

Deciding Fragments of $(\alpha, \beta, \gamma, \delta)$ -Privacy

MSc Thesis - Laouen Fernet - s192612@dtu.dk

Introduction Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Conclusion

Introduction Privacy

Relevant in many fields, a security goal of its own:

- electronic voting, digital health information, mobile payments...
- distributed systems in general
- more than just secrecy

De facto standard = indistinguishability

- given two possible worlds, can they be distinguished?
- automated verification is difficult
- specification of goals is not intuitive
- there is no guarantee that every privacy aspect has been covered

 (α,β) -privacy = logical approach with many advantages

- declarative and intuitive
- recast privacy as a reachability problem
- decidable fragments: possibility for automated verification

Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Conclusion

Based on the paper (α, β) -*Privacy* (Mödersheim and Viganó, ACM Trans. Priv. Secur. 22, 2019)

Formalisation in Herbrand logic:

- Modelling of the intruder
- Declaration of (α, β) -privacy goals

Formal verification of privacy in communication protocols:

- Procedure for decidable fragments
- Witness of privacy violations, if any

Preliminaries Table of Contents

Introduction

Preliminaries Herbrand Logic

Frames (α, β) -privacy

Modelling the intruder

Decision procedure

Conclusion

 $\langle \textit{Term} \rangle$::= $\langle \textit{Variable} \rangle | \langle \textit{Function} \rangle (\langle \textit{Term} \rangle, ..., \langle \textit{Term} \rangle)$

Preliminaries Table of Contents

Introduction

 $\begin{array}{c} \textbf{Preliminaries} \\ \textbf{Herbrand Logic} \\ \textbf{Frames} \\ (\alpha,\beta) \textbf{-privacy} \end{array}$

Modelling the intruder

Decision procedure

Frames encode the knowledge of messages based on the protocol specification

$$F = \{ |\mathsf{I}_1 \mapsto t_1, \dots, \mathsf{I}_k \mapsto t_k | \}$$

- I_i: distinguished constant (label)
- t_i : term without any destructor or verifier

domain of F: { I_1, \ldots, I_k } image of F: { t_1, \ldots, t_k }

Preliminaries

Recipes and generable terms

Frames allow to reason about actions taken and not simply messages themselves

Set of recipes: least set that contains I_1, \ldots, I_k and that is closed under cryptographic operators

 $F \{ | r | \}$: application of recipe r to frame F

t is generable: there is *r* such that $t = F \{ | r | \}$

Preliminaries Static equivalence

 $F_1 \sim F_2$:

$\forall (r_1, r_2), \mathit{\textit{F}}_1 \{\!\!\mid r_1 \,\!\!\mid \} \approx \mathit{\textit{F}}_1 \{\!\!\mid r_2 \,\!\!\mid \} \iff \mathit{\textit{F}}_2 \{\!\!\mid r_1 \,\!\!\mid \} \approx \mathit{\textit{F}}_2 \{\!\!\mid r_2 \,\!\!\mid \}$

Can be axiomatised in Herbrand logic

Example:

$$\mathcal{F}_1 = \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, t_1), \mathbf{l}_2 \mapsto k, \mathbf{l}_3 \mapsto t_1 | \}$$

$$\mathcal{F}_2 = \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, t_2), \mathbf{l}_2 \mapsto k, \mathbf{l}_3 \mapsto t_2 | \}$$

 $F_1 \sim F_2$ because $t_1 \neq t_2$ but no way to distinguish the frames

Preliminaries Table of Contents

Introduction

Preliminaries

Herbrand Logic Frames (α, β) -privacy

Modelling the intruder

Decision procedure

Conclusion

Formula α : high-level information which is voluntarily disclosed, based on Σ_0

 Σ_0 contains only non-technical information

Formula β : includes the technical information, e.g. cryptographic messages exchanged during the execution of the protocol

 $\Sigma_0 \subsetneq \Sigma$

Violation of privacy: logically deriving information from β that does not follow from α alone

Preliminaries

Message-analysis problem

 θ : a model of α (interpretation of symbols making the formula true)

 $struct = \{ | \mathbf{I}_1 \mapsto t_1, \dots, \mathbf{I}_k \mapsto t_k | \}$: a frame for some $t_1, \dots, t_k \in \mathcal{T}_{\Sigma}(fv(\alpha))$ (structural knowledge)

 $concr = \theta(struct)$: one execution of the protocol (concrete knowledge)

 $\beta \equiv MsgAna(\alpha, struct, \theta)$: knowledge of α and $concr \sim struct$

Preliminaries Idea of the procedure

- Study a message-analysis problem
- Generate a formula ϕ based on static equivalence of frames
- ϕ encodes relations between variables (e.g. $x = z \land y \neq h(x) \ldots$)
- Check if ϕ derives from α

Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Conclusion

Table of Contents

Introduction

Preliminaries

Modelling the intruder Intruder theory Frames with shorthands

Decision procedure

Conclusion

Intruder theory

- $\Sigma_{pub} \subseteq \Sigma_f$: public functions, i.e. the intruder can apply them
- *V*_{pub} ⊆ *V*: variables with public range, i.e. the intruder knows all possible values of the variables instantiation
- $\Sigma_{op} \subseteq \Sigma_f$: cryptographic operators (constructors, destructors, verifiers)
- · Set of algebraic equations: characterises the operators

Convergent intruder theory I

Requirements for the algebraic equations:

- destr $(k_1, \ldots, k_m, \operatorname{constr}(t_1, \ldots, t_n)) \approx t_i$
- $\operatorname{verif}(k_1,\ldots,k_m,\operatorname{constr}(t_1,\ldots,t_n)) \approx \operatorname{yes}$
- Can have 0 keys (m = 0)
- Every destructor has a corresponding verifier
- No ambiguous equations: either different constructor or same arguments

Convergent intruder theory II

 $\approx:$ least relation from the algebraic equations

Convergent rewriting system: $LHS \rightarrow RHS$

Analysing one term: required keys and derivable subterms

$$ana(\operatorname{constr}(t_1, \dots, t_n)) = (\{k_1, \dots, k_m\}, \\ \{(\operatorname{destr}, t_i) \mid \\ \operatorname{destr}(k_1, \dots, k_m, \operatorname{constr}(t_1, \dots, t_n)) \approx t_i\})$$

Example cryptographic operators

Constructors	Destructors	Verifiers	Properties
pub, priv			
crypt	dcrypt	vcrypt	$dcrypt(priv(s),crypt(pub(s),r,t)) \approx t$
			$vcrypt(priv(s), crypt(pub(s), r, t)) \approx yes$
sign	retrieve	vsign	$retrieve(sign(priv(s),t)) \approx t$
			$vsign(pub(s),sign(priv(s),t)) \approx yes$
scrypt	dscrypt	vscrypt	$dscrypt(k,scrypt(k,t)) \approx t$
			vscrypt(k,scrypt(k,t))pproxyes
pair	proj _i	vpair	$proj_i(pair(t_1,t_2)) pprox t_i$
			$vpair(pair(t_1,t_2))pproxyes$
h			

Table: Example set Σ_{op}

Table of Contents

Introduction

Preliminaries

Modelling the intruder Intruder theory Frames with shorthands

Decision procedure

Conclusion

Frame with shorthands I

Frames with shorthands extend the previous definition of frames

$$\mathcal{F}' = \{ | \mathsf{I}_1 \mapsto t_1, \dots, \mathsf{I}_k \mapsto t_k, \mathsf{m}_1 \mapsto s_1, \dots, \mathsf{m}_n \mapsto s_n | \}$$

- $F = \{ | \mathsf{I}_1 \mapsto t_1, \dots, \mathsf{I}_k \mapsto t_k | \}$: frame
- m_j: recipes over the I_i
- s_j : terms that do not contain any I_i
- $F\{|\mathsf{m}_j|\} \approx s_j$
- $m_1 \mapsto s_1, \ldots, m_n \mapsto s_n$: shorthands

Frame with shorthands II

Example:

$$F = \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, t), \mathbf{l}_2 \mapsto k | \}$$

$$F' = \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, t), \mathbf{l}_2 \mapsto k, \mathsf{dscrypt}(\mathbf{l}_2, \mathbf{l}_1) \mapsto t | \}$$

 ${\it F} \left\{ |\operatorname{dscrypt}(\mathsf{I}_2,\mathsf{I}_1)| \right\} = \operatorname{dscrypt}(k,\operatorname{scrypt}(k,t)) \approx t = {\it F}' \left\{ |\operatorname{dscrypt}(\mathsf{I}_2,\mathsf{I}_1)| \right\}$

Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Conclusion

Illustration

Example:

$$\begin{split} \theta &= \{ x \mapsto \mathbf{0}, y \mapsto \mathbf{1}, z \mapsto \mathbf{0} \} \\ struct &= \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, x), \mathbf{l}_2 \mapsto \mathsf{scrypt}(k, y), \mathbf{l}_3 \mapsto \mathsf{scrypt}(k, z) | \} \\ concr &= \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, \mathbf{0}), \mathbf{l}_2 \mapsto \mathsf{scrypt}(k, 1), \mathbf{l}_3 \mapsto \mathsf{scrypt}(k, \mathbf{0}) | \} \end{split}$$

$$\alpha \equiv x, y, z \in \{\mathbf{0}, \mathbf{1}\} \land x + y + z = \mathbf{1} \qquad \beta \equiv \mathit{MsgAna}(\alpha, \mathit{struct}, \theta)$$

Intruder deduction:

 $concr\{|I_1|\} = concr\{|I_3|\}$: two messages are equal at the concrete level $struct\{|I_1|\} = struct\{|I_3|\}$: they must also be equal at the structural level x = z: violation of privacy!

Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure Composition

Analysis Relations between variables

Conclusion

Composition in a ground frame I

Input: concr, t**Output:** compose(concr, t) = set of recipes over labels of concr to compose t

Two methods to compose the ground term:

- use a label directly if it maps to the term
- if the top-level is a public function, try to compose all arguments

Decision procedure

Composition in a ground frame II

Example:

$$concr = \{ | \mathsf{I}_1 \mapsto a, \mathsf{I}_2 \mapsto \mathsf{h}(a), \mathsf{I}_3 \mapsto \mathsf{scrypt}(a, c) [$$

 $compose(concr, h(a)) = \{h(I_1), I_2\}$ The intruder knows two ways to compose h(a)

 $compose(concr, c) = \{\}$ The intruder cannot compose c, the encrypted term needs to be decrypted first

Composition in a structural frame I

Input: θ , *struct*, *t* **Output:** *composeUnder*(θ , *struct*, *t*) = set of pairs (recipe, substitution) to compose *t*

Three methods to compose the term:

- try to use labels with a corresponding substitution
- if the term is a variable with public range, its concrete value $\theta(t)$ (a constant) is a recipe under the substitution $\{t \mapsto \theta(t)\}$
- if the top-level is a public function, try to compose all arguments (and combine the substitutions)

Decision procedure

Composition in a structural frame II

Example:

$$\theta = \{ x \mapsto a, y \mapsto b \}$$

struct = {| I₁ \dots x, I₂ \dots h(y) |}

 $composeUnder(\theta, struct, h(y)) = \{(I_1, \{x \mapsto h(y)\}), (I_2, \varepsilon), (h(I_1), \{x \mapsto y\})\}$ The intruder knows three ways to compose h(y) (substitution = constraints for the recipe to work)

Recipes may generate different terms in $concr = \theta(struct)!$

Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Composition Analysis Relations between variables

Conclusion

Objective

- We know how to find recipes with composition only
- We want to all generable terms using only composition

 \longrightarrow Thus we need to perform *analysis steps*: decrypt messages, open signed messages, deserialise etc.

Analysis of a structural frame I

Input: θ , *struct* **Output:** *analyse*(θ , *struct*) = analysed frame + set of substitutions inconsistent with *concr* ~ *struct*

Analysis of a structural frame II

Analysis of a mapping I $\mapsto t \in struct$: ana(t) = (K, FT) gives required keys and derivable terms

- If the analysis fails in *concr*, i.e. one key cannot be composed, no term can be derived. But if all keys can be composed in *struct*, the substitutions allowing this are inconsistent with *concr* ~ *struct*.
- If the analysis succeeds in *concr*, i.e. all keys can be composed, then it succeeds in *struct* and derivable terms are added. The destructor attached to a term is used to create a shorthand.
- Repeat until no more new derivable terms can be added (frame saturation).

Analysis of a structural frame III Example 1:

$$\begin{split} \theta &= \{ x \mapsto s, y \mapsto r, z \mapsto t, u \mapsto s \} \\ struct &= \{ |\mathsf{I}_1 \mapsto \mathsf{crypt}(\mathsf{pub}(x), y, z), \mathsf{I}_2 \mapsto \mathsf{pair}(\mathsf{priv}(u), \mathsf{pub}(u)) | \} \end{split}$$

$$\begin{aligned} analyse(\theta, struct) &= (\{|\mathsf{l}_1 \mapsto \mathsf{crypt}(\mathsf{pub}(x), y, z), \\ \mathsf{l}_2 \mapsto \mathsf{pair}(\mathsf{priv}(u), \mathsf{pub}(u)), \\ \mathsf{proj}_1(\mathsf{l}_2) \mapsto \mathsf{priv}(u), \\ \mathsf{proj}_2(\mathsf{l}_2) \mapsto \mathsf{pub}(u), \\ \mathsf{dcrypt}(\mathsf{proj}_1(\mathsf{l}_2), \mathsf{l}_1) \mapsto z |\}, \{\}) \end{aligned}$$

Decision procedure

Analysis of a structural frame IV

Example 2:

$$\theta = \{x \mapsto \text{secret}, y \mapsto k'\}$$

$$struct = \{|\mathsf{l}_1 \mapsto \text{scrypt}(k, x), \mathsf{l}_2 \mapsto y|\}$$

$$analyse(\theta, struct) = (struct, \{\{y \mapsto k\}\})$$

The intruder cannot decrypt the message because analyis fails in *concr*. But they learn that y is not the key.

Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Composition Analysis Relations between variables

Conclusion

Relations between variables

- **1** Try to compose terms in *concr* in different ways by calling *compose*:
 - Pairs of recipes for the same term must generate a unique term in *struct* because *concr* ~ *struct*. → find equalities (x = t ∧ y = t'...).
- 2 Try to compose terms in *struct* in different ways by calling *composeUnder*:
 - Check pairs (label, recipe) for the same term.
 - If they generate a unique term in *concr* as well, nothing to deduce (it comes from *concr* \sim *struct* and has been found previously).
 - If they generate different terms in *concr*, the substitution attached to the recipe is inconsistent with *concr* ~ *struct*. → find inequalities (x ≠ h(z) ∨ y ≠ 0...)

3 ϕ = conjunction of equalities and inequalities = relations between variables

Relations between variables

Recall the illustration example:

$$\begin{split} \theta &= \{ x \mapsto \mathbf{0}, y \mapsto \mathbf{1}, z \mapsto \mathbf{0} \} \\ struct &= \{ \mid \mathbf{I}_1 \mapsto \mathsf{scrypt}(k, x), \mathbf{I}_2 \mapsto \mathsf{scrypt}(k, y), \mathbf{I}_3 \mapsto \mathsf{scrypt}(k, z) \mid \} \\ concr &= \{ \mid \mathbf{I}_1 \mapsto \mathsf{scrypt}(k, \mathbf{0}), \mathbf{I}_2 \mapsto \mathsf{scrypt}(k, 1), \mathbf{I}_3 \mapsto \mathsf{scrypt}(k, \mathbf{0}) \mid \} \end{split}$$

$$\alpha \equiv x, y, z \in \{\mathbf{0}, \mathbf{1}\} \land x + y + z = \mathbf{1} \qquad \beta \equiv MsgAna(\alpha, struct, \theta)$$

With our decision procedure:

- We analyse *struct*
- We generate $\phi \equiv x = z \land x \neq y$
- $\alpha \not\models \phi$: violation of privacy!

Relations between variables

 ϕ is enough to decide privacy: we only need to check whether $\alpha \models \phi$

If $\alpha \models \phi$: the protocol is proven to respect privacy

If $\alpha \not\models \phi$: the protocol is not secure and we have a witness

Conclusion Table of Contents

Introduction

Preliminaries

Modelling the intruder

Decision procedure

Conclusion

Conclusion

Recap

Current state:

- Standard approach to privacy has limitations
- (α, β) -privacy overcomes them
- We have a decision procedure for message-analysis problems (protocols without and with branching), already implemented in Haskell

Objectives for the future:

- Support more general algebraic theories (e.g. commutativity of exponentiation)
- Investigate fragments outside of message-analysis problems
- Apply to real protocols
- Develop further implementation

Alphabet

$\Sigma = \Sigma_f \uplus \Sigma_i \uplus \Sigma_r$

- Σ_f : free function symbols
- Σ_i : interpreted function symbols
- Σ_r : relation symbols

 f^n : n-ary function c^0 : constant

 \mathcal{V} : variable symbols $\mathcal{T}_{\Sigma}(\mathcal{V})$: terms built from Σ and \mathcal{V}

 Σ_{op} : cryptographic operators (constructors, destructors, verifiers)

Herbrand universe

 $\approx:$ congruence relation modelling algebraic properties

Example 1: for $f^2 \in \Sigma_f, \forall x, y.f(x, y) \approx f(y, x)$

 $\forall t \in \mathcal{T}_{\Sigma_f}, \llbracket t \rrbracket_{\approx} = \{t' \in \mathcal{T}_{\Sigma_f} \mid t \approx t'\}:$ equivalence class

 $U = \{ \llbracket t \rrbracket_{\approx} \mid t \in \mathcal{T}_{\Sigma_f} \}$: Herbrand universe

Example 2: for $\Sigma_f = \{x^0, s^1\}$ and \approx syntactic equality, $U = \{x, s(x), s(s(x)), \dots\}$

Interpretation

 Σ_f -algebra $\mathcal{A} = \mathcal{T}_{\Sigma_f} / pprox$

To $f^n \in \Sigma_f$, we associate $f^{\mathcal{A}} : U^n \to U$ such that $f^{\mathcal{A}}(\llbracket t_1 \rrbracket_{\approx}, \dots, \llbracket t_n \rrbracket_{\approx}) = \llbracket f(t_1, \dots, t_n) \rrbracket_{\approx}$

Interpretation \mathcal{I} in Herbrand logic:

- for $f^n \in \Sigma_f$ and $t_1, \ldots, t_n \in U$, $\mathcal{I}(f(t_1, \ldots, t_n)) = f^{\mathcal{A}}(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n))$
- for $f^n \in \Sigma_i$ and $t_1, \ldots, t_n \in U$, $\mathcal{I}(f[t_1, \ldots, t_n]) = \mathcal{I}(f)(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n))$
- for $r^n \in \Sigma_r$, $\mathcal{I}(r) \subseteq U^n$
- for $x \in \mathcal{V}$, $\mathcal{I}(x) \in U$

DTU

Models

Interpretation $\mathcal I$ models formula ϕ is written $\mathcal I \models \phi$

$$\begin{array}{lll} \mathcal{I} \models s = t & \quad \text{iff} \quad \mathcal{I}(s) = \mathcal{I}(t) \\ \mathcal{I} \models r(t_1, \dots, t_n) & \quad \text{iff} \quad (\mathcal{I}(t_1), \dots, \mathcal{I}(t_n)) \in \mathcal{I}(r) \\ \mathcal{I} \models \neg \phi & \quad \text{iff} \quad \text{not} \ \mathcal{I} \models \phi \\ \mathcal{I} \models \phi \land \psi & \quad \text{iff} \quad \mathcal{I} \models \phi \text{ and } \mathcal{I} \models \psi \\ \mathcal{I} \models \exists x.\phi & \quad \text{iff} \quad \text{there is} \ c \in U \text{ such that} \ \mathcal{I}\{x \mapsto c\} \models \phi \end{array}$$

 $Sat(\phi)$: ϕ has a model

Interesting consequence

 $\alpha \in \mathcal{L}_{\Sigma_0}(\mathcal{V})$: payload formula

 $\beta \in \mathcal{L}_{\Sigma}(\mathcal{V})$: technical information formula

 $\beta \models \alpha$ and $fv(\alpha) = fv(\beta)$ and both α and β are consistent

 $\alpha' \in \mathcal{L}_{\Sigma_0}(fv(\alpha))$ is an interesting consequence of β (with respect to α) if $\beta \models \alpha'$ but $\alpha \not\models \alpha'$

We say that β respects the privacy of α if it has no interesting consequences, and that β violates the privacy of α otherwise

Axioms I

DTU

$$\begin{split} \phi_{frame}(F) &\equiv (\forall x.gen_F(x) \iff (x \in \{\mathsf{l}_1, \dots, \mathsf{l}_k\} \lor \\ &\bigvee_{\substack{f^n \in \Sigma_{pub}}} \exists x_1 \dots x_n. \\ &x = f(x_1, \dots, x_n) \land gen_F(x_1) \land \dots \land gen(x_n))) \\ &\wedge \\ &(kn_F[\mathsf{l}_1] = t_1 \land \dots \land kn_F[\mathsf{l}_k] = t_k) \\ &\wedge \\ &\bigwedge_{\substack{f^n \in \Sigma_{pub}}} (\forall x_1 \dots x_n.gen_F(x_1) \land \dots \land gen(x_n) \implies \\ &kn_F[f(x_1, \dots, x_n)] = f(kn_F[x_1], \dots, kn_F[x_n])) \end{split}$$

DTU Axioms II

Static equivalence

$F_1 \sim F_2$ iff $Sat(\phi_{frame}(F_1) \land \phi_{frame}(F_2) \land \phi_{F_1 \sim F_2})$

Message-analysis problem

Theorem

Let α be combinatoric, $\Theta = \{\theta_1, \dots, \theta_n\}$ be the models of α , and $\beta \equiv MsgAna(\alpha, F, \theta_1)$ for some $\theta_1 \in \Theta$.

Then, we have that (α, β) -privacy holds iff $\theta_1(F) \sim \ldots \sim \theta_n(F)$.

We can look at static equivalence of frames to decide privacy for such problems

Unification

Unification is a standard problem. We can call an algorithm *unify* returning a most general unifier for a set of equalities.

Example: $unify(\{(f(x, y), f(0, g(z))\}) = \{x \mapsto 0, y \mapsto g(z)\}$

 unify can be used to find relations between variables in the messages $(x = 0 \land y = g(z))$

Algorithm 1: Composition in a ground frame

Let *concr* be a ground frame and $t \in \mathcal{T}_{\Sigma}$.

- The call *compose*(*concr*, *t*) terminates.
- $\forall r \in compose(concr, t), concr\{|r|\} = t$
- Let r be a recipe containing only constructors such that $concr\{|r|\} = t$. Then $r \in compose(concr, t)$.

Algorithm 2: Composition in a structural frame

 $composeUnder(\theta, struct, t) =$ let $RU = \{(1, \sigma) \mid 1 \mapsto t' \in struct, \sigma = unify(t = t')\}$ in if t = x and x has a public range then $| RU \cup \{(\theta(x), \{x \mapsto \theta(x)\})\}$ else if $t = f(t_1, \ldots, t_n)$ and f is public then $RU \cup \{(f(r_1,\ldots,r_n),\sigma) \mid (r_1,\sigma_1) \in composeUnder(\theta, struct, t_1)\}$ $(r_n, \sigma_n) \in composeUnder(\theta, struct, t_n),$ $\sigma = unify(\sigma_1, \ldots, \sigma_n) \}$ else RU

Let θ be a substitution, *struct* be a frame and $t \in \mathcal{T}_{\Sigma}(\mathcal{V})$.

- The call $composeUnder(\theta, struct, t)$ terminates.
- $\forall (r, \sigma) \in composeUnder(\theta, struct, t), \sigma(struct\{ \mid r \mid \}) = \sigma(t)$
- Let *r* be a recipe and τ be a substitution such that $\tau(struct\{|r|\}) = \tau(t)$ and *r* contains only constructors. Then $\exists \sigma, (r, \sigma) \in composeUnder(\theta, struct, t) \text{ and } \sigma \leq \tau.$

DTU

Example

$$ana(t) = \begin{cases} (\{\text{priv}(s)\}, \{(\text{dcrypt}, t')\}) & \text{if } t = \text{crypt}(\text{pub}(s), r, t') \\ (\{k\}, \{(\text{dscrypt}, t')\}) & \text{if } t = \text{scrypt}(k, t') \\ (\{\}, \{(\text{retrieve}, t')\}) & \text{if } t = \text{sign}(p', t') \\ (\{\}, \{(\text{proj}_1, t_1), (\text{proj}_2, t_2)\}) & \text{if } t = \text{pair}(t_1, t_2) \\ (\{\}, \{\}) & \text{otherwise} \end{cases}$$

 $ana(\mathsf{scrypt}(k,\mathsf{pair}(t_1,t_2)) = (\{k\},\{(\mathsf{dscrypt},\mathsf{pair}(t_1,t_2))\}$

Algorithm 3: Analysis of a structural frame (wrapper)

Let θ be a substitution and struct be a frame.

- The call $analyse(\theta, struct)$ terminates.
- $\forall r, struct_{ana} \{ | r | \} \approx struct \{ | r | \}, \text{ where } (struct_{ana}, E) = analyse(\theta, struct).$
- For every recipe r, there exists a recipe r' containing only constructors such that $struct_{ana}\{|r'|\} \approx struct\{|r|\}$, where $(struct_{ana}, E) = analyse(\theta, struct)$.

 $(r_n, \sigma_n) \in compose Under(\theta, struct, k_n),$ pick $r \in compose(concr, \theta(k))$, compose Under(θ , struct, k_1), $\substack{t \notin struct } \| \mathbf{in} \\ \|, \{| t \mapsto t \} \cup D, E)$ $\in compose(concr, \theta(k_n))$ $compose(concr, \theta(k_1)),$ analyseRec(θ , LT, { $| | | \mapsto t | \cup H, D, E \cup E_n$ $\ldots, \sigma_n)\}$ in Algorithm 4: Analysis of a structural frame (recursive) $\{\} \in \{compose(concr, \theta(k)) \mid k \in K\}$ then $\downarrow t' \notin D$ in ÷ analyse $Rec(\theta, FT, H, \{| | \mapsto t \} \cup D, E)$ $[f(r_1, \dots, r_n, \mathsf{I}) \mapsto t'$ $(f, t') \in FT_{new},$ $LT \cup H, \{$ à $\sigma = unify(\sigma_1, ...$ $k \mid k \in K$, τ. Ψť. $FT \mid \forall r, r \vdash$ $=\{\sigma\mid (r_1,\sigma_1)\in$ Ψ pick r_n pick r_1 $concr = \theta(struct)$ in $\cup \{r \mapsto$ $analyseRec(\theta, LT_{new})$ let $struct = N \cup H \cup D$ $= \{(f,t') \in I \\ \{\} \text{ then } \}$ let { $|| \mapsto t| \cup LT = N$ ana(t) $\{k_1, ..., k_n\} = K$ $analyseRec(\theta, N, H, D, E)$ E_{new} let LT_n } then i (K, FT) FT_{new} $FT_{new} =$ $(H \cup D, E)$ et else ~ <u>ی</u> else if N = 1**1** else

Algorithm 5: Relations between variables

 $findRelations(\theta, struct) =$ let $(struct_{ana}, E) = analyse(\theta, struct)$ $concr_{ana} = \theta(struct_{ana})$ $pairs = pairsEcs(\{compose(concr_{ang}, t) \mid \exists I, I \mapsto t \in concr_{ang}\})$ $eqs = \{(struct_{ana} \{ | r_1 | \}, struct_{ana} \{ | r_2 | \}) \mid (r_1, r_2) \in pairs \}$ $ineqs = E \cup \{\sigma' \mid l \mapsto t \in struct_{and},$ $(r, \sigma') \in composeUnder(\theta, struct_{ana}, t),$ $l \neq r$. $concr_{ana}\{|1|\} \neq concr_{ana}\{|r|\}\}$ $\sigma = unify(eqs) \text{ in } \\ \sigma \land \bigwedge_{\tau \in ineas} \neg \tau$

Different problem

- 1 concrete frame *concr*;
- *n* structural frames $struct_1, \ldots, struct_n$;
- Only one correct $struct_i$: $concr = \theta(struct_1)$

Lifting results

Approach of the extended procedure:

- **1** Analyse each $struct_i$ separately.
- **2** Rule out possibilities where $struct_i \not\sim \theta(struct_1)$.
- **3** Generate ϕ_i (relations between variables) for the remaining possibilities.
- **4** Check if $\phi_1 \land \cdots \land \phi_n$ is a violation of privacy.