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Summary

Communication protocols can be formalised as symbolic models, in order to
study various security goals. The formulation of desired goals can be difficult
for protocol designers and challenging with regards to automated verification.
Most existing approaches considering privacy rely on an observational equiv-
alence notion making it hard to express privacy goals and also verify them
automatically.

The logical approach introduced as (α, β)-privacy allows to specify privacy goals
in a declarative and intuitive manner. It is based on first-order logic with Her-
brand universes, where a payload formula α defines information disclosed on
purpose at an abstract level, and a technical information formula β includes
cryptographic messages from the protocol specification. The idea is to verify if
there is a consequence of β that does not follow from α alone. (α, β)-privacy
enables verification of privacy goals based on a logical context, without rely-
ing on observational equivalence. However, procedures to perform automated
verification are lacking for this approach.

This thesis deals with automated verification for the core problem (α, β)-privacy:
the goal is to verify automatically if privacy holds in a given state of a transition
system. The idea developed in this work is to compare a protocol specification
with a concrete execution, in order to find relations between variables of the spec-
ification. The question is then whether the relations found between the variables
break privacy or not. The method that we follow is to define algorithms that can
be used to derive a decision procedure. The procedure is proved to be correct
and implemented to provide basic computer-aided verification, constituting an
initial step for software support.
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Chapter 1

Introduction

The problem of privacy is relevant in many fields, such as electronic voting,
digital health information, mobile payments and distributed systems in general.
Privacy is a security goal of its own, it cannot be described as regular secrecy.
For example, in voting it is not the values of the votes that are secret, since there
is a public tally, but rather the relation between a voter and a vote. It is best if
privacy is taken into account during the design of communication protocols. But
even then, it is difficult to get enough guarantees about privacy goals. Formal
methods are a successful way of addressing the issue. By studying a protocol at
an abstract level, they can be used to check digital applications against possible
misuse.

The symbolic modelling of protocols allows to define various privacy goals. The
standard approach uses the notion of observational equivalence [9, 8]: it is com-
mon to consider privacy as a bisimilarity between processes in the applied π-
calculus. As an example, for electronic voting protocols, a privacy goal could be
that two processes differing by a swap of votes are indistinguishable [4, 10, 17].
While tools exist to provide automated verification [3, 5], it can be hard to
formalise a privacy goal as bisimilarity property, so automated verification is
actually challenging. Moreover, it is not clear whether the goals defined in this
way cover all properties implied by the privacy goals desired.

(α, β)-privacy [16] is an approach based on first-order logic, which allows us
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to specify privacy goals without referring to observational equivalence and thus
promises to give a new path for automated verification. It is also an intuitive and
declarative way to specify privacy. Recent works have adapted this to transition
systems and thus recast privacy as a reachability problem [12]; this context is
referred to as (α, β, γ, δ)-privacy. This logical approach enables manual proving,
nevertheless the lack of automation is a limitation for real-world applications
of fully-fledged protocols. In the general case, (α, β)-privacy is undecidable
because first-order logic is. However, there are fragments covering large classes
of protocols that are actually decidable.

In this thesis, we investigate decidable fragments (α, β)-privacy. We develop
algorithms and design a decision procedure allowing automated verification of
privacy goals. We also tackle problems that arise from conditional branching.
Even though this is not necessary in all protocols, it expands the scope of the
procedure designed. Our work forms a basic framework to automatically verify
privacy, where a modeller provides a protocol specification and a declaration of
privacy goals.

1.1 Thesis structure

We give an overview of the general problem of privacy in protocols in Section 1.2,
as well as an explanation of the method followed. Our idea is to consider an
intruder that is trying to break privacy. In Chapter 2, we recall useful notions
from previous works: we define Herbrand logic, and give a partial overview of
(α, β)-privacy as introduced in [16] and its extension to transition systems, since
this constitutes a necessary basis for our work.

In Chapter 3, we present our first contributions. We start by defining an intruder
theory, which represents what our intruder is able to do, then we complement
the notion of frames with what we call frames with shorthands. In Chapter 4,
we define different algorithms, breaking down the problem in several steps. For
these algorithms, we declare a number of properties that we prove in order to
show correctness of the procedure. First, we limit our focus on protocols without
branching. In this situation, the intruder uses their knowledge of the protocol
specification and one concrete execution. They try to learn more information
than what was intentionally disclosed, according to the rules of the intruder
theory. Then, we lift in Chapter 5 our results to the case of protocols with
branching, i.e. the intruder makes a number of hypotheses about which branch
corresponds the actual protocol execution.

In Chapter 6, we discuss the limitations of the proposed procedure and outline
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possible future work to tackle the remaining issues. Finally, we conclude in
Chapter 7 by summing up the work achieved.

1.2 Background material

There are many examples of communication protocols that are not secure with
regards to privacy. This is the case also for protocols which have been designed
to provide some privacy goals. As an example, recent papers show privacy issues
in voting protocols (Helios [4, 10]) as well as contact-tracing applications (GAEN
API [6], SwissCovid [18, 14]). In such cases, it is hard to specify all desirable
privacy goals using the notion of observational equivalence. Additionally, the
standard approach cannot guarantee that the privacy goals verified cover all
possibilities of misuse. These limits are the motivation for studying a new
approach that is declarative and more intuitive.

This thesis builds on top of the notion of (α, β)-privacy. An essential concept
of this logical approach is Herbrand logic introduced in [13], which is first-order
logic with Herbrand universes. It allows to encode properties verified by some
functions, e.g. the algebraic equations that must hold for cryptographic opera-
tors. The main definitions needed for this thesis will be given in Chapter 2. All
of them are taken from [16], which specifies in details the logic and (α, β)-privacy.
The basic idea is to define privacy goals as a payload formula α, which repre-
sents the publicly disclosed information. For instance, in an electronic protocol
this could be the tally at the end of the vote. A technical information formula
β includes α but also all information related to the protocol specification, e.g.
actual cryptographic messages that have been exchanged. Then privacy is ver-
ified if the intruder cannot derive more information from β that they can from
α, i.e. no additional sensitive information is leaked by the protocol execution.
Contrary to the standard approach of observational equivalence, (α, β)-privacy
can be used to declare privacy goals in a very intuitive manner. As it is reason-
ing about any logical consequence to verify privacy, it does provide guarantees
that all corners have been covered.

The approach of (α, β)-privacy can be extended to transition systems with the
concept of (α, β, γ, δ)-privacy [12], where a truth formula γ represents the real
execution of the protocol, and a sequence of conditional updates δ represents
the stateful execution. The question of whether privacy is verified by the entire
transition system is to verify if it holds in every state. The core problem is
therefore to study privacy in a single state, and it remains to lift this procedure
to a transition system. This does not pose any theoretical difficulty, as it can
be done by simply exploring all reachable states and applying the procedure in
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each of them. In our case, we limit the scope of the procedure to specific classes
of protocols, namely protocols with a bounded number of transactions without
or with branching, and we will only verify privacy in a single state.

The formalisation that we use relies on the notion of terms, which is the symbolic
representation of messages exchanged according to a protocol. Our definition of
intruder theory uses this notion of terms, and the algorithms that we define rely
on the set of algebraic equations specified. The approach taken in the modelling
and the formal proving of the problem is inspired by chapters from [2], which
deals with many topics around term rewriting. For instance, we want that the
algebraic equations allow to generate a well-founded analysis rewriting system
which is convergent. This means roughly that the order of the rules that the
intruder can apply does not matter and that they can be applied a finite number
of times.



Chapter 2

Preliminaries

The approach of (α, β)-privacy is based on logic. It uses more specifically Her-
brand logic [13], which is first-order logic with Herbrand universes. The overall
idea is that the specification of a protocol can be modelled in Herbrand logic.
The verification of privacy that we perform considers this symbolic model of the
protocol. Thus, we abstract away from actual implementation of protocols and
cryptography, and apply formal methods to prove privacy goals.

In this chapter, we give the definitions from [16] that our work builds upon.
First, we describe Herbrand logic in Section 2.1 and define the Herbrand universe
that we will consider. To represent knowledge of messages, we use a definition
of frames and explain how they are encoded in the logic in Section 2.2. We then
specify the framework of (α, β)-privacy in Section 2.3.

2.1 Herbrand logic

The formalisation of (α, β)-privacy requires an appropriate logic. First-order
logic might seem an intuitive choice at first, however it cannot be used properly
in our case. Indeed, we would like to specify algebraic equations characterising
the behaviour of cryptographic operators. The authors of [16] explain why it
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is not possible to define axioms ensuring a correct interpretation of constants
and cryptographic operators. However, the use of Herbrand universes solves the
issues and the formalisation is therefore done in Herbrand logic.

Definition 2.1 (Syntax of Herbrand Logic [16]) Let Σ = Σf ]Σi ]Σr be
an alphabet that consists of

• a set Σf of free function symbols,

• a set Σi of interpreted function symbols and

• a set Σr of relation symbols,

all with their arities. We write fn and rn to denote a function symbol f and a
relation symbol r of arity n, respectively.

We write f(t1, . . . , tn) when f ∈ Σf and f [t1, . . . , tn] when f ∈ Σi, and we
denote the set of considered cryptographic operators by the subset Σop ⊆ Σf .
Constants are the special case of function symbols with arity 0; for an uninter-
preted constant c0 ∈ Σf , we omit the parentheses and write simply c instead
of c(), whereas for interpreted constants c0 ∈ Σi, we do not omit the square
brackets for clarity and write c[].

Let V be a countable set of variable symbols, disjoint from Σ. We denote with
TΣ(V) the set of all terms that can be built from the function symbols in Σ
and the variables in V. We simply write TΣ when V = ∅, and call its elements
ground terms (over signature Σ). We define substitutions θ as is standard.

We define the set LΣ(V) of formulae over the alphabet Σ and the variables V as
usual: relations and equality of terms are atomic formulae, and composed for-
mulae are built using conjunction ∧, negation ¬, and existential quantification
∃.

The function fv returns the set of free variables of a formula as expected. �

We employ the standard syntactic sugar and write, for example, ∀x.φ for
¬∃x.¬φ. We also write x ∈ {t1, . . . , tn} to abbreviate x = t1 ∨ · · · ∨ x = tn.

Slightly abusing notation, we will also consider a substitution
{x1 7→ t1, . . . , xn 7→ tn} as a formula x1 = t1 ∧ · · · ∧ xn = tn.
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Definition 2.2 (Herbrand Universe and Algebra [16]) Formulae in Her-
brand logic are always interpreted with respect to a given fixed set Σf of free
symbols (since this set may contain symbols that do not occur in the formu-
lae) and a congruence relation ≈ on TΣf

. We may annotate all notions of the
semantics with Σf and ≈ when it is not clear from the context.

We write [[t]]≈ = {t′ ∈ TΣf
| t ≈ t′} to denote the equivalence class of a term

t ∈ TΣf
with respect to ≈. Further, let U = {[[t]]≈ | t ∈ TΣf

} be the set of all
equivalence classes. We call U the Herbrand universe (since it is freely generated
by the function symbols of Σf modulo ≈). Based on U , we define a Σf -algebra
A that interprets every n-ary function symbol f ∈ Σf as a function fA : Un → U
in the following standard way. fA([[t1]]≈, . . . , [[tn]]≈) = [[f(t1, . . . , tn)]]≈, where
the choice of the representatives t1, . . . , tn of the equivalence classes is irrelevant
because ≈ is congruent. A is sometimes also called the quotient algebra (in the
literature sometimes denoted with TΣf

/ ≈). �

Definition 2.3 (Semantics of Herbrand Logic [16]) An interpretation I
maps every interpreted function symbol f ∈ Σi of arity n to a function I(f) :
Un → U on the Herbrand universe, every relation symbol r ∈ Σr of arity n to
a relation I(r) ⊆ Un on the Herbrand universe, and every variable x ∈ V to an
element of U .

We extend I to a function on TΣ(V) as expected:
I(f(t1, . . . , tn)) = fA(I(t1), . . . , I(tn)) for f ∈ Σf and
I(f [t1, . . . , tn]) = I(f)(I(t1), . . . , I(tn)) for f ∈ Σi.

We define that I is a model of formula φ, in symbols I |= φ, as follows:

I |= s = t iff I(s) = I(t)

I |= r(t1, . . . , tn) iff (I(t1), . . . , I(tn)) ∈ I(r)

I |= φ ∧ ψ iff I |= φ and I |= ψ

I |= ¬φ iff not I |= φ

I |= ∃x.φ iff there is a c ∈ U such that I{x 7→ c} |= φ

where I{x 7→ c} denotes the interpretation that is identical to I except that x
is mapped to c. Entailment φ |= ψ is defined as I |= φ implies I |= ψ for all
interpretations I. We write φ ≡ ψ when both φ |= ψ and ψ |= φ. We also use
≡ in the definitions of formulae. Finally, we write Sat(φ) if φ has a model. �
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2.2 Frames

Frames are a classical way of representing terms known by the intruder. The
definition of frames taken here is slightly different than the standard definition
and allows a convenient encoding in Herbrand logic through a couple of axioms.
Frames and their static equivalence are used in this context to express (α, β)-
privacy goals.

Definition 2.4 (Frame [16]) A frame is written as

z = {| l1 7→ t1, . . . , lk 7→ tk |},

where the li are distinguished constants and the ti are ground terms without any
destructor or verifier that do not contain any li. We call l1, . . . , lk and t1, . . . , tk
the domain and the image of the frame, respectively. �

We may refer to the labels li of a frame as memory locations.

Definition 2.5 (Recipes and intruder-generable term [16]) The set of
recipes is the least set that contains l1, . . . , lk and that is closed under all the
cryptographic operators Σop . A frame z can be regarded as a substitution that
replaces every li of its domain with the corresponding ti. For a recipe r, we
thus write z{| r |} for the term obtained by applying this substitution to r. An
intruder generable term (or just generable term for short) is any term t for which
there is a recipe r with t = z{| r |}. �

We use frames to represent the intruder’s knowledge of terms under the form of
labelled messages. Thus, we can describe the actions performed by the intruder
with recipes over the labels in the intruder knowledge. Note that by default, the
intruder does not know the constants. They can however be explicitly included
in the frame if needed.

As mentioned before, the frames and their static equivalence can be encoded in
Herbrand logic. We define below two axioms allowing to do that [16]:

For every considered frame z = {| l1 7→ t1, . . . , lk 7→ tk |}, let knz be an inter-
preted unary function symbol and genz be a unary predicate. The idea is that
knz encodes the knowledge of terms contained in the frame, and genz encodes
the fact that the intruder is able to generate a term.



2.2 Frames 9

For a frame z:

φframe(z) ≡ (∀x.genz(x) ⇐⇒
(x ∈ {l1, . . . , lk}∨∨

fn∈Σpub

∃x1 . . . xn.

x = f(x1, . . . , xn) ∧ genz(x1) ∧ · · · ∧ gen(xn)))

∧
(knz[l1] = t1 ∧ · · · ∧ knz[lk] = tk)

∧ ∧
fn∈Σpub

(∀x1 . . . xn.

genz(x1) ∧ · · · ∧ gen(xn) =⇒
knz[f(x1, . . . , xn)] = f(knz[x1], . . . , knz[xn]))

This axiom expresses that the intruder is able to generate every term in the
frame, as well as all terms that correspond to applying a public function to
generable terms. It also expresses that the intruder knows the terms stored in
the memory locations, as well as the terms resulting from the application of a
recipe.

For two frames z1 and z2:

φz1∼z2
≡ (∀x.genz1

(x) ⇐⇒ genz2
(x))

∧
(∀x, y.genz1

(x) ∧ genz1
(y) =⇒

(knz1 [x] = knz1 [y] ⇐⇒ knz2 [x] = knz2 [y]))

This axiom expresses that the generable terms are the same in both frames, and
also that given two generable terms, the intruder knows that they are equal (or
not equal) in both frames at the same time.

The idea of the notion of static equivalence is whether the intruder is able to
distinguish two frames. If they are able to generate a term with two recipes in
one frame, they can check if the same holds in the second frame. Checking pairs
of recipes can tell if the intruder is able to distinguish the frames or not. We
would like to translate the intuitive property

∀(r1, r2),z1{| r1 |} ≈ z1{| r2 |} ⇐⇒ z2{| r1 |} ≈ z2{| r2 |}

into our logical framework.

This is formalised in Herbrand logic using the two axioms defined above:
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Definition 2.6 (Static Equivalence of Frames [16]) Two frames z1 and
z2 with the same set {l1, . . . , lk} of memory locations are statically equivalent
(in symbols, z1 ∼ z2) iff Sat(φframe(z1) ∧ φframe(z2) ∧ φz1∼z2

). �

Example 2.1 Let k, t1, t2 ∈ TΣ where t1 6= t2. Consider the frames

z1 = {| l1 7→ scrypt(k, t1), l2 7→ k, l3 7→ t1 |}
z2 = {| l1 7→ scrypt(k, t2), l2 7→ k, l3 7→ t2 |}

Then z1 ∼ z2 because even though the frames are not equal (t1 6= t2), there is
no way to distinguish them.

Example 2.2 Let v1, v2 ∈ TΣ. Consider the frames

z1 = {| l1 7→ h(v1), l2 7→ h(v2), l3 7→ h(v1) |}
z2 = {| l1 7→ h(v1), l2 7→ h(v2), l3 7→ h(v2) |}

Then z1 6∼ z2 because the pair of recipes (l1, l3) distinguishes the frames.

2.3 (α, β)-privacy

The standard approach to verify privacy goals in protocols is based on obser-
vational equivalence, i.e. it consists in reasoning about the indistinguishability
between two possible worlds. The problem can be encoded in frames and there
exists decision procedures to verify static equivalence of frames. However, these
methods are actually difficult to model and reason about. Instead of stating dif-
ferent possible worlds that should encode a privacy goal, we would like a more
intuitive approach.

This is the problem that (α, β)-privacy addresses. It formalises privacy goals
as logical formulae in a declarative manner. That makes it much easier for
a modeller to specify the privacy properties that they desire. Moreover, it is
not necessary to define a set of possible worlds to compare. We can reason
about the protocol specification at the abstract level on one hand, and one
real execution at the concrete level on the other hand. The core idea is to
declare a payload formula α at the abstract level, defining intentionally released
information, and a technical information formula β, including cryptographic
messages and other knowledge at the technical level. That way, the modeller
can use this framework to express privacy goals intuitively and provide a formal
specification of a protocol.
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This thesis is based on (α, β)-privacy as introduced in [16]. In the general
case, (α, β)-privacy is not decidable because of the expressivity of Herbrand
logic. However, there are identified fragments for which it is possible to design
a decision procedure. While this can also be related to static equivalence of
frames, (α, β)-privacy is more expressive. The decision procedure is based on
deciding satisfaction of logical formulae, which corresponds to what a manual
proof or automatic theorem prover would yield.

We have previously defined the syntax and semantics of Herbrand logic, as well
as the encoding of intruder knowledge into frames. It remains to define how
privacy goals are defined. In this chapter, we give a number of definitions related
to privacy goals and theorems that are useful to design our procedure. We
start by defining formally how to declare privacy goals and what an interesting
consequence is. Then, we focus on the class of problem called message-analysis
problems, which relates directly (α, β)-privacy and static equivalence of frames.

For the problem under consideration, we reason about interpretations and the
different models of formulae. We describe the notion of model-theoretical (α, β)-
privacy and some results. This is also put in relation to static equivalence of
frames. Finally, we recall the concept of (α, β)-privacy in an entire transition
system and explain why we only look at a single state.

2.3.1 Payload and technical information

As the authors explain in [16], the formalisation of (α, β)-privacy is inspired by
zero-knowledge proofs for privacy. For these types of proofs, there is usually
a prover that discloses some information intentionally; this would correspond
to the payload information α. The participants of the protocol communicate
by exchanging cryptographic messages (including hashing, encryption, signing
etc.); this would correspond to the technical information β. Privacy is achieved
if β does not leak any more useful information than α. To translate this no-
tion in terms of logical formulae, we define an interesting consequence by such
information following from β but not α. The idea relies on defining α over an
alphabet Σ0 ( Σ (the abstract level only), while β is expressed over Σ.

Definition 2.7 (Interesting consequences [16]) Let Σ0 ( Σ. Given a pay-
load formula α ∈ LΣ0

(V) and a technical formula β ∈ LΣ(V), where β |= α
and fv(α) = fv(β) and both α and β are consistent, we say that a statement
α′ ∈ LΣ0(fv(α)) is an interesting consequence of β (with respect to α) if β |= α′

but α 6|= α′.

We say that β respects the privacy of α if it has no interesting consequences,
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and that β violates the privacy of α otherwise. �

2.3.2 Privacy on messages

Many protocols can be specified by a number of cryptographic messages ex-
changed. In this situation, we assume that the intruder knows the protocol
specification as well as one concrete execution. This can be encoded into a
frame struct corresponding to the structural information coming from the spec-
ification (i.e. what the messages look like), and a frame concr corresponding
to the actual execution. We consider the problem where concr is simply one
instance of struct , i.e. the variables from struct have been instantiated. We
can use the axioms defining static equivalence of frames for struct and concr .
This gives the intruder access to the fact that struct and concr are statically
equivalent, and they can then try to derive information by comparing pairs of
recipes in the two frames. For simplicity, we will abuse notation and write also
struct [·] and concr [·] in Herbrand logic instead of knstruct [·] and knconcr [·]. Since
struct and concr will then also have the same domain, it follows that genstruct

and genconcr are equivalent and thus we will simply write gen. For such a prob-
lem, we specify a requirement on α so that it becomes possible to decide this
fragment.

Definition 2.8 (Combinatoric α [16]) We call α ∈ LΣ0
(V) combinatoric if

Σ0 is finite and contains only uninterpreted constants. �

Thus, every model I of α maps the free variables of α to elements of the Her-
brand universe induced by Σ0. For each free variable x of α, we have I(x) = [[c]]≈
for some unique c ∈ Σ0. For every I such that I |= α, we define the substitution
θI that has as domain the set of free variables of α, and such that θI(x) = c iff
I(x) = [[c]]≈ (note that θI is unique modulo ≈). Recall that, by slight abuse of
notation, we may treat a substitution θ = {x1 7→ t1, . . . , xn 7→ tn} as the Her-
brand formula x1 = t1 ∧ · · · ∧ xn = tn. Thus α is equivalent to the disjunction
of all such substitutions:

Lemma 2.9 [16] For every combinatoric α, there is a finite set of substitutions
Θ such that α ≡

∨
θ∈Θ θ. We thus call Θ also the models of α.

In this thesis, we will call the frame for the structural information struct and
the frame for the concrete knowledge concr .
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Definition 2.10 (Message-analysis problem [16]) Let α be combinatoric,
θ a model of α, struct = {| l1 7→ t1, . . . , lk 7→ tk |} for some t1, . . . , tk ∈ TΣ(fv(α)),
and concr = θ(struct). Define

MsgAna(α, struct , θ) ≡ α ∧ φframe(concr) ∧ φframe(struct) ∧ φconcr∼struct

If β ≡ MsgAna(α, struct , θ), then we say that β is a message-analysis problem
(with respect to α, struct , and θ). �

In Chapter 4, we will study a message-analysis problem. Our procedure will
make use of the fact that concr = θ(struct) for some substitution θ that is a
model of α. It must be noted that, while our algorithms can use θ directly, the
intruder does not have access to θ. Rather, for a term ti at the structural level
in struct , they also know the corresponding term θ(ti) at the concrete level in
concr . The intruder also knows that struct ∼ concr , which will be used to find
relations between variables that are consistent with θ.

2.3.3 Model-theoretical (α, β)-privacy

The concept of (α, β)-privacy has been defined with the notion of interesting
consequences. We know consider a more semantic definition, using the models
of the logical formulae. This section defines model-theoretical (α, β)-privacy and
relates this approach to classical (α, β)-privacy. In the case of message-analysis
problems, we present some results about the model-theoretical view. They will
be used in order to prove correctness of our decision procedure in the next
chapters.

Definition 2.11 (Model-theoretical (α, β)-privacy [16]) Consider Σ0 and
Σ as before, a formula α over Σ0 and a formula β over Σ such that fv(α) = fv(β),
both α and β are consistent and β |= α. We say that (α, β)-privacy holds model-
theoretically iff every Σ0-model of α can be extended to a Σ-model of β, where
a Σ-interpretation I ′ is an extension of a Σ0-interpretation I if they agree on
all variables and all the interpreted function and relation symbols of Σ0. �

Theorem 2.12 [16] If (α, β)-privacy holds model-theoretically, then it also
holds in the classical sense. Conversely, if for every model I of α, there is a
Σ0-formula φI that has only I as a model (with respect to Σ0), then classical
(α, β)-privacy implies model-theoretical (α, β)-privacy.
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Corollary 2.13 [16] Consider an (α, β) pair, where α is combinatoric and Θ
is the set of models of α. Then, β violates the privacy of α iff β |= ¬θ for any
θ ∈ Θ.

While classical (α, β)-privacy and model-theoretical (α, β)-privacy are not equiv-
alent in the general case, when considering a combinatoric α (e.g. in message-
analysis problems) the two notions coincide.

The theorem and its corollary allow us to design a decision procedure. Indeed,
instead of having to reason about any possible interesting consequence, we can
now focus more on the countably finite number of models of α. This is the
foundation of the approach developed in this thesis: given a message-analysis
problem, we will generate a logical formula φ (expressing the relations between
the variables that the intruder is able to observe) that can be used to characterise
the models of α.

2.3.4 Automation and the relation to static equivalence

We have shown in Section 2.2 how the problem of static equivalence of frames
can be encoded in Herbrand logic. Moreover, we have defined a class of prob-
lems, namely message-analysis problems, using this notion of static equivalence
between a structural frame struct and a concrete frame concr . We now relate
this with the model-theoretical view of (α, β)-privacy.

Theorem 2.14 [16] Let α be combinatoric, Θ = {θ1, . . . , θn} be the models
of α, and β ≡ MsgAna(α,z, θ1) for some θ1 ∈ Θ. Then, we have that (α, β)-
privacy holds iff θ1(z) ∼ . . . ∼ θn(z).

This theorem shows how privacy can be decided as a set of static equivalence
problems. Our procedure is inspired by this view: our formula φ, generated
using static equivalence properties, will be a way to characterise models. If φ
really excludes some models of α, then we can illustrate how (α, β)-privacy is
violated.

The interesting aspect is that we do not have to reason about two possible worlds
to compare, as in standard observational equivalence for privacy. The formula
α will encode a number of possible worlds (the different models), and then we
can decide privacy by studying satisfiability of formulae.



2.3 (α, β)-privacy 15

2.3.5 (α, β)-privacy in Transition Systems

We have stated in Section 1.2 that we do not study in details (α, β)-privacy in
an entire transition system. Nonetheless, we give below a definition of (α, β)-
privacy for transition systems and then justify the choice of limiting to scope to
a single state.

The general idea is to define a state with three formulae: α and β as before,
alongside a truth formula γ which encode the instantiation of variables.

Definition 2.15 (Transition systems [16]) A state is a triple (α, β, γ),
where α and β are as before and γ ∈ LΣ0

(V) is such that γ |= α and γ is true
in exactly one model of γ (with respect to Σ0 and the free variables of α). We
also call γ the truth and may also apply it to Σ0-terms like a substitution.

Let S denote the set of all states. A transition system is a pair (I,R) where
I ∈ S and R ⊆ S × S. As is standard, the set of reachable states is the
smallest set that contains I and that is closed under R, i.e.: if S is reachable
and (S, S′) ∈ R, then also S′ is reachable.

We say that a transition system satisfies privacy iff (α, β)-privacy holds in every
reachable state (α, β, γ). �

In this thesis, we will not study (α, β)-privacy at the level of a transition system.
The reason is that the core problem is, given some α and β, whether β violates
the privacy of α or not. The extension to transition system corresponds to
verifying privacy in every reachable state. Therefore, we focus only on the
problem of deciding (α, β)-privacy in a single state, and we do not to refer
to an entire transition system. What is left out by our work in this thesis is
only a specification of the method to explore every reachable state and apply
our procedure. We do not see this as a real restriction, because there is no
theoretical difficulty involved in this exploration of states.

Note also that we will study (α, β)-privacy with regards to a model θ encoding
a concrete execution of the protocol. θ would then correspond to the truth γ
when referring to a reachable state.
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Chapter 3

Modelling the intruder

In Chapter 2, we have presented the definitions from previous works that con-
stitute the basis of our contributions. We want to automatically reason about
whether privacy is violated or not, given a certain knowledge. In order to do
that, we specify in Section 3.1 the class of intruder theories that we support.
The approach that we take to verify privacy is to consider an intruder trying
to break privacy. That is, the intruder has some knowledge and can follow a
number of rules (according to the intruder theory) in order to derive sensitive
information. We complement this by the notion of frames with shorthands pre-
sented in Section 3.2. This will become useful when we describe the analysis of
frames performed by the intruder in Chapter 4.

3.1 Intruder theory

Now that the syntax and semantics of the logic have been defined, we present
a specification of what we call an intruder theory. A common approach is to
specify a list of cryptographic properties with their properties. Therefore, our
intruder theory includes this to determine a set of rules, that represent the
behaviour of the intruder.

Definition 3.1 (Intruder theory) An intruder theory consists of
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• a set of public functions Σpub ⊆ Σf ,

• a set of variables with public range Vpub ⊆ V,

• a set of cryptographic operators Σop ⊆ Σf and

• a set of algebraic equations.

The set Σpub identifies all functions that the intruder is allowed to use. The set
Vpub identifies all variables for which the intruder knows the different possible
values that they can take in a protocol execution. The cryptographic operators
and their algebraic properties form a black-box model of the cryptography. We
make the distinction between constructors, which are operators that can be used
to compose terms, destructors, which are operators associated with a construc-
tor to decompose terms, and verifiers, which are operators associated with a
constructor to check the composition of terms. �

In general, we can allow an arbitrary set of cryptographic operators and algebraic
equations. However, in this thesis we are concerned about verifying (α, β)-
privacy for decidable fragments. Therefore, we give a definition of a subset of
all intruder theories for which we will be able to design a decision procedure.
Note that our procedure is parameterised over an intruder theory (respecting
the following requirements).

Definition 3.2 (Convergent intruder theory) A convergent intruder the-
ory is an intruder theory where:

The algebraic equations must be of one of the following forms:

• destr(k1, . . . , km, constr(t1, . . . , tn)) ≈ ti, for a constructor of arity n and a
corresponding destructor of arity m+ 1.

• verif(k1, . . . , km, constr(t1, . . . , tn)) ≈ yes, for a constructor of arity n and
a corresponding verifier of arity m+ 1.

The firstm arguments of a destructor or verifier are called keys, and it is allowed
to have 0 keys (i.e. m = 0). In case of a destructor, the term on the right-
hand side must be one of the arguments of the constructor. For any destructor
associated to a constructor, there must be one associated verifier. The same
verifier can be associated to several destructors. Moreover, for any two of these
algebraic equations where there is an occurrence of some constr(t1, . . . , tm) and
constr′(t′1, . . . , t

′
n), it must be the case that either
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• constr 6= constr′ or

• m = n and t1 = t′1, . . . , tm = t′m.

These constraints express that the algebraic equations must form a convergent
rewriting system, i.e. the rewriting rules generated by reducing the application
of a destructor on the left-hand side to the term on the right-hand side induce
a confluent (diverging paths are always joining a common term at some point)
and terminating reduction [2]. The congruence relation ≈ that the Herbrand
universe uses is the least relation so that the algebraic equations hold.

These equations lead to a function ana defined by

ana(constr(t1, . . . , tn)) = ({k1, . . . , km},
{(destr, ti) |
destr(k1, . . . , km, constr(t1, . . . , tn)) ≈ ti})

Intuitively, given a term that can be decomposed, ana returns the set of keys
required for decomposition and all derivable terms according to the algebraic
equations. With this definition, we require that different destructors associated
with the same constructor use the same keys. �

Example 3.1 Even though this thesis considers an arbitrary convergent in-
truder theory, we focus on a practical example that will be used in other il-
lustrative examples. Let Σ = Σf ] Σi ] Σr be an alphabet, V a set of variables,
and Vpub ⊆ V a set of variables with public range. We consider the cryptographic
operators defined in Table 3.1 and Σpub = Σop \ {priv}, i.e. all operators are
public except for priv. As in [16],

• pub(s) and priv(s) represent an asymmetric key pair from a secret seed1

s, where pub is a public function in Σop and priv is a private function in
Σ \ Σpub;

• crypt(p, r, t) represents the asymmetric encryption of a message t with a
public key p and randomness r;

• dcrypt(p′, t) represents the decryption with private key p′ of a message t,
and the first property formalises that decryption with the correct private
key yields the original message;

1We make a slight change compared to [16], which associates one key pair to an agent, so
that we can model arbitrary key infrastructures
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• vcrypt(p′, t) and the second property formalise that we can check whether
the message t can be correctly decrypted with private key p′;

• sign(p′, t), retrieve(t) and vsign(p′, t), together with their properties, sim-
ilarly formalise digital signatures (where we here model signatures that
contain the plaintext so that it can be retrieved);

• scrypt(k, t), dscrypt(k, t) and vscrypt(k, t), together with their properties,
similarly formalise symmetric cryptography;

• pair, proji and vpair, together with their properties, formalise that we as-
sume to have a mechanism to concatenate plaintext so that it can later be
decomposed in a unique way (sometimes called “serialisation”);

• h is a cryptographic hash function (where the lack of destructors reflects
that it is hard to find a pre-image).

Constructors Destructors Verifiers Properties
pub, priv
crypt dcrypt vcrypt dcrypt(priv(s), crypt(pub(s), r, t)) ≈ t

vcrypt(priv(s), crypt(pub(s), r, t)) ≈ yes
sign retrieve vsign retrieve(sign(priv(s), t)) ≈ t

vsign(pub(s), sign(priv(s), t)) ≈ yes
scrypt dscrypt vscrypt dscrypt(k, scrypt(k, t)) ≈ t

vscrypt(k, scrypt(k, t)) ≈ yes
pair proji vpair proji(pair(t1, t2)) ≈ ti

vpair(pair(t1, t2)) ≈ yes
h

Table 3.1: Example set Σop

Additionally, we consider that natural integers are publicly known. This can be
encoded in the logic with an interpreted constant 0 and an interpreted unary
function s representing the increment by 1. We may use the notation 1 for s(0),
2 for s(s(0)), and so on.

3.2 Frames with shorthands

When defining our analysis algorithm, we will make use of the algebraic equa-
tions of the intruder theory to derive new terms that can be added to the knowl-
edge. These new terms are present in the analysed frame through shorthands,
where the new labels are actually recipes for the original frame. A frame with
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shorthands consists thus in a frame with additional labels. It can be seen as
an extension of the original frame, where the new labels are not constants but
behave in the same way when applying a recipe to the frame.

Definition 3.3 (Frame with shorthands) A frame with shorthands is writ-
ten as

z′ = {| l1 7→ t1, . . . , lk 7→ tk,m1 7→ s1, . . . ,mn 7→ sn |},

where z = {| l1 7→ t1, . . . , lk 7→ tk |} is a frame, the mj are recipes over the li
and the sj are ground terms that do not contain any li. We call the mappings
m1 7→ s1, . . . ,mn 7→ sn shorthands, and they must verify that z{|mj |} ≈ sj . �

The domain of a frame and a corresponding frame with shorthands can be
considered the same, because a recipe containing a label mj is equivalent to the
same recipe where mj is replaced by the recipe over l1, . . . , lk that defines it.

Example 3.2 Let k, t ∈ TΣ(V). Consider the frames

z = {| l1 7→ scrypt(k, t), l2 7→ k |}
z′ = {| l1 7→ scrypt(k, t), l2 7→ k, dscrypt(l2, l1) 7→ t |}

Then z′ is the frame z with the shorthand dscrypt(l2, l1) 7→ t. Indeed, we have
that z{| dscrypt(l2, l1) |} = dscrypt(k, scrypt(k, t)) ≈ t = z′{| dscrypt(l2, l1) |}.
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Chapter 4

Decision procedure

In order to verify privacy, we rely on an intruder theory. The situation that
we study is that an intruder considers a protocol specification and a concrete
execution of the protocol. Their objective is to break privacy if possible. For
now, we restrict the problem to protocols without branching. In the formal
specification of a protocol, we can distinguish a number of states, corresponding
to the point reached during the protocol execution. The procedure that we
design in this thesis concerns the verification of privacy in a single state of the
protocol.

For this state, the privacy goals are expressed with the payload formula α, and
the technical information formula β represents the cryptographic messages ex-
changed according to the protocol specification. The knowledge of the intruder
is represented with frames. There is one frame encoding the protocol specifi-
cation, i.e. how the messages look like. We call this the structural frame and
designate it with the notation struct . There is also a second frame encoding one
concrete execution of the protocol. We call this the concrete frame and desig-
nate it with the notation concr . The reasoning is that protocols are defined in
public standards, so the intruder has access to this knowledge. Moreover, we
assume that they were able to record one concrete execution1.

1The knowledge of an intruder that would have recorded a sequence of protocol executions
could be encoded in a single frame aggregating the labelled messages from several frames.
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Since the execution follows the specification, the intruder knows that there is
a correspondence between the structural frame struct (containing terms with
variables) and the concrete frame concr (containing ground terms of one exe-
cution). This is expressed as the static equivalence between these two frames.
Our idea is to define algorithms to decide static equivalence in this context.
Besides simply determining whether privacy holds or not, we want to generate
a witness, i.e. derive an interesting consequence showing what information the
intruder learns that they were not supposed to.

More formally, we assume that the problem is a message-analysis problem: the
privacy goals are expressed in the formula α, the concrete execution is encoded
in the substitution θ which is a model of α, and β ≡ MsgAna(α, struct , θ). In the
rest of this chapter, we may write concr for θ(struct). Based on their knowledge,
the intruder tries to find an interesting consequence of β with regards to α. The
procedure designed in this chapter generates a formula φ characterising the
relations between variables occurring in struct . We show that in this context
φ can be used to decide privacy, i.e. it remains to decide if it follows from α
alone or not. If φ really is an interesting consequence, then (α, β)-privacy does
not hold in the state. When all variables have a finite range, the verification of
whether φ constitutes a breach of privacy or not is a decidable problem. This
last step of verification is not done directly by the procedure defined in the
following, but it can already be done by existing checkers [1].

Example 4.1 Consider a structural frame and corresponding concrete frame

struct = {| l1 7→ scrypt(k , x), l2 7→ scrypt(k , y), l3 7→ scrypt(k , z) |}
concr = {| l1 7→ scrypt(k , 0), l2 7→ scrypt(k , 1), l3 7→ scrypt(k , 0) |}

where the variables x, y, z in struct represent some votes that have been encrypted
by a trusted authority with a key k . Let the payload formula be α ≡ x, y, z ∈
{0, 1}. In our example intruder theory, the intruder is not able to learn the
values of the votes without the key. However, they can observe that concr{| l1 |} =
concr{| l3 |}. Using static equivalence between struct and concr , they deduce
that struct{| l1 |} = struct{| l3 |}. Therefore, they can learn that x = z. This
constitutes a breach of privacy, as it does not follow from α.

Our procedure relies on the fact that the intruder knows concr ∼ struct . The
intruder knowledge is represented as a set of labelled terms. Analysis is per-
formed to derive subterms, e.g. an encrypted term can be decomposed if the
key can be composed. As mentioned previously, for a message-analysis problem
the intruder knows that the structural and concrete frames are statically equiv-
alent. The idea to find a candidate interesting consequence is to determine the
relations between variables. During the analysis, if the decomposition of a term



4.1 Method 25

is possible only at the structural level and not at the concrete level, then we
can derive some information about terms being not equal and find inequalities
between variables. After the analysis, it is possible to find equalities between
variables using composition. Terms equal at the concrete level are also equal at
the structural level. Therefore, if in concr there are several recipes to compose
a term, then the same recipes must generate a unique corresponding term in
struct . Moreover, it is also possible to derive more inequalities when terms are
equal only at the structural level but not at the concrete level, as this goes
against static equivalence. Note that the inequalities found during the analysis
cannot be found later, because they correspond to decomposition failures (by
opposition to composition checks that are performed later).

4.1 Method

We begin in Section 4.2 with describing helper functions, that are not specific to
the general problem of (α, β)-privacy but simplify the main algorithms. We then
go on with the problem of composition in Section 4.3. We make a clear distinc-
tion between composing terms at the concrete level, where the intruder can find
recipes, and at the structural level, where the recipes require reasoning about
the possible values of variables. Then in Section 4.4, we develop an algorithm
that completely analyses a structural frame, where we use the decomposition
rules coming from the algebraic equations of the intruder theory. Finally, we
develop in Section 4.5 the main algorithm generating a formula φ characterising
all relations between variables that the intruder is able to find.

The algorithms are presented in semi-formal definitions very close to functional
programming. The rationale is that this paradigm uses a rather declarative ap-
proach, and makes the translation to Haskell code for implementation easier.
Therefore, it is very well suited when working in the logical setting of (α, β)-
privacy. In the definitions, we use bindings with the construct “let . . . in”, the
construct “and” for conjunction of boolean expressions and conditional state-
ments with the construct “if . . . then . . . else”. We also use λ-expressions,
and the construct “all” checking if every element in a list satisfy a predicate. A
function returns when it reaches an expression that can be evaluated.

4.2 Helper functions

In this section, we define helper functions that do not constitute any new work.
They solve small problems and will be used for the algorithms defined in the
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rest of the thesis.

4.2.1 Depth and weight

The notion of depth and weight are not necessary for understanding the algo-
rithms and procedure designed in this thesis. However, they will be used when
writing termination proofs.

Let t ∈ TΣ(V) be a term. It is either a variable or the application of a function
f of arity n ≥ 0. The depth of t represents the largest number of function
applications inside the term. It is defined recursively as:

depth(t) =

{
1 if t is a variable
1 + max1≤i≤n {depth(ti)} if t = f(t1, . . . , tn)

Example 4.2 Let f and g be functions of arity 2 and 1 respectively. Consider
the term f(0, g(0)). Then

depth(f(0, g(0))) = 1 + depth(g(0)) = 2 + depth(0) = 3

Let t ∈ TΣ(V) be a term. It is either a variable or the application of a function f
of arity n ≥ 0. The weight of t represents the number of all subterms occurring
in t (by opposition to just the top level). It is defined recursively as:

weight(t) =

{
1 if t is a variable
1 +

∑n
i=1 weight(ti) if t = f(t1, . . . , tn)

Example 4.3 Let f and g be functions of arity 2 and 1 respectively. Consider
the term f(0, g(0)). Then

weight(f(0, g(0))) = 1 + weight(0) + weight(g(0)) = 3 + weight(0) = 4

4.2.2 Unification

The problem of unification concerns equality between terms. For two terms
s, t ∈ TΣ(V), a solution to unification is a substitution σ (called unifier) such
that σ(s) = σ(t). The unification problem is extended to sets of equalities
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between terms, where a solution unifies all equalities. A unification algorithm
is useful to solve the problem by finding a solution if it exists.

Unification is very relevant for our procedure deciding privacy goals: we want
to know how the intruder is able to compose terms based on their knowledge.
Composition at the structural level involves considering terms with variables;
unification allows to express the possibilities considered by the intruder, which
need to be consistent with what they know. In this thesis, we consider only
syntactic unification. This means that terms are equal if they are written in the
exact same way, by contrast with equational unification, which is unification
modulo an equational theory. Note that it is fine to limit ourselves to syntactic
unification, because in our procedure we follow rewriting rules from the intruder
theory. This reduction removes layers of function applications, so that in the
end syntactic equality is enough to check equality between terms.

Syntactic unification is a standard problem for which there exists algorithms
computing solutions [15, 2]. We do not contribute anything to this, but a
description of the implementation of one algorithm is presented in Appendix A.
From now on, we assume that we can call a function unify solving this problem.

The function unify takes one argument:

• a set of pairs {(s1, t1), . . . , (sn, tn)}.

It computes a most general unifier for the set of equalities. That is to say, a
unifier σ such that for every (s, t) ∈ {(s1, t1), . . . , (sn, tn)}, σ(s) = σ(t) and any
substitution σ′ unifying the same equalities is an instance of σ. We write σ . σ′
to denote this quasi-ordering on substitutions [2]: σ . σ′ if there exists τ such
that σ′ = τσ.

The unify function returns one most general unifier if it exists, but in case there
are several solutions it does not matter which one is computed because they are
equal up to renaming [2].

In case of unifying a pair of terms (s, t), we abuse slightly the notation and
write unify(s = t). As a substitution {x1 7→ t1, . . . , xn 7→ tn} can be ex-
pressed as a set of pairs {(x1, t1), . . . , (xn, tn)}, we also allow to use the notation
unify(σ1, . . . , σn) to designate a most general unifier of all pairs from the σi.

Example 4.4 Let f, g be functions of arity 2 and 1 respectively, and let x, y, z ∈
V. Then

unify(f(x, y) = f(g(z), 1)) = {x 7→ g(z), y 7→ 1}
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4.2.3 Checks of equivalence classes

In our modelling, the knowledge of the intruder is encoded in frames. The
axioms φframe(z) and φz1∼z2

of (α, β)-privacy can be used to express static
equivalence between two frames. This notion corresponds to comparing pairs of
recipes applied to the two frames. During our procedure, we will make checks for
such pairs of recipes. When comparing frames, we want to be able to generate
a number of pairs allowing to decide static equivalence. Consider the case an
equivalence class [[t]]≈ = {t1, . . . , tn} . It suffices to pick one element, e.g. t1,
and compare it with all the other elements. Our function pairsEcs performs
this operation over a set of equivalence classes, and returns a set of all the
pairs generated by each equivalence class. This function could work for an
arbitrary equivalence relation given as a parameter, but since we only use it for
recipes found by the composition algorithms, we do not need to use an explicit
parameter.

4.3 Composition

The problem of composition is the following: given a knowledge and a term,
what recipes can the intruder use to generate the term? In our case, we have
to consider separately the problem at the concrete level, i.e. how the intruder
can generate ground terms, and the problem at the structural level, where the
intruder also has to consider the possible value taken by variables.

The following functions rely on the intruder theory, in particular the set of
public functions Σpub and the set of variables with public range Vpub . Instead
of making these sets explicit parameters, they are considered to have been fixed
beforehand when defining the intruder theory to study. In the algorithms, the
constructs “f is public” (for a function f ∈ Σ) and “x has a public range” (for
a variable x ∈ V) refer to membership to Σpub and Vpub respectively.

For a variable x ∈ Vpub , the intruder knows all values that x can take. Therefore,
they can compare all possibilities and see which one is correct, i.e. to what
constant c the variable x is mapped. For instance, as we mentioned in the
mocking voting protocol earlier, the intruder knows the values that a vote can
take: the votes can be modelled as variables with public range. The way we
handle it in our procedure is explained along with the algorithm for composition
in a structural frame.
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4.3.1 Composition in a ground frame

We focus first on the smaller problem of finding ways to compose a term based
on the knowledge at the concrete level. The intruder has recorded a protocol
execution, and this knowledge is represented by the frame concr . This frame
contains only ground terms, that is to say terms without any variables. Given
a term, the question is what recipes can be used to compose it, using terms in
concr . The recipes are expressed in a similar structure as ground terms, they
are either labels of the frame or the application of a function over subrecipes.
We want to find all recipes for the term, using only constructors. The case
of destructors will be taken care of in Section 4.4. The idea is that since the
intruder theory includes a rewriting system, we can now restrict the problem to
syntactic equality.

The recursive function compose takes two arguments:

• a ground frame concr ;

• a ground term t ∈ TΣ.

It computes a set of recipes to compose the term t from the knowledge in concr .
The term is assumed to be ground, because variables cannot be composed at
the concrete level. t can be composed if there is a label mapping to it, or if
the top level function is public and all subterms can be composed. In order to
find all recipes (with constructors), we consider all possible combinations of the
subrecipes.

Algorithm 1: Composition in a ground frame
compose(concr , t) =

let R = {l | l 7→ t ∈ concr} in
if t = f(t1, . . . , tn) and f is public then

R ∪ {f(r1, . . . , rn) | r1 ∈ compose(concr , t1),
. . . ,
rn ∈ compose(concr , tn)}

else
R

Example 4.5 Let a, b, c ∈ TΣ \ TΣpub
. Consider the frame

concr = {| l1 7→ a, l2 7→ b, l3 7→ h(a), l4 7→ scrypt(a, c) |}
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Then
compose(concr , h(a)) = {h(l1), l3}

which shows that the intruder knows two ways to compose the term. However,
here

compose(concr , c) = {}

because composing the term c requires using a destructor (decomposition of the
encrypted term). The frame needs to be analysed first to access the term c.

Proposition 4.1 Let concr be a ground frame and t ∈ TΣ. Then the call
compose(concr , t) terminates.

Proof. Let concr be a ground frame and t ∈ TΣ. There are recursive calls
to compose if t is the application of a public function over subterms, i.e. t =
f(t1, . . . , tn) where f is a public function of arity n ≥ 1. In this case, every
subterm is of depth strictly inferior to that of t: by definition of depth, we have
that ∀i ∈ {1, . . . , n}, depth(ti) < depth(t). The same is true for every recursive
call. We consider a sequence formed by the depths of the argument passed to
compose. It is a strictly decreasing sequence of natural integers. Since (N,≤) is
a well-ordered set, such a sequence is finite so the call terminates. �

All the recipes found by this algorithm really are recipes to compose the term
in the given frame.

Proposition 4.2 Let concr be a ground frame and t ∈ TΣ. Then

∀r ∈ compose(concr , t), concr{| r |} = t

Proof. Let concr be a ground frame and t ∈ TΣ. We proceed by induction on
the structure of t. Let R = {l | l 7→ t ∈ concr}. Then ∀r ∈ R, concr{| r |} = t.

• If t = f(t1, . . . , tn) and f is private, then compose(concr , t) = R.

• If t = f(t1, . . . , tn) and f is public, then

compose(concr , t) = R ∪ {f(r1, . . . , rn) | r1 ∈ compose(concr , t1),

. . . ,

rn ∈ compose(concr , tn)}

For every r ∈ compose(concr , t) \R, there exists r1 ∈ compose(concr , t1),
. . . , rn ∈ compose(concr , tn) such that r = f(r1, . . . , rn). By induction,
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the proposition holds for the ti, so

concr{| r |} = concr{| f(r1, . . . , rn) |}
= f(concr{| r1 |}, . . . , concr{| rn |})
= f(t1, . . . , tn)

= t

�

There is typically an infinite number of recipes for a given term: we could
imagine that a destructor and a constructor (from one algebraic equation) are
applied arbitrarily many times. The algorithm verifies a completeness property,
in the sense that it finds all recipes that use only constructors. This is not
considered a limitation, because the problem is for now only composing a term.
A recipe with destructors corresponds to decomposing a term, which will be
covered by the analysis of a frame in Section 4.4.

Proposition 4.3 Let concr be a ground frame, t ∈ TΣ and r be a recipe con-
taining only constructors such that concr{| r |} = t. Then r ∈ compose(concr , t).

Proof. Let concr be a ground frame, t ∈ TΣ and r be a recipe containing
only constructors such that concr{| r |} = t. We proceed by induction on the
structure of r. Let R = {l | l 7→ t ∈ concr}.

• If r is a label, then r ∈ R.

• If r = f(r1, . . . , rn) (where the r1, . . . , rn contain only constructors because
r does), then t = f(t1, . . . , tn) where concr{| r1 |} = t1, . . . , concr{| tn |} =
tn. By induction, the proposition holds for the ri, so r ∈ {f(r′1, . . . , r

′
n) |

r′1 ∈ compose(concr , t1), . . . , r′n ∈ compose(concr , tn)}.

�

4.3.2 Composition in a structural frame

Now that we have seen how to compose terms at the concrete level, we focus
on the corresponding problem for the structural level. The knowledge of the
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protocol specification is represented by a structural frame struct . This frame
contains terms that are not necessarily ground, which means that the presence
of variables must be accounted for. As for standard composition, the intruder
is able to compose a term by using public constructors. However, the difference
now is that the intruder considers the values that variables can take. They
reason about the possibilities that are consistent with their knowledge. This
involves solving unification problems between a term to compose and the terms
in the frame struct . The question is what recipes can be used to compose a
term, and under which substitution. Therefore, we want to find all recipes for
the term, using only constructors, with a unifier for each recipe allowing the
equality to hold.

Example 4.6 Consider the frame struct = {| l1 7→ h(x), l2 7→ scrypt(k, y) |},
for some variables x, y and a key k. Can the intruder compose the term h(y)?
There is the possibility that x = y, in which case l1 is actually a recipe to
compose h(y). This holds under the unifier {x 7→ y}, which is one possibility
considered by the intruder. However, the intruder definitely knows that l2 cannot
be a recipe to compose h(y), since y also appears inside the encrypted term so
h(y) = scrypt(k, y) is not a possibility, no matter the substitution applied to the
equality.

In our algorithm, the substitution must map variables to constants, and it must
substitute at least the variables with public range. We do not mention here all
of these conditions in the algorithm definition, but the actual application in the
overall procedure will use such a substitution since θ will be set as a model of
the formula α. Indeed, the substitution θ is the substitution representing the
instantiation of all variables occurring in struct .

The recursive function composeUnder takes three arguments:

• a substitution θ;

• a frame struct ;

• a term t ∈ TΣ(V).

It computes a set of pairs (recipe, substitution) to compose t under a unifier
from the knowledge in struct . The term can be composed by unifying with a
term that is an element of struct : if there exists a solution to the equality, then
the label is a recipe.

For a variable x with public range, the value can be directly read from the
substitution θ, and the constant it maps to is also a recipe. This is because
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having a public range means that the intruder knows all values that the variable
can take; all these values are public constants, so they do not need to be explicitly
included in the frame with labels. The recipe is then the constant θ(x) itself,
and the unifier is the substitution {x 7→ θ(x)} derived from the substitution θ.
As we mentioned in Section 2.3, this does not mean that the intruder has access
to θ but simply that they know the specific public value θ(x).

For a public function at the top level, all combinations of composition for the
subterms are also computed, as in compose. The additional computation for
combining subrecipes is combining also the unifiers. This is done by solving
again a unification problem, as the top level unifier must be a solution for
equalities of all subterms at the same time.

Algorithm 2: Composition in a structural frame
composeUnder(θ, struct , t) =

let RU = {(l, σ) | l 7→ t′ ∈ struct , σ = unify(t = t′)} in
if t = x and x has a public range then

RU ∪ {(θ(x), {x 7→ θ(x)})}
else if t = f(t1, . . . , tn) and f is public then

RU ∪ {(f(r1, . . . , rn), σ) | (r1, σ1) ∈ composeUnder(θ, struct , t1)
. . . ,
(rn, σn) ∈ composeUnder(θ, struct , tn),

σ = unify(σ1, . . . , σn)}
else

RU

Example 4.7 Let a, b ∈ Σ be constants and x, y ∈ V. Consider the substitution
θ = {x 7→ a, y 7→ b} and the frame struct = {| l1 7→ x, l2 7→ h(y) |}. Then

composeUnder(θ, struct , h(y)) = {(l1, {x 7→ h(y)}), (l2, ε), (h(l1), {y 7→ x})}

which shows that the intruder has, at the structural level, more than one way to
compose the term. The substitutions are the constraints to make the recipe valid.
It remains to be checked later if those recipes are equivalent at the concrete level.
We use the symbol ε to denote the identity substitution.

Proposition 4.4 Let θ be a substitution, struct be a frame and t ∈ TΣ(V).
Then the call composeUnder(θ, struct , t) terminates.

Proof. Let θ be a substitution, struct be a frame and t ∈ TΣ(V). There are
recursive calls to composeUnder if t is the application of a public function over



34 Decision procedure

subterms, i.e. t = f(t1, . . . , tn) where f is a public function of arity n ≥ 1. The
proof is the same as for compose, i.e. the depths of the argument passed to
composeUnder form a strictly decreasing sequence of natural integers. Such a
sequence is finite so the call terminates. �

Similarly to the case of compose, the pairs (recipe, substitution) found by this
algorithm really allow to compose the term in the given frame, under a unifier.

Proposition 4.5 Let θ be a substitution, struct be a frame and t ∈ TΣ(V).
Then

∀(r, σ) ∈ composeUnder(θ, struct , t), σ(struct{| r |}) = σ(t)

Proof. Let θ be a substitution, struct be a frame and t ∈ TΣ. We proceed by
induction on the structure of t. Let RU = {(l, σ) | l 7→ t′ ∈ struct , σ = unify(t =
t′)}. Then ∀(r, σ) ∈ RU , σ(struct{| r |}) = σ(t).

• If t = f(t1, . . . , tn) and f is private, then composeUnder(θ, struct , t) =
RU .

• If t = f(t1, . . . , tn) and f is public, then

composeUnder(θ, struct , t) = RU

∪ {(f(r1, . . . , rn), σ) |
(r1, σ1) ∈ composeUnder(θ, struct , t1),

. . . ,

(rn, σn) ∈ composeUnder(θ, struct , tn),

σ = unify(σ1, . . . , σn)}

For every (r, σ) ∈ composeUnder(θ, struct , t) \ RU , there exists
(r1, σ1) ∈ composeUnder(θ, struct , t1),
. . . ,
(rn, σn) ∈ composeUnder(θ, struct , tn)
such that r = f(r1, . . . , rn) and σ = unify(σ1, . . . , σn). By induction, the
proposition holds for the ti so

σ(struct{| r |}) = σ(struct{| f(r1, . . . , rn) |})
= f(σ(struct{| r1 |}), . . . , σ(struct{| rn |}))
= f(σ(t1), . . . , σ(tn))

= σ(f(t1, . . . , tn))

= σ(t)
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�

Again, the next proposition is close to a property of the compose algorithm.
Here, the algorithm finds all recipes that use only constructors, and pairs them
with a most general unifier.

Proposition 4.6 Let θ be a substitution, struct be a frame, t ∈ TΣ(V), r be
a recipe and τ be a substitution such that τ(struct{| r |}) = τ(t) and r contains
only constructors. Then

∃σ, (r, σ) ∈ composeUnder(θ, struct , t) and σ . τ

Proof. Let θ be a substitution, struct be a frame, t ∈ TΣ, r be a recipe and τ be
a substitution such that τ(struct{| r |}) = τ(t) and r contains only constructors.
We proceed by induction on the structure of r. Let RU = {(l, σ) | l 7→ t′ ∈
struct , σ = unify(t = t′)}.

• If r is a label, then (r, ε) ∈ RU .

• If r = f(r1, . . . , rn) (where the r1, . . . , rn contain only constructors because
r does), then t = f(t1, . . . , tn) for some t1, . . . , tn and

τ(struct{| r1 |}) = τ(t1)

. . .

τ(struct{| tn |}) = τ(tn)

By induction, the proposition holds for the ri, so

(r, σ) ∈ {(f(r′1, . . . , r
′
n), σ′) | (r′1, σ′1) ∈ composeUnder(θ, struct , t1),

. . . ,

(r′n, σ
′
n) ∈ composeUnder(θ, struct , tn),

σ′ = unify(σ′1, . . . , σ
′
n)}

Moreover, σ . τ since they unify the same equalities and σ is a most
general unifier.

�
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4.4 Analysis

The problem of analysing a frame is a major part of the work done in this thesis.
The analysis of a frame corresponds to adding all possible derivable terms. In
our case, it means that the intruder tries to apply the decomposition rules, i.e.
derive terms from the use of destructors, according to the algebraic equations
defined with the cryptographic operators in the intruder theory. It can be seen
as a fixed-point computation, as we start with the original frame and apply
analysis steps as long as possible. This problem has also been defined as frame
saturation [7].

In the definition of intruder theory in Section 3.1, we have also specified a
function ana performing one decomposition. The idea that we follow is to define
a recursive function applying these rules until none can be applied anymore.
When trying to analyse a term, we consider the set of keys required to decompose
it. We perform the analysis at the structural level, i.e. in a frame struct ,
in accordance with static equivalence with a the concrete frame concr . The
reason is that, at the structural level, the intruder reasons about the possibilities
for variables as we mentioned for composition in Section 4.3. At the same
time, they can check if the term can be analysed at the concrete level in concr .
Thus, the intruder can see if their hypotheses for the variables (in form of the
substitutions returned by composeUnder) are valid or not, with respect to the
static equivalence between struct and concr . Moreover, it suffices to return the
completely analysed frame based on struct , since concr in our case is defined to
be θ(struct).

4.4.1 Decomposition rules

The decomposition rules that the intruder is allowed to apply come from the
function ana, as defined in the intruder theory. It applies one analysis step to a
term, that is to say one decomposition rule. Moreover, the intruder is not only
interested in the actual terms they can learn from this decomposition but also
the step that was taken. Thus, we record for each decomposition the destructors
applied according the algebraic equations. What we add to the frame are directly
subterms of the term to analyse. This corresponds to using the rewriting system
generated by the set of algebraic equations, where we remove the applications
of destructors.

The function ana takes one argument:

• a term t ∈ TΣ(V).
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It computes the set of terms required (keys) and the set of derivable terms
resulting from analysing t. Each derivable term is paired with a function symbol,
which is the destructor to be used as part of the recipe to compose the term.
One analysis step will be allowed if and only if all of the keys can be composed.
This corresponds to our assumption that the intruder is not able to break the
cryptography; they can only follow the rules of the intruder theory.

Example 4.8 Recall the example set of cryptographic operators Σop from Ta-
ble 3.1. We provide below the definition of ana for this specific example.

ana(t) =



({priv(s)}, {(dcrypt, t′)}) if t = crypt(pub(s), r, t′)

({k}, {(dscrypt, t′)}) if t = scrypt(k, t′)

({}, {(retrieve, t′)}) if t = sign(p′, t′)

({}, {(proj1, t1), (proj2, t2)}) if t = pair(t1, t2)

({}, {}) otherwise

This definition matches exactly the algebraic equations corresponding to the
properties of the cryptographic operators. Let k, t1, t2 ∈ TΣ(V). Consider the
term scrypt(k, pair(t1, t2)). Then

ana(scrypt(k, pair(t1, t2)) = ({k}, {(dscrypt, pair(t1, t2))}

This means that if the intruder knows the key k, then they are able to decrypt the
term and learn pair(t1, t2). Moreover, they know that this comes from applying
dscrypt. The destructor will be stored as part of a shorthand, and is not present
in the derivable terms that we actually add to the intruder knowledge. The other
possible decompositions have to be done in other applications of ana.

4.4.2 Analysis of a structural frame

The function ana described above corresponds to a single analysis step. In order
to completely analyse a frame, i.e. achieve saturation of the frame, we need to
apply the decomposition rules until a fixed-point is reached. The intruder analy-
ses a structural frame struct and derivable subterms are added with shorthands
for decomposition recipes. This will make all derivable subterms available with
only composition rules, after the frame has been completely analysed. This ex-
plains why using our algorithms compose and composeUnder , that cover recipes
containing only constructors, is a reasonable choice.

We have stated previously that the analysis is performed in accordance with
static equivalence between the frames struct and concr . It means that if a
decomposition were successful (all keys can be composed) in struct but not
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concr , then they would not be statically equivalent as the application of a verifier
would distinguish the frames.

Example 4.9 Let k1, k2,m ∈ Σ \ Σpub be constants and x, y, z ∈ V, where
k1 6= k2. Consider the substitution θ = {x 7→ k1, y 7→ m, z 7→ k1} and the frame
struct = {| l1 7→ scrypt(x, y), l2 7→ z |}. Then the completely analysed frame is

structana = {| l1 7→ scrypt(x, y), l2 7→ z, dscrypt(l2, l1) 7→ y |}

because the decryption is successful at the concrete level: in concr = θ(struct),
the intruder is able to compose the key θ(x) = k1 with the recipe l2, so they can
use the same recipe in struct for the corresponding key x.

However, for the substitution θ′ = {x 7→ k1, y 7→ m, z 7→ k2}, then the analysed
frame would be

structana = {| l1 7→ scrypt(x, y), l2 7→ z |}

since here the intruder cannot compose the required key. When trying to compose
the key x, the algorithm composeUnder would have returned (l2, {x 7→ z}) as
a possibility, but this does not work in concr ′ = θ′(struct) so no terms can be
added.

In order to compute the fixed-point of the completely analysed frame, we define a
recursive function analyseRec that will take terms to analyse, apply one analysis
step from calling ana, add terms if the decomposition was successful, and call
itself to perform the other analysis steps.

To tackle the problem, we first consider that the intruder knowledge has been
split into three frames. That way, we can make the distinction between the terms
that have to be analysed in the future, the terms that might be decomposed
later, and the terms that have already been completely analysed. Note that we
do need to consider the terms “on hold”, i.e. that might be decomposed later,
because the intruder might learn at a later point the required keys.

Example 4.10 Let k1, k2,m ∈ Σ \Σpub be constants and x, y, z ∈ V. Consider
the substitution θ = {x 7→ k1, y 7→ m, z 7→ k2} and the frame struct = {| l1 7→
dscrypt(x, y), l2 7→ pair(x, z) |}.

Suppose the intruder analyses first dscrypt(x, y). They are not able to compose
the key x (with recipes containing only constructors), so the decomposition fails.

However, when they analyse pair(x, z), they can learn the terms x and z since
no keys are required to decompose pairs. Therefore, a shorthand m1 7→ x is
added to the frame, where m1 = proj1(l2). Now, the intruder is able to compose
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the key x with only constructors, with the recipe m1. Thus, they can actually
decrypt the term dscrypt(x, y). This shows why it is important to put terms “on
hold” during analysis in case they the intruder becomes able to analyse them at
a later point.

Before defining the recursive function analyseRec computing a fixed-point, we
present first the wrapper-function analyse, which simply calls analyseRec with
the arguments properly initialised.

The function analyse takes two arguments:

• a substitution θ;

• a structural frame struct .

It analyses a structural frame struct , where the substitution θ maps all variables
occurring in struct to constants. It computes the analysed frame structana and
a set of substitutions E inconsistent with static equivalence between struct and
concr = θ(struct). The substitutions in E correspond to unifiers such that
a decomposition step fails at the concrete level but succeeds at the structural
level: the unifier allowing the intruder to compose all keys would also allow to
distinguish the frames. The intruder records those substitutions that are not
consistent with their knowledge, so that they can rule out possibilities.

Algorithm 3: Analysis of a structural frame (wrapper)
analyse(θ, struct) =

analyseRec(θ, struct , {| |}, {| |}, {})

When performing the analysis of a structural frame struct , all terms are ini-
tially considered “new” in the sense that they have to be analysed. There are,
at the start, no elements “on hold” or “done”. Moreover, we also indicate an
empty set as the initial value of the set E of substitutions inconsistent with
static equivalence of the frames. We denote the result of the analysis with
(structana , E) = analyse(θ, struct).

It remains now to define the function analyseRec that actually performs the
analysis of the frame.

The recursive function analyseRec takes five arguments:

• a substitution θ;
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• a frame with terms to analyse N (new);

• a frame with terms that could be analysed again later H (on hold);

• a frame with terms that are completely analysed D (done);

• a set of substitutions E inconsistent with static equivalence between the
structural and concrete frames.

It analyses mappings “recipe to term” at the structural level, assuming static
equivalence to a corresponding concrete frame. The fixed-point is reached when
no mapping can be further analysed, i.e. the argument for “new” terms is an
empty frame (N = {| |}). When considering a term to analyse, the function ana
is called to apply, if possible, a decomposition rule.

The result of applying ana gives a set of keysK required to decompose the term,
and a set FT of pairs (destructor, term) of derivable terms (with a destructor
to define a shorthand). The first step is to check if there are indeed any new
terms to learn or if the intruder already knows them. We filter the pairs for new
terms in a set FTnew . If it is empty, there is nothing more to do, the intruder
can analyse the next term. Otherwise, we try to decompose the term.

If the analysis fails in concr , i.e. at least one key cannot be composed at
the concrete level, then it also fails in struct and no new terms can be added.
However, since composition of all keys at the structural level might succeed even
in this case, the unifiers allowing to compose all keys in struct are not consistent
with the static equivalence. We add such substitutions to the set E.

If the analysis is successful in concr , i.e. all keys can be composed at the
concrete level, then it is also successful in struct and recipes for the new terms
use the recipes of keys in the concrete frame. The shorthands added at this
point use the destructors paired with the new terms, and some recipes found
for composing the keys. We not only add the terms coming from FTnew , but
also the keys. We put the new mappings in the frame LTnew and add this to
the new terms to analyse. All terms that were on hold also need to be analysed
again, as the intruder might be able to successfully decompose them with their
new knowledge.

The choice of these recipes is irrelevant: since the keys are also added to the
frame, the other ways to compose them can be found with compose. The nota-
tion “pick ” in the definition below refers to this choice, it means “take any one
element from the set”.

The function makes analysis steps as long as there are terms that can be added,



4.4 Analysis 41

i.e. until a fixed-point is reached (frame saturation). This happens when the
argument representing terms to analyse is an empty frame.

Algorithm 4: Analysis of a structural frame (recursive)
analyseRec(θ,N,H,D,E) =

if N = {| |} then
(H ∪D,E)

else
let {| l 7→ t |} ∪ LT = N

(K,FT ) = ana(t)
{k1, . . . , kn} = K
FTnew = {(f, t′) ∈ FT | ∀r, r 7→ t′ /∈ D} in

if FTnew = {} then
analyseRec(θ,FT , H, {| l 7→ t |} ∪D,E)

else
let struct = N ∪H ∪D

concr = θ(struct) in
if {} ∈ {compose(concr , θ(k)) | k ∈ K} then

let Enew = {σ | (r1, σ1) ∈ composeUnder(θ, struct , k1),
. . . ,
(rn, σn) ∈ composeUnder(θ, struct , kn),
σ = unify(σ1, . . . , σn)} in

analyseRec(θ,LT , {| l 7→ t |} ∪H,D,E ∪ Enew )

else
let LTnew = {| f(r1, . . . , rn, l) 7→ t′ |

(f, t′) ∈ FTnew ,
pick r1 ∈ compose(concr , θ(k1)),
. . .
pick rn ∈ compose(concr , θ(kn)) |}
∪{| r 7→ k | k ∈ K,

pick r ∈ compose(concr , θ(k)),
∀t′, r 7→ t′ /∈ struct |} in

analyseRec(θ,LTnew ∪ LT ∪H, {| |}, {| l 7→ t |} ∪D,E)

Example 4.11 Let s, r, t ∈ TΣ and x, y, z, u ∈ V. We consider the substitution
θ = {x 7→ s, y 7→ r, z 7→ t, u 7→ s} and the frame

struct = {| l1 7→ crypt(pub(x), y, z), l2 7→ pair(priv(u), pub(u)) |}
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Then

analyse(θ, struct) = ({| l1 7→ crypt(pub(x), y, z),

l2 7→ pair(priv(u), pub(u)),

proj1(l2) 7→ priv(u),

proj2(l2) 7→ pub(u),

dcrypt(proj1(l2), l1) 7→ z |}, {})

Proposition 4.7 Let θ be a substitution and struct be a frame. Then the call
analyse(θ, struct) terminates.

Proof. Let θ be a substitution and struct be a frame. Since by definition
analyse(θ, struct) = analyseRec(θ, struct , {| |}, {| |}, {}), what we really want to
show is that the call to analyseRec terminates. We now consider that the frame
struct has been split into three frames N,H,D and denote with E the set
of substitutions passed as argument to analyseRec. We abuse the notation
and write weight(N ∪H) to mean

∑
l 7→t∈N∪H weight(t). We consider the tuple

(weight(N ∪H),#N). When analysing the mapping l 7→ t ∈ N :

• If there are no new terms to be added from the analysis of t, l 7→ t is
removed from N and put in D for the recursive call. Then weight(N ∪H)
has decreased by weight(t).

• If the analysis of t fails, l 7→ t is removed from N and put in H for the
recursive call. Then weight(N ∪H) stays the same but #N has decreased
by 1.

• If the analysis of t succeeds, l 7→ t is removed from N and put in D. The
new terms from the analysis and the terms that were on hold are put in N .
Then weight(N ∪H) has decreased by at least 1 (t is not present anymore
but some of its subterms might be).

The lexicographic order on (N,≤)× (N,≤) forms a well-order and the sequence
of tuples for the recursive calls is a strictly decreasing sequence bounded by
(0, 0), so such a sequence is finite and the call terminates. �

The analysis only adds shorthands to the original frame. It makes the derivable
terms accessible by composition, but it does not modify the information encoded
by the frame. To be absolutely rigorous, we have structana{| r |} ≈ struct{| r |}
only if the unifiers allowing to compose the keys at the structural level (e.g.
{x 7→ u} in Example 4.11) have been applied to the frame. That is to say, when
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the intruder finds equalities between variables that must hold during analysis,
then the substitution is applied to the term so that we only keep the necessary
variables (we do not need to distinguish variables that are equal). This step
should technically be verified against privacy, i.e. perform a check to see if these
equalities already violate the privacy of the payload α. In the rest of the thesis,
we assume implicitly that these steps have been performed, so that the analysed
frame really contains proper shorthands.

Proposition 4.8 Let θ be a substitution and struct be a frame. Then

∀r, structana{| r |} ≈ struct{| r |},

where (structana , E) = analyse(θ, struct).

Proof. Let θ be a substitution, struct be a frame and r be a recipe. Let
(structana , E) = analyse(θ, struct). All mappings l 7→ t in struct are also
in structana . New terms are added according to the analysis rules of the in-
truder theory, so the analysed term must be a constructor applied to some
terms. When analysing l 7→ constr(t1, . . . , tn) the frame is augmented with map-
pings of the form destr(r1, . . . , rm, l) 7→ ti, where there is an algebraic equation
destr(k1, . . . , km, constr(t1, . . . , tn)) ≈ ti and the r1, . . . , rm are recipes for the
k1, . . . , km. Therefore, the labels that the analysis adds are themselves recipes
over the labels from the original frame. structana is the frame struct with short-
hands. �

The analysis finds all derivable terms. Shorthands have been determined for
any successful decomposition of terms.

Proposition 4.9 Let θ be a substitution and struct be a frame. Then for
every recipe r, there exists a recipe r′ containing only constructors such that
structana{| r′ |} ≈ struct{| r |}, where (structana , E) = analyse(θ, struct).

Proof. Let θ be a substitution, struct be a frame and r be a recipe. Let
(structana , E) = analyse(θ, struct). We proceed by induction on the structure
of r. We consider the occurrence of a destructor f such that no subrecipe for
the arguments of f contains destructors.

• If the destructor is applied to a label and the decomposition is success-
ful, then during analysis a shorthand m = f(. . . ) has been added, i.e.
structana{|m |} ≈ struct{| f(. . . ) |}.
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• If the destructor is applied to a constructor and the decomposition is
successful, then the intruder has performed a useless step and it can be
replaced by a term without the destructor (from the algebraic equations).

• If the decomposition is not successful, then we can replace the application
of f by a corresponding constructor gf that does not occur in any algebraic
equations. This gf represents failed decomposition, and can be considered
a constructor because it can only be used to compose terms, there is no
way to reduce the terms with any rewriting rule.

We have covered all cases since the subrecipes do not contain destructors. By
induction, we are able to replace all occurrences of destructors in the recipe. A
similar argument can be made for verifiers, which are basically a special case of
destructors. We can define a recipe r′ which is the same as r but all occurrences
of destructors and verifiers have been replaced by the methods listed above. �

The definition of the function analyse uses an assumption of static equivalence
between a structural frame and its concrete instantiation characterised by θ.
The analysis preserves this property of static equivalence. In the rest of this
thesis, we will refer to the set of models of α as Θ. Our approach is to reason
about the possible interpretations, so we quantify our results over models in Θ.

Proposition 4.10 Let θ be a substitution and struct be a frame. Then

∀I ∈ Θ, I |= struct ∼ θ(struct) ⇐⇒ I |= structana ∼ θ(structana),

where (structana , E) = analyse(θ, struct).

Proof. Let θ be a substitution, struct be a frame and I ∈ Θ.
Let (structana , E) = analyse(θ, struct).

I |= struct ∼ θ(struct)

⇐⇒
(∀(r1, r2), I(struct){| r1 |} ≈ I(struct){| r2 |} ⇐⇒

θ(struct){| r1 |} ≈ θ(struct){| r2 |})
⇐⇒

(∀(r1, r2), I(structana){| r1 |} ≈ I(structana){| r2 |} ⇐⇒
θ(structana){| r1 |} ≈ θ(structana){| r2 |})

⇐⇒
I |= structana ∼ θ(structana)
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�

The algorithm presented here does not simply return the analysed frame, but
also a set of substitutions. All substitutions returned are inconsistent with
the assumption of static equivalence. This notion of inconsistency is formally
expressed in the following proposition:

Proposition 4.11 Let θ be a substitution and struct be a frame. Then

∀I ∈ Θ, I |= struct ∼ θ(struct) =⇒ ∀σ ∈ E, I |= ¬σ,

where (structana , E) = analyse(θ, struct).

Proof. Let θ be a substitution, struct be a frame and I ∈ Θ such that
I |= struct ∼ θ(struct). Let (structana , E) = analyse(θ, struct) and σ ∈ E. The
substitution σ has been found during analysis of some mapping l 7→ t where all
keys can be composed in the current struct under some unifier but the corre-
sponding ground keys cannot be composed in θ(struct). Let f be the verifier
allowing to check for decomposition of the term t with the keys k1, . . . , km. Let
(r1, σ1) ∈ composeUnder(θ, struct , k1),
. . . ,
(rm, σm) ∈ composeUnder(θ, struct , km).
We define the recipe r = f(r1, . . . , rm, l) corresponding to the decomposition,
and the substitution σ = unify(σ1, . . . , σm) corresponding to the unifier allowing
to compose all keys. Then σ(struct{| r |}) ≈ σ(struct{| yes |}) because the decom-
position is successful in struct . However, the same decomposition is not possible
in θ(struct), so θ(struct{| r |}) 6≈ θ(struct{| yes |}). Since I(struct) ∼ θ(struct),
we also have that I(struct){| r |} 6≈ I(struct){| yes |}). Therefore, I does not
model σ, because if it did there would be a pair of recipes, namely (r, yes), to
distinguish the frames I(struct) and θ(struct). �

4.5 Relations between variables

In the two previous sections, we have solved the problem of composition of a
term, both at the concrete and structural level, and of analysis of a structural
frame. These steps are part of a larger procedure, which we describe now. Recall
that our goal is to determine the relations between the variables of the protocol
specification. By relations, we mean in this context whether variables are equal
or not. At the structural level, the intruder knows how messages exchanged
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during protocol executions look like: the terms in the structural knowledge
include variables, which are instantiated to constants at the concrete level. The
procedure designed generates a formula φ, which contains all equalities and
inequalities between variables that the intruder is able to derive from their
knowledge. We relate this formula φ to the problem of (α, β)-privacy. We
present an algorithm that, for a given state of some protocol specification, finds
relations between variables. We show that this procedure allows automated
verification of privacy goals.

For our algorithm generating the formula φ encoding relations between variables,
we want that the frames have been analysed so that we can use composition to
compare all derivable terms. We consider the general case of one structural
frame struct and one concrete frame concr . The goal is to find which variables
are actually equal to each other, and which are not. Indeed, at the structural
level the terms include variables. A variable is simply a placeholder that, in any
protocol execution, is substituted to a constant. Privacy goals, encoded by the
formula α, are expressed on the structural level of the protocol specification. For
instance, it could be α ≡ x, y, z ∈ {0, 1} in a simple voting protocol, where the
variables x, y, z correspond to some votes. The intruder can try to see if they
can deduce x = y or y 6= z or other relations like this, based on their knowledge
from β. If so, then privacy is violated.

Therefore, it makes sense to find how these equalities and inequalities between
concrete terms translate to variables before their instantiation. This is used so
that the formula φ becomes a consequence of the intruder knowledge, and thus
we can check if it is an interesting consequence breaking privacy.

We specify a function findRelations that starts by performing the analysis of a
frame before trying to find more relations. In this situation, the intruder has
the knowledge of a structural frame struct and one protocol execution recorded
as the concrete frame concr = θ(struct). We use the substitution θ, that maps
all variables to constants, to denote this instantiation.

The result of the analysis of struct includes the analysed frame structana as
well as a set of substitutions E, that we have shown contains substitutions in-
consistent with static equivalence between struct and θ(struct). Thus, these
substitutions encode some inequalities between variables. This has to be in-
cluded in the formula φ, since it already constitutes some relations between
variables that the intruder was able to deduce.

Example 4.12 Let k1, k2,m ∈ Σ be constants and x, y, z ∈ V. Consider the
substitution θ = {x 7→ k1, y 7→ m, z 7→ k1} and the frame

struct = {| l1 7→ scrypt(x, y), l2 7→ z |}
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The result of the analysis is

analyse(θ, struct) = ({| l1 7→ scrypt(x, y), l2 7→ x, dscrypt(l2, l1) 7→ y |}, {})

Then we would like our algorithm to find the possible relations between the vari-
ables. For instance, intuitively we can see that x = z ∧ y 6= z, because the de-
cryption was successful (so x = z) and the intruder is able to compare the pair
of recipes (l2, dscrypt(l2, l1)) (so y 6= z) with composition in the analysed frame.
There are more relations that the intruder could deduce, e.g. z 6= dscrypt(x, y)
(which in this case also follows from x = z).

The function findRelations takes two arguments:

• a substitution θ;

• a structural frame struct .

It finds relations between the variables occurring in a structural frame struct ,
based on static equivalence with the concrete frame concr = θ(struct). It com-
putes a set of equalities and a set of inequalities between variables occurring
in a structural frame struct , based on static equivalence with a concrete frame
concr . The equalities and inequalities are encoded in a logical formula φ.

First, the intruder tries to compose the terms inside concr in different ways.
This is done by calling compose on the different labels and shorthands in the
analysed concrete frame. If the intruder has several ways to compose a term, i.e.
the composition algorithm returned several recipes, then pairs of recipes from
these possibilities must also generate a unique term in struct . This provides a
number of equalities. When we have all equalities, we compute a most general
unifier so that we can write the results in a simpler way: an equality in our final
formula φ will be of the form x = t for some variable x and some term t.

Then, the intruder tries to compose the terms inside struct in different ways,
under some unifiers. If they are able to compose a term in several ways, then
we check if the pairs of recipes generate a unique term in concr . If it is the case,
then there is nothing to deduce, it is just from static equivalence. However,
if a pair of recipes distinguish the frames, i.e. we have found (l, r) such that
concr{| l |} 6= concr{| r |}, then the intruder knows that the unifier attached to r
is not consistent with the static equivalence. They can deduce the negation of
the unifier, i.e. a disjunction of inequalities.
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Algorithm 5: Relations between variables
findRelations(θ, struct) =

let (structana , E) = analyse(θ, struct)
concrana = θ(structana)
pairs = pairsEcs({compose(concrana , t) | ∃l, l 7→ t ∈ concrana})
eqs = {(structana{| r1 |}, structana{| r2 |}) | (r1, r2) ∈ pairs}
ineqs = E ∪ {σ′ | l 7→ t ∈ structana ,

(r, σ′) ∈ composeUnder(θ, structana , t),
l 6= r,
concrana{| l |} 6= concrana{| r |}}

σ = unify(eqs) in
σ ∧

∧
τ∈ineqs ¬τ

In this definition, the result is the formula φ ≡ σ ∧
∧
τ∈ineqs ¬τ . We do not

follow strictly pseudo-code notation here for simplicity.

In general, there are more inequalities found than equalities. This depends on
the length of the frame, because when composing a term the intruder tries to
unify with the terms from their knowledge. The formula returned could also
be simplified somewhat, for instance as defined here it could return both y 6= z
and z 6= y (this would come from two unifiers computed separately), but then
y 6= z is enough. There are not efforts made to take into account symmetry and
transitivity at this point. Still, the formula is not complex (it is just equalities
and inequalities between a variable and a term) and at the same time enough
to check for privacy.

Example 4.13 We model a toy protocol corresponding to a doctor issuing a
sick note to one of their patients. The doctor has a public and private key pair,
they can log in to a trusted authority to receive a certificate, and they can use
their key to sign a sick note. The patient will be able to show their sick note
along with the doctor’s certificate to their employer.

We write ta[] for the name of the trusted authority, and we represent the key
pair of the trusted authority with pub(s) (known by everyone) and priv(s) (only
known by the authority), where s was some seed used to generate the pair. We
denote with D the names of all doctors registered to the trusted authority. We
consider the situation where the intruder has recorded the connections of two
doctors to the authority, as well as two different sick notes. This is encoded in
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the frame

struct = {| l1 7→ scrypt(k1, pair(pair(x1, pw(x1, ta[])), pub(x1))),

l2 7→ scrypt(k1, sign(priv(s), pair(t1, pub(x1)))),

l3 7→ sign(priv(x1), pair(n1, a)),

l4 7→ sign(priv(s), pair(t1, pub(x1))),

l5 7→ scrypt(k2, pair(pair(x2, pw(x2, ta[])), pub(x2))),

l6 7→ scrypt(k2, sign(priv(s), pair(t2, pub(x2)))),

l7 7→ sign(priv(x2), pair(n2, b)),

l8 7→ sign(priv(s), pair(t2, pub(x2))) |}

where the messages mean respectively

1. a doctor x1 logs in with their password pw(x1, s[]) and sends their public
key pub(x1) (encrypted session);

2. the trusted authority sends back a certificate for the doctor’s public key
with a timestamp (encrypted session);

3. the doctor issues a sick note for a patient a, that they sign with their
private key (n1 may contain information related to formats, health data
etc.);

4. the doctor also shares the certificate they received earlier from ta[] so that
other can verify the signature of the sick note;

5. a doctor x2 logs in and sends their public key;

6. ta[] sends a certificate for the doctor’s public key;

7. the doctor issues a sick note for a patient b;

8. the doctor also shares their certificate.

We do not add it explicitly to the frame, but the intruder has also access to
pub(s) so they can verify signatures. By writing the name of a doctor as the
seed, we mean that the same doctor always uses the same key pair.

The payload is α ≡ x1, x2 ∈ D, i.e. x1 and x2 are just the names of some
doctors. We consider the concrete instantiation

θ = {x1 7→ d, a 7→ A, x2 7→ d, b 7→ B, . . . }

which corresponds to the fact that the same doctor issued both sick notes. The
values of the rest of the variables are not really relevant for the privacy goal.
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Without going into the details as it becomes quite cumbersome to write (a good
argument for an automated procedure), we mention what the algorithm would
find in such a situation.

When performing the analysis of the frame struct , the intruder is able to open
the signatures since they know pub(s). Since at the concrete level the doc-
tors’ key pairs are the same, they are equal in struct as well. So our func-
tion findRelations will compute a unifier for, among other things, the equality
pub(x1) = pub(x2) and therefore find x1 = x2 as part of the formula φ. Without
reporting all of the relations found, we can already see that φ does not follow
from α so (α, β)-privacy does not hold.

We formalise the correctness of the decision procedure that has been described.
We argue that the algorithm findRelations is sound and complete, i.e. the
formula φ generated encoding relations between variables really corresponds to
static equivalence between struct and concr = θ(struct).

Proposition 4.12 Let θ be a substitution and struct be a frame. Then

∀I ∈ Θ, I |= struct ∼ θ(struct) ⇐⇒ I |= φ,

where φ ≡ findRelations(θ, struct).

Proof. Let θ be a substitution, struct be a frame and I ∈ Θ. Let φ ≡
findRelations(θ, struct), (structana , E) = analyse(θ, struct) and concrana =
θ(structana).

• If I 6|= struct ∼ θ(struct): then I(structana) 6∼ concrana , so there exists a
pair of recipes (r1, r2) that distinguishes the frames.

– If I(structana){| r1 |} 6≈ I(structana){| r2 |} and for the concrete frame
concrana{| r1 |} ≈ concrana{| r2 |}: then the function findRelations has
found an equivalent pair of recipes (with constructors only) when
trying to find equalities between terms. So there exists a substitution
σ such that φ |= σ and σ(structana{| r1 |}) = σ(structana{| r2 |}). This
unifier has been found by the algorithm from the set of equalities.
Assume by contradiction that I |= φ, then also I |= σ and thus
I(structana{| r1 |}) ≈ I(structana{| r2 |}) which is false. So I 6|= φ.

– If I(structana){| r1 |} ≈ I(structana){| r2 |} and for the concrete frame
concrana{| r1 |} 6≈ concrana{| r2 |}: then the function findRelations
has made an equivalent check when trying to find inequalities be-
tween terms. So there exists a substitution τ such that φ |= ¬τ and
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τ(structana{| r1 |}) ≈ τ(structana{| r2 |}). This unifier has been found
by the algorithm from the set of inequalities. Moreover, τ is a most
general unifier of the equality structana{| r1 |} = structana{| r2 |} so
I |= τ . Therefore I 6|= φ.

• If I |= struct ∼ θ(struct): then also I |= structana ∼ θ(structana). For
every mapping l 7→ t ∈ concrana , the recipes in compose(concrana , t) form
an equivalence class. For every (r1, r2) ∈ pairsEcs(compose(concrana , t)),
we have by definition that concrana{| r1 |} = concrana{| r2 |}.

Since I(structana) ∼ concrana , then also
I(structana){| r1 |} ≈ I(structana){| r2 |}. Therefore, I |= σ where

σ = unify({(structana{| r1 |}, structana{| r2 |}) |
l 7→ t ∈ concrana ,

(r1, r2) ∈ pairsEcs(compose(concrana , t))})

Besides the exceptions found during analysis, a substitution τ such that
l 7→ t ∈ structana , (r, τ) ∈ composeUnder(θ, structana , t), l 6= r and
concrana{| l |} 6≈ concrana{| r |} is found by the function findRelations and
is inconsistent with the static equivalence between structana and concrana .
Let ineqs be the set of substitutions E found during analysis union with the
substitutions found by the findRelations algorithm. Then ∀τ ∈ ineqs, I |=
¬τ . Therefore, I |= σ ∧

∧
τ∈ineqs ¬τ which is exactly I |= φ.

�

We now have everything to relate directly our results to (α, β)-privacy. We have
designed a procedure that generates a formula φ of relations between variables,
and this φ can be used to verify privacy for a message-analysis problem.

Proposition 4.13 Let α be combinatoric, θ ∈ Θ be a model of α and struct =
{| l1 7→ t1, . . . , lk 7→ tk |} for some t1, . . . , tk ∈ TΣ(fv(α)).
Let β ≡ MsgAna(α, struct , θ) and φ ≡ findRelations(θ, struct). Then

(α, β)-privacy holds iff ∀I ∈ Θ, I |= φ

Proof. Let α be combinatoric, θ ∈ Θ be a model of α and struct = {| l1 7→
t1, . . . , lk 7→ tk |} for some t1, . . . , tk ∈ TΣ(fv(α)). Let β ≡ MsgAna(α, struct , θ)
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and φ ≡ findRelations(θ, struct). Then

(α, β)-privacy holds
⇐⇒
∀I ∈ Θ, I(struct) ∼ θ(struct)

⇐⇒
∀I ∈ Θ, I |= struct ∼ θ(struct)

⇐⇒
∀I ∈ Θ, I |= φ

�

In this chapter, we have seen what an intruder is able to deduce from the
structural frame struct , a concrete execution concr , and the static equivalence
between these two frames. We have specified a number of algorithms that solves
composition of terms, both at the concrete and structural level, analysis of a
structural frame, and verification of (α, β)-privacy. Our procedure can be used
to automate the verification. It is terminating, sound and complete for the
decidable fragment formed by message-analysis problems.



Chapter 5

Decision procedure for
protocols with branching

The procedure designed in the previous chapter is restricted to the situation
where the intruder has the knowledge of one structural frame and one concrete
frame. However, for many protocols the specification and the representation
as a transition system involves conditional branching. For example, it might
be the case that an encrypted message contains a different value depending
on the result of some test. In such cases, when considering one state in the
transition system, the intruder needs to make hypotheses about which branch
of the protocol specification has actually been executed.

This means that the intruder knowledge can now be represented as a number
of different structural frames, and we continue to assume that they have been
able to record a single execution of the protocol. In this context, we lift the
procedure working on one struct to a procedure working on several structural
frames struct1, . . . , structn, n ≥ 2. The motivation for studying this problem
is that our decision procedure will support a larger class of protocols than the
previous restricted problem without branching.

As before, the intruder knowledge is represented with frames. The difference
with the case without branching is that the analysis is now performed for all
different structural frames considered possible. Then, the relations between
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variables are found independently for each of these hypotheses. This is done
by reusing the functions described in Chapter 4. In the rest of this chapter, we
distinguish the structural frames with an index i ∈ {1, . . . , n}. One and only
one of the possibilities really happened during the protocol execution. This
particular structural frame is marked with the index 1. This is of course not
something that the intruder knows, but it will be used to denote the concrete
frame of the protocol execution with concr = θ(struct1). The substitution θ
characterises the instantiation of variables for the actual execution. What we
mean by the intruder making one hypothesis is that they follow the procedure
assuming static equivalence between some struct i (i ∈ {1, . . . , n}) and concr .

The problem can still be expressed in terms of message-analysis problems. To
express the situation in terms of (α, β)-privacy, we consider now that the in-
truder studies a set of message-analysis problems. Each of them corresponds to
one hypothesis made by the intruder. We follow a method very close to the case
of a single structural frame. The procedure designed in this chapter generates a
number of formulae φ1, . . . , φn characterising the relations between variables, for
each hypothesis made by the intruder. We argue and prove that these formulae
allow automated verification of privacy goals.

5.1 Static equivalence

In the case we study in this chapter, the knowledge of the intruder can be
encoded into several structural frames and one concrete frame. Moreover, it
includes the static equivalence between these frames, as the protocol execution
must correspond to the protocol specification. We have seen in Chapters 2 and 4
how the notion of static equivalence is closely related to verifying privacy. Now
that the intruder makes a number of hypotheses, they will try to exclude some
possibilities if they can.

This involves reasoning about static equivalence in a way that we did not need
before. Indeed, in Chapter 4, it was always the case that concr = θ(struct),
so it was not necessary to actually verify static equivalence between them: we
have designed our procedure to work in such a situation by assuming that static
equivalence held. However, the intruder knows only knows that there is some
struct i such that concr = θ(struct i), but they do not know which one. In
order to rule out hypotheses, it is useful to be able to decide static equivalence.
This is not fundamentally a requirement, but makes it easier to talk about the
hypotheses that the intruder is able to rule out.
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5.1.1 Decision algorithm for ground frames

Static equivalence of frames is not specific to the problem we tackle in this
thesis. For now, we forget about the (α, β)-privacy setting and consider the
general case of two frames. The question is how to verify if they are statically
equivalence, that is to say: is there any way to distinguish them? The approach
taken is to generate a number of checks, based on the recipes found with the
compose function. We require that the frames are ground and saturated, i.e. no
term in the frames contains variables and they are completely analysed. The
reason for these conditions is that the composition algorithm we apply is correct
for a ground frame, and that the frame must have been analysed beforehand to
handle the case of decompositions.

The function areStatEq takes two arguments:

• a ground and analysed frame z1;

• a ground and analysed frame z2.

It performs a number of checks to determine whether the frames are statically
equivalent or not. Static equivalence holds if and only if all of the checks succeed,
i.e. the frames agree on all pairs of recipes checked. To find all relevant checks,
we apply compose successively on all terms inside the frames. Since we assume
that they have been completely analysed, this gives sets of recipes to compose
all derivable terms. We then convert the sets of recipes into pairs to checks,
with our function pairsEcs, since recipes for the same term form an equivalence
class. All pairs of recipes from the frame z1 must generate a unique term in
z2, and vice-versa.

Algorithm 6: Static equivalence between ground frames
areStatEq(z1,z2) =

let C1 = pairsEcs({compose(z1, t) | ∃l, l 7→ t ∈ z1})
C2 = pairsEcs({compose(z2, t) | ∃l, l 7→ t ∈ z2}) in

(all (λ (r1, r2).z2{| r1 |} = z2{| r2 |}) C1

and all (λ (r1, r2).z1{| r1 |} = z1{| r2 |}) C2)

Example 5.1 Let k, v1, v2 ∈ Σ be constants. Consider the frames

z1 = {| l1 7→ scrypt(k, v1), l2 7→ scrypt(k, v2) |}
z2 = {| l1 7→ scrypt(k, v1), l2 7→ scrypt(k, v1) |}
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Then
areStatEq(z1,z2) = false

because the pair of recipes (l1, l2) distinguishes the frames.

The fact that the frames are completely analysed justifies the restriction to
composition for finding appropriate checks. Indeed, compose computes a finite
set of recipes. In the definition of static equivalence, the frames must agree on
any pair of recipes, and there is an infinite number of recipes. We argue that
the algorithm we defined is still correct.

Proposition 5.1 Let z1,z2 be ground and analysed frames. Then

areStatEq(z1,z1) = true ⇐⇒ z1 ∼ z2

.

Proof. Let z1,z2 be ground and analysed frames.

• If areStatEq(z1,z2) = false: the algorithm has found a pair of recipes
that distinguishes the frames so z1 6∼ z2.

• If areStatEq(z1,z2) = true: the frames are analysed, so for any pair
(r1, r2) of recipes, there is a pair (r′1, r

′
2) of recipes containing only con-

structors such that zi{| r′1 |} ≈ zi{| r1 |} and zi{| r′2 |} ≈ zi{| r2 |} (for
i ∈ {1, 2}).

– If r′1 or r′2 is a label, then the check is found by the algorithm when
calling compose.

– Otherwise, there is a function f such that r′1 = f(u1, . . . , un) and
r′2 = f(v1, . . . , vn). Then for checking the pair (r′1, r

′
2), it suffices to

check all pairs (ui, vi).

Thus, the pairs generated from calling compose on the terms in the frames
are enough to verify static equivalence.

�

We are now able to decide if two frames are statically equivalent, assuming that
they are ground and have been analysed before. Going back to the (α, β)-privacy
problem at hand, we will make use of this method to rule out hypotheses: if the
intruder is able to observe that their candidate frame for the concrete execution
is not statically equivalent to the actual execution concr that they have recorded,
then they can exclude this possibility.
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5.2 Analysis

5.2.1 Analysis of several structural frames

The intruder knows several structural frames struct1, . . . , structn. In order to
reuse our method to find relations, we again need to analyse the structural
frames. The different struct i considered by the intruder are analysed separately.
This analysis procedure is exactly the same as before, which means that we call
the function analyse for every possibility. Note that this means, for a possibility
struct i, that the analysis is done relying on static equivalence between struct i
and θ(struct i). The substitution θ is the same for all possibilities, because it
simply encodes the single concrete execution recorded by the intruder. There
is only one “true” structural frame corresponding to concr , and it is struct1.
The intruder will try to see if the hypotheses they make are consistent with this
single concrete execution, or if they can rule out some possibilities.

The function analyseMulti takes two arguments:

• a substitution θ;

• a set of possible structural frames structs.

It analyses a set of structural frames structs. Every possibility is analysed
separately, resulting in a number of pairs (analysed frames, substitutions), where
the substitutions returned are inconsistent with the static equivalence of the
structural and concrete frames.

Algorithm 7: Analysis of several structural frames
analyseMulti(θ, structs) =
{analyse(θ, struct) | struct ∈ structs}

Note that even though we extensively use set notations in this thesis, the actual
algorithms preserve the orders of elements (which are in lists rather than sets).
Therefore, we consider that we can still identity the different values returned by
analyseMulti with the same indices 1, . . . , n as before the analysis.
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5.3 Relations between variables for several struc-
tural frames

In a similar way to analysis, the method to find relations between variables is
basically lifting the results of Chapter 4 to several structural frames. When we
defined the function findRelations, we set the concrete frame to be θ(struct) since
it was the only possibility. Now, the intruder still considers a single protocol
execution. But they have to compare it with the different structural frames of
their hypotheses. Thus, we can apply the procedure for finding relations to the
result of the analysis and this particular concrete frame, which is the same for
every possibility.

The function findRelationsMulti takes two arguments:

• a substitution θ;

• a set of possible structural frames {struct1, . . . , structn}.

It finds relations between variables for a set of possible structural frames. When
the intruder considers several possibilities, each frame is analysed and relations
are found for each possibility. The result is a set of analysed frames, each with
a formula encoding equalities and inequalities between variables of the frame.

The difference with our previous procedure, is that now we do want to verify
whether the struct i and concr are statically equivalent. If they are, the intruder
will try to deduce relations for the current hypothesis. If they are not, the
intruder will rule out the current hypothesis and thus break privacy right away.
We follow the same approach as before for finding relations, but we will specify
two algorithms: findRelationsMulti will apply the analysis and method to find
relations to every hypothesis, and relations will adapt the algorithm for finding
relations to the case of one hypothesis.

Algorithm 8: Relations between variables for several structural frames
findRelationsMulti(θ, {struct1, . . . , structn}) =

let S = {struct1, . . . , structn}
SE = analyseMulti(θ, S)

concr = θ(struct1 ana) in
{(structana , relations(θ, structana , concr , E) | (structana , E) ∈ SE}

In this definition, we denote with struct1 ana the analysed frame after analysis
of struct1.
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The function relations takes four arguments:

• a substitution θ;

• a possible structural frame struct i;

• a concrete frame concr ;

• a set of substitutions E inconsistent with struct i ∼ θ(struct i) (coming
from the analysis).

There is actually little difference to the algorithm from Chapter 4. Our new
algorithm takes one concr , that might not be θ(struct i), and a set of substitu-
tions E of substitution inconsistent with the static equivalence between struct i
and θ(struct i) (these have been found during analysis of the frame). We start
by making a check of static equivalence between θ(struct i) and concr , corre-
sponding to verify if the intruder can rule out the possibility. If they can rule
out their current hypothesis, then we set φi ≡ false; the intruder has broken
privacy. Otherwise, we apply the same method as before to generate φi.

Algorithm 9: Relations between variables for a specific hypothesis
relations(θ, struct , concr , E) =

if areStatEq(θ(struct), concr) then
let (structana , E) = analyse(θ, struct)

pairs = pairsEcs({compose(concr , t) | ∃l, l 7→ t ∈ concr})
eqs = {(structana{| r1 |}, structana{| r2 |}) | (r1, r2) ∈ pairs}
ineqs = E ∪ {σ′ | l 7→ t ∈ structana ,

(r, σ′) ∈ composeUnder(θ, structana , t),
l 6= r,
concr{| l |} 6= concr{| r |}}

σ = unify(eqs) in
σ ∧

∧
τ∈ineqs ¬τ

else
false

We note with φi, i ∈ {1, . . . , n} the formulae encoding the relations between
variables that were returned by the procedure, for several structural frames
struct1, . . . , structn. As for the case with a single structural frame, we formalise
the correctness of the procedure. The formulae φ1, . . . , φn that have been gener-
ated correspond each to the assumption of static equivalence between structural
and concrete frames. Note that here, the concrete frame concr = θ(struct1) is
the same for all possibilities considered by the intruder.
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Proposition 5.2 Let θ be a substitution and struct1, . . . , structn be frames. Let
concr = θ(struct1). Then

∀I ∈ Θ,∀i ∈ {1, . . . , n}, I |= struct i ∼ concr ⇐⇒ I |= φi

Proof. Let θ be a substitution, struct1, . . . , structn be frames, I ∈ Θ and
i ∈ {1, . . . , n}. Let concr = θ(struct1).

• If I 6|= struct i ∼ θ(struct1): then I(struct i) 6∼ θ(struct1), so φi ≡ false
(as we make a check by calling areStatEq) and therefore I 6|= φi.

• If I |= struct i ∼ θ(struct1): then also I |= struct i ana ∼ θ(struct1 ana).
The argument is the same as for the case of a single struct . We can use it
because of the transitivity of static equivalence: the substitutions incon-
sistent with struct i ∼ θ(struct i) (from the analysis) are also inconsistent
with struct i ∼ θ(struct1).

�

Again, we relate directly our result with the notion of (α, β)-privacy. This time,
a model must verify the conjunction of all the relations found. The reason is
that, if there is any possibility that the intruder is able to rule out, then the
intruder has broken privacy.

Proposition 5.3 Let α be combinatoric, θ ∈ Θ be a model of α and structs =
{struct1, . . . , structn} be a set of frames with terms over fv(α).

Let β ≡ MsgAna(α, struct1, θ). Then

(α, β)-privacy holds iff ∀I ∈ Θ,∀i ∈ {1, . . . , n}, I |= φi

where {(struct i ana , φi) | i ∈ {1, . . . , n}} = findRelationsMulti(θ, structs).

Proof. Let α be combinatoric, θ ∈ Θ be a model of α and let structs =
{struct1, . . . , structn} be a set of frames with terms over fv(α).

Let β ≡ MsgAna(α, struct1, θ), concr = θ(struct1) and {(struct i ana, φi) | i ∈
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{1, . . . , n}} = findRelationsMulti(θ, structs). Then

(α, β)-privacy holds
⇐⇒
∀I ∈ Θ, I(struct1) ∼ · · · ∼ I(structn) ∼ concr

⇐⇒
∀I ∈ Θ,∀i ∈ {1, . . . , n}, I |= struct i ∼ concr

⇐⇒
∀I ∈ Θ,∀i ∈ {1, . . . , n}, I |= φi

�

We have thus successfully extended our decision procedure to support protocols
with branching, in which the intruder reasons about different possibilities. We
have leveraged the notion of static equivalence of frames in order to prove the
correctness of our procedure. We have shown how our work is related to typical
(α, β)-privacy. Therefore, we have managed to provide a method for automated
verification of privacy for decidable fragments of (α, β)-privacy.
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Chapter 6

Discussion

This thesis introduces a number of algorithms and a decision procedure to au-
tomatically verify privacy goals of communication protocols, without and with
branching. We have argued the correctness of the method presented in this
work, under a number of assumptions. These assumptions restrict the scope of
the procedure to a specific class of intruder theories. This means that some pro-
tocols are not yet supported by the situations considered until now. We see our
decision procedure as a first step towards the development of machine-checking
of (α, β)-privacy goals.

6.1 Limitations

It must be noted that the procedure designed works in one state of a transition
system. We have mentioned why lifting our work, considering a single state,
to an entire transition system is not a real limitation as it poses no theoretical
difficulty. However, the idea of studying privacy in transition systems assumes
that the modeller has defined a protocol specification that can be translated
as such a transition system. This requires a formal description of the protocol
in a certain manner, which does not necessarily exist yet. We consider though
that the development of automated verification procedures, supporting more
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and more protocols, is a good incentive for protocols designers and researchers
to come up with these formal descriptions.

One assumption restricting the problem considered concerns the notion of equal-
ity between terms. We have clearly stated that the algorithms, as defined in
this thesis, support algebraic equations inducing a convergent rewriting system.
Many security protocols use require more equations to hold. For example, the
first version of the Diffie-Hellman key exchange uses commutativity of expo-
nentiation [11]: for three numbers g, a, b, we have that (ga)b = (gb)a. On the
syntactic level, the corresponding terms are not equal. Protocols making use of
such properties cannot be verified by the procedure designed with the current
definitions, because the properties like commutativity of exponentiation do not
fit with our definition of convergent intruder theory.

This thesis considers problems that can be expressed as message-analysis prob-
lems in the (α, β)-privacy framework. There are protocols that fall outside of
this scope, in this case the procedure designed cannot be applied to decide
privacy.

6.2 Future work

(α, β)-privacy is a novel approach to verifying privacy goals. It allows to man-
ually find proofs when studying privacy. However, automation is paramount to
develop the approach further and enable its application to complex real-life pro-
tocols. We feel that the procedure designed in this thesis forms a good starting
point towards the development of automated verification and tool support.

While we have made a number of contributions, enabling automated verification
of privacy for a decidable fragment, it would be very fruitful to study other
fragments of (α, β)-privacy. In every problem that we studied, we have for
example considered that fv(α) = fv(β), i.e. the variables of β are part of
the payload formula. It would be interesting to consider the case of fv(α) (
fv(β), i.e. β contains some variables which are not expressed in the payload
formula. Our procedure is based on the idea of relations between variables, and
we generate a formula φ that can be used to verify privacy. However, the same
results cannot apply trivially if our φ includes variables that are not from α,
because then we cannot use it as a witness of an interesting consequence.

We can point out also the study of other fragments of (α, β)-privacy, that do not
have the same restrictions on the α and β formulae. Together with the extension
to (α, β, γ, δ)-privacy [12], there is the also the case of the quantitative approach
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to privacy. In this context, we would need to revisite our idea of relations
between variables to not reason simply about equality or inequality, but rather
include a notion of probability.

Another potentially fruitful path is to relate more specifically (α, β)-privacy with
other existing approaches, e.g. observational and trace equivalence. This has
already been described in [16], and we think that there is still room for more re-
search in this area. We have mostly worked on static equivalence of frames with
the particular application to (α, β)-privacy. We can still investigate classical
privacy goals and translate them into the logical setting of (α, β)-privacy.

A promising path for improvement is the refinement of our algorithms to support
arbitrary equational theories. We have already mentioned that the class of
intruder theories supported by our procedure is not enough for some classical
properties of protocols. Therefore, keeping our core idea but reasoning about
equational theories in general would be a good way to extend the scope of our
tool.

On more practical note, one possibility to improve this tool support is to in-
vestigate an input language. While this thesis does not focus on the details
of implementation (because it follows closely the algorithms specifications), it
can already be used in a Haskell program. For now, the modeller has to de-
fine directly the protocol specification at the data structure level. It would be
more convenient to provide this through a text file in an appropriate language.
The solution could be either choosing an existing language allowing to express
a protocol specification in an easy way, or to design a dedicated input language.
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Chapter 7

Conclusion

This thesis is about automated verification of privacy goals, based on the logical
approach of (α, β)-privacy developed in [16]. We have defined a number of
algorithms and designed a procedure that enables this automated reasoning.
Our idea was to consider a protocol specification that can be translated as
a transition system, and to provide a decision procedure in one state of the
protocol execution. The approach was to find relations between variables of the
protocol, which can be used to check whether there is a breach of privacy or
not.

In Chapter 2, we recalled definitions from [16] about the logic used, Herbrand
logic, the notions of messages, operators and algebraic properties as well as the
encoding of knowledge into frames. In particular, Section 2.3 reuses definitions
from previous works to present the concept of (α, β)-privacy. We explained what
constitutes a breach of privacy and related to the problem to the question of
static equivalence of frames.

In Chapter 3, we have made our first contributions by defining the notion of
intruder theory, representing the behaviour of the intruder through a number of
rules. We have identified more specifically what we call convergent intruder the-
ories, on which we have been able to base our decision procedure. We have also
complemented the notion of frames with the concept of frames with shorthands.
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In Chapter 4, we have presented our main contributions. We defined several
algorithms breaking down the problem into the notions of composition of terms,
analysis of frames and relations between variables. We have considered what
the intruder is able to deduce by making the distinction between concrete infor-
mation from an actual protocol execution, and structural information about the
protocol specification. We have argued for the correctness of the procedure that
we designed and have thus shown that it really can be used to decide privacy.

Chapter 5 is concerned with extending the results to protocols with branching,
where several possibilities of the protocol execution form different hypotheses.
We have described the choices of modelling and how the procedure can support
this class of protocols.

Finally, in Chapter 6 we have stated clearly the assumptions made in this thesis,
and the current limitations of our procedure. We have also identified promising
leads for future work.

Parts of our implementation of the decision procedure designed are discussed in
Appendix A, where we describe some interesting points.
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Implementation

We give some explanations related to implementation details. The whole imple-
mentation is provided in a source code file Lib.hs, and we do not present all of
it here. We make use of types and functions from standard libraries. In Chap-
ters 4 and 5, we often use set notations. In the code, we rather work on lists,
that is to say sequences instead of sets. A sequence is an ordered set, where ele-
ments can appear multiple times. In Haskell, the Maybe monad is typically used
to represent a computation that might fail. In our case, we use it when solving
a unification problem. If there exists a solution, then the algorithm returns a
most general unifier. Otherwise, it fails. This result is wrapped as a monadic
computation, so that it can be used conveniently in the other functions.

import qualified Data.List as L
import qualified Data.Map as M
import Data.Maybe ( catMaybes

, fromMaybe
, isJust
, mapMaybe
, maybeToList
)
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A.1 Types

The first step of the implementation was to define the data structures needed
by the different functions. We thus define types to represent function symbols
from our alphabet, variables, terms, recipes, substitution and frames.

-- | A function symbol is represented as a string.
type Function = String
-- | A variable name is represented as a string.
type Variable = String

-- | A @Term@ is either a @Variable@ or a @Function@ applied to a list of
-- subterms. A constant is a @Function@ applied to the empty list
-- (no subterms).
data Term = Var Variable

| Fun Function [Term]
deriving (Eq, Ord)

-- | A recipe is a @Function@ applied to subrecipes. It should not be a
-- @Variable@, since this is not enforced by this definition it will be
-- checked when relevant in functions using recipes.
type Recipe = Term
-- | A @Substitution@ maps @Variable@ to @Term@.
type Substitution = M.Map Variable Term
-- | A @Frame@ maps @Recipe@ (called labels) to @Term@. It is used to
-- represent the knowledge of the intruder.
type Frame = M.Map Recipe Term

A.2 Intruder theory

We have stated that our procedure is parameterised over a convergent intruder
theory. In our implementation, we have made tests by using the intruder theory
defined in Example 3.1.

A.2.1 Public functions and variables with public range

One component of the intruder theory is the set of public functions and the set
of variables with public range. We have defined this in the code by specifying a
list of public function symbols and a list of variable names. Then, the property
of being public is simply membership to those lists. Recall that in our example



A.2 Intruder theory 71

intruder theory, all cryptographic operators are public except for priv (private
keys are supposed to be kept secret, they cannot be composed by the intruder
if they do not know the key directly). For the variables with public range, we
have only made a few tests with some specific variables names, it is an arbitrary
example of Vpub .

-- | Names of public functions.
publistFun =

[ "pub"
, "crypt"
, "dcrypt"
, "vcrypt"
, "sign"
, "retrieve"
, "vsig"
, "scrypt"
, "dscrypt"
, "vscrypt"
, "pair"
, "proj1"
, "proj2"
, "vpair"
, "h"
]

-- | A @Function@ is public if it is in @publistFun@.
public :: String → Bool
public f = f ‘elem‘ publistFun

-- | Names of variables with public range.
publistVar = [v1, v2, v3]

-- | A @Variable@ has a public range if it is in @publistVar@.
pubvar :: String → Bool
pubvar x = x ‘elem‘ publistVar

A.2.2 Analysis rewriting system

The implementation of ana follows the specification given in the example. We
use pattern-matching to determine which decomposition rule we can apply.

-- | Compute the list of @Term@ required (keys) and the list of derivable
-- @Term@ resulting from analysing a @Term@.
-- Each derivable @Term@ is paired with a @Function@, the destructor to
-- be used as part of the @Recipe@ to compose the @Term@.
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ana :: Term → ([Term], [( Function, Term)])
ana (Fun "scrypt" [k , t ]) = ([k], [( "dscrypt", t)])
ana (Fun "crypt" [ Fun "pub" [s], r, t ]) = ([Fun "priv" [s]], [( "dcrypt", t)])
ana (Fun "sign" [ k , t ]) = ([], [( "retrieve", t)])
ana (Fun "pair" [ t1, t2]) = ([], [( "proj1", t1), ("proj2", t2)])
ana _ = ([], [])

A.3 Unification

We have mentioned that several algorithms exist to solve unification. In our
implementation, we have followed a standard algorithm based on a set of rules,
to apply until no longer possible [2]. While this is not a very efficient algorithm,
it has the benefit of being not too difficult to understand. If efficiency becomes
a problem, then it will be possible to implement other algorithms [15, 2]. The
rules to apply are:

• Delete: an equality is deleted if the two sides are syntactically equal;

• Decompose: an equality between two function applications is trans-
formed into all equalities between the arguments;

• Clash: if the two functions are not the same then there is no solution (for
syntactic unification);

• Orient: a variable is put to the left-hand side of an equality (to go towards
a solved form);

• Occurs check: a variable cannot be unified with a term that contains it;

• Eliminate: when found, a mapping from a variable to a term is applied
to all other equalities.

-- | Compute a most general unifier of the equalities given. The result
-- is a @Maybe Substitution@, which is @Nothing@ if there is no unifier.
unify :: [( Term, Term)] → Substitution → Maybe Substitution
unify [] sigma = Just sigma
unify ((s, t) : ts) sigma = if s == t
then unify ts sigma -- Delete
else case (s, t) of

(Fun f us, Fun g vs) → if f == g
then unify (zip us vs ++ ts) sigma -- Decompose
else Nothing -- Clash

(Fun f us, Var x) → unify ((t, s) : ts) sigma -- Orient
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(Var x , _ ) → if x ‘elem‘ vars t
then Nothing -- Occurs check
else
let sigma’ = M.insert x t sigma
in unify (substituteList sigma’ ts) sigma’ -- Eliminate

-- | Compute a most general unifier of the equality between two @Term@.
unifyEq :: Term → Term → Maybe Substitution
unifyEq s t = unify [(s, t)] M.empty

This implementation calls a function vars that returns the list of variables
occurring in a term and a function substituteList that applies a substitution
to both sides of a list of equalities.

A.4 Combinations as a cartesian product

Many of our semi-formal definitions use set-builder notation. For the problem of
composition of a term, we have stated that our algorithm combines all recipes for
subterms. In the code, these combinations are computed as a cartesian product.

The recursive function cartProd takes one argument:

• a list of list.

It computes the cartesian product of a list of lists. It is useful in that it generates
all combinations possible of taking one element in each list.

The base case is the cartesian product of an empty list. In that case, there are
no lists in which elements can be taken. So the only combination is itself an
empty list. The general case is the cartesian product of at least one list X. In
that case, we consider the cartesian product of the rest of the lists XS. Note
that with these notations, X is a list while XS is a list of lists. A combination
is then taking one element x ∈ X and one list Y from the recursive call.

The implementation is only ever used on recipes, but it is valid for any type.

-- | Compute the cartesian product of a list of lists.
cartProd :: [[ a]] → [[a]]
cartProd [] = [[]]
cartProd (xs : xss) = [ x : ys | let yss = cartProd xss, x ← xs, ys ← yss ]
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Example A.1 Let rss = [[r1, r2, r3], [r4, r5]]. Then

cartProd rss = [[r1, r4], [r1, r5], [r2, r4], [r2, r5], [r3, r5]]

A.5 Relations between variables

Our implementation differs slightly from the algorithms present in Chapters 4
and 5 in that findRelations actually calls relations. Indeed, the case of a single
structural frame struct is a special case of our procedure for several struct i,
where we have concr = θ(struct).

-- | Compute a list of equalities and a list of inequalities between
-- @Variable@ occurring in a structural @Frame@, based on static
-- equivalence with a concrete @Frame@.
-- The frames are assumed to have been already analysed. Equalities
-- between @Variable@ are found when there are several recipes to compose
-- a term in the concrete frame. Inequalities are found when there are
-- pairs of recipes distinguishing the two frames. The unifiers such that
-- terms are equal in the structural frame but not in the concrete frame
-- are not consistent with the static equivalence, they are exceptions.
relations

:: Substitution -- ^ The instantiation of variables
→ Frame -- ^ The structural frame
→ Frame -- ^ The concrete frame
→ [Substitution] -- ^ The list of exceptions found
→ ([(Term, Term)], [[( Term, Term)]]) -- ^ The equalities and inequalities

relations theta struct concr exceptions =
let pairs = pairsEcs . L.map (compose concr) $ M.elems concr

eqs = L.map (\(r1, r2) → (cook struct r1, cook struct r2)) pairs
ineqs = L.map subToEqs $ exceptions ++ L.nub

[ sigma
| (l, t ) ← M.assocs struct
, (r, sigma) ← composeUnder theta struct t
, l /= r
, sigma ‘notElem‘ exceptions
, cook concr l /= cook concr r
]

unifier = unify eqs M.empty
in case unifier of

Nothing → error $ "There␣is␣no␣unifier!␣" ++ showEqs eqs
Just sigma → (subToEqs sigma, ineqs)

In this definition, we call a function cook that applies a recipe to a frame and
a function subToEqs that converts a substitution to a set of equalities (pairs).
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Instead of defining a data structure for logical formulae, since we only have
a formula φ expressing relations between variables our function findRelations
actually returns a set of equalities and a set of inequalities, where inequalities
are the negation of a unifier.

-- | Find relations between the variables occurring in a structural
-- @Frame@, based on static equivalence with the concrete @Frame@ found
-- with the @Substitution@.
-- The @Frame@ is first analysed. Then @relations@ is called on the
-- result of the analysis.
findRelations

:: Substitution -- ^ The instantiation of variables
→ Frame -- ^ The structural frame
→ ([(Term, Term)], [[( Term, Term)]]) -- ^ The equalities and inequalities

findRelations theta struct =
let (structAna, exceptions) = analyse theta struct

concrAna = getConcr theta structAna
in relations theta structAna concrAna exceptions

The checks for static equivalence with the function areStatEq are actually used
as a filter: the intruder is only interested in the formulae φi for the hypothe-
ses that were not ruled out, since we have specified in Chapter 5 that if the
hypothesis can be ruled out the corresponding formula is simply φi ≡ false.

-- | Find relations between variables for a list of possible structural
-- @Frame@, using the same @Substitution@ for each of the possibility.
-- When the intruder considers several possibilities, each frame is
-- analysed and relations are found for each possibility. The result
-- is a list of analysed @Frame@, each with a list of equalities and a
-- list of inequalities.
findRelationsMulti

:: Substitution -- ^ The theta
→ [Frame] -- ^ The possible structs
→ [(Frame, ([(Term, Term)], [[( Term, Term)]]))] -- ^ The relations

findRelationsMulti theta [] =
error $ "The␣list␣of␣possibilities␣is␣empty,␣at␣least␣one␣frame␣is"

++ "␣required."
findRelationsMulti theta structs@(struct1 : structis) =
let structAnaExs = analyseMulti theta structs

struct1ana = fst $ head structAnaExs
concr1ana = getConcr theta struct1ana

in [ (structAna, relations theta structAna concr1ana exceptions)
| (structAna, exceptions) ← structAnaExs
, let concrAna = getConcr theta structAna
, areStatEq concr1ana concrAna
]
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