binary search
every time a member is inserted. We use this data structure when performing A-
star searches to keep unevaluated nodes sorted ascendingly by distance to goal.
This data structure did not exist in our language, and is otherwhere known as
a priority queue.

Very often our bots has the need for ”find nearest neighbour”- and ”find nodes
in range x”-searches. These are not trivial in 2-dimensional wrapping space. The
Kd-Tree data structure provides these operations, and we have implemented it
and used it with success so far. However, the Kd-tree has a fundamental flaw:
It is not designed to work with spaces that wrap at the borders. We have not
yet found a solution to this problem, but we have considered switching to a
quad-tree.

During the competition the time limit for each turn was reduced from 2
seconds to 500 ms which caused our bot to time out. The A-star path finding
algorithm used almost 85% of the total running time each turn when we had
80-140 ants. The main issue was that we calculated the full path between an ant
and its goal every single turn. We tried caching these calculated paths between
turns, but since an exploring ant could be disrupted by a spawned piece of food
this was not enough when the number of ants grew. To solve this issue we decided
to search for data structures/algorithms that would allow us to only compute a
partial path and possibly allowing us to cache paths between popular locations.
The partial paths found the by the data structure, is the path from the current
location, to the nearest transit point - or to goal if it is within the same cluster.
Hierachical Path-Finding using A-star solves both of these issues. This solution
divides the space into a grid, and then only computes partial paths between
these grids. We are still in the process of implementing this data structure.

5 Conclusion

Designing an AI for the challenge has proven to be difficult. Especially the time
constraint had great influence on the algorithms. The challenge ends on Decem-
ber 18th 2011 and we still have a lot of ideas for improvements. We are currently
ranked 166th of approximately 6000 players.

References

1. A. Botea, M. Müller, and J. Schaeffer. Near Optimal Hierarchical Path-Finding.
Journal of Game Development, vol. 1, no. 1, 7-28, 2004.

17

2. J. Kleinberg and Eva Tardos. Algorithm Design. Pearson International Edition
2006.

3. D. Gale and L. S. Shapley. College Admissions and the Stability of Marriage.
American Mathematical Monthly 69, 9-14, 1962.

4. J. L. Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, 1975.

5. Chandran, Sharat. Introduction to kd-trees. University of Maryland Depart-
ment of Computer Science, http://www.cs.umd.edu/class/spring2002/cmsc420-
0401/pbasic.pdf, 2002.

Appendix

Fig. 1. A screenshot of the HPA visualizer. Green background is walkable terrain, dark
blue is water and unwalkable. The clusters are visualized with black rectangles. The
red rectangles are the transit points between clusters. The blue line between transit
points are the internal cluster connections.

18

Collaboration and Agreement
in Multi-Agent Systems

Mikko Berggren Ettienne

DTU Informatics

Abstract. In this paper we investigate the problems related to agree-
ment, collaboration and coordination in multi-agent systems. We present
a distributed auction-based agreement algorithm applicable to networked
multi-agent systems in dynamic communication topologies. We also con-
sider how a simple diffusion based approach to pathfinding can be ex-
tended, leading to spontaneous emergence of coordinated movement and
collaboration in multi-agent systems.

1 Introduction

Coordination, collaboration and agreement are very generic and yet very chal-
lenging problems of designing and implementing multi-agent systems. In many
applications of multi-agent systems, it is necessary to distribute a set of tasks
or subgoals between the agents. The optimality of this assignment of tasks will
often directly influence the efficiency of the system. We shall take a closer look
at a distributed assignment algorithm inspired by [2,3] which was applied by
the Python-DTU team in the Multi-Agent Programming Contest 2011 [4] to
coordinate and distribute tasks between the agents.

We will dwell on the topic of coordination when considering collaborative
diffusion which simultaneously handles pathfinding, coordination and to some
extend also tactics in multi-agent systems. The simplicity of the approach makes
it very appealing to many applications, especially in the field of competitive
multi-agent systems.

The scope of this paper is to briefly present the ideas without going into
complex details. However we note that we have actually implemented and tested
the presented ideas in multi-agent contests, which somewhat proves, that they
are applicable to “real” multi-agent systems.

2 Agreement in multi-agent systems

The obvious agreement problem inherent in most multi-agent systems is how to
distribute or negotiate some limited resources between the agents. This problem
can be treated under one with the problem of dividing a set of subgoals or tasks
between the agents comprising the system, when considering the agents as the
limited resource. In their essence, these problems are similar to the assignment
problem, which is of great theoretical and practical significance and may often
be encountered as a subproblem of more complex problems.

19

The assignment problem in its most general form, is formally defined as:
Given two sets of equal size, A and T and a weight function C : A × T → R.
Find a bijection f : A → T , such that the cost function:

∑
a∈A C(a, f(a)) is

minimized.

The hungarian algorithm is one of many algorithms devised specifically to
solve this problem and will do so within a time bounded by a polynomial expres-
sion of the number of agents. However the algorithm works in a centralized fash-
ion, namely with a single processor that handles all information. In the following
a distributed auction algorithm that will work in situations, where computation
and information is distributed between multiple parallel processing agents, in a
possibly incomplete communication topology, is presented.

The agreement problem for multi-agent systems can be defined similar to
the assignment problem, however, the bijection is replaced by an injective map,
such that the number of goals can be greater than the number of agents, while
two agents must still not be assigned to the same goal. The problem of agreement
on the use of limited resources is easily modeled by letting the limited resources
appear as goals and adding imaginary goals to ensure that all agents can be
assigned to one.

The algorithm described in the following achieves close to optimal results with
a decent complexity, dependent on the communication topology. It resembles an
auction where the agents bid against each other on their preferred goal, such
that the algorithm will terminate in a finite number of rounds and all agents are
assigned to different goals at termination. The algorithm will work in a dynamic
communication topology where all pairs of agents are not necessarily connected
at all times. However we do assume that the graph of the communication network
is connected at all times.

Each goal j will at a given time t have a price denoted pj(t). To follow the
intuition of an auction, we consider benefit of goals instead of cost of tasks.
The cost function is easily achieved by inverting the benefit. The goal is then to
maximize the sum of the benefits. Initially, we let pj(0) = 0 for all goals. The
price of a goal will be the highest bid made by an agent on that goal (except
when the price is 0). As in a real world auction, agents will now place bids on
the goals that give them the greatest net value. Here we define the net value of
goal j for agent i as: net valueij = benefitij − pj .

In each bidding round, agents place bids according to their local information
about the current prices. If an agent has not currently placed the highest bid
on any goal then the agent will place a bid on the goal which maximizes his
current net value according to his current knowledge of the prices of the goals.
The highest bid as well as local information about the current prices and current
highest bidders of goals are in each round sent to all neighbor agents, i.e. agents
to which a communication channel exists. In addition local beliefs are updated
according to the prices received from neighbor agents. If several agents have
made the same bid for a goal, the agent with the highest index will win the goal.
The updated values are then used by the agents to calculate the net values for

20

the next bidding round. Thus, in one bidding round at time step t the algorithm
works by letting each agent i do the following:

1. Receive the newest prices and owners of all goals. Update the local belief base
if there are higher bids on any of the goals that the agent did not already
know about. This includes updating the net values of the goals. Also, the
agent may have lost a goal it owned in the previous round.

2. If the agent is not currently the owner of a goal, it will place a bid on the
goal j with the highest net value according to its belief base. It does so by
setting itself as owner of j and increasing pj by vi − wi + ε where vi is the
net value of j and wi is the net value of the goal with the second highest net
value. Intuitively, this ensures that the agents will not spend unnecessary
time, raising each other on a single goal, but will instead go directly to their
maximum bid given their current beliefs. This will not influence the final
assignment, but will greatly decrease the running time of the algorithm.
ε > 0 is a parameter of the algorithm that influences the running time and
the quality of the final assignment. Generally speaking, a low value of ε gives
high quality assignments but longer running time.

An example run is shown in figure 1 where ε = 1, goal benefits are integers
and for simplicity, the communication topology is simulated by a shared data
structure.

In general the algorithm terminates when Δ rounds without new bids occurs,
in which case all agents have an assigned goal, where Δ ≤ n−1 is the maximum
network diameter, which is the longest distance between two vertices in the
communication network and n is the number of participating agents. Informally
this should be clear, as all agents must be assigned to a goal, when no new bids
occur and Δ is exactly the maximum number of rounds required, for a new bid
to reach all agents. For a formal proof that the algorithm does in fact terminate
no matter the choice of ε > 0 and no matter the choice of structure of the
connected communication network we refer to [2] where it is also shown that the
final assignment obtained by the algorithm is within nε from being optimal.

The algorithm terminates in O(Δn2�maxi,j{benefitij}−mini,j{benefitij}
ε �). To

see why, we consider a proof along the lines of [2]: The bound of the running time
is obtained by considering the worst case scenario where all agents continuously
place minimum bids on every single task. Let δ be a bound on the maximum
difference between the highest benefit and the lowest benefit for all agents and
every goal, viz.

δ > max1≤i≤n{benefiti,j} −min1≤i≤n{benefiti,j}
for all goals j = 1 . . .m where m ≥ n. For sufficiently small δ > 0 all agents will
bid on the goals in the same order. Now order the goals according to benefit and
let Mj be the difference between the minimum benefit for all agents for goal j
and the maximum benefit for the less attractive goal j − 1, viz.

Mj = min1≤i≤n{benefiti,j} −max1≤i≤n{benefiti,(j−1)}

21

again for all goals j = 1 . . .m, (Let benefiti,0 = 0 for all i). Now pessimistically
assume that the agents will only increase their bids with ε > 0 and let goal n be
the most attractive for all agents. The agents will then all bid on this goal until
its price is increased by at least Mn which requires �Mn

ε � bids by each agent and

thus n�Mn

ε � iterations of the algorithm. At this point goal n − 1 also becomes

attractive and will remain so for at least 2�Mn−1

ε � iterations for each agent, i.e.
each agent will bid on both goal j and goal j − 1. For all agents this results in a
total of 2n�Mn−1

ε � iterations. Proceeding in the same fashion and summing up
the total number of iterations we arrive at

n

n∑

j=1

j
Mn−j+1

ε
≤ n2maxi,j{benefitij} −mini,j{benefitij}

ε
�

When taking into account that each bid may take Δ communication rounds to
completely propagate in the network the proof is completed.

3 Collaborative diffusion

Diffusion describes the spread of particles through random motion from regions
of higher concentration to regions of lower concentration. We will consider the
discrete version of diffusion applicable to multi-agent systems, where the envi-
ronment can be represented as a graph. The formal definition of diffusion in
discrete environments as given in [5] is:

l
(k+1)
i = l

(k)
i + c

m∑

j=1

(l
(k)
j − l

(k)
i) (1)

where l
(k)
i is the diffusion value for a vertex i at time k, m > 0 is the number of

neighbor vertices, lj is the diffusion value of the neighbor vertex j and 0 < c ≤
1/4 is the diffusion coefficient which controls the speed of the diffusion.

For simplicity we will in the following consider the special case of a two-
dimensional tile based environment such that n = 4. Note that in all cases
where c = 1/m, (1) can clearly be simplified to l

(k+1)
i = c

∑m
j=1 l

(k)
j , i.e. the new

diffusion value for a vertex is the average of its neighbors’ values.
To use diffusion as path finding, the idea is to put a constant high diffusion

value in the target vertex. The gradual process of diffusion will then cause this
value to gradually diffuse through the complete environment. Walls and other
obstacles will have a constant diffusion value of zero such that nothing will diffuse
through. Pathfinding for an agent is then simply reduced to walking up a hill, i.e.
choosing the neighbor vertex with the highest diffusion value and the resulting
path is close to optimal. An example of a pathfinding diffusion map is shown
in figure 2-1. Whereas trivial pathfinding using stock graph algorithms such as
breadth-first search runs in time bd where b is the branching factor and d is the
path length, the cost of computing a complete diffusion map is much worse. As
the diffusion only converge one depth level at each iteration, the complexity is

22

O((|V | +m) · log(|V | +m)d), where |V | is the size of the level graph and m is
the number of neighbors to consider in the diffusion process.

However, the goal is not to compete with pathfinding algorithms on point to
point pathfinding even though the diffusion approach to pathfinding has some
benefits. Notice that the time taken to produce the diffusion map is independent
in the number of agents searching for the target, thus the diffusion produces
multiple paths simultaneously. This of course assumes, that the agents has access
to some shared memory, or that a single master-agent computes the diffusion map
in which case we may be considering a multi-body system. Figure 2-2 shows how
a moving target is is also trackable through diffusion. In this case the constant
high diffusion value of the target may move for each iteration dragging a trail
to be followed by tracking agents.

Collaborative diffusion is where the true power of the approach becomes
evident. Extending the diffusion map with constant diffusion values for agents
gives rise to immediate collaborative movement behavior which in other cases
can be very hard to achieve. In figure 2-3, a constant low value is assigned to the
agents. This ensures that the agents will prefer to not clump up while pursuing
the same target. The distance between the agents, i.e. how negatively they influ-
ence the diffusion in their proximity, is easily controllable through the choice of
the custom diffusion constants given to the agents. Even more of what seems to
be intelligent behavior emerges from this idea, when considering environments
with multiple or maze like obstacles. As seen in figure 2-4, agents can block the
diffusion on a narrow path, leading to other agents choosing different paths, sim-
ilarly agents can split up at intersections. Using this approach, a set of pursuing
agents can thus automatically narrow down the escape routes for a fleeing agent.
When considering multiple targets one can choose to model the problem as a
single diffusion map with multiple hills, or to create multiple diffusion maps.
Note that multiple diffusion maps on the same environment can be updated in
the same iteration, thus only influencing the complexity by a constant factor.
Targets can then be split amongst agents by comparing the hill steepness of their
positions in the different maps.

This approach achieves very complex collaborative and coordinated behavior
in an elegant and simple manner, which is generally not the case for other ap-
proaches to collaboration and coordination. The collaborative diffusion approach
has proven powerful enough to successfully and rationally control eleven players
in a simulated football game as shown in [5].

4 Conclusion

In this paper we have considered the problems of agreement, collaboration and
coordination in multi-agent systems. A robust distributed auctioning algorithm
has been presented, which can handle the assignment of goals to agents, in dy-
namic networked multi-agent systems. The algorithm has proven to be effective

23

in practice as it was successfully applied in the Multi-Agent Programming Con-
test 2011.

We have also presented collaborative diffusion as a completely different ap-
proach to agent collaboration, mostly concerned with coordination of movement.
This is, however, an important and challenging aspect of multi-agent system de-
sign and the diffusion approach is especially applicable to AI in games.

We do not claim that the presented ideas, approaches and algorithms are the
best solutions or that they will be effective in every case. Nevertheless we hope
that we might have caught the readers interest and showed that the there exists
many different approaches to the vast amount of complex problems inherent in
the design and implementation of multi-agent systems.

References

1. Mikko Berggren Ettienne, Steen Vester, and Jørgen Villadsen. Implementing a
Multi-Agent System in Python with an Auction-Based Agreement Approach, ac-
cepted for publication, 2011.

2. M.M. Zavlanos, L. Spesivtsev, and G.J. Pappas. A Distributed Auction Algorithm
for the Assignment Problem, Proceedings of the 47th IEEE Conference on Decision
and Control, Cancun Mexico, 2008.

3. D.P. Bertsekas, and D.A. Castanon. Parallel synchronous and asynchronous imple-
mentations of the auction algorithm, Parallel Computing 17, 707–732, 1991.

4. Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, and Federico
Schlesinger. Multi-Agent Programming Contest — Scenario Description — 2011
Edition, available online http://www.multiagentcontest.org/, 2011.

5. Alexander Repenning. Collaborative Diffusion: Programming Antiobjects, ACM
SIGPLAN International Conference on Object-Oriented Programming Systems,
Languages, and Applications, Portland, Oregon, 2006.

Acknowledgements

Thanks to Steen Vester for his work on the agreement algorithm which we in
collaboration implemented for the Multi-Agent Programming Contest 2011 and
documented in [1] on which parts of this paper build.

I would also like to thank my supervisor Jørgen Villadsen, who was respon-
sible for igniting my interest in multi-agent systems and who has always been
available for both sparring and guidance, for which I am very grateful.

24

Fig. 1. An example of an auction between three agents. In round 1 the auction data
structure is empty before the bidding and thus goal benefits are equal to goal net
values. Each agent places a bid on its preferred goal. The bids are calculated as the
difference between the two best goals plus ε. The data structure stores the highest bid
and the corresponding agent for each goal. Both agent 1 and agent 2 bid on goal 1 and
agent 1’s bid is discarded as it is lower than agent 2’s bid. In round 2 the net values
have changed as the new bids in the shared data structure are considered. Agent 2 and
3 have not been over-bidden, so they won’t bid in this round and does now consider
themselves owners of the goals they bid on in round 1. However agent 1 overbids agent
3 on goal 2 as the shared data structure shows. Now in round 3 agent 1 has become the
owner of goal 2 and agent 3 bids on goal 3 as this is the best goal for it considering the
latest bids in the data structure. Now all agents are assigned a goal and the auction
ends. We see in this case that we do not get the optimal solution (agent 1 = goal 1,
agent 2 = goal 3, agent 4 = goal 2, total benefit = 42) but instead a solution very close
to the optimal (total benefit = 41).

25

Fig. 2. Different examples of diffusion maps in two-dimensional environments. 5 shows
how different colors are interpreted as different diffusion values representing a third
diffusion dimension. In 1, the target is in the center and the black line is an obstacle
blocking the diffusion. The diffusion values behind and around the obstacle clearly
show how agents will be able to navigate around it. 2 shows how the diffusion naturally
adapts to a target moving from the center to the lower right corner, dragging a trail of
high, but decreasing diffusion values. In 3, the two black dots represent agents moving
towards the center target. We see how they both repel the diffusion in their close
proximity, ensuring that they will never come to close. Advanced flocking behavior can
be achieved in this way. In 4 the furthest agent moving towards the target in the center
will choose the right lane instead of following the agent in front of him. This is again
achieved by assigning constant low diffusion values to the agents in this case making
the closer agent block the diffusion on his path, from the agent behind him.

26

Inconsistency Handling in Multi-Agent Systems

John Larsen

DTU Informatics

Abstract. This extended abstract describes how the problem of incon-
sistency can be automatically handled in Jason, a general purpose multi-
agent system. There are two proposals, one based on belief-revision and
one based on paraconsistency such that the agent can reason with an
inconsistent belief base.

1 Introduction

Multi-agent systems can be written in any traditional programming language
and often a system is optimized for a specific purpose and not anything else.
However to use the multi-agent system for another problem, it often requires
changing entire data structures of the agents to represent the new environment.
One of the purposes of agent-oriented programming languages is to streamline
this process by representing the environment internally in each agent as general
logical beliefs. Essentially this is a list of logical statements that provides a model
of the environment. Jason is a general purpose multi-agent system based on the
agent-oriented programming language AgentSpeak. It interprets agents written
in a language based on AgentSpeak, where agents reasons and acts from a set
of logical beliefs, rules and plans. The necessary details of AgentSpeak will be
presented in following sections when needed.

In Jason a very simple vacuum cleaner agent could represent the fact that dirt
is at location l by the literal dirt(l) and the fact that there is no dirt by
~dirt(l). In the situation of figure 1, several vacuum cleaners work in the same
environment and are expected to clean all locations without wasting energy go-
ing to locations cleansed by other agents. In a true multi-agent system they do
not have one shared set of beliefs and hence must be able to tell each other ”that
area is already clean” and update their individual beliefs accordingly (assuming
the agents are not lying). It is not difficult to make Jason agents tell each other
new beliefs but if the set of beliefs of an agent becomes inconsistent it may be-
have unexpectedly and try to clean up already clean places anyway. This may be
caused by a programming bug (I later consider intentional inconsistency) that
can be solved but it requires stopping the agents and figuring out what caused
the problem. The solution I consider tries to solve inconsistencies automatically
when they appear and acts as a kind of safety mechanism in such cases.

27

Fig. 1. Example where two vacuum cleaners have the task of cleaning up dirt from
three locations and their communication causes each agent to become inconsistent.
Dirt in a location is shown as a dot cloud and each picture shows the state after the
agent has performed an action. Below each picture is the current belief base of each
agent. Initially both believe there is dirt at L1 and L3 and that L2 has no dirt. This
knowledge may be aquired from their owner who told them ”The kitchen and bedroom
is dirty but the living room is not”. The agents follow their goals of cleaning up all
dirt and start by cleaning the room they start in. After this action both agents believe
that their own room is not dirty. In order for each agent to achieve the goal of cleaning
all rooms, it must then move to location 2 where it meets the other agent. When they
meet they perform an action of exchanging beliefs of rooms without dirt, but neither
of them performs any check of inconsistency after this exchange. Agent A now believes
L1 is both dirty and not dirty and Agent B believes L3 is dirty and not dirty and thus
both agents are inconsistent. What actually happens from that point depends on how
they prioritize these beliefs and if they are ready to give up their previous goal and in
general it is hard to tell what will happen. Assuming that the agents trusts each other,
the most reasonable thing would be that both agents give up believing that there is
dirt in L1 and L3 and consider all goals cleared.

28

The solution I consider revises the set of beliefs when an inconsistency hap-
pens to make sure that the set is consistent after whenever the agent learns
something new. This is called belief revision and I implement an efficient al-
gorithm for this proposed by the authors of Jason, that they have so far not
implemented themselves. I present the key concept of the algorithm here but
more details of this algorithm can be found in [1]. I also present the concept of
paraconsistence, which is another way of handling inconsistency, and how it can
be used in Jason.

2 Belief Revision

The default Jason agent already performs a belief revision, however it only
modifies the set of beliefs (the belief base) without actually checking for con-
sistency afterwards, so if the belief base already contains dirt(L1) and then
adds ~dirt(L1) the belief base afterwards contains both beliefs and is therefore
inconsistent. The belief revision algorithm solves this inconsistency by contract-
ing one of these beliefs in one of two ways, which is either by coherence or by
reason-maintenance.
Contracting a belief by coherence means to modify the belief base minimally so
that it no longer entails this belief. Any beliefs derived from contracted belief are
left in the belief base. It is a quite simple revision and if the remaining beliefs
later cause inconsistencies they can be contracted in a similar way. Contract-
ing a belief by reason-maintenance both modifies the belief base like before and
contracts all beliefs derived from the contracted belief. This can result in big
parts of the belief base being removed due to an inconsistency and is useful if
the agent should avoid potentially inconsistent beliefs as much as possible. Both
styles of contraction are useful in different situations.

2.1 Justificatons

In order to carry out the contraction efficiently the algorithm uses a data struc-
ture called Justification for linking beliefs together in the way they derived each
other. A Justification represents a single argument for a belief and is a tuple of
a belief and the list of beliefs used to derive this belief. This list is called the
support list and it is read as a conjunction, so the Justification can be removed
if any of the beliefs in the list are removed.

Justification : belief ∗ belief list

If a belief is justified in more ways than one, there are multiple Justificatons for
this belief but every belief in the belief base should have at least one Justification.
Thus to remove a belief, it must lose all Justifications. In Jason an agent can add
new beliefs through plans and each plan has a context, a logical formula that
must be true when the plan is choosen to be executed. The context can then be
used to form a Justification for this belief.

29

The Justifications and beliefs can also be seen as nodes of a graph where each
belief has an outgoing arrow to each Justification where it occurs in the support
list, and an ingoing arrow from each Justification that justifies the belief.

2.2 Contraction Algorithm

The resulting contraction algorithm uses the Justifications to find beliefs that
must be removed to avoid entailing the contracted belief. This contraction is
defined recursively on the support list in the following way, where the belief b is
contracted.

– All outgoing Justifications of b, in other words justifications (b′, s) where b
occurs in s, are removed.

– For every ingoing Justification j = (b, s) of the contracted belief, if s is
empty, then j is simply removed. Otherwise a belief in s is contracted.

– Finally b itself is removed.

When choosing a belief in the support list s to contract, it is decided by a
function w : belief list → belief which intuitively defines the least preferred belief
in the list of beliefs, which is the belief the agent would be ready to give up first.
A possible general definition of this is discussed in [1].
During the execution of this algorithm a belief might lose all Justifications. To
do contraction by coherence, these beliefs receives a new Justification with an
empty support list and to do contraction by reason-maintenance, these beliefs
are contracted as well. In [1] it is argued why both approaches have the same
complexity, the focus in this project is how to make an implementation that
allows the agent to use both methods and evaluate on the usefulness of them.

3 Implementation

Jason is based on Java and comes with a default Agent class for all agents.
This class defines a belief revision function that is used every time the Agent
modifies the belief base due to communication or derivations made by the agent
itself. This function modifies the belief base but does not check for consistency
afterwards. However by extending the Agent class with a new class, this func-
tion can be redefined to apply the algorithm described in 2.2 after the belief
base has been modified, while keeping everything else not related to the belief
revision untouched. This was also suggested in [1]. In Jason the programmer
can very easily choose to use such a derived class rather than the default class,
and the good thing about this is that it does not affect older Jason systems
by default, but it is easy to make them use the new Agent instead. To make it
easy accessible I decided to put it in the default Jason library under the name
jason.consistent.BRAgent.
To actually implement the new Agent however, it is required to know the inter-
nal structure of both the belief base, plans and intensions of agents in Jason in
order to extract the required data. An overview of the relevant classes can be

30

found in [2].
The new Agent provides the algorithm for belief revision based on contraction
and default definitions for auxillary functions such as w(s) introduced before.
Other auxillary functions, such as when and how to display debugging informa-
tion, are defined in a generally useful way, but w(s) should rather have a domain
specific definition. Fortunately any of the functions can be redefined by extend-
ing the new Agent class with a domain specific class, such that the algorithm for
belief revision is reused but under other conditions. This falls in line with the
design principle of Jason, that parts can easily be extended with domain specific
components if necessary. All these auxillary functions are discussed in [2].

4 Paraconsistency

An alternative way to handle inconsistency is by using a paraconsistent logic
such that the effect of inconsistencies in a sense remains ’local’. A particular
paraconsistent logic is the multi-valued logic presented in [3]. In this logic there
are truth-values that indiciates uncertainty and the common logical operators
are defined in this logic in a way that the truth-values are easy to compute. In
[4] it is shown how a knowledge base can be implemented in Prolog to reason
with this logic and in [2] it is shown how the paraconsistent logical operators can
be defined in Jason as agent code. It remains a question whether a belief base
can be build on top of Jason so that the Agent reasons with knowledge from this
belief base by using the multi-valued logic.
Another possibility is to simply take advantage of the fact that entailment in
Jason already is paraconsistent. A belief base in Jason only entails beliefs that
directly occur in the belief base or can be derived by applying logical rules in the
belief base. As an example assume that the vacuum cleaner is inconsistent and
believes dirt(L1), ~dirt(L1) and ~dirt(L3), then it does not believe dirt(L3)
as no rule entails dirt(L3) and dirt(L3) does not occur directly in the belief
base. This means that it may make weird plans towards cleaning the already
clean location L1 but it does not try to clean L3. The problem is of course that
the agent never realises by itself that something is wrong while, if it used belief
revision, it would try to decide which of ~dirt(L1) and dirt(L1) are true, and,
if it used paraconsistency, it would find out that there is a problem with this
belief.

5 Conclusion

The implementation of the belief revision by contraction stays true to the algo-
rithm, however this means it also inherits some of the problems in it. The graph
of Justifications and beliefs can only be correctly constructed if all plans have a
conjunction of beliefs in the context, however Jason allows other types of logical
formulae in the context as well. This is a serious limit to any practical use of
the algorithm. Another serious limit is that it is undefined how the support list

31

should look like if the context contains a rule, since the instantiated rule is en-
tailed by the belief base but does not occur directly as a belief. A way to define
the support list is then by the beliefs that caused the rule to be true. Another
way would be to let the rule itself occur in the support list, rather than what
caused it to be true. None of these suggestions have been worked with in this
project due to a time limit.
The positive result is that the implementation can solve the trivial problems by
itself, which would otherwise require the system to be stopped. It shows some
promise in belief revision by contraction.
The experiment with paraconsistency shows that at least a portion of paraconsis-
tent reasoning can be implemented in Jason but it is currently not very useful, as
it is only able to compute truth-values with a constant model without variables.
It also showed that while an inconsistent agent may be able to do something, it
requires more to actually handle the inconsistency on its own.

References

1. Rafael H. Bordini, Jomi Fred Hübner, Mark Jago, Natasha Alechina and Brian
Logan. Automating Belief Revision for AgentSpeak. Declarative Agent Languages
and Technologies IV, 61-77, SpringerLink, May 8 2006.

2. John B. Larsen Inconsistency Handling in Multi-Agent Systems Technical Univer-
sity of Denmark, DTU Informatics, 2011.

3. Jørgen Villadsen. A Paraconsistent Higher Order Logic Paraconsistent Computa-
tional Logic, 33-49 Springer Online First 6 May 2002.

4. Johannes S. Spurkeland Using paraconsistent Logics in Knowledge-Based Systems
Technical University of Denmark, DTU Informatics, 2010.

32

Developing Web Application Clients Using
Multi-Agent Programming Patterns

Niklas Christoffer Petersen

DTU Informatics

Abstract. In this paper we justify the reason to consider new approaches
when developing complex web application clients, and presents a spe-
cific method to incorporate Multi-Agent Programming (MAP) patterns,
namely the small research project JaCa-Web. Together with other MAP
technologies, the JaCa-Web project provide a framework for web appli-
cation clients. We present this framework and provides a small sample
as a proof of concept.

1 Introduction

The internet connectivity has continued to increase steadily over recent years cf.
[1], while browsers have gained complex features with the adoption of new stan-
dards, noteworthy HTML5 and CSS Level 3 cf. [2] respectively [3]. The browsers
are also executed on more powerful hardware, and utilize it more intensely, e.g.
several browsers render using hardware accelerated graphics.

This development has made it more attractive to consider a web applica-
tion approach when designing new applications or updating existing desktop
applications.

There are some very interesting advantages that follows implicitly when
choosing a web application over a desktop application. For instance one obtains
much higher device independence with minimum efforts. This not only limits to
PC devices running different operating systems, but also smart phones, tablets,
etc. Likewise it is easy to distribute and update the applications, since all ap-
plication logic and data is kept central. Client specific resources are downloaded
dynamically as they are needed from the application server with configurable
caching.

However there are also some strong limitations that can render the web ap-
plication approach unfit. By default any web application will require recurring
access to the application servers, thus they will not function offline. Another
concern is the abstraction level, i.e. they have no or very limited access to client
hardware, and in newer browsers they often run in a sandboxed environment. A
simple task as printing a correctly formatted A4-paper can then become difficult
to accomplish.

Taking this into account, there still are many cases where the pros of a web
application approach surpasses the cons. Given this it is also worth considering
the effort needed to develop such applications.

33

1.1 Traditional approaches

A deep presentation of how web applications works is out of the scope of this
paper, but an essential aspect is, that since web applications relies on standards
on the clients, the natively supported programming languages are effectively
limited to a single option, namely JavaScript.

JavaScript is a multi-paradigm language that follows a mix of prototyped,
object-oriented and functional paradigms. It was originally designed as a script-
ing language as the name hints, and even though its syntax originally was in-
spired by Java, it shares no other relation to the language. Initially it filled a
simple role of validating user input, and for small animations.

The language really gained traction with the introduction of Ajax (Asyn-
chronous JavaScript and XML) support, which allows web application clients to
asynchronously exchange data with back-end application servers. Prior to this
dynamic content was generated on the application server and sent as hole to the
client. If any exchange was needed the only way was a complete reload of the
web view, called a server round-trip. Ajax is a good demonstration of some of
the shortcomings of the JavaScript language.

Specifically Ajax allows a web view to send requests to an application server
without the need of a server round-trip, and can use the response to partially
update itself. Without doing this asynchronously, one would break the respon-
siveness of the web application due to the natural latency of network communi-
cation. The way JavaScript implements asynchronicity is by using callbacks, thus
an asynchronous task as an Ajax request is of the form (1), where () denotes
the empty result.

requestajax : request → (response → ()) → () (1)

The problem with this structure is that it turns your implementation inside
out, where calls to the requestajax function completes immediately, and the
supplied callback function may be applied sometime in the future. This poses
complications when considering which context the callback function is applied
in (e.g. with respect to global state). Furthermore it complicates error handling
(e.g. if the request fails). In the latter case it is common to supply a secondary
callback function for handling unsuccessful requests as shown in (2).

requestajax : request → (responsesuc → ()) → (responseerr → ()) → () (2)

It is argued that such constructs makes it hard to ensure the correctness of
the implementation, and thus complicates the development.

1.2 Proposed solution

The proposed solution is to use patterns known from Multi-Agent Programming
(MAP). Especially the combination of both reactive and goal-driven agents are
useful in web application clients where, as evident from above, several of the
operations are handled asynchronously. Likewise the concept of a knowledge

34

base for state representation can simplify the context of which the client react
to the completion of asynchronous tasks. Finally using multiple agents allows
the separation of responsibility for flow and state.

Continuing with the Ajax example we propose the form (3), where responses
are transparently injected, upon their availability, into the knowledge base of
agents that observes the request. Due to the reactive behaviour of agents they
can choose to perform actions (such as pursue new goals) based on such new
knowledge.

requestajax : request → () (3)

General purpose languages such as JavaScript can easily be used to model
pure reactive behavior or completely goal-driven systems. However achieving a
system that possesses elements from both of these models have shown difficult
using these traditional approaches cf. [4, p. 5]. It is worth to emphasize that
this in no sense implies that it is not possible to implement a system directly in
JavaScript that will allow such behavior. However, from a development perspec-
tive, it is not only interesting to consider if a system is possible, but also what
effort is needed to implement it.

There are mainly two methods of achieving paradigms that are poorly sup-
ported by, or absent from, the standard compliant clients:

– Plugin-based: Many browsers supports plug-ins, such as Java or Flash. This
allows the distribution an application in a language that is handled by a
plugin. The major downside of this approach is that one really trades off
the device independency, since a plugin for each platform is required. This
method can create a steeper adoption of the client, since it will require
the users to perform additional steps if the plug-in is not present on their
systems.

– Synthesize-based: The application is developed in a language that suit the
needs (e.g. language-based abstraction, type-safety, etc.) and is then syn-
thesized into standard compliant languages. This is very comparable of how
desktop programs are compiled, but instead of compiling into platform spe-
cific machine language, the program is “compiled” into the client supported
languages. This does not affect the device independency, however developing
the toolchain needed to perform such synthesize is clearly not trivial.

Examples of each method are: the Danish common log-in solution Nem-ID1,
which runs as a Java-plugin; and respectively GMail2, an email service provided
by Google synthesized using the Google Web Toolkit3 (GWT).

In this paper we shall consider a plugin-based method to incorporate Multi-
Agent Programming Patterns for developing web application clients. We consider
a small research project named the JaCa-Web which relies on the Java-applet-
plugin.

1 https://www.nemid.nu/
2 https://gmail.google.com/
3 http://code.google.com/webtoolkit/

35

2 The JaCa-Web project

The JaCa-Web project builds on top the Multi-Agent programming (MAP) tech-
nologies Jason and Cartago. Each of these fills a distinct role in the framework:
Jason facilitates programming and execution of rational agents, while Cartago
allows abstraction for creating complex environment artifacts. Lastly the JaCa-
Web provide an interface between these technologies and the web compliant
languages, specifically JavaScript.

Jason is specifically designed to ease the process of developing systems that
are both reactive and goal-driven. It is an implementation of the abstract agent
programming language AgentSpeak [5]; and thus based on the Belief-Desire-
Intention (BDI) model. A complete introduction of the Jason language and
framework is out of the scope of this paper, but is comprehensively presented
in [4].

The Cartago project introduces the possibility to program and execute vir-
tual environments. The basic concept is to move the interpretation of agent
actions away from the environment, and instead bind the actions, called opera-
tions, to the artifacts, i.e. the objects of the environment. More specifically these
operations are bound to any artifact that a given action affects. Thus the pro-
grammer does not need implement an environment, but instead the artifacts of
the environment. Agents can then create defined artifacts, and discover artifacts
created by others. This avoids the clutter of having to interpret every possible
agent action in the same context, and moves the modeling of the environment
up on the abstraction scale.

Specifically Cartago introduces two well-known software concepts on a suffi-
ciently abstract plan, namely observability, i.e. agents can subscribe on artifact
changes in an efficient and reactive manner; and concurrency, i.e. the execution
of operations can interleave. For deeper details of Cartago please refer to [6], and
for the integration between Jason and Cartago, and their use to [7].

The JaCa-Web project presents the connection between the web application
views, and the application logic by supplying a set of Cartago artifacts and a
small JavaScript-library cf. [8]. A block diagram of the structure of a complete
web application client is shown in figure 1.

Browser

JavaScript
Jason Cartago

Java Plugin

JaCa-Web

Application Logic

Web View

Fig. 1: Block diagram of web application client.

36

The application logic is mainly implemented by specifying agents in AgentS-
peak using Jason, and by implementing needed artifacts and their operations in
Java using Cartago. Finally some JavaScript might still be needed to update web
views. With multiple agents it is possible do divide logic responsibility between
agents. Each agent can have different goals to achieve, that corresponds to its
responsibility, while it can react on percepts, for instance user events and artifact
changes. Each web view has by default an artifact, namely the page artifact, but
there is no restriction on creating as many artifacts as needed.

We shall now consider a simple auction web application, which client will
show the current price and winner of the auction, and allow its users to place bids,
similar to real auction services such as eBay4. There are two agents involved in
this setup: the updateAgent will be responsible for keeping the web view updated,
and the bidAgent will handle bid events from the user. The AgentSpeak code for
each agent is shown in figure 2.

/∗ I n i t i a l b e l i e f s and ru l e s ∗/
page ar t i f a c t name (” MyPageArtifact ”) .

/∗ I n i t i a l goa l s ∗/
! i n i t .

/∗ Goal−dr iven Plans ∗/
+! i n i t

: page a r t i f a c t name (PAName)
<− l ookupArt i f a c t (PAName, PAId) ;

f ocus (PAId) ;
! ! r e f r e s h .

+! r e f r e s h
<− sendWsRequest ;

. wait (1000) ;
! ! r e f r e s h .

/∗ React ive Plans ∗/
+pr i c e (P)

<− updateView (” p r i c e ” , P) .

+winner (W)
<− updateView (” winner ” , W) .

(a) updateAgent

/∗ I n i t i a l b e l i e f s and ru l e s ∗/
page ar t i f a c t name (” MyPageArtifact ”) .

/∗ I n i t i a l goa l s ∗/
! i n i t .

/∗ Goal−dr iven Plans ∗/
+! i n i t

: page a r t i f a c t name (PAName)
<− l ookupArt i f a c t (PAName, PAId) ;

f ocus (PAId) .

/∗ React ive Plans ∗/
+buttonCl icked

: p r i c e (N)
<− bid (N + 1) .

(b) bidAgent

Fig. 2: Sample agents for auction scenario.

The updateAgent will continuously have the goal to refresh data from the
application server. This is done by asynchronous pooling a web service on a
regular interval. When responses are available it will change the knowledge base
of the agents, that currently are focussing on (i.e. observing) the page artifact.
Thereby the re-active plans of the updateAgent will apply, and the agent will
update the web view.

The bidAgent will only have an initial goal of focussing on the page arti-
fact, which is completed almost instantly. Thereafter it will only act on the
buttonClicked knowledge, that are present when the user clicks on the bid but-
ton. In this case the bidAgent will increase the current known price with one,

4 http://www.ebay.com/

37

and place a bid (also a request to the application server). If the bid succeeds (i.e.
it is not overbid immediately before or after by somebody else), the updateAgent
will retrieve this information back upon its next refresh, and show the user as
the current winner. A screenshot of the web application is shown in figure 3.

Fig. 3: Screen shot of auction web application client.

The presented sample shows that by using MAP patterns it is possibly to
divide the logic of a web application client into different responsible agents, that
each can have goals and instantly act on newly achieved knowledge (e.g. state-
changes and events). It is also possible, though not demonstrated in this sample,
to pass messages (i.e. knowledge) between agents, such that for instance one
agent can delegate some or all of its responsibilities to another.

As mentioned previously the JaCa-Web project is the outcome of a small
research project, and the current version is in a very early alpha development
phase. However it has shown a very interesting and different approach for de-
veloping web application clients. Besides it was never designed for production
purposes, the fact that it depends on Java also makes it somewhat unappeal-
ing, since some platforms does not support the plugin-method5. However it is
possible to imagine the same MAP patterns in a synthesized method. Another
obstacle is that the framework still relies on JavaScript to actually update the
web views, this is somewhat a stopgap solution. Finally it is also somewhat a
downside that all the Java libraries (Jason, Cartago and JaCa-Web) and the
application logic are required to be digitally signed by a trusted chain, otherwise
the Java Runtime Environment will not execute them.

5 Noteworthy Apple iOS and Microsoft Windows 8 (ARM version)

38

3 Conclusion

Justification was presented, showing that traditional approaches raises some
problems when web application clients needs to efficiently implement correct
handling of asynchronous tasks such as Ajax requests. The proposed solution
presents the use of Multi-Agent Programming Patterns, and how systems with
both reactive and goal-driven behaviour can present a succinct solution model
for this.

The JaCa-Web research project presented a specific framework, that builds
on known Multi-Agent technologies (Jason and Cartago), for achieving such solu-
tions. The AgentSpeak programming language allow the logic of web application
clients to be implemented in a succinct manner, while the Multi-Agent model
allow the devision of logic responsibility between agents. The implemented auc-
tion sample application demonstrated the capabilities, and performed as a proof
of concept. Overall it poses a very interesting approach for solving some of the
problems that arises when developing complex web application clients, however
it also has some shortcomings that makes it unfit for production.

In order to really compare it against alternative methods such as the GWT it
is necessary to consider far more complicated scenarios than the simple auction
scenario presented here.

References

1. David Belson, Brad Rinklin, and Tom Leighton. The State of the Internet, Volume
4, Number 2. Akamai Technologies Inc., 2011.

2. Ian Hickson et al. HTML5 - A vocabulary and associated APIs for HTML and
XHTML. World Wide Web Consortium, 2011. http://w3.org/TR/html5/

3. Elika J. Etemad et al. Cascading Style Sheets (CSS) Snapshot 2010. World Wide
Web Consortium, 2011. http://w3.org/TR/CSS/

4. Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). John
Wiley & Sons, 2007.

5. Anand S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable
Language, 1996.

6. Alessandro Ricci, Andrea Santi, Michele Piunti, Mirko Viroli, Andrea Omicini,
Marco Guidi, and Mattia Minotti. CArtAgO Project Website. http://cartago.

sourceforge.net/.

7. Niklas Christoffer Petersen Programming Multi-Agent Systems. Technical University
of Denmark, Department of Informatics and Mathematical Modelling, 2011.

8. Mattia Minotti, Andrea Santi, and Alessandro Ricci. Exploiting Agent-Oriented
Programming for Building Advanced Web 2.0 Applications. Multi-Agent Logics,
Languages, and Organisations Federated Workshops, 2010.

39

Algorithms and Logic Section

DTU Informatics

http://www.imm.dtu.dk/algolog

http://www.imm.dtu.dk/algolog

	Head.pdf
	Body.pdf
	Tail.pdf

