Sequent Calculus, Dialogues, and Cut-Elimination

Two doubtful, personal insights about dialogues in logic

Morten Heine Sørensen Formalit

Joint work with Paweł Urzyczyn

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへぐ

Curry-Howard Isomorphism - intuitionistic case

$$\Gamma, \varphi \vdash \varphi \qquad \qquad \Gamma, \mathbf{X} : \varphi \vdash \mathbf{X} : \varphi$$

$$\frac{\mathsf{\Gamma}, \varphi \vdash \psi}{\mathsf{\Gamma} \vdash \varphi \to \psi}$$

 $\frac{\mathsf{\Gamma}, \mathbf{x}: \varphi \vdash \mathbf{M}: \psi}{\mathsf{\Gamma} \vdash \lambda \mathbf{x}. \mathbf{M}: \varphi \rightarrow \psi}$

$$\frac{\Gamma\vdash\varphi\rightarrow\psi\quad\Gamma\vdash\varphi}{\Gamma\vdash\psi}$$

$$\frac{\Gamma \vdash M : \varphi \to \psi \quad \Gamma \vdash N : \varphi}{\Gamma \vdash MN : \psi}$$

Curry-Howard Isomorphism - intuitionistic case

natural deduction

 λ -calculus

proof formula normalization term type reduction

BHK

- A construction of φ₁ → φ₂ is a method (function) transforming every construction of φ₁ into a construction of φ₂;
- Realizability
 - *p* realizes φ₁ → φ₂ if *p* is the Gödel number of a partial recursive function *f* of one argument such that, whenever *q* realizes φ₁, then *f*(*q*) realizes φ₂;

(日) (日) (日) (日) (日) (日) (日)

- So
 - Proofs are functions/programs.
 - The Curry-Howard makes this concrete/syntactic.

The classical case

$$\frac{\Gamma, \varphi \to \bot \vdash \bot}{\Gamma \vdash \varphi}$$

 $\frac{\Gamma, \mathbf{a}: \varphi \to \bot \vdash \mathbf{M}: \bot}{\Gamma \vdash \mu \mathbf{a}.\mathbf{M}: \varphi}$

natural deduction

 λ -calculus

double-negation elimination

control operator

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 の Q @

Double-negation elimination is a kind of jump in the proof.

(日) (日) (日) (日) (日) (日) (日)

- Yes, but how more concretely?
- Some kind of jumps in BHK?
 - Hmm, BHK is intentional.
- An extensional variant of BHK?
 - But not the λ -terms themselves :-).

- Prover 1: I claim $((p \rightarrow p) \rightarrow (q \rightarrow r \rightarrow q) \rightarrow s) \rightarrow s$ holds.
- Skeptic 1: Really? Suppose I provide you with a construction of $(p \rightarrow p) \rightarrow (q \rightarrow r \rightarrow q) \rightarrow s$. Can you give me one for s?
- Prover 2: I got it by applying your construction to a construction of $p \rightarrow p$ and then by applying the result to a construction of $q \rightarrow r \rightarrow q$.
- Skeptic 2: Hmm... you are making two new assertions. I doubt the first one the most. Are you sure you have a construction of $p \rightarrow p$? Suppose I give you a construction of p, can you give me one back for p?
 - Prover 3: I can just use the same construction!

Prover 1: I claim $((p \rightarrow p) \rightarrow (q \rightarrow r \rightarrow q) \rightarrow s) \rightarrow s$ holds.

- Skeptic 1: Really? Suppose I provide you with a construction of $(p \rightarrow p) \rightarrow (q \rightarrow r \rightarrow q) \rightarrow s$. Can you give me one for s?
- Prover 2: I got it by applying your construction to a construction of $p \rightarrow p$ and then by applying the result to a construction of $q \rightarrow r \rightarrow q$.

Skeptic 2': Hmm... you are making two new assertions. I doubt the second assertion the most. Are you sure you have a construction of $q \rightarrow r \rightarrow q$? If I give you constructions of q and r, can you give me one for q?

Prover 3': I can use the one you just gave me!

Prover-skeptic dialogues - interactive BHK

- Prover makes an assertion.
- Skeptic reacts with a list of offers (hypothetical constructions) and a challenge.
- Prover must meet the challenge using an offer (just obtained or previous one). Prover may introduce new assertions.
 Skeptic then reacts to these assertions, etc.
- When prover introduces several new assertions, Skeptic may challenge any one of them—but only one, and only from preceding step.
- Prover must always respond to the latest challenge.
- A dialogue *ends* when the player who is up cannot respond, in which case the other player *wins*.

Prover-skeptic dialogues - interactive BHK

• *Prover strategy:* technique for arguing against the skeptic. When the skeptic has a choice, prover has to anticipate all the different choices and prepare a reaction to each of them.

- Prover strategy is winning if all its dialogues won by prover.
- Winning prover strategy iff formula provable.
- Winning prover strategies correspond to long normal forms.

Sac

- Prover 1: I assert that $((p \rightarrow q) \rightarrow p) \rightarrow p$ holds.
- Skeptic 1: I don't believe you. Suppose that I give you a construction of $(p \rightarrow q) \rightarrow p$, can you give me a construction of p?
 - Prover 2: Yes, I have it. I got it by inserting a construction of $p \rightarrow q$ into the construction I just got from you!
- Skeptic 2: You're lying, suppose I give you a construction of *p*, can you give me a construction of *q*?
 - Prover 3: Ah, your construction of *p* is actually what you requested in your first move, then we were done already there.

- Prover 1: I assert that $q \lor \neg q$ holds.
- Skeptic 1: Yeah, right. Can you give me a construction of one of the two?
- **Prover 2**: Yes, I have it. It is $\neg q$, i.e. $q \rightarrow \bot$.
- Skeptic 2: You're lying, suppose I give you a construction of q, can you give me a construction of \perp ? Ha—got you!
 - Prover 3: Ah, this construction of q was what you requested in your first step. I should have chosen q, not $\neg q$. So we were done already there.

A D > 4 回 > 4 回 > 4 回 > 1 の Q Q

First insight

• First insight:

- BHK can be "reformulated" as dialogues.
- Classical dialogues arise by letting the prover respond to previous challenges.
- I.e. by adding *jumps* in the arguments.
- That's "why" classical proofs correspond to control operators.
- About these dialogues:
 - They (intutionistic variant) appear in proofs that inhabitation is PSPACE complete.
 - They are related to other dialogues in the literature.
 - They are ad-hoc.
- Maybe the Curry-Howard isomorphism has a third angle, with dialogues.

Lorenzen dialogues

- Dialogue: sequence of alternating proponent/opponent steps.
- Proponent begins.
- Opponent refers to the immediately preceding move.
- Proponent refers to any preceding opponent move (classical).
- Proponent may only assert variables asserted by opponent.
- One can attack asserted formulas or defend against a matching attack.

Form.	Attacks	Form.	Attack	Defenses
$\sigma \to \tau$	Α: σ	$\sigma \to \tau$	Α	D : <i>τ</i>
$\sigma \wedge \tau$	$\mathbf{A}_{\mathrm{L}}: \mathbf{Ø} \ , \ \mathbf{A}_{\mathrm{R}}: \mathbf{Ø}$	$\sigma \wedge \tau$	\mathbf{A}_{L}	D : σ
$\sigma \vee \tau$	A : Ø	$\sigma \wedge \tau$	A _R	\mathbf{D} : $ au$
$\neg \sigma$	Α : σ	$\sigma \vee \tau$	Α	\mathbf{D}_{L} : σ , \mathbf{D}_{R} : τ

(日)

A winning proponent strategy for $((p \rightarrow p) \rightarrow q) \rightarrow q$:

- Winning prover strategy iff provable, usually via Beth-tableux.
- Close to Sequent Calculus, inside out compared to previous dialogues, like ND and SC are inside-out.

Lorenzen dialogues

• Dialogues can be viewed as parameterized over:

- The set Φ of formulas
- For each φ , the set of attacks on φ ;
- For each φ and attack on φ , the set of defenses of φ .

• φ formula, τ_i the attacks, and Σ_i the defenses against τ_i :

$$\varphi \triangleleft (\tau_1 \vdash \Sigma_1) \dots (\tau_n \vdash \Sigma_n)$$

• Examples:

- $\varphi_1 \land \varphi_2 \lhd (\vdash \varphi_1)(\vdash \varphi_2).$
- $\varphi_1 \lor \varphi_2 \lhd (\vdash \varphi_1, \varphi_2).$
- $\varphi_1 \to \varphi_2 \triangleleft (\varphi_1 \vdash \varphi_2).$
- $\neg \varphi \triangleleft (\varphi \vdash).$
- *p* ⊲() and ø⊲().

Take standard LK: cut, structural rules, Axiom, plus logical rules. Replace latter with:

$$\frac{\Gamma \vdash \tau_i, \Delta \quad \Gamma, \sigma_1^i \vdash \Theta \cdots \Gamma, \sigma_{m_i}^i \vdash \Theta}{\Gamma, \varphi \vdash \Delta, \Theta} (L_i)$$

$$\frac{\Gamma, \tau_1 \vdash \Sigma_1, \Delta \cdots \Gamma, \tau_n \vdash \Sigma_n, \Delta}{\Gamma \vdash \varphi, \Delta}$$
(R)

 $[\varphi \lhd (\tau_1 \vdash \Sigma_1) \dots (\tau_n \vdash \Sigma_n) \quad \Sigma_i = \{\sigma_1^i, \dots, \sigma_{m_i}^i\}, \ 1 \le i \le n]$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Yields standard rules plus Cut elimination!

Now replace all rules by:

$$\frac{\Gamma, \sigma_{1} \vdash \Sigma_{1}, \Delta \cdots \Gamma, \sigma_{n} \vdash \Sigma_{n}, \Delta \Gamma, \rho_{1} \vdash \Delta \cdots \Gamma, \rho_{m} \vdash \Delta}{\Gamma \vdash \Delta} (L)$$

$$[\varphi \in \Gamma, \varphi \triangleleft \cdots (\sigma \vdash \rho_{1}, \dots, \rho_{m}) \cdots, \sigma \in (\Phi^{\emptyset} - \Upsilon) \cup \Gamma, \sigma \triangleleft (\sigma_{1} \vdash \Sigma_{1}) \dots (\sigma_{n} \vdash \Sigma_{n})]$$

$$\frac{\Gamma, \sigma_{1} \vdash \Sigma_{1}, \Delta \cdots \Gamma, \sigma_{n} \vdash \Sigma_{n}, \Delta}{\Gamma \vdash \Delta} (R)$$

$$[\varphi \in \Delta, \varphi \triangleleft (\sigma_{1} \vdash \Sigma_{1}) \dots (\sigma_{n} \vdash \Sigma_{n}), \varphi \in (\Phi - \Upsilon) \cup \Gamma]$$

$$\frac{\Gamma \vdash \varphi, \Delta \Gamma, \varphi \vdash \Theta}{\Gamma \vdash \Delta, \Theta} (Cut)$$

The rules in LKD formalize winning proponent strategies.

- In $\Gamma \vdash \Delta$ we read:
 - Γ as the assertions that *have* been stated by the opponent and thus may be attacked by the proponent
 - △ as assertions that *may* be asserted by the proponent, as defenses or as the initial formula.
- the right rule corresponds to a node where the proponent states φ in a defense, and the strategy has a branch for each possible opponent attack on φ.
- The left rule corresponds to a node where the proponent attacks a formula φ stated by the opponent. In this case the strategy has a branch for each possible opponent defense and for each opponent counter-attack.

Classical Lorenzen Dialogues and LK are two different presentations of the same thing:

- replace traditional right rules for disjunction with a single rule;
- restrict (Ax) to variables;
- adopt G3-style and use sets to eliminate structural rules;
- build (Ax) into (R);
- replace the concrete connectives with a specification of attacks and defenses;
- avoid redundant occurrences of (R);
- adopt L-R regime.

Cut-elimination does not require the actual connectives.