・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Using and teaching logic and machine learning for modeling cognitive processes

Anders Søgaard

Center for Language Technology University of Copenhagen Njalsgade 140–2 DK-2300 Copenhagen S Email: soegaard@hum.ku.dk

November 25 2009

Initiatives

Logic

ション ふゆ マ キャット マックシン

Machine learning

Running example: dependency parsing

MA Programme in IT & Cognition

Student experiences 2007–9

Recent initiatives

Logic for dependency parsing

Machine learning for dependency parsing

Logic and machine learning?

Dependency parsing

- The 1-best parsing problem for projective dependency grammars is in $\mathcal{O}(|G|n^3)$. Non-projective dependency parsing is NP-hard in general (e.g. by the Traveling Salesman Problem).
- Popular approximate parsing algorithms exist for both projective (deterministic transition-based; linear time) and non-projective dependency parsing (minimum spanning tree, $\mathcal{O}(|G|n^2)$.

Graph-based dependency parsing (MST)

Edmonds (1969) introduced a two-step $\mathcal{O}(|G|n^2)$ minimum spanning tree algorithm for edge-factored models:

- (i) greedy head selection
- (ii) cycle contraction.

Graph-based dependency parsing (MST) Edmonds (1969) introduced a two-step $\mathcal{O}(|G|n^2)$ minimum spanning

tree algorithm for edge-factored models:

- (i) greedy head selection
- (ii) cycle contraction.

Machine learning

Graph-based dependency parsing (MST) Edmonds (1969) introduced a two-step $O(|G|n^2)$ minimum spanning

tree algorithm for edge-factored models:

- (i) greedy head selection
- (ii) cycle contraction.

Graph-based dependency parsing (MST) Edmonds (1969) introduced a two-step $\mathcal{O}(|G|n^2)$ minimum spanning

tree algorithm for edge-factored models:

- (i) greedy head selection
- (ii) cycle contraction.

Machine learning

Transition-based dependency parsing

(i)
$$\begin{array}{c|c} SHIFT & \dots & w \dots \\ \hline & & \dots & \dots \\ \end{array}$$

Logic

Machine learning

Transition-based dependency parsing

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transition-based dependency parsing

Logic

Machine learning

Transition-based dependency parsing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Logic

Machine learning

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …の�?

How did John get to smoke Libanese?

Shift		John smokes Lebanese	
Left-Arc	, John	smokes Lebanese	
Shift		smokes Lebanese	$John \leftarrow smokes$
RIGHT-ARC	, smokes	Lebanese	
Reduce	smokes, Lebanese		smokes \rightarrow Lebanese
Root	smokes		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

MA Programme in IT & Cognition

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで

MA Programme in IT & Cognition

MA Programme in IT & Cognition

$$\begin{array}{c} 4 & 4 & 5 \\ 2007 \rightarrow 2008 \rightarrow 2009 \rightarrow 2010 \end{array}$$

1 st	2nd	3rd	4th
RCS (F)	Form.Ling.	RCS(A)	Thesis
Logic	CP(F)	CP(A)	
Exp. mthd.	Stats	Adapt.Syst.	
Linguistics	LT(F)	LT(A)	
Progr(F/A)	HCI(F)	HCI(A)	

 $\operatorname{RCS}(F)$ and $\operatorname{RCS}(A)$ are compulsary.

Student experiences 2007–9

	Good	Bad
Coherence		\checkmark
Flexibility	\checkmark	
Level	\checkmark	
Social		\checkmark
Thesis support		\checkmark

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …の�?

Student experiences 2007–9

	Good	Bad
Coherence		\checkmark
Flexibility	\checkmark	
Level	\checkmark	
Social		\checkmark
Thesis support		\checkmark

• Students never *stayed* at the university after class to work in groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ●□ のへで

Student experiences 2007–9

	Good	Bad
Coherence		\checkmark
Flexibility	\checkmark	
Level	\checkmark	
Social		\checkmark
Thesis support		\checkmark

- Students never *stayed* at the university after class to work in groups.
- Students did not know much about each other.

Student experiences 2007–9

	Good	Bad
Coherence		\checkmark
Flexibility	\checkmark	
Level	\checkmark	
Social		\checkmark
Thesis support		\checkmark

- Students never *stayed* at the university after class to work in groups.
- Students did not know much about each other.
- Several students did not have a thesis topic ready after having completed the first 90 ECTS.

Lo

: Ma

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへぐ

Machine learning

Recent initiatives

Machine learning

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Recent initiatives

- MENTORING, i.e. monthly interviews about:
 - \rightarrow coherence (1st year)
 - \rightarrow courses and exams
 - \rightarrow extra-curricular activities
 - \rightarrow thesis (primarily 2nd year)

Machine lear

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Recent initiatives

- MENTORING, i.e. monthly interviews about:
 - \rightarrow coherence (1st year)
 - \rightarrow courses and exams
 - \rightarrow extra-curricular activities
 - \rightarrow thesis (primarily 2nd year)
- Student groups:
 - a. ensemble-based part-of-speech tagging
 - b. text prediction
 - c. text classification
 - d. model-checking for extensions of modal logic
 - e. word alignment in translated text
- Collaboration:
 - a. Center for Language Technology
 - b. Mikroværkstedet, Lund University
 - d. University of Tübingen (Germany)
 - e. Copenhagen Business School

- Evening lectures:
 - $\rightarrow\,$ J. Hansen (RUC): "Dynamic epistemic logic"
 - $\rightarrow\,$ P. Lindström (Lund, Sweden): "How children learn math"
 - $\rightarrow\,$ M. Haulrich (CBS): "Repair in transition-based parsing"
 - $\rightarrow\,$ R. Dekova (BAS, Bulgaria): "Lexical semantics and the mental lexicon"

うして ふゆう ふほう ふほう ふしつ

- Evening lectures:
 - \rightarrow J. Hansen (RUC): "Dynamic epistemic logic"
 - $\rightarrow\,$ P. Lindström (Lund, Sweden): "How children learn math"
 - $\rightarrow\,$ M. Haulrich (CBS): "Repair in transition-based parsing"
 - $\rightarrow\,$ R. Dekova (BAS, Bulgaria): "Lexical semantics and the mental lexicon"

うして ふゆう ふほう ふほう ふしつ

- Reading groups, workshops, etc.:
 - \rightarrow CBS-RG Machine Learning
 - $\rightarrow~{\rm CBS}\text{-}{\rm RG}$ Natural Language Processing
 - $\rightarrow~$ Linguistic Circle of Copenhagen
 - \rightarrow ACL'10 (Uppsala, Sweden)
 - \rightarrow ESSLLI'10

- 1. Students do stay at the university after class.
- 2. The student groups "average out" the students.
- 3. Student groups are also a chance for excellent students to excel.
- 4. Finally, however, we synchronized our courses a bit:

- 1. Students do stay at the university after class.
- 2. The student groups "average out" the students.
- 3. Student groups are also a chance for excellent students to excel.
- 4. Finally, however, we synchronized our courses a bit:(a) RCS(F) and RCS(A) model topics introduced in CP(F).

- 1. Students do stay at the university after class.
- 2. The student groups "average out" the students.
- 3. Student groups are also a chance for excellent students to excel.
- 4. Finally, however, we synchronized our courses a bit:
 - (a) RCS(F) and RCS(A) model topics introduced in CP(F).
 - (b) Topics from (a) are reused in other courses (Logic, LT(F), etc.).

- 1. Students do stay at the university after class.
- 2. The student groups "average out" the students.
- 3. Student groups are also a chance for excellent students to excel.
- 4. Finally, however, we synchronized our courses a bit:
 - (a) RCS(F) and RCS(A) model topics introduced in CP(F).
 - (b) Topics from (a) are reused in other courses (Logic, LT(F), etc.).
 - (c) All course exercises are in Python/Orange, also used in the student groups.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Logic for dependency parsing

In the dependency graph:

- the formula ⟨≺⟩⟨←⟩q, i.e. the current node precedes a node whose syntactic head is in the denotation of q, evaluates as true in nodes 1 and 2.
- the formula $\langle \leftarrow \cap \prec; \leftarrow \rangle \top$ is not true in any node.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Logic for dependency parsing (cont'd)

• A modal logic for dependency parsing was first introduced in Bröker (1997).

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Logic for dependency parsing (cont'd)

- A modal logic for dependency parsing was first introduced in Bröker (1997).
- Kepser (2008) uses monadic second order logic to query dependency treebanks.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Logic for dependency parsing (cont'd)

- A modal logic for dependency parsing was first introduced in Bröker (1997).
- Kepser (2008) uses monadic second order logic to query dependency treebanks.
- Søgaard (2009) uses hybrid logic and crude repair to improve accuracy of dependency parsers.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Logic for dependency parsing (cont'd)

- A modal logic for dependency parsing was first introduced in Bröker (1997).
- Kepser (2008) uses monadic second order logic to query dependency treebanks.
- Søgaard (2009) uses hybrid logic and crude repair to improve accuracy of dependency parsers.
- Modal logics for other parsing formalisms are presented in Keller (1993), Søgaard (2007) and Søgaard and Lange (2009).

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Machine learning for dependency parsing

• Dependency parsing is typically cast as supervised learning.

Machine learning for dependency parsing

- Dependency parsing is typically cast as supervised learning.
- Sufficient labeled data exists for a wide variety of languages.
 - The CONLL-X Shared Task used datasets from 12 languages.
 - The CONLL 2007 Shared Task used datasets from 10 languages (with three repeats).
 - Labeled data exists for other languages, incl. Hebrew, Latin, Romanian, Thai.

Machine learning for dependency parsing

- Dependency parsing is typically cast as supervised learning.
- Sufficient labeled data exists for a wide variety of languages.
 - The CONLL-X Shared Task used datasets from 12 languages.
 - The CONLL 2007 Shared Task used datasets from 10 languages (with three repeats).
 - Labeled data exists for other languages, incl. Hebrew, Latin, Romanian, Thai.
- The CONLL format and evaluation procedure are standard in the community.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ ● ●

Exercise from Lect. 1, RCS(F): Naive Bayes

Features: POS(w'). Class: POS(w). Labeled data:

								1	John	\mathbf{NP}	2
1	John	NP	2	1	John	NP	3	2	walks	V	0
2	drives	V	0	2	is	\mathbf{V}	3	3	and	CONJ	2
3	cars	NP	2	3	fast	ADJ	0	4	talks	V	2
								5	fast	ADJ	2

 $P(\leftarrow \operatorname{Root}) \quad \ 3/11 \quad \ | \quad P(\leftarrow \operatorname{V}) \quad \ 6/11 \quad \ | \quad P(\leftarrow \operatorname{ADJ}) \quad \ 2/11$

d = NP		d = V		d = ADJ	
$P(d \leftarrow \text{ROOT})$	0/3	$P(d \leftarrow \text{ROOT})$	2/3	$P(d \leftarrow \text{ROOT})$	1/3
$P(d \leftarrow V)$	3/6	$P(d \leftarrow V)$	1/6	$P(d \leftarrow V)$	1/6
$P(d \leftarrow \text{ADJ})$	1/2	$P(d \leftarrow ADJ)$	1/2	$P(d \leftarrow ADJ)$	0/2
0.09: V		0.19 : Root		0.09:Root/V	

If single-rooted:

 $\begin{array}{cccc} 1 & John & 2 \\ 2 & drives & 0 \\ 3 & fast & 2 \end{array}$

Dependency parsing, now

	Algorithm	Learner	Complexity
MaltParser	Transition-based	SVM	$\mathcal{O}(G n)$
MSTParser	Graph-based	MIRA	$\mathcal{O}(G n^2)^*$

*Faster on average, since models are smaller.

▲ロト ▲樹ト ▲ヨト ▲ヨト 三ヨー のへで

Dependency parsing, now

	Algorithm	Learner	Complexity
MaltParser	Transition-based	SVM	$\mathcal{O}(G n)$
MSTParser	Graph-based	MIRA	$\mathcal{O}(G n^2)^*$

*Faster on average, since models are smaller.

• Nivre and McDonald (2008) use *stacking* to combine the strengths of the two parsers.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Dependency parsing, now

	Algorithm	Learner	Complexity
MaltParser	Transition-based	SVM	$\mathcal{O}(G n)$
MSTParser	Graph-based	MIRA	$\mathcal{O}(G n^2)^*$

*Faster on average, since models are smaller.

- Nivre and McDonald (2008) use *stacking* to combine the strengths of the two parsers.
- Martins et al. (2008) use *recursive stacking* to obtain previously best reported results.

うして ふゆう ふほう ふほう ふしつ

Dependency parsing, now

	Algorithm	Learner	Complexity
MaltParser	Transition-based	SVM	$\mathcal{O}(G n)$
MSTParser	Graph-based	MIRA	$\mathcal{O}(G n^2)^*$

*Faster on average, since models are smaller.

- Nivre and McDonald (2008) use *stacking* to combine the strengths of the two parsers.
- Martins et al. (2008) use *recursive stacking* to obtain previously best reported results.
- Semisupervised methods have also been used to boost state-of-the-art (Koo et al., 2008; Sagae and Gordon, 2009; Suzuki et al., 2009).

Dependency parsing, now

	Algorithm	Learner	Complexity
MaltParser	Transition-based	SVM	$\mathcal{O}(G n)$
MSTParser	Graph-based	MIRA	$\mathcal{O}(G n^2)^*$

*Faster on average, since models are smaller.

- Nivre and McDonald (2008) use *stacking* to combine the strengths of the two parsers.
- Martins et al. (2008) use *recursive stacking* to obtain previously best reported results.
- Semisupervised methods have also been used to boost state-of-the-art (Koo et al., 2008; Sagae and Gordon, 2009; Suzuki et al., 2009).
- Søgaard (t.a.) *combines* ensemble-based and semisupervised methods to obtain best reported results.

ic M

Machine learning

Søgaard (t.a.)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

・ロト ・四ト ・ヨト ・ヨト

Machine learning

Ξ.

CONLL-X datasets

	C06	Mar08	Ours
Arabic	66.91	69.12	70.12
Danish	84.79	86.79	86.47
Dutch	79.19	81.51	81.87
German	87.34	88.68	89.08
Japanese	91.65	91.61	92.28
Portuguese	76.60	88.30	88.76
Slovene	76.12	76.72	77.98
Spanish	82.25	83.73	84.67
Swedish	84.58	85.16	85.92
Turkish	65.68	65.21	67.42

Logic and machine learning? (2do-list)

Checked items:

• Model-checking is used to verify labeled data.

Logic and machine learning? (2do-list)

Checked items:

- Model-checking is used to verify labeled data.
- Crude repair is used to improve parsing quality.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Logic and machine learning? (2do-list)

Checked items:

- Model-checking is used to verify labeled data.
- Crude repair is used to improve parsing quality.
- Finally, logic is used to study the properties of linguistic theories (Blackburn and Spaan, 1993; Søgaard, 2007).

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Logic and machine learning? (2do-list)

Checked items:

- Model-checking is used to verify labeled data.
- Crude repair is used to improve parsing quality.
- Finally, logic is used to study the properties of linguistic theories (Blackburn and Spaan, 1993; Søgaard, 2007).

Non-checked items:

• Transition-based dependency parsing in Cross-style probabilistic modal logic.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ つ へ つ

Logic and machine learning? (2do-list)

Checked items:

- Model-checking is used to verify labeled data.
- Crude repair is used to improve parsing quality.
- Finally, logic is used to study the properties of linguistic theories (Blackburn and Spaan, 1993; Søgaard, 2007).

- Transition-based dependency parsing in Cross-style probabilistic modal logic.
- Learning crude repair functions.

うして ふゆう ふほう ふほう ふしつ

Logic and machine learning? (2do-list)

Checked items:

- Model-checking is used to verify labeled data.
- Crude repair is used to improve parsing quality.
- Finally, logic is used to study the properties of linguistic theories (Blackburn and Spaan, 1993; Søgaard, 2007).

- Transition-based dependency parsing in Cross-style probabilistic modal logic.
- Learning crude repair functions.
- Modal characterizations of mildly non-projective dependency grammars.

Logic and machine learning? (2do-list)

Checked items:

- Model-checking is used to verify labeled data.
- Crude repair is used to improve parsing quality.
- Finally, logic is used to study the properties of linguistic theories (Blackburn and Spaan, 1993; Søgaard, 2007).

- Transition-based dependency parsing in Cross-style probabilistic modal logic.
- Learning crude repair functions.
- Modal characterizations of mildly non-projective dependency grammars.
- Model-checking polyadic dynamic logic.

▲ロト ▲母ト ▲ヨト ▲ヨト ヨー のくぐ

Data-driven dependency parsing in collaborative research projects at CST

- QUESTION ANSWERING:
 - MOSES (university websites); led by Patrizia Paggio.
 - ESICT (patient diagnosis); led by Bente Maegaard.
- Machine translation:
 - ESSMT (practical); led by me.
 - EMCOTT (theoretical; under review); led by Jürgen Wedekind and me.