
1. Problem: privacy in security protocols

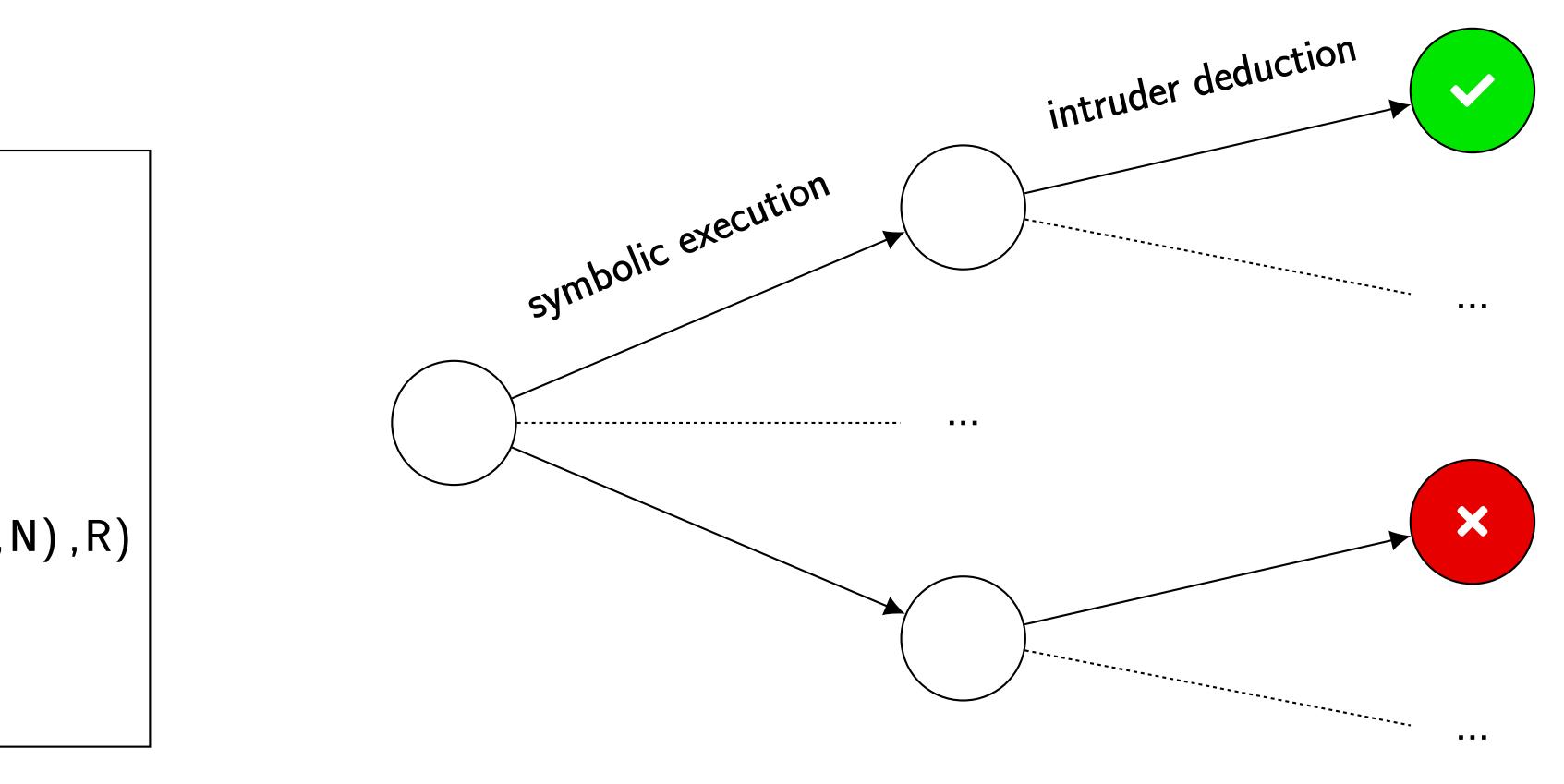
Current trend of **increasing digitalization**: more and cations use private information to provide various services

We need strong guarantees that digital applications response We focus on applications written as security protocols: p exchange messages, often using cryptography.

Example of a simple security protocol

We use (α, β) -privacy to characterize privacy with logical α is the **payload**: information intentionally disclosed. β is the **technical information**: intruder knowledge. Example: $\alpha \equiv x_1, \ldots, x_n \in Agent \rightarrow unlinkability goal$ If $\beta \Rightarrow x_1 = A$ ice or $\beta \Rightarrow x_2 = x_3$, then it is a violation of **privacy**: the intruder has learned more than allowed.

Input


```
* x in {a,b,i}. # Pick an agent
* y in {yes,no}. # Flip a coin
receive M.
try N = dcrypt(inv(pk(s)),M) in
  if y = yes then
   new R. send crypt(pk(x), pair(yes,N),R)
  else
   new R. send crypt(pk(x),no,R)
. . .
```

Deciding, typing and composing (α, β) -privacy Laouen Fernet^{1, *}, Sebastian Mödersheim¹ and Luca Viganò² ¹ DTU Compute, Technical University of Denmark, DK ^{*} lpkf@dtu.dk ² Informatics, King's College London, UK

2. Objective: automated verification

more appli-	Specification of a protocol: transition sys
S.	atomic transaction leads to the next state (α, β) defines the privacy goals and intrude
	(lpha,eta) defines the privacy goals and intrude
J Voting	Our objective: decide privacy express
ect privacy.	property.
oarticipants	Main challenge: verify an infinite state s
	1. The intruder has infinitely many choices
	\rightarrow We use a symbolic representation
	2. Some transaction can always be executed
	ightarrow We only look at a bounded numbe
	Our decision procedure in short:
	1. Execute a transaction.
	 Saturate the intruder knowledge by decomposition messages.
al formulas.	3. Verify (α, β) -privacy in the symbolic stat
	4. Repeat until we reach the bound specifie

Computation

stem where executing an ate. In each state, a pair er knowledge.

sed as a reachability

space.

when sending messages. with constraint systems.

of transactions.

crypting and comparing

tes reached. ed.

3. Theoretical results and tool support

Main outcomes:

- tool.
- secure then so is the entire system.

Input: specification of the protocol with a bound. **Output**:

- or confirmation that the privacy goals are achieved.

Case studies: Basic Hash, OSK, BAC, Private Authentication, NSL, simplified TLS.

Conclusion: (α, β) -privacy allows for **declarative and intuitive** specification of privacy and automated verification is practical.

alpha: x in {a,b,i} and y in {yes,no} beta implies: x = i and y = nostate where the intruder has sent crypt(pk(s),R1,R2) and has successfully decrypted the reply from the server. . . .

1. decision procedure, with proofs of **correctness**, and **prototype**

2. typing result: under certain conditions, we do not lose attacks if we restrict the intruder to sending only well-typed messages. 3. compositionality result: given a specification of components of a system and their **abstract interfaces**, if each component is

either attack trace: reachable state with a violation of privacy.

Output

```
Privacy violation found after 2 transactions.
(alpha, beta)-privacy does not hold for the
```