

Deciding Fragments of (*α, β, γ, δ*)**-Privacy**

MSc Thesis - Laouen Fernet - s192612@dtu.dk

[Introduction](#page-2-0) Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

[Introduction](#page-2-0) Privacy

Relevant in many fields, a security goal of its own:

- electronic voting, digital health information, mobile payments...
- distributed systems in general
- more than just secrecy

De facto standard = indistinguishability

- given two possible worlds, can they be distinguished?
- automated verification is difficult
- specification of goals is not intuitive
- there is no quarantee that every privacy aspect has been covered

 (α, β) -privacy = logical approach with many advantages

- declarative and intuitive
- recast privacy as a reachability problem
- decidable fragments: possibility for automated verification

[Preliminaries](#page-5-0) Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

Based on the paper (*α, β*)*-Privacy* (Mödersheim and Viganó, ACM Trans. Priv. Secur. 22, 2019)

Formalisation in Herbrand logic:

- Modelling of the intruder
- Declaration of $(α, β)$ -privacy goals

Formal verification of privacy in communication protocols:

- Procedure for decidable fragments
- Witness of privacy violations, if any

[Preliminaries](#page-5-0) Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0) [Herbrand Logic](#page-7-0) [Frames](#page-9-0) (*α, β*)[-privacy](#page-13-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

[Preliminaries](#page-5-0) Grammar

$$
\langle \textit{Term} \rangle \qquad ::= \langle \textit{Variable} \rangle \mid \langle \textit{Function} \rangle (\langle \textit{Term} \rangle, \ldots, \langle \textit{Term} \rangle)
$$

$$
\langle Formula \rangle ::= \langle Term \rangle = \langle Term \rangle
$$
\n
$$
| \langle Relation \rangle (\langle Term \rangle, ..., \langle Term \rangle)
$$
\n
$$
| \neg \langle Formula \rangle
$$
\n
$$
| \langle Formula \rangle \wedge \langle Formula \rangle
$$
\n
$$
| \exists \langle Variable \rangle. \langle Formula \rangle
$$

[Preliminaries](#page-5-0) Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0) [Herbrand Logic](#page-7-0) [Frames](#page-9-0) (*α, β*)[-privacy](#page-13-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

Frames encode the knowledge of messages based on the protocol specification

$$
\mathcal{F} = \{ \mathbf{l}_1 \mapsto t_1, \dots, \mathbf{l}_k \mapsto t_k \}
$$

- l*i* : distinguished constant (label)
- *ti* : term without any destructor or verifier

domain of $F: \{l_1, \ldots, l_k\}$ image of $F: \{t_1, \ldots, t_k\}$

[Preliminaries](#page-5-0)

Recipes and generable terms

Frames allow to reason about actions taken and not simply messages themselves

Set of recipes: least set that contains l_1, \ldots, l_k and that is closed under cryptographic operators

 $F\{ |r| \}$: application of recipe r to frame F

t is generable: there is *r* such that $t = F\{ |r| \}$

[Preliminaries](#page-5-0) Static equivalence

 $F_1 \sim F_2$:

$\forall (r_1, r_2), F_1 \$ ₁ $r_1 \geq F_1 \$ ₁ $r_2 \geq F_2 \$ ₁ $r_1 \geq F_2 \$ ₁ $r_2 \geq F_1$

Can be axiomatised in Herbrand logic

Example:

$$
F_1 = \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, t_1), \mathbf{l}_2 \mapsto k, \mathbf{l}_3 \mapsto t_1 \}
$$

$$
F_2 = \{ | \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, t_2), \mathbf{l}_2 \mapsto k, \mathbf{l}_3 \mapsto t_2 \}
$$

 $F_1 \sim F_2$ because $t_1 \neq t_2$ but no way to distinguish the frames

[Preliminaries](#page-5-0) Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Herbrand Logic](#page-7-0) [Frames](#page-9-0) (*α, β*)[-privacy](#page-13-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

Formula α : high-level information which is voluntarily disclosed, based on Σ_0

 Σ_0 contains only non-technical information

Formula *β*: includes the technical information, e.g. cryptographic messages exchanged during the execution of the protocol

 $\Sigma_0 \subset \Sigma$

Violation of privacy: logically deriving information from *β* that does not follow from *α* alone

[Preliminaries](#page-5-0)

Message-analysis problem

θ: a model of *α* (interpretation of symbols making the formula true)

 $struct = \{ |l_1 \mapsto t_1, \ldots, l_k \mapsto t_k | \}$: a frame for some $t_1, \ldots, t_k \in \mathcal{T}_{\Sigma}(f v(\alpha))$ (structural knowledge)

 $concr = \theta(struct)$: one execution of the protocol (concrete knowledge)

 $β ≡ MsaAna(α, struct, θ)$: knowledge of α and *concr* ∼ *struct*

[Preliminaries](#page-5-0) Idea of the procedure

- Study a message-analysis problem
- Generate a formula *φ* based on static equivalence of frames
- ϕ encodes relations between variables (e.g. $x = z \wedge y \neq h(x) \dots$)
- Check if *φ* derives from *α*

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0) [Intruder theory](#page-18-0) [Frames with shorthands](#page-23-0)

[Decision procedure](#page-26-0)

Intruder theory

- $\Sigma_{pub} \subseteq \Sigma_f$: public functions, i.e. the intruder can apply them
- $V_{pub} \subseteq V$: variables with public range, i.e. the intruder knows all possible values of the variables instantiation
- Σ*op* ⊆ Σ*^f* : cryptographic operators (constructors, destructors, verifiers)
- Set of algebraic equations: characterises the operators

Convergent intruder theory I

Requirements for the algebraic equations:

- destr $(k_1, \ldots, k_m, \text{constr}(t_1, \ldots, t_n)) \approx t_i$
- verif $(k_1, \ldots, k_m, \text{constr}(t_1, \ldots, t_n)) \approx$ yes
- Can have 0 keys $(m = 0)$
- Every destructor has a corresponding verifier
- No ambiguous equations: either different constructor or same arguments

Convergent intruder theory II

≈: least relation from the algebraic equations

Convergent rewriting system: *LHS* → *RHS*

Analysing one term: required keys and derivable subterms

$$
ana(\text{constr}(t_1, \ldots, t_n)) = (\{k_1, \ldots, k_m\},
$$

$$
\{(\text{destr}, t_i) \mid
$$

$$
\text{destr}(k_1, \ldots, k_m, \text{constr}(t_1, \ldots, t_n)) \approx t_i\})
$$

Example cryptographic operators

Table: Example set Σ*op*

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0) [Intruder theory](#page-18-0) [Frames with shorthands](#page-23-0)

[Decision procedure](#page-26-0)

Frame with shorthands I

Frames with shorthands extend the previous definition of frames

$$
F' = \{ |l_1 \mapsto t_1, \dots, l_k \mapsto t_k, m_1 \mapsto s_1, \dots, m_n \mapsto s_n | \}
$$

- $F = \{ | \mathbf{l}_1 \mapsto t_1, \dots, \mathbf{l}_k \mapsto t_k | \}$: frame
- m_i : recipes over the l_i
- *s^j* : terms that do not contain any l*ⁱ*
- $F{\{\mathsf{m}_j\}} \approx s_j$
- $m_1 \mapsto s_1, \ldots, m_n \mapsto s_n$: shorthands

Frame with shorthands II

Example:

$$
F = \{ | \mathbf{l}_1 \mapsto \text{scrypt}(k, t), \mathbf{l}_2 \mapsto k \} F' = \{ | \mathbf{l}_1 \mapsto \text{scrypt}(k, t), \mathbf{l}_2 \mapsto k, \text{dscrypt}(\mathbf{l}_2, \mathbf{l}_1) \mapsto t \}
$$

 $\mathcal{F}\{\text{dscrypt}(l_2, l_1)\}\ = \text{dscrypt}(k, \text{scrypt}(k, t)) \approx t = \mathcal{F}'\{\text{dscrypt}(l_2, l_1)\}\$

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

Illustration

Example:

$$
\theta = \{x \mapsto 0, y \mapsto 1, z \mapsto 0\}
$$

struct = {| $l_1 \mapsto$ scrypt $(k, x), l_2 \mapsto$ scrypt $(k, y), l_3 \mapsto$ scrypt (k, z) |}
concr = {| $l_1 \mapsto$ scrypt $(k, 0), l_2 \mapsto$ scrypt $(k, 1), l_3 \mapsto$ scrypt $(k, 0)$ |}

$$
\alpha \equiv x, y, z \in \{0, 1\} \land x + y + z = 1 \qquad \beta \equiv MsgAna(\alpha, struct, \theta)
$$

Intruder deduction:

concr{ $|I_1|$ } = *concr*{ $|I_3|$ }: two messages are equal at the concrete level $struct\{\vert\vert_{1}\}\$ = $struct\{\vert\vert_{3}\}\$: they must also be equal at the structural level $x = z$: violation of privacy!

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0) [Composition](#page-28-0)

[Analysis](#page-33-0) [Relations between variables](#page-39-0)

Composition in a ground frame I

Input: *concr, t* **Output:** $composite$ *compose* $(concr, t)$ = set of recipes over labels of $concr$ to compose t

Two methods to compose the ground term:

- use a label directly if it maps to the term
- if the top-level is a public function, try to compose all arguments

DTU \mathbf{H}

[Decision procedure](#page-26-0)

Composition in a ground frame II

Example:

$$
\mathit{concr} = \{\!\!\{\mathsf{I}_1 \mapsto a, \mathsf{I}_2 \mapsto \mathsf{h}(a), \mathsf{I}_3 \mapsto \mathsf{scrypt}(a,c) \,\!\!\}
$$

 $composite(concr, h(a)) = {h(l_1), l_2}$ The intruder knows two ways to compose h(*a*)

 $composite(concr, c) = \{\}$ The intruder cannot compose *c*, the encrypted term needs to be decrypted first

Composition in a structural frame I

Input: $θ$ *, struct, t* **Output:** $\textit{compositeUnder}(\theta, \textit{struct}, t) = \text{set of pairs}(\text{recipe, substitution})$ to compose *t*

Three methods to compose the term:

- try to use labels with a corresponding substitution
- if the term is a variable with public range, its concrete value *θ*(*t*) (a constant) is a recipe under the substitution $\{t \mapsto \theta(t)\}$
- if the top-level is a public function, try to compose all arguments (and combine the substitutions)

Composition in a structural frame II

Example:

$$
\theta = \{x \mapsto a, y \mapsto b\}
$$

struct = $\{|\mathbf{l}_1 \mapsto x, \mathbf{l}_2 \mapsto \mathbf{h}(y)\}$

 $\textit{composeUnder}(\theta, \textit{struct}, h(y)) = \{ (l_1, \{x \mapsto h(y)\}), (l_2, \varepsilon), (h(l_1), \{x \mapsto y\}) \}$ The intruder knows three ways to compose $h(y)$ (substitution = constraints for the recipe to work)

Recipes may generate different terms in $concr = \theta(struct)$!

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0) **[Composition](#page-28-0)** [Analysis](#page-33-0) [Relations between variables](#page-39-0)

Objective

- We know how to find recipes with *composition only*
- We want to *all* generable terms using only composition

−→ Thus we need to perform *analysis steps*: decrypt messages, open signed messages, deserialise etc.

Analysis of a structural frame I

Input: *θ, struct* **Output:** $analyse(\theta, struct) =$ analysed frame + set of substitutions inconsistent with *concr* ∼ *struct*

Analysis of a structural frame II

Analysis of a mapping $I \mapsto t \in struct$: $ana(t) = (K, FT)$ gives required keys and derivable terms

- If the analysis fails in *concr*, i.e. one key cannot be composed, no term can be derived. But if all keys can be composed in *struct*, the substitutions allowing this are inconsistent with *concr* ∼ *struct*.
- If the analysis succeeds in *concr*, i.e. all keys can be composed, then it succeeds in *struct* and derivable terms are added. The destructor attached to a term is used to create a shorthand.
- Repeat until no more new derivable terms can be added (frame saturation).

Analysis of a structural frame III Example 1:

$$
\theta = \{x \mapsto s, y \mapsto r, z \mapsto t, u \mapsto s\}
$$

struct = { | l_1 \mapsto $crypt(pub(x), y, z), l_2 \mapsto pair(priv(u), pub(u))$ }

$$
analysis(\theta, struct) = (\{ |l_1 \mapsto \text{crypt}(\text{pub}(x), y, z),
$$

$$
l_2 \mapsto \text{pair}(\text{priv}(u), \text{pub}(u)),
$$

$$
\text{proj}_1(l_2) \mapsto \text{priv}(u),
$$

$$
\text{proj}_2(l_2) \mapsto \text{pub}(u),
$$

$$
\text{dcrypt}(\text{proj}_1(l_2), l_1) \mapsto z \, | \}, \{ \})
$$

 \mathfrak{m}

[Decision procedure](#page-26-0)

Analysis of a structural frame IV

Example 2:

$$
\theta = \{x \mapsto \text{secret}, y \mapsto k'\}
$$

$$
struct = \{\vert \mathbf{l}_1 \mapsto \text{scrypt}(k, x), \mathbf{l}_2 \mapsto y \,\vert\}
$$

$$
analyze(\theta, struct) = (struct, \{\{y \mapsto k\}\})
$$

The intruder cannot decrypt the message because analyis fails in *concr*. But they learn that *y* is not the key.

Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

[Composition](#page-28-0) [Analysis](#page-33-0) [Relations between variables](#page-39-0)

Relations between variables

- 1 Try to compose terms in *concr* in different ways by calling *compose*:
	- Pairs of recipes for the same term must generate a unique term in *struct* because $\text{conc}_r \sim \text{struct.} \longrightarrow \text{find equalities } (x = t \land y = t' \dots).$
- **2** Try to compose terms in *struct* in different ways by calling *composeUnder*:
	- Check pairs (label, recipe) for the same term.
	- If they generate a unique term in *concr* as well, nothing to deduce (it comes from *concr* ∼ *struct* and has been found previously).
	- If they generate different terms in *concr*, the substitution attached to the recipe is inconsistent with $concr \sim struct. \longrightarrow$ find inequalities $(x \neq h(z) \vee y \neq 0...)$

 $\bullet \phi$ = conjunction of equalities and inequalities = relations between variables

Relations between variables

Recall the illustration example:

 $\theta = \{x \mapsto 0, y \mapsto 1, z \mapsto 0\}$ $struct = \{ \| \mathbf{l}_1 \mapsto \mathsf{scrypt}(k, x), \mathbf{l}_2 \mapsto \mathsf{scrypt}(k, y), \mathbf{l}_3 \mapsto \mathsf{scrypt}(k, z) \| \}$ $concr = \{ |I_1 \mapsto \mathsf{scrypt}(k,0), |I_2 \mapsto \mathsf{scrypt}(k,1), |I_3 \mapsto \mathsf{scrypt}(k,0) | \}$

$$
\alpha \equiv x, y, z \in \{0, 1\} \land x + y + z = 1 \qquad \beta \equiv MsgAna(\alpha, struct, \theta)
$$

With our decision procedure:

- We analyse *struct*
- We generate $\phi \equiv x = z \wedge x \neq y$
- $\alpha \not\models \phi$: violation of privacy!

Relations between variables

φ is enough to decide privacy: we only need to check whether $α \models φ$

If $\alpha \models \phi$: the protocol is proven to respect privacy

If $\alpha \not\models \phi$: the protocol is not secure and we have a witness

[Conclusion](#page-43-0) Table of Contents

[Introduction](#page-2-0)

[Preliminaries](#page-5-0)

[Modelling the intruder](#page-17-0)

[Decision procedure](#page-26-0)

[Conclusion](#page-43-0)

Recap

Current state:

- Standard approach to privacy has limitations
- \bullet (α , β)-privacy overcomes them
- We have a decision procedure for message-analysis problems (protocols without and with branching), already implemented in Haskell

Objectives for the future:

- Support more general algebraic theories (e.g. commutativity of exponentiation)
- Investigate fragments outside of message-analysis problems
- Apply to real protocols
- Develop further implementation

DTU 芸

Alphabet

$\Sigma = \Sigma_f \boxplus \Sigma_i \boxplus \Sigma_r$

- Σ_{*f*}: free function symbols
- \bullet Σ_i : interpreted function symbols
- Σ_{*r*}: relation symbols

 ${\sf f}^n$: n-ary function ${\sf c}^0$: constant

V: variable symbols $\mathcal{T}_{\Sigma}(\mathcal{V})$: terms built from Σ and \mathcal{V}

Σ*op*: cryptographic operators (constructors, destructors, verifiers)

Herbrand universe

≈: congruence relation modelling algebraic properties

Example 1: for $f^2 \in \Sigma_f$, $\forall x, y$. $f(x, y) \approx f(y, x)$

 $\forall t \in \mathcal{T}_{\Sigma_f}, \llbracket t \rrbracket_\approx = \{ t' \in \mathcal{T}_{\Sigma_f} \mid t \approx t' \} \mathpunct{:}$ equivalence class

 $U = \{\llbracket t \rrbracket_\approx \mid t \in \mathcal{T}_{\Sigma_f}\}$: Herbrand universe

Example 2: for $\Sigma_f = \{x^0, s^1\}$ and \approx syntactic equality, $U = \{x, s(x), s(s(x)), \ldots\}$

Interpretation

 Σ_f -algebra $\mathcal{A} = \mathcal{T}_{\Sigma_f}/\approx$

To f $^n \in \Sigma_f,$ we associate f ${}^{\mathcal{A}}:U^n \rightarrow U$ such that $\mathsf{f}^\mathcal{A}(\llbracket t_1 \rrbracket_\approx,\ldots,\llbracket t_n \rrbracket_\approx) = \llbracket \mathsf{f}(t_1,\ldots,t_n) \rrbracket_\approx$

Interpretation I in Herbrand logic:

- for $f^n \in \Sigma_f$ and $t_1, \ldots, t_n \in U$, $\mathcal{I}(f(t_1, \ldots, t_n)) = f^{\mathcal{A}}(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n))$
- for $f^n \in \Sigma_i$ and $t_1, \ldots, t_n \in U$, $\mathcal{I}(f[t_1, \ldots, t_n]) = \mathcal{I}(f)(\mathcal{I}(t_1), \ldots, \mathcal{I}(t_n))$
- for $r^n \in \Sigma_r$, $\mathcal{I}(r) \subseteq U^n$
- for $x \in \mathcal{V}$, $\mathcal{I}(x) \in U$

111

Models

Interpretation I models formula ϕ is written $\mathcal{I} \models \phi$

$$
\mathcal{I} \models s = t \quad \text{iff} \quad \mathcal{I}(s) = \mathcal{I}(t)
$$
\n
$$
\mathcal{I} \models r(t_1, \dots, t_n) \quad \text{iff} \quad (\mathcal{I}(t_1), \dots, \mathcal{I}(t_n)) \in \mathcal{I}(r)
$$
\n
$$
\mathcal{I} \models \neg \phi \quad \text{iff} \quad \text{not } \mathcal{I} \models \phi
$$
\n
$$
\mathcal{I} \models \phi \land \psi \quad \text{iff} \quad \mathcal{I} \models \phi \text{ and } \mathcal{I} \models \psi
$$
\n
$$
\mathcal{I} \models \exists x. \phi \quad \text{iff} \quad \text{there is } c \in U \text{ such that } \mathcal{I}\{x \mapsto c\} \models \phi
$$

Sat(ϕ): ϕ has a model

Interesting consequence

 $\alpha\in \mathcal{L}_{\Sigma_0}(\mathcal{V})$: payload formula

 $\beta \in \mathcal{L}_{\Sigma}(\mathcal{V})$: technical information formula

 $\beta \models \alpha$ and $f_\mathcal{U}(\alpha) = f_\mathcal{U}(\beta)$ and both α and β are consistent

 $\alpha' \in \mathcal{L}_{\Sigma_0}(fv(\alpha))$ is an interesting consequence of β (with respect to α) if $β |= α'$ but $α \not\models α'$

We say that β respects the privacy of α if it has no interesting consequences, and that *β* violates the privacy of *α* otherwise

Axioms I

 \mathbb{R}

$$
\phi_{frame}(F) \equiv (\forall x. gen_F(x) \iff (x \in \{1_1, ..., 1_k\}) \lor \qquad \qquad \downarrow \qquad \exists x_1 ... x_n.
$$
\n
$$
f^n \in \Sigma_{pub}
$$
\n
$$
x = f(x_1, ..., x_n) \land gen_F(x_1) \land \cdots \land gen(x_n)))
$$
\n
$$
\land
$$
\n
$$
(kn_F[1_1] = t_1 \land \cdots \land kn_F[1_k] = t_k)
$$
\n
$$
\land
$$
\n
$$
\bigwedge_{f^n \in \Sigma_{pub}} (\forall x_1 ... x_n \cdot gen_F(x_1) \land \cdots \land gen(x_n) \implies
$$
\n
$$
kn_F[f(x_1, ..., x_n)] = f(kn_F[x_1], ..., kn_F[x_n]))
$$

\mathbb{R}

Axioms II

$$
\begin{array}{lcl} \phi_{\mathit{F}_1 \sim \mathit{F}_2} & \equiv & (\forall x . gen_{\mathit{F}_1}(x) \iff gen_{\mathit{F}_2}(x)) \\ & \wedge & \\ & & (\forall x . y . gen_{\mathit{F}_1}(x) \wedge gen_{\mathit{F}_1}(y) \implies & \\ & & (kn_{\mathit{F}_1}[x] = kn_{\mathit{F}_1}[y] \iff kn_{\mathit{F}_2}[x] = kn_{\mathit{F}_2}[y])) \end{array}
$$

Static equivalence

$\mathcal{F}_1 \sim \mathcal{F}_2$ iff $Sat(\phi_{frame}(\mathcal{F}_1) \wedge \phi_{frame}(\mathcal{F}_2) \wedge \phi_{\mathcal{F}_1 \sim \mathcal{F}_2})$

Message-analysis problem

Theorem

Let α be combinatoric, $\Theta = {\theta_1, \ldots, \theta_n}$ be the models of α , and $\beta \equiv M \text{sg} A \text{na}(\alpha, \mathcal{F}, \theta_1)$ for some $\theta_1 \in \Theta$.

Then, we have that (α, β) -privacy holds iff $\theta_1(F) \sim \ldots \sim \theta_n(F)$.

We can look at static equivalence of frames to decide privacy for such problems

Unification

Unification is a standard problem. We can call an algorithm *unify* returning a most general unifier for a set of equalities.

Example: $unify(\{(f(x, y), f(0, q(z))\}) = \{x \mapsto 0, y \mapsto q(z)\}$

unify can be used to find relations between variables in the messages $(x = 0 \land y = q(z))$

Algorithm 1: Composition in a ground frame

```
compose(concr, t) =let R = \{ \text{I} \mid \text{I} \mapsto t \in \text{conc} \} in
if t = f(t_1, \ldots, t_n) and f is public then
      R \cup \{f(r_1, \ldots, r_n) \mid r_1 \in \textit{composite}(\textit{concr}, t_1),\}. . . ,
                                     r_n \in \text{composite}(\text{concr}, t_n)else
      R
```
Let *concr* be a ground frame and $t \in \mathcal{T}_{\Sigma}$.

- The call *compose*(*concr, t*) terminates.
- $\forall r \in \text{composite}(\text{concr}, t), \text{concr} \{ |r| \} = t$
- Let *r* be a recipe containing only constructors such that $concr\{ |r| \} = t$. Then $r \in \textit{composite}(\textit{concr}, t)$.

Algorithm 2: Composition in a structural frame

 $composeUnder(\theta, struct, t) =$ **let** $RU = \{(l, \sigma) \mid l \mapsto t' \in struct, \sigma = \text{unify}(t = t')\}$ in **if** $t = x$ and x has a public range **then** $\vert RU \cup \{(\theta(x), \{x \mapsto \theta(x)\})\}\rangle$ **else if** $t = f(t_1, \ldots, t_n)$ *and* f *is public* **then** $RU \cup \{(f(r_1, \ldots, r_n), \sigma) \mid (r_1, \sigma_1) \in \text{compositeUnder}(\theta, \text{struct}, t_1)\}$ *. . . ,* $(r_n, \sigma_n) \in \text{compositeUnder}(\theta, \text{struct}, t_n),$ $\sigma = \text{unif}_{\mathcal{U}}(\sigma_1, \ldots, \sigma_n)$ **else** *RU*

Let θ be a substitution, *struct* be a frame and $t \in \mathcal{T}_{\Sigma}(\mathcal{V})$.

- The call *composeUnder*(*θ, struct, t*) terminates.
- $\bullet \ \forall (r, \sigma) \in \text{compositeUnder}(\theta, \text{struct}, t), \sigma(\text{struct} \{ | r | \}) = \sigma(t)$
- Let *r* be a recipe and τ be a substitution such that $\tau(\text{struct} \{ | r | \}) = \tau(t)$ and *r* contains only constructors. Then $\exists \sigma, (r, \sigma) \in \text{compositeUnder}(\theta, \text{struct}, t)$ and $\sigma \leq \tau$.

111

Example

$$
ana(t) = \begin{cases} (\{ \text{priv}(s) \}, \{ (\text{dcrypt}, t') \}) & \text{if } t = \text{crypt}(\text{pub}(s), r, t') \\ (\{ k \}, \{ (\text{desrypt}, t') \}) & \text{if } t = \text{scrypt}(k, t') \\ (\{ \}, \{ (\text{retrieve}, t') \}) & \text{if } t = \text{sign}(p', t') \\ (\{ \}, \{ (\text{proj}_1, t_1), (\text{proj}_2, t_2) \}) & \text{if } t = \text{pair}(t_1, t_2) \\ (\{ \}, \{ \}) & \text{otherwise} \end{cases}
$$

 ana (scrypt $(k, pair(t_1, t_2)) = (\{k\}, \{(dscript{arypt}, pair(t_1, t_2))\}$

Algorithm 3: Analysis of a structural frame (wrapper)

 $analyse(\theta, struct) =$ *analyseRec*(*θ, struct,* {| |}*,* {| |}*,* {})

Let *θ* be a substitution and *struct* be a frame.

- The call *analyse*(*θ, struct*) terminates.
- $\forall r, struct_{ana} \{ | r \} \approx struct \{ | r \}$, where $(struct_{ana}, E) = analyse(\theta, struct).$
- \bullet For every recipe r , there exists a recipe r' containing only constructors ${\sf such\ that\ } struct_{ana}\{\mid r'\mid\} \approx struct\{\mid r\mid\},$ where $(struct_{ana}, E) = analyse(\theta, struct).$

 $(r_n, \sigma_n) \in \text{composeUnder}(\theta, struct, k_n),$ \cup {| *r* → *k* | *k* ∈ *K*,
 pick r ∈ *compose*(*concr*, $θ(k)$), $\{\sigma \mid (r_1,\sigma_1) \in \textit{compose Under}(\theta,struct, k_1),$ (*rn, σn*) ∈ *composeUnder*(*θ, struct, kn*)*, pick r* ∈ *compose*(*concr, θ*(*k*))*,* **let** $E_{new} = \{ \sigma \mid (r_1, \sigma_1) \in \text{compare}$ $\text{Under}(\theta, \text{struct}, k_1),$ $\forall t', r \mapsto t' \notin struct\ \mathsf{b} \ \mathsf{in} \\ and yseRec(\theta, LT_{new} \cup LT \cup H, \{\!\mid\!\mid\!\cdot\mid\!\mid\!\cdot\mid\!\cdot\mid\!\cdot\mid\!\mid\cup D, E\})$ *analyseRec*(*θ, LTnew* ∪ *LT* ∪ *H,* {| |}*,* {| l 7→ *t*|} ∪ *D, E*) $\cdots\\ pick\ r_n\in\mathit{composed}\mathit{corner},\theta(k_n))\,\}$ $\begin{array}{l} \{f(\tau_1,\ldots,\tau_n,{\bf 1}) \mapsto t' \mid \\ (f,t') \in FT_{new}, \\ pick\ r_1 \in \hbox{\it composed}(\hbox{\it concr}}, \theta(k_1)), \end{array}$ i *analyseRec*(θ , LT , $\{|| \mapsto i\} \cup H$, D , $E \cup E_{new}$) *analyseRec*(*θ, LT,* {| l 7→ *t*|} ∪ *H, D, E* ∪ *Enew*) *σ* = $unify(\sigma_1, \ldots, \sigma_n)\}$ in **Algorithm 4:** Analysis of a structural frame (recursive)
 $\mathbf{h} \mathbf{f} \mathbf{w} = \{\} \mathbf{h} \mathbf{f} \mathbf{m}$
 $\mathbf{h} \mathbf{w} = \{\} \mathbf{h} \mathbf{f} \mathbf{m}$
 $\mathbf{e} \mathbf{f} \mathbf{d} \mathbf{f} \mathbf{d} \mathbf{f} \mathbf{d} \mathbf{f} \mathbf{d} \mathbf{f} \mathbf{d} \mathbf{f} \mathbf{d} \$ $\bigcup_{\alpha} \in \{\text{composite}(concr, \theta(k)) \mid k \in K\}$ then
let $E_{new} = \{\sigma \mid (r_1, \sigma_1) \in \text{compositeUnder}$ **if** $\{\} \in \{compare(\textit{corner}, \theta(k)) \mid k \in K\}$ then
| let $E_{new} = \{\sigma \mid (r_1, \sigma_1) \in \textit{compositeUnder}\}$ $\begin{array}{l} \vspace{0.2cm} FT_{new} = \{(f, t') \in FT \mid \forall r, r \mapsto t' \notin D \} \text{ in } \\ \vspace{0.2cm} T_{new} = \{\} \text{ then } \\ \vspace{0.2cm} and y seRec(\theta, FT, H, \{\mid \rightarrow t \mid\} \cup D, E) \end{array}$ $FT_{new} = \{(f, t') \in FT \mid \forall r, r \mapsto t' \notin D\}$ **in**
 $T_{new} = \{\}$ **then** T_{new} T_{new} T_{new} T_{new} *analyseRec*(*θ, FT, H,* {| l 7→ *t*|} ∪ *D, E*) **let** $LT_{new} = \{ f(r_1, \ldots, r_n, l) \mapsto t^{\prime} \}$
 $(f, t^{\prime}) \in FT_{new}$, **let** *struct* = $N \cup H \cup D$
concr = $\theta(\textit{struct})$ **in** \mathbf{I} else
| let *LT new* ÷ **else**

Algorithm 5: Relations between variables

 $findRelationship of$ *, struct*) = **let** $(\textit{struct}_{ana}, E) = \textit{analyse}(\theta, \textit{struct})$ \hat{c} *concr*_{*ana*} = θ (*struct_{ana}*) $pairs = pairsEcs({\{compare, t) | \exists l, l \mapsto t \in corner_{ana}}\})$ $egs = \{ (struct_{ana} \{ | r_1 | \}, struct_{ana} \{ | r_2 | \}) | (r_1, r_2) \in pairs \}$ i *neqs* = $E \cup {\sigma' \mid l \mapsto t \in struct_{ana}$ *,* $(r, \sigma') \in \text{compositeUnder}(\theta, \text{struct}_{ana}, t),$ $\vert \neq r$. $\left\{ \text{concr}_{ana} \{ \vert \vert \vert \} \neq \text{concr}_{ana} \{ \vert \vert r \vert \} \}$ $\sigma = \textit{unify}(\textit{eqs})$ **in** σ ∧ Λ _{*τ*∈*ineqs* ¬*τ*}

舞

Different problem

- 1 concrete frame *concr*;
- *n* structural frames $struct_1, \ldots, struct_n;$
- Only one correct $struct_i$: $concr = \theta(struct_1)$

Lifting results

Approach of the extended procedure:

- **1** Analyse each *struct_i* separately.
- **2** Rule out possibilities where $struct_i \nless \theta (struct_1)$.
- **3** Generate $φ_i$ (relations between variables) for the remaining possibilities.
- **4** Check if $\phi_1 \wedge \cdots \wedge \phi_n$ is a violation of privacy.