
How to Verify Privacy Automatically
Laouen Fernet1, *, Sebastian Mödersheim1 and Luca Viganò2

1 DTU Compute, Kgs. Lyngby, Danmark * lpkf@dtu.dk
2 KCL Informatics, London, United Kingdom

How to Verify Privacy Automatically
Laouen Fernet1, *, Sebastian Mödersheim1 and Luca Viganò2

1 DTU Compute, Kgs. Lyngby, Danmark * lpkf@dtu.dk
2 KCL Informatics, London, United Kingdom

1. Problem: Privacy in Security Protocols

With the current trend of increasing digitalization, more and
more applications use private information to provide various services.

� Health ê Payment B Transport Ñ Voting

We need strong guarantees that digital applications respect privacy.
We focus on applications written as security protocols: participants
exchange messages, often using cryptography.

Alice Bob

• •

••

• •

“I’m Alice”

{Nonce}Alice

Nonce

Example of a simple security protocol

We use (α, β)-privacy to characterize privacy with logical formulas.
α is the payload: information intentionally disclosed.
β is the technical information: intruder knowledge.
Example: α ≡ x1, . . . , xn ∈ Agent → unlinkability goal
If β ⇒ x1 = Alice or x2 = x3, then it is a violation of privacy:
the intruder has learned more than allowed.

2. Objective: Automated Verification

The specification of a protocol defines several atomic transactions.
Transition system: executing a transaction leads to the next state.
In each state, a pair (α, β) defines the privacy goals and intruder
knowledge.

Our objective: decide privacy expressed as a reachability
property.

Main challenge: verify an infinite state space.
1.The intruder has infinitely many choices when sending messages.
→ We use a symbolic representation with constraint systems.

2. Some transaction can always be executed.
→ We only look at a bounded number of transactions.

Our decision procedure:
1. Execute a transaction.
2. Saturate the intruder knowledge by decrypting and comparing
messages.

3.Verify (α, β)-privacy in the symbolic states reached.
4.Repeat until the protocol execution meets the bound specified.

3. Results: Tool Support

Main result: decision procedure along with proofs of correctness.
Implementation: we now have a prototype tool.

Input: specification of the protocol with a bound.
Output:
• either attack trace: reachable state with a violation of privacy.
•or confirmation that the privacy goals are achieved.

Case studies: models for several protocols and analyses of privacy
guarantees.
•Basic Hash: unlinkability holds but no forward privacy.
•OSK: known attacks on unlinkability.
• ICAO 9303 BAC: known attacks on unlinkability in some variants
+ unlinkability holds in the corrected variants.

•Private Authentication: we found the strongest privacy goal,
which is subtle and goes beyond unlinkability.

Conclusion: (α, β)-privacy allows for declarative and intuitive
specification of privacy and automated verification is practical.

. . .
∗ x in {a , b , i } . # Pick an agent
∗ y in {yes , no } . # F l i p a co i n
receive M.
try N = dc r yp t (i n v (pk (s)) ,M) in

i f y = yes then
new R. send c r y p t (pk (x) , p a i r (yes ,N) ,R)

else
new R. send c r y p t (pk (x) , no ,R)

. . .

Input ✓

...

p

symb
olic e

xecut
ion

intruder
deduction

Computation

Pr i v a c y v i o l a t i o n found a f t e r 2 t r a n s a c t i o n s .
a l pha : x in {a , b , i } and y in {yes , no}
beta im p l i e s : x = i and y = no
(a lpha , beta)− p r i v a c y does not ho ld f o r the
s t a t e where the i n t r u d e r has s en t
c r y p t (pk (s) ,R1 , R2) and has s u c c e s s f u l l y
d e c r yp t ed the r e p l y from the s e r v e r .
. . .

Output

