
A Logical Approach for Automated Reasoning
about Privacy in Security Protocols

PhD Thesis

Laouen Fernet

DTU Compute
Department of Applied Mathematics and Computer Science

Title: A Logical Approach for Automated Reasoning about Privacy in Security
Protocols

Authored by: Laouen Fernet
Date: November 2024
Copyright: Reproduction of this publication in whole or in part must include the

customary bibliographic citation, including author attribution, report title,
etc.

Published by: DTU, Department of Applied Mathematics and Computer Science, Richard
Petersens Plads, Building 324, 2800 Kongens Lyngby Denmark
www.compute.dtu.dk

www.compute.dtu.dk

Approval

This thesis was prepared at the Department of Applied Mathematics and Computer Science
(DTU Compute) in fulfillment of the requirements for acquiring a PhD degree in Computer
Science.

The research has been carried out under the supervision of Sebastian Mödersheim and
Luca Viganò in the period from December 2021 to November 2024.

A substantial part of the work presented in this thesis is based on extensions to joint
work with Sebastian Mödersheim and Luca Viganò, namely the following papers:

• “A Decision Procedure for Alpha-Beta Privacy for a Bounded Number of Transi-
tions” [44] (published),

• “Private Authentication with Alpha-Beta-Privacy” [41] (published),

• “A decision procedure and typing result for alpha-beta privacy” [43] (submitted) and

• A Compositionality Result for Alpha-Beta Privacy [42] (manuscript).

Chapters 2 and 3 are based on [44, 43], Chapter 4 is based on [43], Chapter 5 is based on
[42] and Chapter 6 is based on [41].

November 2024

Laouen Fernet

ii A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Abstract (English)

Security protocols are distributed systems that rely on cryptographic operations to provide
security features. Formal verification of security protocols is important to guarantee that a
protocol achieves its goals: the verification is done by reasoning about various properties
such as secrecy, authentication and privacy. There are several approaches and techniques to
obtain formal proofs of security. In many cases, these proofs are manually written, however
this may lead to invalid results due to oversights by the prover or implicit assumptions.
Automated verification has shown to be effective in preventing such errors, and there are
nowadays a number of tools available that can check security properties of protocols with
a very high degree of confidence. While secrecy and authentication goals are typically
expressed as reachability properties, privacy is more subtle. A standard way to define
privacy is to give a pair of systems that differ in some detail (e.g., two actions are performed
by the same agent or by different agents) and check whether an attacker can distinguish the
two systems (different notions of distinguishability can be used depending on the privacy
property). An alternative approach is (α, β)-privacy, where the protocol specification
declares the information that is allowed to be learned and a violation of privacy happens
if the attacker manages to learn more than allowed, e.g., if they can deduce that in two
instances of the protocol, some actions were performed by the same user (linkability attack).
The formalism of (α, β)-privacy enables reasoning about privacy as a reachability property,
which makes some proofs easier. Moreover, we do not have to think about possible attacks
and prove equivalence between different systems, but we rather model the logical deductions
that the attacker can make based on their observations of the real system. There are still
several challenges when it comes to automation, which is the main topic of this thesis. We
identify a decidable fragment of (α, β)-privacy and design a decision procedure that can
check privacy goals, given a bound on the number of transitions in the protocol execution.

One kind of attacks on security protocols relies on the attacker reusing messages in a
way that confuses the other participants. This issue arises when the protocol specification
does not sufficiently distinguish the meaning of different messages. Considering a typed
model where the protocol specifies for every message a type expressing its meaning, these
attacks are called type-flaws and occur when a participant accepts a message of a different
type than expected. For instance, someone may receive an encrypted message with an
expected specific format, but the protocol does not check that the content under encryption
is indeed of the right format. When working in such a typed model, it is very useful to
establish typing results of the form: “if there exists an attack, then there exists a well-typed
one.” Effectively, this rules out all type-flaws. Moreover, the assumption that every message
is well-typed significantly helps to establish other results on security protocols. Ideally,
we want to verify whether protocols are resistant to type-flaws using purely syntactic
requirements, since these can be checked statically without considering the semantics of
the protocol execution.

One area that benefits from typing results is protocol composition. In the literature,
the security goals of a protocol are typically studied with the protocol running in isolation.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols iii

However, oftentimes several protocols are running in parallel on the same device or are
otherwise interacting with each other. For instance, one protocol could be used to establish
a secure connection between two endpoints, while another protocol relies on this secure
connection to exchange sensitive information. Another example is several applications
sharing a common infrastructure such as an identity server. Protocol composition poses
significant challenges to formal verification. Composed systems are much larger and
complex than individual components and thus verification is more difficult. Moreover,
components can be added or updated and we do not want to verify the entire composed
system from scratch as soon as there is a slight change. It is thus desirable to obtain results
for composing protocols securely in a modular way, i.e., we wish to derive the security
of a composed protocol from the security of its components. While there are a number
of results supporting protocol composition for goals like secrecy and authentication, it is
harder to achieve compositionality for privacy properties.

In this thesis, we are concerned with the automation of verifying privacy properties
of security protocols and with the proofs of typing and compositionality results. We use
(α, β)-privacy, which is a symbolic approach that aims to provide a logical and intuitive
way of specifying privacy goals. Our results support large classes of security protocols,
with standard cryptographic operators, non-determinism, branching and statefulness. Our
main contributions are as follows:

• Design of a decision procedure for a fragment of (α, β)-privacy.

• Implementation of the procedure in a prototype tool.

• Application of the procedure and the tool to case studies.

• A typing result for the class of type-flaw resistant protocols.

• A compositionality result for the class of composable protocols.

iv A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Abstract (dansk)

Sikkerhedsprotokoller er distribuerede systemer, der er afhængige af kryptografiske opera-
tioner for at levere sikkerhedsfunktioner. Formel verifikation af sikkerhedsprotokoller er
vigtigt for at sikre, at en protokol opnår sine mål: verifikationen sker ved at ræsonnere
om forskellige egenskaber som f.eks. hemmeligholdelse, autentificering og privathed. Der
er flere tilgange og teknikker for at opnå formelle beviser af sikkerhed. I mange tilfælde
er disse beviser håndskrevne, hvilket kan føre til ugyldige resultater grundet overseelser
hos bevisføreren og implicitte antagelser. Automatiseret verifikation har vist sig at effek-
tivt kunne forhindre sådanne fejl, og der er i dag en række værktøjer til rådighed, som
kan tjekke sikkerhedsegenskaber af protokoller med en meget høj grad af tillid. Mens
hemmeligholdelses- og autentificeringsmål typisk formuleres som opnåelighedsegenskaber,
er privathedsmål mere subtile. En standard måde at definere privathedsegenskaber på, er
ved at give to systemer, der adskiller sig på specifikke punkter (f.eks. hvor to handlinger
udføres af en eller to agenter) og så derefter undersøge, om en angriber kan skelne mellem
de to systemer (hvor de parametre, der skelnes på, afhænger af den pågældende privathed-
segenskab). En alternativ tilgang er (α, β)-privathed, hvor en protokolspecifikation angiver
de oplysninger, der må læres. Der sker en krænkelse af privathed, hvis det lykkes angriberen
at lære mere end tilladt, f.eks. hvis denne kan udlede, at nogle handlinger blev udført af
den samme bruger i to tilfælde af protokollen (angreb på linkbarhed). Formaliseringen af
(α, β)-privathed gør det muligt at ræsonnere om privathed som en opnåelighedsegenskab,
hvilket gør nogle beviser lettere. Desuden behøver vi ikke tænke på mulige angreb og
bevise ækvivalens mellem forskellige systemer, i stedet modellerer vi de logiske udledninger,
som angriberen kan foretage sig baseret på deres observationer af det virkelige system.
Der er stadig flere udfordringer, når det gælder automatisering, hvilket er hovedemnet
for denne afhandling. Vi identificerer et afgørligt fragment af (α, β)-privathed og designer
en beslutningsprocedure, der kan verificere privathedsmål, givet en grænse for antallet af
skridt i protokoludførelsen.

En slags angreb på sikkerhedsprotokoller går ud på, at angriberen genbruger beskeder på
en måde, der forvirrer de andre deltagere. Dette problem opstår, når protokolspecifikationen
ikke i tilstrækkelig grad skelner mellem betydningen af forskellige beskeder. I en typet
model, hvor protokollen specificerer en type for hver besked, der indikerer beskedens
betydning, kaldes disse angreb for typefejl, og opstår, når en deltager accepterer en besked
af en anden type end forventet. For eksempel kan nogen modtage en krypteret besked
med et forventet format, hvor protokollen ikke tjekker, at det krypterede indhold faktisk
har det rigtige format. Når man arbejder i en sådan typet model, er det meget nyttigt
at etablere typningsresultater af formen: “hvis der findes et angreb, så findes der et
veltypet et.” Dette udelukker effektivt alle typefejl. Desuden hjælper antagelsen om, at
alle beskeder er veltypede, betydeligt når det kommer til at etablere andre resultater der
omhandler sikkerhedsprotokoller. Ideelt set ønsker vi at verificere, hvorvidt protokoller er
modstandsdygtige imod typefejl ved hjælp af udelukkende syntaktiske krav, da disse kan
tjekkes statisk uden at tage hensyn til semantikken af protokoludførelsen.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols v

Et område, der drager fordel af typningsresultater, er protokolsammensætning. I lit-
teraturen undersøges sikkerhedsmålene for en protokol typisk med protokollen kørende
isoleret. Men ofte kører flere protokoller parallelt på den samme enhed eller interagerer på
anden måde med hinanden. For eksempel kan en protokol bruges til at etablere en sikker
forbindelse mellem to slutpunkter, mens en anden protokol er afhængig af denne sikre
forbindelse til at udveksle følsomme oplysninger. Et andet eksempel er flere applikationer,
der deler en fælles infrastruktur som f.eks. en identitetsserver. Protokolsammensætning
giver betydelige udfordringer for formel verifikation. Sammensatte systemer er meget større
og mere komplekse end individuelle komponenter, og derfor er det sværere at verificere dem.
Desuden kan komponenter tilføjes eller opdateres, og vi ønsker ikke at verificere hele det
sammensatte system fra bunden, så snart der sker en lille ændring. Det er derfor fordelagtigt
at opnå resultater for sikker sammensætningen af protokoller på en modulær måde, dvs.
vi ønsker at udlede sikkerheden af en sammensat protokol ud fra sikkerheden af dens
komponenter. Mens der er en række resultater, der understøtter protokolsammensætning
for mål som hemmeligholdelse og autentificering, er det sværere at opnå sammensætning
for privathedsegenskaber.

I denne afhandling beskæftiger vi os med automatisering af verificering af sikkerhedspro-
tokollers privathedsegenskaber og med beviser for typnings- og sammensætningsresultater.
Vi bruger (α, β)-privathed, som er en symbolsk tilgang hvis formål er at give en logisk og
intuitiv måde at specificere privathedsmål på. Vores resultater understøtter brede klasser af
sikkerhedsprotokoller med sædvanlige kryptografiske funktioner, udeterministisk opførsel,
forgrening og tilstandsfulde evner. Vores vigtigste bidrag er som følger:

• Design af en beslutningsprocedure for et fragment af (α, β)-privathed.

• Implementering af proceduren i form af et prototypeværktøj.

• Anvendelse af proceduren og værktøjet på casestudier.

• Et typningsresultat for klassen af protokoller, der er modstandsdygtige imod typefejl.

• Et sammensætningsresultat for klassen af sammensættelige protokoller.

vi A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Acknowledgements

I am most grateful to my supervisor Sebastian and co-supervisor Luca, for their guidance
and support. Working with you has been a privilege and a pleasure. I remember the first
time that I was introduced to the concept of formal verification for privacy in security
protocols during one of Sebastian’s lectures. This PhD project was a great opportunity to
delve into the topic.

I am also very thankful to all my colleagues in the Software Systems Engineering
section (and former colleagues in Formal Methods). I enjoyed spending time with you,
both for discussing research in computer science and during the various social activities
we organized outside work hours. I feel fortunate to have done my PhD in such good
conditions. Special thanks are due to the people who have helped me with earlier versions
of this thesis. Your comments have lead to significant improvements.

For my external research stay, I have to thank Luca and the other members of the
Cybersecurity group in the Department of Informatics at King’s College London. You have
welcomed me and made my three-month stay a very enjoyable experience.

Finally, I would like to acknowledge my friends outside DTU and my family.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols vii

viii A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Contents

Approval ii

Abstract (English) iii

Abstract (dansk) v

Acknowledgements vii

1 Introduction 1
1.1 Motivation . 1
1.2 Security protocols . 1
1.3 Privacy . 1
1.4 Automated reasoning . 2
1.5 Summary of the results . 2
1.6 Outline of the thesis . 4

2 Preliminaries 5
2.1 (α, β)-privacy for a state . 5
2.2 (α, β)-privacy for a transition system . 7

2.2.1 Specification . 7
2.2.2 Semantics . 9

2.3 Privacy as reachability . 13

3 Decision procedure 15
3.1 FLICs: Framed Lazy Intruder Constraints 16

3.1.1 Defining constraints . 17
3.1.2 Solving constraints . 18

3.2 Symbolic states . 22
3.3 Intruder experiments . 27
3.4 Algebraic properties . 31

3.4.1 The supported algebraic theories . 31
3.4.2 Destructor oracles . 33
3.4.3 Analysis strategy . 34

3.5 Case studies . 36
3.5.1 Running example . 36
3.5.2 Basic Hash . 37
3.5.3 OSK . 37
3.5.4 BAC . 37
3.5.5 Private Authentication . 37
3.5.6 Discussion of the results . 37

A Logical Approach for Automated Reasoning about Privacy in Security Protocols ix

3.6 Related work . 38

4 Typing 41
4.1 The typed model . 42

4.1.1 Type system . 42
4.1.2 Message patterns . 46
4.1.3 Type-flaw resistance . 48

4.2 Typing result . 48
4.2.1 Well-typedness of the constraint solving 48
4.2.2 Well-typedness of state transitions 49

4.3 Case studies . 52
4.3.1 Running example . 52
4.3.2 Basic Hash . 52
4.3.3 OSK . 52
4.3.4 BAC . 52
4.3.5 Private Authentication . 53

4.4 Related work . 53

5 Compositionality 57
5.1 Running example . 58

5.1.1 The composition . 61
5.2 Extensions of specification and semantics 63

5.2.1 Protocol specification . 63
5.2.2 Semantics . 65
5.2.3 State transition system . 68

5.3 Composition and composability . 71
5.3.1 Composition . 71
5.3.2 Composability . 74

5.4 Compositionality result . 75
5.4.1 Compositionality on the frame level 75
5.4.2 Compositionality on the state level 76

5.5 Application of the result and limitations . 78
5.6 Related work . 80

6 Tool support 83
6.1 Brief introduction to noname . 83

6.1.1 Writing a specification . 83
6.1.2 Analyzing a specification . 85

6.2 Case study: BAC . 86
6.2.1 The attack . 88
6.2.2 Another problem . 88

6.3 Case study: Private Authentication . 89
6.3.1 AF0: initial attempt . 90
6.3.2 AF0: corrected release . 91
6.3.3 AF . 92

7 Conclusion 95
7.1 Decision procedure . 95
7.2 Typing . 95
7.3 Compositionality . 96
7.4 Tool support . 96

x A Logical Approach for Automated Reasoning about Privacy in Security Protocols

7.5 Future work . 97

Bibliography 99

A Proofs 105
A.1 Decidability of fragment of Herbrand logic 105
A.2 Correctness of representation with symbolic states 106
A.3 Decision procedure . 110

A.3.1 Lazy intruder correctness . 110
A.3.2 Compose-check correctness . 113
A.3.3 Normal symbolic states . 116
A.3.4 Algebraic properties . 117

A.4 Typing . 122
A.4.1 Well-typedness of the constraint solving 123
A.4.2 Well-typedness of the state transitions 124

A.5 Compositionality . 127
A.5.1 Compositionality on the frame level 127
A.5.2 Compositionality on the state level 131

B Models and details for case studies 138
B.1 Running example . 138
B.2 Basic Hash . 139
B.3 OSK . 140
B.4 BAC . 141
B.5 Private Authentication . 142
B.6 Results . 145

C Simplified TLS for composition 147
C.1 Fixed, trusted server . 147
C.2 Server as a parameter . 148

Errata 151

A Logical Approach for Automated Reasoning about Privacy in Security Protocols xi

xii A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 1

Introduction

1.1 Motivation
Privacy is relevant for virtually any application handling data. For instance, a person getting
ahold of medical records without consent may abuse personally identifiable information
such as social security number, date of birth or address. Similar concerns arise for digital
health in general, mobile payments, transport with smart cards, electronic voting etc.
Therefore, studying privacy is critical, especially considering the increasing digitalization
of applications. In order to protect sensitive information, it is crucial to have strong
guarantees that distributed systems respect privacy. New digital applications need to
be secured and protected against any misuse, such as surveillance, profiling, stalking,
or coercion (e.g., a doctor should be able to make prescriptions without pressure from
pharmaceutical companies).

1.2 Security protocols
In order to study how distributed systems and applications work, we consider the formal
specifications of security protocols. They are protocols defining how messages are exchanged
between several parties, often relying on cryptographic operations. A well-known example
is the Transport Layer Security (TLS) protocol, that is commonly used to secure the
connection between a client application like a browser and a webserver. TLS is a large
protocol that starts by establishing a key between the client and the server; this function
of key exchange is often realized by individual protocols. There are for instance several
variants based on the so-called Diffie-Hellman key exchange.

Designing secure protocols is a hard problem: even for protocols that are designed with
privacy in mind, there are often imperfections. For example, recent works show privacy
issues in voting protocols (Helios [15, 35]) or contact-tracing applications (GAEN API [19],
SwissCovid [73, 58]). Formal verification helps to discover issues in security protocols, and
once the issues have been fixed it becomes possible to prove that the protocol is secure.

1.3 Privacy
Privacy properties are more complicated than standard goals of secrecy and authentication.
For instance, for the privacy-type goal of unlinkability (an outsider cannot tell if two
protocol sessions were executed by the same or different participants), the usual symbolic
attacker model is not sufficient because it cannot directly model weak secrets like the name
of a participant: the intruder may know the name of all participants, and the secret is

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 1

rather which user has performed a particular action. It is standard to use equivalence
notions here: we consider a pair of worlds and verify that the intruder cannot tell which
world is the case. For instance, for unlinkability we have one world where some agent runs
several protocol sessions and another world where different agents run one session each.
However, reasoning about such equivalences is generally more complicated than reasoning
about reachability properties (such as secrecy and authentication goals). Moreover, it is
typical for verifying privacy in security protocols to define a list of properties (i.e., goals
expressed with equivalences) to check. However, this is very technical and one cannot be
sure that all relevant properties have been identified. This means that some attacks may
still occur despite successful verification.

Instead, we want to reason about the knowledge an attacker has, and what implications
they can derive from this knowledge. We use the formalism of (α, β)-privacy, which was
introduced as an alternative way to define privacy-type properties in security protocols
[63, 47]. (α, β)-privacy considers states that each represent one possible reality, and what
the intruder knows about the reality in that state. This knowledge is not only in form
of messages as in classic intruder models, but also in form of relations between messages,
agents, etc. Together with a notion of what the intruder is allowed to know in a given
state, we define a privacy violation if the intruder in any reachable state knows more than
allowed. Privacy is then a question of reachability—a safety property—which is often
easier to reason about and to specify than classical equivalence notions. First, one does
not have to boil the privacy goal down to a distinction between two situations, which is
often unnatural for more complicated properties. Second, one specifies goals positively by
what the intruder is allowed to know rather than what they are not allowed to know (and
thus unable to distinguish). This essentially means that in the worst case one is erring on
the safe side, i.e., allowing less than the protocol actually reveals, and thus can be alerted
by a counterexample. The expressive power of equivalence notions and of (α, β)-privacy is
actually hard to relate in general, due to the different nature of the approaches. However, on
concrete examples it seems one can always give reasonable adaptations from one approach
to the other [63, 47].

1.4 Automated reasoning
Usually, formally verifying a protocol by hand is tedious and one easily overlooks an error
in a corner case. Therefore, it is very useful to have tools that automate this formal
verification. The main goal of this thesis is the development of new methods for automated
verification of privacy. The idea is to give as input the specification of a security protocol,
which includes the information intentionally disclosed. Then a program can check whether
there are any attacks. With this tool, we can study existing systems to prove that either
they respect privacy or they violate it (by showing an attack). Moreover, this can also be
used during the development of applications with a privacy-by-design mindset.

In this thesis, we use a Dolev-Yao model for security protocols, i.e., messages of the
protocol are represented with symbolic terms, and we assume that the intruder can control
the network and act as a protocol participant but they cannot break cryptography. This
symbolic model approach has proved to be a very effective basis for automated verification
approaches, e.g., ProVerif [16], Tamarin [60], or CPSA [37].

1.5 Summary of the results
The work presented in this thesis is based on several papers, corresponding roughly to one
chapter each.

2 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

• “A Decision Procedure for Alpha-Beta Privacy for a Bounded Number of Tran-
sitions” [44]: Our most important research question was: how to automate the
verification of (α, β)-privacy in security protocols? In this publication, we define a
decision procedure for privacy as reachability. In general, the problem is undecidable,
and we thus have two restrictions to obtain a decidable problem: we bound the
number of steps of honest agents, and we restrict ourselves to a particular class of
algebraic theories. At the core of the procedure is a constraint-solving method, similar
to previous works on protocol verification in the symbolic model, with adaptations
to our formalism targeting (α, β)-privacy goals. The rest of the procedure uses the
constraint-solving method as a building block. We define a state transition system
as a symbolic execution of transactions specified by the protocol. We also define
intruder experiments for the checks that the intruder can perform between mes-
sages in their knowledge. In order to support algebraic properties of cryptographic
operators, we give an analysis strategy that saturates the intruder knowledge by
decrypting messages as far as possible. Note that in our procedure, we never bound
the number of steps that the intruder can make. Moreover, we have implemented
the decision procedure in an open-source prototype tool and applied it to several
protocols described in case studies.

• “A decision procedure and typing result for alpha-beta privacy” [43]: In this article,
we extend the work from [44] and obtain a typing result. The new contributions
are the introduction of a typed model where the protocol specifies an intended type
for every message; the definition of type-flaw resistant protocols; and the proof of
a typing result for (α, β)-privacy of the form “if there is an attack, then there is
a well-typed one.” For the proof arguments, we make several adaptations to the
procedure verifying (α, β)-privacy, in particular with the introduction of pattern
matching and a reformulation of the transitions for analyzing the intruder knowledge
(we also prove that these transformations are correct). Our requirements for type-flaw
resistance can be checked statically, and we prove that under these requirements,
the procedure performs only well-typed instantiations of variables and well-typed
intruder experiments. Our typing result is not limited to any bound on the number
of transitions. Moreover, we revisit the case study protocols to check whether they
satisfy our type-flaw resistance requirements.

• A Compositionality Result for Alpha-Beta Privacy [42]: In this paper, we extend the
(α, β)-privacy specification language with constructs useful for expressing protocol
composition; for instance, one protocol may call another as a subprotocol. Our
definition of protocol composition is general and allows for protocols sharing messages.
We introduce a notion of roles, which allows for sequencing transactions with particular
interleavings. We also add assertions that are checked during the symbolic execution
of the protocol: these assertions can be used to express protocol goals other than
privacy. Composed protocols may share secrets, and these can be declassified during
the protocol execution: the non-leakage of secrets is another protocol goal to verify,
besides assertions and regular (α, β)-privacy goals. We define composable protocols
and prove a compositionality result for (α, β)-privacy of the form “if every component
protocol is secure, then the composition is also secure.” This result enables modular
verification of (α, β)-privacy goals: our approach relies on the specification, for each
component in a composed system, of an abstract interface. We then consider each
component with only the interface of the others, instead of the entire composed
system.

• “Private Authentication with Alpha-Beta-Privacy” [41]: In this publication, we focus

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 3

on two protocols: BAC [57], typically used with RFID tags like in epassports, and
Private Authentication [1], used for communication between agents without revealing
to an outsider who is talking to whom. We discuss several variants of the protocols
and explain how to use the noname tool implementing the decision procedure from
[44]. The case studies go into details about various modeling choices and show how we
can find attack traces that can easily be explained. The protocol modeling illustrates
the benefits of the declarative approach of (α, β)-privacy.

As an additional contribution, we have reworked and refined the material from the
papers forming the basis of this thesis. In particular, we have made an effort to present
the results in successive chapters that generally build on top of each other, with consistent
notation.

1.6 Outline of the thesis

In Chapter 2, we present the notion of (α, β)-privacy in transition systems and define
the problem of privacy as reachability. In Chapter 3, we present our decision procedure,
which uses symbolic representations to compute the reachable states of a protocol and then
verifies, in each state, whether (α, β)-privacy holds. In Chapter 4, we introduce a type
system for security protocols and define the class of type-flaw resistant protocols, for which
we obtain a typing result of the form “if there is an attack, then there is a well-typed one.”
In Chapter 5, we extend the grammar of protocols with constructs enabling composition,
such as the ability for one protocol to call a procedure as a subprotocol. We define the
class of composable protocols, for which we obtain a compositionality result. This allows
for modular verification of composed systems. In Chapter 6, we explain how to use our
tool noname, which implements the decision procedure from Chapter 3, and we describe
in details the results of applying the tool to two case study protocols: BAC and Private
Authentication. In Chapter 7, we conclude by summarizing our results and discussing
future work. The appendix contains all the proofs of correctness and additional details for
models of protocols.

4 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 2

Preliminaries

This chapter is based on [44, 43].
Mödersheim and Viganò [63] introduce (α, β)-privacy as a reachability problem in a

state transition system, where each state contains two formulas α and β. Intuitively, α
represents what the intruder may know (e.g., the result of an election) and β what the
intruder has observed (e.g., the encrypted votes). Then, a state (α, β) violates privacy
iff some model of α can be excluded by the intruder knowing β, i.e., the intruder in that
state can rule out more than allowed, e.g., in a voting protocol the intruder finds out that
two of the voters have voted the same, even though this does not follow from the election
result. The transition system violates (α, β)-privacy iff some reachable state does.

2.1 (α, β)-privacy for a state

[63] focuses on how to define (α, β) pairs for a fixed state, and describes a state-transition
relation only briefly by an example. Let us also start with a fixed state. The formulas α
and β are in Herbrand logic [55], a variant of First-Order Logic (FOL), with the difference
that the universe is the quotient algebra of the Herbrand universe (the set of all terms
that can be built with the function symbols) modulo a congruence relation ≈. This
congruence specifies algebraic properties of cryptographic operators. For concreteness, we
use the congruence defined in Fig. 2.1; the class of properties supported by our result is in
Definition 3.4.1. The quotient algebra consists of the ≈-equivalence classes of terms.

Given an alphabet Σ, a Σ-interpretation I interprets variable and relation symbols as
usual in the Herbrand universe induced by Σ and ≈; the interpretation of the function
symbols is determined by the Herbrand universe. We have a model relation |=Σ as expected.
By construction, I |=Σ s

.= t iff I(s) ≈ I(t). We say that φ entails ψ, and write φ |=Σ ψ,
when every Σ-interpretation that is a model of φ is also a model of ψ. We write φ ≡Σ ψ
when φ |=Σ ψ and ψ |=Σ φ.

We now fix the alphabet Σ that contains all symbols we use, namely cryptographic
functions, a countable set of constants representing agents, nonces and so on, and some
relation symbols. We also have the set of variable symbols V. Each protocol specification
will fix a sub-alphabet Σ0 ⊂ Σ that we call the payload symbols; we call Σ \Σ0 the technical
symbols. All α formulas use only symbols in Σ0 and variables. In the rest of the thesis, we
often omit the alphabet and just write |= to mean |=Σ0 , and ≡ to mean ≡Σ0 .

The main idea of (α, β)-privacy is that we distinguish between the actual privacy goal
(e.g., an unlinkability goal talking only about agents) and the means to achieve it (e.g., the
cryptographic messages exchanged).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 5

dcrypt(s1, s2) ≈ t if s1 ≈ inv(k) and s2 ≈ crypt(k, t, r)
dscrypt(k, s) ≈ t if s ≈ scrypt(k, t, r)
open(k, s) ≈ t if s ≈ sign(inv(k), t)
pubk(s) ≈ k if s ≈ inv(k)
proj1(s) ≈ t1 if s ≈ pair(t1, t2)
proj2(s) ≈ t2 if s ≈ pair(t1, t2)
and . . . ≈ ff otherwise

Figure 2.1: The congruence used for examples in this thesis: crypt and dcrypt are asymmetric
encryption and decryption, scrypt and dscrypt are symmetric encryption and decryption,
sign and open are signing and verification/opening, pair is a transparent function and the
proji are the projections, inv gives the private key corresponding to a public key, and pubk
gives the public key from a private key. Here k, t, r and the ti are variables standing for
arbitrary messages. When the conditions are not met, the functions give ff, which is a
constant indicating failure of decryption or parsing. If crypt and scrypt are used as binary
functions, we consider their deterministic variants where the random factor r has been
fixed and is omitted for simplicity.

Definition 2.1.1 (Adapted from [63]). Given two formulas α over Σ0 and β over Σ with
fv(α) ⊆ fv(β), where fv denotes the free variables, we say that (α, β)-privacy holds iff for
every Σ0-interpretation I |=Σ0 α there exists a Σ-interpretation I ′ |=Σ β such that I and
I ′ agree on the variables in fv(α) and on the relation symbols in Σ0.

We call the formula α the payload, defining the privacy goal. For example, for unlinka-
bility in an RFID-tag protocol, we may have a fixed set {t1, t2, t3} of tags and in a concrete
state, the intruder has observed that two tags have run a session. Then α in that state may
be x1, x2 ∈ {t1, t2, t3}, meaning that the intruder is only allowed to know that both x1 and
x2 are indeed tags, but not, for instance, whether x1

.= x2. In our approach, the formulas
α that can occur fall into a fragment where we can always compute a finite representation
of all models, in particular the variables like the xi in the example will always be from a
fixed finite domain.

For the formula β, we employ the concept of frames: a frame has the form F = l1 7→
t1. · · · .ln 7→ tn, where the li are distinguished variables called labels and the ti are messages
(terms that do not contain labels). This represents that the intruder has observed (or
initially knows) messages t1, . . . , tn and we give each message a unique label. We call the
set {l1, . . . , ln} the domain of F . A frame can be used as a substitution, mapping labels to
messages.

To describe intruder deductions, we define a subset Σpub of the function symbols to
be public: they represent operations the intruder can perform on known messages. For
instance, all symbols used in Fig. 2.1 are public except for inv, since getting the private
key is not an operation that everyone can do themselves.1 A recipe (in the context of a
frame F) is any term that consists of only labels (in the domain of F) and public function
symbols, so it represents a computation that the intruder can perform on F . We write
F (r) for the message generated by the recipe r with the frame F : all labels in the recipe
are replaced with the respective messages from the frame.

1The use of inv is just one possible model, and one could choose to model private keys differently, e.g.,
with public functions for key pair generation and secret seeds. In this thesis we use inv as it makes our
examples simpler.

6 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Two frames F1 and F2 with the same domain are statically equivalent, written F1 ∼ F2,
iff for every pair (r1, r2) of recipes, we have F1(r1) ≈ F1(r2) ⇔ F2(r1) ≈ F2(r2). This
means that the intruder cannot distinguish F1 and F2, since any experiment they can make
(i.e., comparing the outcome of two computations r1, r2) either gives in both frames the
same result or in both frames not.

Static equivalence can be encoded in Herbrand logic [63] and so for instance we can
have as part of β formulas like concr ∼ struct, where struct is a frame with variables and
concr = I(struct) for some model I |= α is the concrete frame of intruder observations.
As an example, let α = x1, x2 ∈ {0, 1}, struct = l1 7→ h(k, x1).l2 7→ h(k, x2) and concr =
l1 7→ h(k, 0).l2 7→ h(k, 1). Observe that α has four models, but in the two models where
I(x1) = I(x2) we have I ̸|=Σ concr ∼ struct, because for these models l1 and l2 give the
same message in struct but different messages in concr . Since in this example concr ∼ struct
is part of β, β allows the intruder to rule out two models of α, thus (α, β)-privacy does not
hold.

2.2 (α, β)-privacy for a transition system

So far we have been talking about only a single (α, β) pair, i.e., a single state of a larger
transition system. Gondron, Mödersheim, and Viganò [47] define a language for specifying
transition systems where the reachable states and their (α, β) pairs are defined by executing
atomic transactions. We present their formalization with some minor adaptations to ease
our further development.

2.2.1 Specification

We distinguish two sorts of variables: the privacy variables Vprivacy, which are denoted
with lower-case letters like x and are all introduced in the form x ∈ D for a finite domain
D of public constants from Σ0, and the intruder variables Vintruder , which are denoted with
upper-case letters like X for messages received and cell reads in a transaction.

We also distinguish destructor and constructor function symbols. In Fig. 2.1 we
have that dcrypt, dscrypt, open, pubk, proj1 and proj2 are destructors whereas the rest are
constructors. Moreover, we call pair and inv transparent functions, because one can get all
their arguments without any key (but recall that inv is not a public function).

Much of the processes defined below follows standard process calculus constructs. The
special constructs of (α, β)-privacy are the non-deterministic choice of privacy variables and
release. Choice comes in two flavors: ⋆ if the choice is privacy relevant (as in Example 2.2.1
just after the definition), and ⋄ if not. The release is used to declare that a certain fact φ
may now be known to the intruder; we discuss this construct and what formulas can be
released a bit later.

Definition 2.2.1 (Protocol specification). A protocol specification consists of

• a number of transaction processes Pi, where the Pi are left processes according to the
syntax below, describing the atomic transactions that participants in the protocol can
execute;

• a number of memory cells, e.g., cell[·], together with a ground context C[·] for each
memory cell defining the initial value of the memory, so that initially cell[t] = C[t];
and

• a Σ0-formula γ0 that fixes the interpretation of the relation symbols.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 7

We define left, center, and right processes as follows:

Pl Left process
::= mode x ∈ D.Pl Non-deterministic choice
| rcv(X).Pl Receive
| Pc Center process

Pc Center process
::= try X := d(t, t) in Pc catch Pc Destructor application
| X := cell[t].Pc Cell read
| if φ then Pc else Pc Conditional statement
| νX1, . . . , Xk.Pr Fresh constants

Pr Right Process
::= snd(t).Pr Send
| cell[t] := t.Pr Cell write
| ⋆ φ.Pr Release
| 0 Terminate (nil process)

where mode is either ⋆ or ⋄, φ is a quantifier-free Herbrand formula, and d is a destructor.
Destructors are not allowed to occur elsewhere in terms. For simplicity, we have denoted
destructors as binary functions, but we may similarly use unary destructors (like proji and
pubk in the example).

We require that a transaction P is a closed left process, i.e., fv(P) = ∅—we define
the free variables fv(P) of a process P as expected, where the non-deterministic choices,
receives, cell reads and fresh constants are binding. Moreover, for destructor applications:

fv(try X := d(k, t) in P1 catch P2) = fv(d(k, t)) ∪ (fv(P1) \ {X}) ∪ fv(P2) .

Finally, a bound variable cannot be instantiated a second time.

Example 2.2.1 (Running example). Let us consider the following transaction where a server
non-deterministically chooses an agent x and a yes/no-decision y, receives a message, tries
to decrypt it with their own private key and then sends the decision encrypted with the
public key of x:

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(M).
try N := dcrypt(inv(pk(s)),M) in
if y .= yes then

νR.snd(crypt(pk(x), pair(yes, N), R)).0
else νR.snd(crypt(pk(x), no, R)).0

catch 0

Here the ⋆ means that the choice of x and y is privacy relevant and the intruder may (at
least for now) only learn that x ∈ Agent and y ∈ {yes, no}. The outgoing message has a
different form depending on y: in the positive case the server also includes the content N
of the encrypted message M they received (and if the message is not of the right format,
then the transaction simply terminates); in either case the encryption is randomized with
a fresh R. We may omit R if we want to model non-randomized encryption. pk is a public
function (modeling a fixed public-key infrastructure known to everybody). ◁

8 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Observe that privacy variables are introduced only by non-deterministic choices
mode x ∈ D. If the mode is ⋆, the transaction augments α by x ∈ D, thus specify-
ing that the intruder may not know more about x unless we also explicitly release some
information about x. If the mode is ⋄, the transaction augments β by x ∈ D. In this case
it is not in itself a violation of privacy if the intruder learns more about x, but it may lead
to a privacy violation if this allows for finding out more about the variables in α. This is
useful if one wants to keep the privacy specification independent of some rather technical
secret. In our model, the intruder knows which transaction is executed, but in general does
not know which branch is taken. Using, for example, ⋄ z ∈ {1, 2}.if z .= 1 then P1 else P2,
one can avoid to make it (a priori) visible to the intruder whether P1 or P2 is executed,
but if the intruder finds out which one, it is not a privacy violation in itself.

2.2.2 Semantics
The semantics follows [47], with small adaptations. It is defined as a state transition system
where each transition corresponds to the execution of one transaction. Thus, transactions
are atomic: they cannot run concurrently with another transaction. In particular, when
reading from and writing to memory cells, no race conditions can occur and we thus do
not need locking mechanisms. A transaction thus consists in receiving input, checking
this input (possibly reading from memory), then making a decision (possibly updating the
memory), and finally sending an output and releasing information.

The atomicity of transactions has an advantage: we can easily formalize how the
intruder can reason about what is happening. In particular, we assume that the intruder
at each point knows which transaction is executed and what process a transaction contains.
What the intruder does not know in general are the concrete values of the variables and
the truth values of conditions, and thus in which branch of an if-then-else or try-catch we
are. However, the intruder can always contrast this knowledge with the observations about
incoming and outgoing messages: if an observed sent message does not fit with one branch
of the transaction, then the intruder knows that branch was not taken, and thus they also
learn something about the truth value of the corresponding conditions. In other cases, the
intruder may know what is in a received message and thus know the truth value of some
condition. The intruder thus performs a symbolic execution of the transaction, leaving
open what they do not know, keeping a list of possibilities, and in fact the semantics of
transactions formally models this symbolic execution by the intruder.

Let a possibility be a tuple (P, φ, struct, δ), where P is the transaction being executed,
φ is the conditions under which this possibility was reached, struct is a frame that we
call the structural knowledge about the messages in this possibility and δ is a sequence of
memory updates. A state is a tuple (α, β0, γ,P) where α, β0 and γ are Σ0-formulas, and P
is a non-empty finite set of possibilities P = {(P1, φ1, struct1, δ1), . . . , (Pn, φn, structn, δn)},
where exactly one of the possibilities is actually the case in the real execution (but the
intruder does not know which one, in general). The formula γ in a state is the ground
truth that interprets every privacy variable.

In this thesis, we consider only well-formed states, where a state is well-formed iff
all structi have the same domain, γ |= γ0 describes a unique model of α ∧ β0 and the
φi both are mutually exclusive, i.e., |= ¬(φj ∧ φk), for j ̸= k, and cover all models, i.e.,
α ∧ β0 |=

∨n
i=1 φi. Recall that γ0 is a formula specified by the protocol that fixes the

interpretation of all relation symbols, it is a requirement for well-formedness that γ |= γ0.
Well-formedness of states will be preserved by the state transitions.

In a well-formed state, the truth γ identifies a unique possibility (Pj , φj , structj , δj),
since γ models the disjunction of the φj and the φj are mutually exclusive. This unique
possibility is the one that really corresponds to the concrete execution. We define the

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 9

concrete frame concr as the instantiation of the structj from the possibility such that
γ |= φj .

Definition 2.2.2 (Multi message-analysis problem). Given a well-formed state S =
(α, β0, γ,P), let concr = γ(structj) where (Pj , φj , structj , δj) is the unique possibility in P
such that γ |= φj. Define

β(S) = α ∧ β0 ∧
n∨

i=1
φi ∧ concr ∼ structi .

We say that S satisfies privacy iff (α, β(S))-privacy holds.

The semantics models that the intruder can symbolically execute transactions, but at
branchings they do not know in general whether the condition is true; the possibilities
reflect the different possible truth values of the conditions and what would have happened
in that case. The unique possibility identified by γ is the one that really happened. In the
rest of the thesis, we refer to this true possibility as the underlined possibility. Contrasting
concr and each structi, the intruder may be able to exclude some possibility (because
concr and structi are distinguishable) and thus learn about the truth value of conditions
φi. Vice-versa, what the intruder knows about variables may allow them to exclude some
possibilities.

To model the symbolic execution of a transaction P , we start in a state where all
possibilities contain that process P . The semantics defines an evaluation relation → on
states that works off the processes in each possibility until all processes are 0. We call
such a state finished. The branching of → represents the non-deterministic choices of the
process as well as choices of messages by the intruder.

To give a gentle introduction to (α, β)-privacy in transition systems, we present the
symbolic execution at hand of the running example from Example 2.2.1. The complete
definition of the rules is in Table 2.1, where the changes to the state are highlighted with
the color red. Notation: δ|cell is the largest subsequence of δ that only contains memory
updates on cell and ⊎ is the disjoint union of sets.

As a starting point for the symbolic execution, we use the singleton set of possibilities
{(P, true, [], [])} where P is the process from the running example; [] denotes the empty
frame and empty memory. Let α and β0 be true, and γ be γ0. This state means that
initially the intruder knows nothing; optionally, one could give them the knowledge of a
private key by having some messages instead of the empty frame. We list in Table 2.2 the
successive states that are reached when executing P and we explain below the transitions.

Non-deterministic choice

The first steps in the running example are two non-deterministic choices of privacy variables.
In general, there are several successor states, one for each possible choice of the variables.
Let us follow the case where x = a and y = yes; this is added to γ, and we add to α that
x ∈ Agent and y ∈ {yes, no}. We reach states 2 then 3. Note that x and y are not replaced
in the remaining process—this is a symbolic execution by the intruder. Also note that
the general rule assumes that all possibilities start with the same mode; this is ensured
since this choice can only occur in the left part of the transaction, before any branching on
conditions and tries can occur.

Receive

The next step is now rcv(M). Again the construction ensures that every process in the
possibilities starts with a receive step (with the same variable). Here, the intruder can

10 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Table 2.1: Semantics of the execution for states

Choice

(α, β0, γ, {(mode x ∈ D.Pi, φi, structi, δi) | i ∈ {1, . . . , n}})
→ (α′, β′

0, γ ∧ x
.= c, {(Pi, φi, structi, δi) | i ∈ {1, . . . , n}})

for every c ∈ D,
where α′ = α ∧ x ∈ D and β′

0 = β0 if mode = ⋆,
α′ = α and β′

0 = β0 ∧ x ∈ D if mode = ⋄

Receive
(α, β0, γ, {(rcv(X).Pi, φi, structi, δi) | i ∈ {1, . . . , n}})
→ (α, β0, γ, {(Pi[X 7→ structi(r)], φi, structi, δi) | i ∈ {1, . . . , n}})
for every recipe r over the domain of the structi

Cell read

(α, β0, γ, {(X := cell[s].P , φ, struct, δ)} ⊎ P)
→ (α, β0, γ, {(P ′, φ, struct, δ)} ∪ P)
where δ|cell = cell[s1] := t1. · · · .cell[sk] := tk, the ground context for initial
value of cell is C[·] and P ′ = if s .= s1 then P [X 7→ t1] else . . .

if s .= sk then P [X 7→ tk] else P [X 7→ C[s]]

Cell write (α, β0, γ, {(cell[s] := t.P, φ, struct, δ)} ⊎ P)
→ (α, β0, γ, {(P, φ, struct, cell[s] := t.δ)} ∪ P)

Conditional (α, β0, γ, {(if ψ then P1 else P2, φ, struct, δ)} ⊎ P)
→ (α, β0, γ, {(P1, φ ∧ ψ, struct, δ), (P2, φ ∧ ¬ψ, struct, δ)} ∪ P)

Release (α, β0, γ, {(⋆ ψ.P, φ, struct, δ)} ⊎ P)→ (α′, β0, γ, {(P, φ, struct, δ)} ∪ P)
where α′ = α ∧ ψ if γ |= φ, and α′ = α otherwise

Eliminate S = (α, β0, γ, {(P, φ, struct, δ)} ⊎ P)→ (α, β0, γ,P)
if β(S) |=Σ ¬φ

Send
(α, β0, γ, {(snd(ti).Pi, φi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P)
→ (α, β0 ∧

∨n
i=1 φi, γ, {(Pi, φi, structi.l 7→ ti, δi) | i ∈ {1, . . . , n}})

if γ |=
∨n

i=1 φi and every process in P is 0, where l is a fresh label

Terminate
(α, β0, γ, {(0, φi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P)
→ (α, β0 ∧

∨n
i=1 φi, γ, {(0, φi, structi, δi) | i ∈ {1, . . . , n}})

if γ |=
∨n

i=1 φi, P ≠ ∅ and every process in P starts with snd(·)

choose an arbitrary recipe r (over the domain of the structi) for the message that should
be received as M . In fact, in general, we have here infinitely many possible r and thus
infinitely many successors. (Our decision procedure uses a constraint-based approach to
handle this in a finite way.) Note that the message that is being received depends on the
possibility: it is structi(r) in the ith possibility, i.e., whatever the recipe r yields in the
respective intruder knowledge structi. As the intruder knowledge at this point is empty in
the example, r can only be a recipe built from public constants and functions; r cannot
contain any labels since it is applied to the empty frame, and thus the message generated
is identical to the recipe. Let us consider r = crypt(pk(s), a, h(a)), which then replaces M
in the process. This leads to state 4.

Cell read and write

The running example does not use memory cells, and we describe briefly the rules here.
When reading from the memory, we add conditional statements to substitute in the process
the appropriate value from the memory (that depends on the argument term). When
writing to the memory, the update is simply prepended to the sequence of memory updates
δ.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 11

Table 2.2: States of the running example

State α β0 γ P

1 true true γ0 {(⋆ x ∈ Agent . . . , true, [], [])}
2 x ∈ Agent true γ1 ∧ x

.= a {(⋆ y ∈ {yes, no} . . . , true, [], [])}
3 α2 ∧ y ∈ {yes, no} true γ2 ∧ y

.= yes {(rcv(M) . . . , true, [], [])}
4 α3 true γ3 {(try N := . . . , true, [], [])}
5 α3 true γ3 {(0, false, [], []), (if y .= yes . . . , true, [], [])}
6 α3 true γ3 {(if y .= yes . . . , true, [], [])}
7 α3 true γ3 {(snd(. . . pair(yes, a) . . .).0, y .= yes, [], []),

(snd(. . . no . . .).0, y ̸ .= yes, [], [])}
8 α3 y

.= yes γ3 {(0, y .= yes, l 7→ . . . pair(yes, a) . . . , []),
∨y ̸ .= yes (0, y ̸ .= yes, l 7→ . . . no . . . , [])}

Conditional statement

The process is now try N := . . . in if . . . catch 0. For the sake of this semantics, we can just
consider try X := t in P1 catch P2 as syntactic sugar for if t .= ff then P2 else P1[X 7→ t].
(For the decision procedure it is important that destructors only occur in this try-catch form,
however.) We have to evaluate the condition dcrypt(inv(pk(s)), crypt(pk(s), a, h(a))) .= ff,
which we can simplify to false, i.e., the intruder knows that the received message will
decrypt correctly. We thus have in state 5 two possibilities of which the second is underlined
and where N has been substituted with the content of the encryption, i.e., the constant a.
The Eliminate rule allows removing possibilities with the condition false, so we reach state
6. The underlined possibility is what really happened (which is here obvious). We apply
a second time the Conditional rule, again splitting into two possibilities and leading to
state 7. The first possibility is what really happens (as stated by γ) and is thus underlined,
and here the intruder does not know which one is the case.

Fresh constants

The ν operator can be implemented by replacing the placeholder with a fresh non-public
constant, say r1. We can in fact do this as a preparation before executing the transaction.

Send

When all the rules for the other constructs have been applied as far as possible, each of
the remaining processes must be either a send or 0. If γ models the condition φi for one of
the possibilities that is sending, then it means that in the concrete execution a message
is indeed sent. (The counterpart is the transition for Terminate, applicable if γ models
instead a possibility that is terminating and not sending.) The intruder observes that
a message is sent, and this rules out all possibilities where the remaining process is 0.
For all others, each structi is augmented by the message sent in the respective possibility.
Moreover, β0 is updated with the disjunction of the φi that are consistent with the intruder
observations (i.e., we only keep the possibilities that were sending). In our example, we
reach state 8, where concr(l) = crypt(pk(a), pair(yes, a), r1). We have reached a finished
state, and the intruder has thus completed the symbolic execution of this transaction.
Example 2.2.2. Let us point out a few more interesting features of our running example.
At the finished state, without further knowledge, the intruder is unable to tell which
of the two possibilities is the case. This would be different if the encryption were not
randomized: suppose we drop the third argument of crypt. Then the intruder could now

12 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

construct crypt(pk(x′), no) for each value x′ ∈ Agent and compare the result with the
observed message. Since this does not succeed in any case, the intruder learns that the
second possibility is excluded, thus y .= yes, violating (α, β)-privacy. Even worse, if we
look at the state where the non-deterministic choice was y = no, the intruder would find
out x because exactly one of the guesses succeeds.

Reverting to randomized encryption, suppose that there had been an earlier transaction
where the intruder observed l′ 7→ crypt(pk(z), no, r2) for some privacy variable z ∈ Agent.
If the intruder uses this as input for the next transaction, then the decryption works iff
z
.= s. Thus, we have a third possibility at the final sending step, namely (0, z ̸ .= s, l′ 7→

crypt(pk(z), no, r2), []). Then from the fact that a message was sent, the intruder can rule
out this third possibility and thus deduce that z .= s, again violating (α, β)-privacy. ◁

Release

This construct is used to declare information that the intruder is now allowed to learn, for
instance in some cases we may let the intruder learn the true value of a privacy variable.
In our running example, we did not use the release, because so far we have not considered
whether the intruder is one of the agents from which x is chosen. Let us now consider that
there is i ∈ Agent where i is the name of a dishonest agent representing the intruder, and
we have the private key inv(pk(i)) as part of the initial knowledge. In case the server is
replying to the intruder, then the intruder can decrypt the message and observe what was
the decision. Thus they would learn both the value of x (i.e., the agent was the intruder)
and y (i.e., they know the server’s decision), which would violate (α, β)-privacy. We could
thus add a release if x is the intruder to allow this deduction.

We consider it a specification error if when applying the Release rule, the formula
φ released contains symbols which are in Σ \ Σ0 and variables not in fv(α). Thus, the
specification can use symbols from the technical level in a release as long as the evaluated
terms use only symbols in Σ0 and fv(α) (i.e., the payload level) when executing the protocol.
This means that releasing technical information in the payload is not allowed. Additionally
for our decision procedure below, the same requirement applies to a relational formula
R(t1, . . . , tn) in the symbolic execution of conditional statements. This kind of specification
error can be detected during the symbolic execution and means that insufficient checks are
made over the terms before the release or conditional statement.

2.3 Privacy as reachability
We have defined in Table 2.1 the relation → that works off the steps of a transaction,
modeling an intruder’s symbolic execution of a transaction P . We now define a transition
relation −→ on finished states such that S −→ S′ iff there is a transaction P such that
start(P, S) →∗ S′, where start(P, S) denotes replacing the 0-process in every possibility
of S with process P . Then one transition with relation −→ means executing exactly one
transaction. Let the initial state be S0 = (true, true, γ0, {(0, true, [], [])}).

Definition 2.3.1 (The reachability problem). Let k ≥ 0. A protocol specification satisfies
privacy until bound k iff (α, β)-privacy holds for every S and i ∈ {0, . . . , k} such that
S0 −→i S. A protocol specification satisfies privacy iff for every k ≥ 0, it satisfies privacy
until bound k.

The first contribution of the present thesis is a procedure to solve the reachability
problem given a bound k, i.e., whether a violation is reachable in at most k transitions,
under the restriction of the algebraic properties to constructor/destructor theories of
Definition 3.4.1.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 13

14 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 3

Decision procedure

This chapter is based on [44, 43].
(α, β)-privacy shifts the problem from a notion of equivalence (that is a challenge for

automation) to a simple reachability problem where however the privacy check for each
reached state is more involved. The previous work [40] was a first step towards automating
verification of (α, β)-privacy, with several restrictions applied to make matters simple. That
work considers a solution to checking a given state in (α, β)-privacy, however it is only
applicable to specifications without conditional branching and it is based on an exploration
of all concrete messages that the intruder can send, which are infinitely many unless one
bounds the intruder.

Our first contribution in this thesis is a decision procedure for the full notion of
transaction processes defined in Chapter 2, which is based on [47], for constructor/destructor
theories [16, 17, 25, 4, 27]. This notion in fact entails that the intruder performs a symbolic
execution of the transaction that in general yields several possibilities (due to conditional
branching if the intruder does not know the truth value of the condition) and the intruder
can then contrast this with all observations and experiments (constructing different messages
and comparing them) to potentially rule out some possibilities. The core of our work is in
a procedure to model this intruder analysis without bounding the number of steps that
the intruder can make in this process. To that end, we use a popular constraint-based
technique to represent the intruder symbolically, i.e., without exploring infinite sets of
possibilities, which we call here the lazy intruder. In fact, we use several layers of symbolic
representation to make the approach feasible.

−→

Infinite branching: intruder choices of
recipes
Infinite depth: another transaction can
always be executed

Finite branching: constraint solving
(lazy intruder)
Finite depth: bound on the number of
transactions executed

Figure 3.1

Fig. 3.1 illustrates the objective of this chapter. On the left, we have a tree generated

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 15

by the semantics of Table 2.1 (which we refer to as the ground model): each node is a
reachable state, and from a single initial state we have in general infinitely many reachable
states. On the right, we have a tree that is generated by the semantics defined later in this
chapter in Table 3.2 (which we refer to as the symbolic model): each node is a symbolic
representation of several states.

The tree generated by the semantics in Table 2.1 is both infinitely branching, because
there are infinitely many different messages the intruder can construct and send to honest
agents, and has infinite depth because there is no bound on how many steps can be executed.
If we however bound the number of steps of honest agents, then the problem becomes
decidable (for the considered class of algebraic theories allowed by Definition 3.4.1). In fact,
we give in this chapter a decision procedure that considers a semantics with symbolic states
(Table 3.2) where each node has only finitely many successors and thus for a bounded
depth the entire tree can be explored. We show that this symbolic semantics correctly
represents the original tree of reachable states.

Our decision procedure tells us whether from a given state we can reach a state that
violates privacy for a fixed bound on the number of transitions. Our procedure is limited
to such a bound on transitions, corresponding to the restriction to a bounded number of
sessions in many approaches [69]. This is similar to the bounds needed in tools like APTE
[22], AKiSs [21], SPEC [70, 71] and DeepSec [25]. In fact, this chapter draws from the
techniques used in these approaches, such as the symbolic representation of the intruder, a
notion of an analyzed intruder knowledge, and methods for deciding the equivalence of
frames. There are, however, several basic differences and generalizations. In particular, we
use a symbolic handling of privacy variables (that in the equivalence-based approaches are
simply one binary choice) and this is linked to logical formulas about relations between
elements of the considered universe. In fact, in the prototype implementation of our decision
procedure that we provide as a further contribution, we employ the SMT solver cvc5 [12]
to handle these logical evaluations. Moreover, we have multiple frames with constraints
for the different possibilities resulting from conditional branching and we analyze if the
intruder can rule out any possibilities in any instance.

In contrast, the tools ProVerif [16] and Tamarin [60] do handle unbounded sessions but
require the restriction to so-called diff-equivalence [36, 27], which drastically limits the use
of branching in security protocols, though [28] recently relaxes this restriction. It seems
thus in general that one has to choose between expressive power and unbounded sessions,
and our approach is decidedly on the side of expressive power.

The chapter is organized as follows. In Section 3.1, we define how we symbolically
represent messages sent by the intruder and how to solve constraints with the lazy intruder
rules. In Section 3.2, we introduce the notion of symbolic states with their semantics.
In Section 3.3, we explain how the intruder can perform experiments and make logical
deductions relevant for privacy by comparing messages in their knowledge. In Section 3.4,
we define the algebraic theories supported and how they are handled in the procedure. In
Section 3.5, we discuss the prototype tool that we have developed as a further contribution
and the case studies we have applied it to. Finally we conclude in Section 3.6 with the
discussion of related work.

3.1 FLICs: Framed Lazy Intruder Constraints

The semantics of the transition system says that, in a state where the processes are receiving
a message, the intruder can choose any recipe built on the domain of concr (respectively,
the structi: they all have the same domain). The problem is that there are in general
infinitely many recipes the intruder can choose from. A classic technique for deciding

16 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

such infinite spaces of intruder possibilities is a constraint-based approach that we call
the lazy intruder [61, 69, 13]: it is lazy in that it avoids, as long as possible, instantiating
the variables of receive steps like rcv(X). The concrete intruder choice at this point does
not matter; only when we check a condition that depends on X, we consider possible
instantiations of X as far as needed to determine the outcome of the condition. Note that
this is one symbolic layer of our approach: a symbolic state with variable X represents
all concrete states where X is replaced with a message that the intruder can construct.
In fact what the intruder can construct depends on the messages the intruder knew at
the time when the message represented by X was sent. Due to the symbolic execution,
in a state there are in general several structi, and thus we need to represent not only the
messages sent by the intruder with variables but also the recipes that they have chosen,
because a given recipe can produce different messages in each structi.

To keep track of this, we define an extension of frames called framed lazy intruder
constraints (FLICs): the entries of a standard frame represent messages that the intruder
received and we write them now with a minus sign: −l 7→ t. We extend this by also writing
entries for messages the intruder sends with a plus sign: +R 7→ t, where R is a recipe
variable (disjoint from privacy and intruder variables). When solving the constraints, R
may be instantiated with a more concrete recipe, but only using labels that occurred in the
FLIC before this receive step; the order of the entries is thus significant. The messages like
t can contain variables representing intruder choices that we have not yet made concrete.
We require that the intruder variables first occur in positive entries as they represent
intruder choices made when sending a message.

Since we deal with several possibilities in parallel, we will have several FLICs in parallel,
replacing the structi in the ground model. Each FLIC has the same sequence of incoming
labels and outgoing recipes. The intruder does not know in general which possibility is the
case, but knows how they constructed messages from their knowledge, i.e., the same recipe
may result in a different message in each possibility.

A FLIC is a constraint, namely that the intruder can indeed produce messages of the
form needed to reach a particular state of the execution. We show that we can solve such
FLICs, i.e., find a finite representation of all solutions (as said before, there are in general
infinitely many possible concrete choices) using the lazy intruder technique, similarly to
other works doing constraint-based solving with frames such as [23, 25]. In the rest of this
section, we focus on defining and solving constraints by considering just one FLIC and not
the rest of the possibilities, and we will explain in Section 3.2 how the lazy intruder is used
for the transition system with several possibilities.

3.1.1 Defining constraints

Definition 3.1.1 (FLIC). A framed lazy intruder constraint (FLIC) A is a sequence of
mappings of the form −l 7→ t or +R 7→ t, where each label l and recipe variable R occurs
at most once, each term t is built from function symbols, privacy variables, and intruder
variables. The first occurrence of each intruder variable must be in a message sent.

We write −l 7→ t ∈ A if −l 7→ t occurs in A, and similarly +R 7→ t ∈ A. The domain
dom(A) is the set of labels of A and vars(A) are the privacy and intruder variables that
occur in A; similarly, we write rvars(A) for the recipe variables.

The message A(r) produced by a recipe r in A is defined as:

A(l) = t if −l 7→ t ∈ A ,

A(R) = t if +R 7→ t ∈ A ,

A(f(r1, . . . , rn)) = f(A(r1), . . . ,A(rn)) .

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 17

For recipes that use labels or recipe variables not defined in the FLIC, the result is
undefined. We also define an ordering between recipes and labels: r <A l iff every label l′
in r occurs before l in A.

Example 3.1.1. Consider the transaction from Example 2.2.1, step rcv(M). Suppose that
we have a FLIC that represents all the messages the intruder has sent and received before
this execution of the transaction. Then we simply append +R 7→M to the FLIC, where R
is a fresh recipe variable. As discussed later, before executing a transaction we also rename
all variables in that transaction with fresh variables, so M in this case is also fresh, i.e., it
did not occur before this transaction. We are lazy in the sense that we do not explore at
this point what R and M might be, because any value would do. Now the server checks
whether M can be decrypted with the private key inv(pk(s)). This is the case iff M has
the form crypt(pk(s), ·, ·) (we will show in Section 3.2 how exactly the try-catch construct
works in the presence of the lazy intruder.) In the positive case, M is instantiated with
crypt(pk(s), X, Y) for two fresh intruder variables X and Y , thus requiring that R indeed
yields a message of this form. The constraint solving in Section 3.1.2 computes a finite
representation of all solutions for R.

We also need to consider the negative case, i.e., when the intruder chose to use a
recipe that does not satisfy the decryption; this will yield the negated equality M ̸ .=
crypt(pk(s), ·, ·). ◁

Definition 3.1.2 (Semantics of FLICs). Let A be a FLIC such that vars(A) = ∅, i.e.,
the messages in A are ground, so A has only recipe variables. A is constructable iff there
exists a ground substitution of recipe variables ρ0 such that A1(ρ0(R)) ≈ t for every recipe
variable R where A = A1.+R 7→ t.A2. (This implies that only labels from dom(A1) can
occur in ρ0(R).) We then say that ρ0 constructs A.

Let A be an arbitrary FLIC and I be an interpretation of all privacy and intruder
variables. We say that I is a model of A, written I |≡ A, iff I(A) is constructable. A is
satisfiable iff it has a model.

A FLIC is thus satisfiable if there exist a suitable interpretation for the variables
in messages and a suitable intruder choice for the variables in recipes such that all the
constraints are satisfied.
Example 3.1.2. Suppose that Alice sent a signed message m to the intruder i and the
constraint is to send some signed message to Bob. This is recorded in the following FLIC
A:

−l1 7→ inv(pk(i)).−l2 7→ crypt(pk(i), sign(inv(pk(a)),m)).
+R 7→ crypt(pk(b), sign(inv(pk(X)), Y)) .

Here I1 = [X 7→ a, Y 7→ m] is a model, because I1(A) is constructable using the recipe
R = crypt(pk(b), dcrypt(l1, l2)). For every ground recipe r over dom(A) also Ir = [X 7→
i, Y 7→ A(r)] is a model, using R = crypt(pk(b), sign(l1, r)); note there are infinitely many
such r. ◁

3.1.2 Solving constraints
We now present how to solve constraints when the intruder does not have access to
destructors, i.e., as if all destructors were private functions and thus cannot occur in recipes.
Hence the only place where destructors can occur are in transactions using try-catch. This
allows us to work in the free algebra for now and with only destructor-free terms. To achieve
the correctness of our procedure for the full intruder model with access to destructors,

18 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

we show in Section 3.4 how all intruder applications of destructors can be handled by
special analysis steps. This allows us to keep the core of the method free of destructors
and algebraic reasoning.

Definition 3.1.3 (Simple FLIC). A FLIC A is called simple iff every message sent is an
intruder variable, and each intruder variable is sent only once, i.e., every message sent is
of the form +Ri 7→ Xi and the Xi are pairwise distinct.

Simple FLICs are always satisfiable, since there are no more constraints on the messages,
and the intruder can choose any recipes they want. In order to solve constraints in a
non-simple FLIC, we instantiate privacy, intruder and recipe variables until we reach a
simple FLIC. Computing a finite representation of all solutions is then done by keeping
track of the substitutions applied to instantiate the variables.

Definition 3.1.4. Let σ be a substitution that does not contain recipe variables. We define
σ(−l 7→ t.A) = −l 7→ σ(t).σ(A) and σ(+R 7→ t.A) = +R 7→ σ(t).σ(A).

However, we cannot directly define the instantiation of recipe variables for an arbitrary
FLIC, because we always need to make sure we instantiate both the recipe and the intruder
variables according to the constraints. We thus define how to apply a substitution of recipe
variables for simple FLICs.

Definition 3.1.5 (Choice of recipes). A choice of recipes for a simple FLIC A is a
substitution ρ mapping recipe variables to recipes, where dom(ρ) ⊆ rvars(A).

Let [R 7→ r] be a choice of recipes for A that maps only one recipe variable, where
A = A1.+R 7→ X.A2. Let R1, . . . , Rn be the fresh variables in r, i.e., {R1, . . . , Rn} =
rvars(r)\rvars(A), taken in a fixed order (e.g., the order in which they first occur in r). Let
X1, . . . , Xn be fresh intruder variables. The application of [R 7→ r] to the FLIC A is defined
as [R 7→ r](A1.+R 7→ X.A2) = A′.σ(A2) where A′ = A1.+R1 7→ X1. · · · .+Rn 7→ Xn and
σ = [X 7→ A′(r)].

For the general case, let ρ be a choice of recipes for A. We define ρ(A) recursively
where one recipe variable is substituted at a time, and we follow the order in which the
recipe variables occur in A: if ρ = [R 7→ r]ρ′, where R occurs in A before any R′ ∈ dom(ρ′),
then ρ(A) = ρ′([R 7→ r](A)). Every application [R 7→ r](A) corresponds to a substitution
σ = [X 7→ A′(r)] (as defined above), and we denote with σAρ the idempotent substitution
aggregating all these substitutions σ from applying ρ to A.

Note that if ρ is a choice of recipes for a simple FLIC A, then ρ(A) is simple, because
the fresh recipe variables added in ρ(A) map to fresh intruder variables.
Example 3.1.3. Consider the FLIC

A = −l1 7→ inv(pk(i)).+R1 7→ X1.−l2 7→ crypt(pk(s), X1, r).+R2 7→ X2 .

This represents the situation where the intruder knows the private key of agent i, they
have sent some message X1 (using recipe R1), after that they have observed a message
encrypted for the server s containing X1, and finally the intruder has sent another message
X2 (using recipe R2).

Let ρ be the choice of recipes [R1 7→ pair(R3, R4), R2 7→ l2]. This expresses the fact
that to send X1, the intruder has composed themselves a message that is a pair, and to
send X2, they have simply reused a message observed previously. In order to apply ρ to A,
we first consider the choice for R1: we remove the mapping +R1 7→ X1, and we introduce
new mappings with fresh intruder variables X3, X4, so we have

A′ = −l1 7→ inv(pk(i)).+R3 7→ X3.+R4 7→ X4.−l2 7→ crypt(pk(s), pair(X3, X4), r).
+R2 7→ X2 .

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 19

Table 3.1: Lazy intruder rules

Unification
(ρ,A1.−l 7→ s.A2.+R 7→ t.A3, σ) if A1.−l 7→ s.A2 is simple,
⇝ (ρ′, σ′(A1.−l 7→ s.A2.A3), σ′) s, t /∈ V and σ′ ̸= ⊥
where ρ′ = [R 7→ l]ρ and σ′ = mgu(σ ∧ s .= t)

Composition

(ρ,A1.+R 7→ f(t1, . . . , tn).A2, σ) if A1 is simple, f ∈ Σpub
⇝ (ρ′,A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2, σ) and σ ̸= ⊥
where the Ri are fresh recipe variables
and ρ′ = [R 7→ f(R1, . . . , Rn)]ρ

Guessing (ρ,A1.+R 7→ x.A2, σ)⇝ (ρ′, σ′(A1.A2), σ′) if A1 is simple, c ∈ dom(x)
where ρ′ = [R 7→ c]ρ and σ′ = mgu(σ ∧ x .= c) and σ′ ̸= ⊥

Repetition
(ρ,A1.+R1 7→ X.A2.+R2 7→ X.A3, σ) if A1.+R1 7→ X.A2 is simple
⇝ (ρ′,A1.+R1 7→ X.A2.A3, σ) and σ ̸= ⊥
where ρ′ = [R2 7→ R1]ρ

This first choice of recipes induces the substitution [X1 7→ pair(X3, X4)], which is applied
to the rest of the FLIC: the X1 inside the encryption has been replaced with the pair.

Now we consider the choice for R2: we remove the mapping +R2 7→ X2, and there is
no new mappings to introduce since the recipe used is label l2. Finally, we get the FLIC

ρ(A) = −l1 7→ inv(pk(i)).+R3 7→ X3.+R4 7→ X4.−l2 7→ crypt(pk(s), pair(X3, X4), r) ,

and the substitution σAρ = [X1 7→ pair(X3, X4), X2 7→ crypt(pk(s), pair(X3, X4), r)]. ◁

We denote with mgu(s1
.= t1 ∧ · · · ∧ sn

.= tn) the result, called most general unifier
(mgu), of unifying the si and ti, which is either some substitution or ⊥ whenever no unifier
exists. Slightly abusing notation, we consider a substitution [x1 7→ t1, . . . , xn 7→ tn] as the
formula x1

.= t1 ∧ · · · ∧ xn
.= tn and ⊥ as false. We modify the standard mgu algorithm so

that when we have to unify an intruder variable X with a privacy variable x, it will always
result in [X 7→ x] (i.e., privacy variables are never substituted with intruder variables).

Moreover, we add a postprocessing step to mgu: if the resulting σ contains x 7→ c
where x is a privacy variable chosen from a domain D that does not contain c, then the
result is ⊥.

In order to solve the constraints, we define a reduction relation ⇝ on FLICs: ⇝ is
Noetherian and a FLIC that cannot be further reduced is either simple or unsatisfiable.
Moreover, ⇝ is not confluent, but rather is meant to explore different ways for the intruder
to satisfy constraints, and thus we will consider the set of all simple FLICs that are
reachable from a given one: the simple FLICs together will be equivalent to the given
FLIC. Since ⇝ is not only Noetherian, but also finitely branching, the set of reachable
simple FLICs is always finite by Kőnig’s lemma.

Definition 3.1.6 (Lazy intruder rules). The relation ⇝ is a relation on triples (ρ,A, σ) of
a choice of recipes ρ, a FLIC A and a substitution σ, where ρ and σ keep track of all variable
substitutions performed in the reduction steps so far and are such that dom(ρ)∩rvars(A) = ∅
and dom(σ) ∩ vars(A) = ∅. The rules are defined in Table 3.1.

Below, we explain the meaning of the rules and we use the variable identifiers from
Table 3.1.

Unification. When the intruder has to send a message t, they can use any message
s previously received and that unifies (σ′ = mgu(σ ∧ s .= t) ̸= ⊥), choosing the label l
that maps to s for instantiating the recipe variable R. There is one less message to send,
but the unifier might make other constraints non-simple (application of σ′ to the rest of

20 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

the constraints). This rule is not applicable if t is a variable: we do not explore how an
arbitrary message can be constructed—this is where the intruder is lazy. Similarly, the
rule is not applicable if s is a variable, because that means that it is a message the intruder
constructed earlier (or that the intruder can guess, for a privacy variable); this is why we
require this part of the FLIC to be already simple: s is a message that the intruder already
knew how to construct earlier.

Composition. When the intruder has to send a composed message f(t1, . . . , tn), they
can produce it themselves if f is public and they can produce the ti. The intruder thus
chooses to compose the message themselves, so the recipe R is the application of f to other
recipes: we have R = f(R1, . . . , Rn) and we add the new constraints that each Ri produces
the respective ti.

Guessing. When the intruder has to send a privacy variable x, they can guess the
actual value of x, say c. In fact, this is a guessing attack as we let the privacy variables
range over small domains of public constants. This rule represents the case that the
intruder guesses correctly, and the variable x is replaced with the guessed value c. Note
that using the Guessing rule does not yet mean that the intruder knows that c is the
correct guess: in the rest of the procedure, whenever there is such a guess we model both
the right and wrong guesses, and the intruder may not be able to tell what is the case.

Repetition. If the intruder has to send an intruder variable X that they have already
sent earlier, i.e., there is a mapping R1 7→ X before the constraint R2 7→ X, then they
use the same recipe, i.e., R2 = R1. Since there may be several ways to produce the same
message, one may wonder if this is actually complete: could there be an attack where
constructing the same message in two different ways would tell the intruder anything more?
In fact, for what concerns the behavior of the honest agents, it cannot make a difference,
and comparing different ways to construct the same message is covered in the intruder
experiments in Section 3.3.

We now define the lazy intruder results as the set of choices of recipes ρ that solve the
constraints.

Definition 3.1.7 (Lazy intruder results). Let A be a FLIC and σ be a substitution. Let ε
be the identity substitution. We define

LI (A, σ) = {ρ | (ε, σ(A), σ)⇝∗ (ρ,A′,_) and A′ is simple} .

Example 3.1.4. Following Example 3.1.1, let us assume that the intruder has already
observed a message encrypted for the server from another agent x′, and is now symbolically
executing the transaction. With the constraint induced by the decryption from the server,
the FLIC is now −l 7→ crypt(pk(s), x′, r).+R 7→ crypt(pk(s), X, Y). Since pk is public, the
lazy intruder returns two choices of recipes: ρ1 = [R 7→ l], meaning the intruder replays
the message from the knowledge (since it unifies), and ρ2 = [R 7→ crypt(pk(s), R1, R2)],
meaning the intruder composes the message themselves where R1 and R2 stand for arbitrary
recipes. ◁

Definition 3.1.8 (Representation of choice of recipes). Let A be a FLIC, I |≡ A, ρ0 be a
ground choice of recipes and ρ be a choice of recipes. We say that ρ represents ρ0 w.r.t.
A and I iff there exists ρ′0 such that ρ′0 is an instance of ρ and for every R ∈ rvars(A),
I(A)(ρ′0(R)) = I(A)(ρ0(R)) and:

• If ρ(R) ∈ dom(A), then ρ0(R) ∈ dom(A) and either ρ′0(R) = ρ0(R) or ρ′0(R) <A
ρ0(A).

• If ρ(R) is a composed recipe and ρ0(R) ∈ dom(A), then ρ′0(R) <A ρ0(R).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 21

This notion of representation gives the lazy intruder some liberties, namely to be lazy
in not instantiating recipe variables that do not matter, and to replace subrecipes with
equivalent ones (that may be smaller according to our ordering between recipes and labels).

Example 3.1.5. Consider the FLIC

A = +R1 7→ X1.+R2 7→ X2.−l1 7→ f(X1, X2).+R3 7→ X3.−l2 7→ X3.+R4 7→ f(a, b) ,

where f is a private function and a, b are public constants. Let I = [X1 7→ a, X2 7→
b, X3 7→ f(a, b)]. Note that I is a model, because I(A) can be constructed with, e.g.,
ρ0 = [R1 7→ a, R2 7→ b, R3 7→ l1, R4 7→ l2]. During constraint solving with the lazy
intruder, we would never apply Unification between l2 and R4, because l2 maps to
intruder variable X3 (thus, whatever X3 is, it is a message that the intruder can already
generate from their knowledge up to l1). Instead, we would get the intruder result
ρ = [R1 7→ a, R2 7→ b, R4 7→ l1]. This ρ represents ρ0 w.r.t. A and I, because we have
ρ′0 = [R1 7→ a, R2 7→ b, R3 7→ l1, R4 7→ l1] as an instance of ρ and ρ′0 constructs I(A),
albeit in a slightly different way than ρ0. While ρ(R4) = l1 ≠ l2 = ρ0(R4), we still have
ρ′0(R4) = l1 <A l2 = ρ0(R4). In other words, the representation does not follow exactly
the same choices of recipes as ρ0, because we found a “simpler” recipe for R4: there is no
point in using l2 when l1 already gives the same message.

For another example, consider the FLIC

A = +R1 7→ X1.−l 7→ X1.+R2 7→ a .

Let I = [X1 7→ a]. Then I is a model because I(A) can be constructed with, e.g.,
ρ0 = [R1 7→ a, R2 7→ l]. Here again, the lazy intruder would not apply Unification
between l and R2 because l maps to an intruder variable. However, since a is public, we
would get the lazy intruder result ρ = [R2 7→ a]. Then ρ represents ρ0 w.r.t. A and I,
because we have ρ′0 = [R1 7→ a, R2 7→ a] as an instance of ρ and ρ′0 constructs I(A). Note
that ρ(R2) = a <A l = ρ0(R2), i.e., the composed recipe a is “simpler” than label l because
it can be constructed before receiving the message. ◁

In the completeness proof we show that every solution of the constraint is represented
by some choice of recipes that the lazy intruder finds. The lazy intruder rules are sound,
complete and terminating.

Theorem 3.1.1 (Lazy intruder correctness). Let A be a FLIC, σ be a substitution, I |≡ A
such that I |=Σ σ and let ρ0 be a ground choice of recipes. Then ρ0 constructs I(A) iff
there exists ρ ∈ LI (A, σ) such that ρ represents ρ0 w.r.t. A and I. Moreover, LI (A, σ) is
finite.

3.2 Symbolic states
Our approach explores a transition system on symbolic states, where each symbolic state
represents an infinite set of ground states. In the rest of the thesis, we denote symbolic
states by S, S ′, etc., and ground states by S, S′, etc.

A ground state (defined in Chapter 2) may actually contain privacy variables, repre-
senting the possible uncertainty of the intruder in this state, but each variable has one
concrete value that represents the truth in that state, which is expressed by a formula
γ that the intruder does not have access to (and the frame concr is an instance of one
of the structi under γ). This is the reason why we call it a ground state, even though it
contains variables. A symbolic state includes actually two symbolic layers. For the first

22 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

symbolic layer, we define a symbolic state to merge all those ground states that differ
only in the concrete γ and thus the concrete frame concr , i.e., where the intruder has the
same uncertainty. Therefore, a symbolic state does not contain γ and concr , and has no
underlined possibility. Thus, we need to keep track of the released formula αi for each
possibility separately. A second symbolic layer is to use intruder variables and FLICs
to avoid enumerating the infinite choices that the intruder has when sending messages,
thus the frames structi are generalized to FLICs Ai in symbolic states. We will introduce
in Section 3.3 the intruder experiments, and a symbolic state S contains a record of all
experiments the intruder has already performed.

Definition 3.2.1 (Symbolic state). A symbolic state is a tuple (α0, β0,P,Checked) such
that:

• α0 is a Σ0-formula, the common payload;

• β0 is a Σ0-formula, the intruder reasoning about possibilities and privacy variables;

• P is a set of possibilities, which are each of the form (P, φ,A,X , α, δ), where P
is a process, φ is a Σ0-formula, A is a FLIC, X is a disequalities formula (in the
grammar below), α is a Σ0-formula called partial payload, and δ is a sequence of
memory updates of the form cell[s] := t for messages s and t; and

• Checked is a set of pairs (l, r), where l is a label and r is a recipe.

where disequalities formulas are of the following form:

X := X ∧ X | ∀X⃗. ¬X0 Disequalities formula
X0 := X0 ∧ X0 | t

.= t Equalities formula

A symbolic state is finished iff all the processes in P are 0.

We may write S[e ← e′] to denote the symbolic state identical to S except that e is
replaced with e′.

We have augmented the FLICs Ai here with disequalities Xi, i.e., negated equality
constraints, which allows us to restrict the choices of the intruder in a symbolic state.
This is needed when we want to make a split between the case that the intruder makes a
particular choice and the case that they choose anything else. This is formalized in the
following definition of applying a recipe substitution which is only possible when all the
respective Xi are consistent with it:

Definition 3.2.2 (Choice of recipes for a symbolic state). Let S = (_,_,P,Checked) be a
symbolic state and ρ be a recipe substitution. We say that ρ is a choice of recipes for S iff ρ
is a choice of recipes for all FLICs in P and for every FLIC A and associated disequalities
X in P, the formula σAρ (X) is satisfiable, i.e., the disequalities are satisfiable under the
substitution induced by ρ in A (Definition 3.1.5). Moreover, we define

ρ(P) = {(σAρ (P), φ, ρ(A), σAρ (X), α, σAρ (δ)) | (P, φ,A,X , α, δ) ∈ P} ,
ρ(Checked) = {(l, ρ(r)) | (l, r) ∈ Checked} ,

ρ(S) = S[P ← ρ(P),Checked ← ρ(Checked)] .

Example 3.2.1. Continuing Example 3.1.1 where the intruder has sent a message M that
cannot be decrypted by the server: we will define precisely the transitions for symbolic
states in Table 3.2, but for now it suffices to say that the execution of the transaction
from Example 2.2.1 can lead to a symbolic state with a single possibility (0, true,+R 7→

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 23

M,∀X,Y. M ̸ .= crypt(pk(s), X, Y), true, []). By Definition 3.1.5, the substitution ρ = [R 7→
crypt(pk(s), a, h(a))] is a choice of recipes for the FLIC A = +R 7→M . However, this ρ is
now excluded by this symbolic state, because it is inconsistent with the disequalities formula:
by applying ρ to A, we would get the substitution σAρ = [M 7→ crypt(pk(s), a, h(a))], and
the formula ∀X,Y. crypt(pk(s), a, h(a)) ̸ .= crypt(pk(s), X, Y) would not be satisfiable. The
point here is that we consider such a choice of recipes in a separate symbolic state, and we
are here in the case that the intruder chose something else that was not decrypted by the
server. ◁

When writing ρ(S) in the following, we implicitly assume that all disequalities in S are
satisfiable under ρ, and that ρ(S) is discarded otherwise. To decide whether disequality X
is satisfiable it suffices to replace the free variables with distinct fresh constants and check
that the corresponding unification problems have no solution. Moreover, we will always
use the lazy intruder in the context of a symbolic state, so we further assume that LI (·, ·)
only returns choices of recipes for the current symbolic state, i.e., excluding any ρ that
would contradict a disequality.

From a symbolic state we can define all the choices of recipes (instantiations of the
recipe and intruder variables) for the messages sent by the intruder and all the concrete
executions (instantiations of privacy variables) that the intruder considers possible. A
symbolic state represents a set of ground states, where each ground state corresponds
to one multi message-analysis problem. For every ground state, the common payload
α0 is augmented with the partial payload αi released in the corresponding possibility.
Moreover, every model γ of the privacy variables needs to be augmented with the fixed
interpretation γ0 of the relation symbols (recall that this Σ0-formula γ0 is part of the
protocol specification).

Meta-notation. In the specification of transactions, we allow in the release steps ⋆ φ
the use of the meta-notation γ(t) for a message t. Recall that in every ground state, the
real values of privacy variables is defined by a ground interpretation γ. Thus, for instance,
releasing ⋆ x .= γ(x) means allowing the intruder to learn the true value of x. In the
symbolic execution for ground states, the meta-notation can be resolved by using γ as a
substitution before adding the formula to α.
Example 3.2.2. In Example 2.2.1, in case the agent x is actually the intruder i, i.e., x .= i,
then the intruder can decrypt the message and observe what was the decision. Thus they
would learn both that x .= i as well as the value of y (i.e., they know the server’s decision).
This leads to a privacy violation, unless we declassify x and y by releasing, if x is the
intruder, the formula ⋆ x .= γ(x) ∧ y .= γ(y). Releasing this information is still not enough
because in case x ̸ .= i the intruder can also deduce that; so we additionally need to release
⋆ x ̸ .= i in that case to remove the privacy violation. ◁

In a symbolic state, however, there is no γ since the symbolic state represents all possible
γ at once. Hence, in order to define the semantics, we need to resolve the meta-notation
that we allow in the αi. Given αi and the truth γ, let [αi]γ be the instantiation of the
meta-notation in αi, i.e., replacing every occurrence of a term γ(x) in αi (for a variable x)
with the actual value of x in the given γ. For instance, if γ(x) = i, then [x .= γ(x)]γ = x

.= i.

Definition 3.2.3 (Semantics of symbolic states). Let S = (α0, β0,P,_) be a finished
symbolic state. The ground states represented by S are given by

[[S]] = {(α0 ∧ [αi]γ , β0, γ, ρ(P)) | (0, φi,Ai,_, αi,_) ∈ P,
ρ is a ground choice of recipes for S,
γ is a Σ0-interpretation of α0 ∧ β0 ∧ γ0 ∧ φi}

24 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

where ρ(P) returns possibilities of the form (0, φj , structj , δj), i.e., the additional compo-
nents of symbolic possibilities are dropped because they are irrelevant for ground states
(note that the αi have already been used as part of the payload α).

We say that a symbolic state S satisfies privacy iff every ground state S ∈ [[S]] satisfies
privacy.

When computing the mgu between messages or solving constraints with the lazy intruder
rules, we may deal with substitutions that contain both privacy and intruder variables.
However, it is important to remember that the instantiation of privacy variables does not
depend on the intruder, it is actually the goal of the intruder to learn about the privacy
variables. On the other hand, intruder variables are instantiated according to the recipes
chosen by the intruder. Thus, we distinguish substitutions that only substitute privacy
variables (we will compute substitutions as mgus so we also have to consider ⊥ when no
mgu exists).

Definition 3.2.4 (Privacy substitution). Given a substitution σ, the predicate isPriv is
defined as: isPriv(σ) iff dom(σ) ⊆ Vprivacy. We also define σ as the privacy part of σ, i.e.,
σ(x) = σ(x) if x ∈ Vprivacy, and σ(x) = x otherwise. Moreover, define isPriv(⊥) = false
and ⊥ = ⊥.

Table 3.2 defines the transitions on symbolic states to evaluate processes (with the lazy
intruder) as a relation S ⇒ C between one symbolic state S and a set C of symbolic states.
We use sets here to explicitly gather all successors of one symbolic state S: a singleton
means that there is exactly one successor, and a set of higher cardinality means that there
is branching. We extend the definition to relate sets of symbolic states: C ⇒ C′ iff S ∈ C,
S ⇒ CS and C′ = C \ {S} ∪ CS . We summarize here this semantics and we discuss in
Appendix A.2 the correctness of the correspondence to Table 2.1.

The non-deterministic choice is quite simple: instead of splitting into one successor
state for each value in the domain, all these are handled in one symbolic state where we
only add the domain constraint to α0 or β0, respectively. For a receiving step rcv(X), recall
that the ground model has here an infinite branching over all the recipes that the intruder
could use. This is the very reason for introducing the FLICs in the symbolic model: we
simply choose a fresh recipe variable R and augment every FLIC with +R 7→ X, saying
that the intruder can choose any recipe R (over the labels of the FLIC so far) to form the
input message X.

Due to the two symbolic representations of privacy choices and intruder choices,
treating try-catch is quite complicated. Consider a symbolic state S where one possibility
has process try X := d(t1, t2) in P1 catch P2. The class of algebraic theories we support
(we give the precise definition in Definition 3.4.1) ensures that there is a unique rewrite
rule for destructor d. Let d(k, c(k′, X1, . . . , Xn))→ Xi be a fresh instance of this rule (all
variables renamed to fresh intruder variables). The destructor succeeds iff the formula
ψ = t1

.= k ∧ t2
.= c(k′, X1, . . . , Xn) is satisfied. Let σ = mgu(ψ); note that this mgu

may not exist (σ = ⊥). Note also that σ may instantiate both privacy variables (that
the intruder cannot control) and all the other variables (that the intruder can, at least
indirectly, control by the choice of recipes for messages received). We now have several
symbolic states for the different cases.

Destructor (1.1) is the case that there is a solution (σ ̸= ⊥) and the intruder makes a
choice of recipes ρ ∈ LI (A, σ) that may satisfy σ. Note that ρ can only determine intruder
variables: it induces a substitution σAρ in the given possibility (Definition 3.1.5). It is now
guaranteed that σAρ (t2) yields a term of the form c(s0, . . . , sn), because we had required
this in ψ and t2 cannot be a privacy variable. Thus we can now extract the exact term si in
case the destructor works. Whether it works depends however on the privacy variables. For

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 25

Table 3.2: Semantics of the execution for symbolic states

Choice

(α0, β0, {(mode x ∈ D.Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)
⇒ {(α′

0, β
′
0, {(Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)}

where α′
0 = α0 ∧ x ∈ D and β′

0 = β0 if mode = ⋆,
α′
0 = α0 and β′

0 = β0 ∧ x ∈ D if mode = ⋄

Receive
(α0, β0, {(rcv(X).Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)
⇒ {(α0, β0, {(Pi, φi,Ai.+R 7→ X,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)}
where R is a fresh recipe variable

Cell read

(α0, β0, {(X := cell[s].P , φ,A,X , α, δ)} ⊎ P,Checked)
⇒ {(α0, β0, {(P ′, φ,A,X , α, δ)} ∪ P,Checked)}
where δ|cell = cell[s1] := t1. · · · .cell[sk] := tk, the ground context for initial
value of cell is C[·] and P ′ = if s .= s1 then P [X 7→ t1] else . . .

if s .= sk then P [X 7→ tk] else P [X 7→ C[s]]

Cell write (α0, β0, {(cell[s] := t.P, φ,A,X , α, δ)} ⊎ P,Checked)
⇒ {(α0, β0, {(P, φ,A,X , α, cell[s] := t.δ)} ∪ Checked)}

Let P = try X := d(t1, t2) in P1 catch P2, consider a fresh instance
d(k, c(k′, X1, . . . , Xn))→ Xi of the rewrite rule for d,
let ψ = t1

.= k ∧ t2
.= c(k′, X1, . . . , Xn) and σ = mgu(ψ).

The rules for try-catch are:

(α0, β0, {(P , φ,A,X , α, δ)} ⊎ P,Checked)

Destructor (1.1)
⇒ {ρ((α0, β0, {(P1[X 7→ si], φ ∧ σ′,A,X , α, δ),

(P2, φ ∧ ¬σ′,A,X , α, δ)} ∪ P,Checked))
| ρ ∈ LI (A, σ), let c(s0, . . . , sn) = σA

ρ (t2) and σ′ = mgu(σA
ρ (ψ))}

Destructor (1.2) ∪
{
{(α0, β0, {(P2, φ,A,X ′, α, δ)} ∪ P,Checked)} if σ(A) is not simple
∅ otherwise

if σ ̸= ⊥, where X ′ = X ∧ ∀Y⃗ . ¬σ and Y⃗ = ivars(σ) \ ivars(A)

Destructor (2)
(α0, β0, {(P , φ,A,X , α, δ)} ⊎ P,Checked)
⇒ {(α0, β0, {(P2, φ,A,X , α, δ)} ∪ P,Checked)}
if σ = ⊥

Conditional

(α0, β0, {(if R(t1, . . . , tn) then P1 else P2, φ,A,X , α, δ)} ⊎ P,Checked)
⇒ {(α0, β0, {(P1, φ ∧R(t1, . . . , tn),A,X , α, δ),

(P2, φ ∧ ¬R(t1, . . . , tn),A,X , α, δ)} ∪ P,Checked)}

For if s .= t then P1 else P2, the transitions are like Destructor (1) and
Destructor (2), but with P = if s .= t then P1 else P2 and ψ = s

.= t

Release (α0, β0, {(⋆ ψ.P, φ,A,X , α, δ)} ⊎ P,Checked)
⇒ {(α0, β0, {(P, φ,A,X , α ∧ ψ, δ)} ∪ P,Checked)}

Eliminate (α0, β0, {(P, φ,A,X , α, δ)} ⊎ P,Checked)⇒ {(α0, β0,P,Checked)}
if α0 ∧ β0 |= ¬φ

Send
(α0, β0, {(snd(ti).Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}} ⊎ P,Checked)
⇒ {(α0, β0 ∧

∨n
i=1 φi, {(Pi, φi,Ai.−l 7→ ti,Xi, αi, δi)

| i ∈ {1, . . . , n}},Checked),
(α0, β0 ∧

∧n
i=1 ¬φi,P,Checked)}

if every process in P is 0, where l is a fresh label

26 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

instance if the destructor is asymmetric description with key inv(pk(a)) and the intruder
chooses a message encrypted with pk(x), this succeeds iff x .= a. We thus need to compute
a unifier σ′ for σAρ (ψ), i.e., the condition under the current choice of recipes, and σ′ is now
the substitution of privacy variables under which the destructor succeeds. We thus split
the possibility in two: one where we continue with P1 where X is bound to the result si of
the destructor and condition σ′, and one with P2 and condition ¬σ′.

Destructor (1.2) is the case that there is a solution (σ ̸= ⊥) and it depends on intruder
choices (σ(A) is not simple), but the intruder chooses any recipe that does not satisfy σ.
For this we simply add the disequality ∀Y⃗ .¬σ to X , where Y⃗ are the intruder variables
not bound by A. (If σ(A) is simple, then there is only one trivial choice of recipes, the
identity substitution, so there is no symbolic state for excluding this choice.) Destructor
(2) finally is the case that there is no unifier σ, so we necessarily end up in P2.

The if-then-else conditional is handled in a very similar way when the condition is
an equality s

.= t, obtaining a most general unifier σ = mgu(s .= t) under which the
condition is true. When the condition is a relation applied to some terms, we simply
split on whether the relation holds. For a condition with negation, we swap the branches:
if ¬φ then P else Q is rewritten into if φ then Q else P . For conjunction, we nest the
branches: if φ ∧ ψ then P else Q is rewritten into if φ then if ψ then P else Q else Q.

For releasing α information, recall that we have an αi in each possibility that we can
augment with the formula released. For sending or terminating, compared to Table 2.1
we merge the two rules so one symbolic state yields in general two symbolic states, one
where we only keep the possibilities that send a message and one where we only keep those
already terminated.

During the symbolic execution, if a symbolic state has an empty set of possibilities,
then this state is discarded since it does not represent any ground state (e.g., in the Send
rule, if P = ∅ then the second state yielded by the rule is discarded). Moreover, if several
rules are applicable at the same time, then it does not matter which one is applied first so
the procedure fixes an arbitrary order for applying the rules.

The symbolic executions transform a symbolic state into a set of finished symbolic
states. When all symbolic executions have terminated, we shall check whether the reached
symbolic states satisfy privacy.

3.3 Intruder experiments

An experiment is to compare pairs of recipes and the messages they produce in every
frame: in a ground state, the intruder can check whether two messages are equal in the
frame concr . In a symbolic state, each possibility considered by the intruder contains a
different simple FLIC. When doing the comparison on a FLIC, the intruder may find out
equalities that must hold (constraints on privacy and intruder variables) for messages to
be equal. It thus may depend on the intruder’s choices of recipes whether the outcome
is positive, as well as on the privacy variables. In this section, we show how to extract
all these conclusions and obtain a set of symbolic states in which every experiment either
gives the same result in all FLICs or different results in all FLICs. This is formalized in
the following equivalence relation between recipes:

Definition 3.3.1. Let S = (α0, β0,P,_) be a symbolic state, where the possibilities
have conditions φ1, . . . , φn and FLICs A1, . . . ,An. Let r1 and r2 be two recipes and
σi = mgu(Ai(r1)

.= Ai(r2)) for i ∈ {1, . . . , n}. We define r1 ≃ r2 iff r1 ⊏⊐ r2 or r1 ▷◁ r2,

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 27

where

r1 ⊏⊐ r2 iff for every i ∈ {1, . . . , n}, isPriv(σi) and α0 ∧ β0 ∧ φi |= σi ,

r1 ▷◁ r2 iff for every i ∈ {1, . . . , n}, LI (Ai, σi) = ∅
or (isPriv(σi) and α0 ∧ β0 ∧ φi |= ¬σi) .

Intuitively, r1 ⊏⊐ r2 means that the two recipes produce the same message in every
FLIC. Conversely, r1 ▷◁ r2 means that the two recipes produce different messages in every
FLIC, under any possible instantiation of the variables: either the unifier depends on at
least one intruder variable but the intruder cannot solve the constraints in any way, or the
unifier depends only on privacy variables and its instances are already excluded by the
intruder reasoning.
Example 3.3.1. Based on Example 2.2.1, suppose that we reached a symbolic state containing
two possibilities with φ1 = y

.= yes, φ2 = y ̸ .= yes ∧ x ̸ .= a and

A1 = +R 7→ N.−l 7→ crypt(pk(x), pair(yes, N)) ,
A2 = +R 7→ N.−l 7→ crypt(pk(x), no) .

Here we again assume non-randomized encryption for the sake of the example. Then we
have l ▷◁ crypt(pk(a), no), because in A1 there is no unifier and in A2 the unifier [x 7→ a] is
excluded by φ2. ◁

We now define well-formed symbolic states. Among other things, all the pairs of
recipes in Checked are experiments that have already been done by the intruder and do
not distinguish the possibilities.

Definition 3.3.2 (Well-formed symbolic state). Let S = (α0, β0,P,Checked) be a symbolic
state, with the possibilities P = {(_, φ1,A1,X1, α1,_), . . . , (_, φn,An,Xn, αn,_)}. We say
that S is well-formed iff

• the φi are such that |= ¬(φi ∧ φj) for i ̸= j, fv(φi) ⊆ fv(α0) ∪ fv(β0) and α0 ∧ β0 |=∨n
i=1 φi;

• the Ai are simple FLICs with the same labels and same recipe variables, occurring in
the same order;

• the disequalities Xi are satisfiable;

• the αi are such that fv(αi) ⊆ fv(α0) and α0 ∧ β0 ∧ γ0 ∧ φi |= αi; and

• for every (l, r) ∈ Checked, we have l ≃ r.

Recipe variables can only occur in the FLICs Ai. Since dom(A1) = · · · = dom(An), we
may write dom(S) for the domain of the symbolic state.

In the rest of the chapter, we only consider well-formed symbolic states (and well-
formedness is preserved by the procedure).

In general, an experiment can be done by comparing two arbitrary recipes. We will
however show that it suffices to check, for every message t received by the intruder, all
the ways that the intruder can produce t. Therefore, our experiments are of the form (l, r)
where l is a label and r ̸= l is any recipe that produces the same message as label l in some
FLIC. We now define a set of experiments Pairs(S) that are relevant to perform: for every
label l in the state and every FLIC A, we try any other way to construct A(l) (except l)
with the lazy intruder constraint A.+R 7→ A(l), where R is a fresh recipe variable. For
each solution ρ, the recipes to compare are l and ρ(R). Initially, the set Checked is empty,
and each experiment that has been performed is added to this set.

28 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Definition 3.3.3 (Pairs and normal symbolic state). Let S = (_,_,P,Checked) be a
symbolic state with FLICs A1, . . . ,An in P. The set of pairs of recipes to compare in S is

Pairs(S) = {(l, ρ(R)) | l ∈ dom(S), i ∈ {1, . . . , n}, ρ ∈ LI (Ai.+R 7→ Ai(l), ε), ρ(R) ̸= l}
\ Checked .

We say that S is normal iff S is finished and Pairs(S) = ∅.

We define a reduction relation ↣ that, given a symbolic state S and a pair (l, r) ∈
Pairs(S), yields a set of symbolic states after the experiment of comparing l and r, and
a symbolic state that cannot be reduced further is normal. We call these experiments
compose-checks.

Definition 3.3.4 (Compose-checks). Let S be a symbolic state (_, β0,P,Checked), with
possibilities P = {(0, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}}, (l, r) ∈ Pairs(S) and σi =
mgu(Ai(l)

.= Ai(r)) for i ∈ {1, . . . , n}. Then the set of symbolic states after the compose-
check w.r.t. (l, r) is as follows.

Privacy split If for every i ∈ {1, . . . , n}, isPriv(σi) or LI (Ai, σi) = ∅: Then S ↣
{S1,S2}, where

S1 = S[[[β0 ← β0 ∧
n∧

i=1

(
φi ⇒

{
σi if isPriv(σi)
false otherwise

)
P ← {(0, φi ∧ σi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}, isPriv(σi)}

Checked ← Checked ∪ {(l, r)}]]] ,

S2 = S[[[β0 ← β0 ∧
n∧

i=1

(
φi ⇒

{
¬σi if isPriv(σi)
true otherwise

)
P ← {(0, φi ∧ ¬σi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}, isPriv(σi)}

∪ {(0, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n},not isPriv(σi)}
Checked ← Checked ∪ {(l, r)}]]] .

Recipe split If there exists i ∈ {1, . . . , n} such that not isPriv(σi) and LI (Ai, σi) =
{ρ1, . . . , ρk} (k ≥ 1): Then

S ↣ {ρ1(S), . . . , ρk(S),S[Xi ← Xi ∧ ¬σi]} .

Similarly to the symbolic execution, we extend the definition to relate sets of finished
symbolic states: C ↣ C′ iff S ∈ C, S ↣ CS and C′ = C \ {S} ∪ CS .

Note that given a pair (l, r), either Privacy split is applicable, or some Recipe split
is. In the case of Privacy split, the outcome of the experiment is independent of the
intruder choices (the unifiers between messages produced by l and r are only using privacy
variables or require a choice of recipes that has already been excluded). We split into
two symbolic states. The first represents the case that the outcome of the experiment is
positive (l ⊏⊐ r), ruling out possibility i if isPriv(σi) does not hold. The second represents
the case that the outcome is negative (l ▷◁ r), where in possibility i, if isPriv(σi) then the
intruder now knows that ¬σi holds.

In the case of Recipe split, for at least one FLIC Ai, the unifier σi depends on what
the intruder has chosen (i.e., the unifier substitutes intruder variables), and there are
possible choices of recipes ρ1, . . . , ρk under which the experiment may succeed (it may
still depend on the privacy variables). Then we consider each of these choices in separate
symbolic states, as well as the case that the intruder chose anything else for the recipes (so
we have one symbolic state where we augment the disequalities formula Xi with ¬σi).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 29

Example 3.3.2. Let us consider again Example 2.2.1, where for now we assume that
encryption is not randomized. Let S = (α0, β0,P, ∅) be the symbolic state such that:

α0 = x ∈ Agent ∧ y ∈ {yes, no} , β0 = y
.= yes ∨ y ̸ .= yes ,

P = {(0, y .= yes,A1, true, true, []), (0, y ̸
.= yes,A2, true, true, [])} ,

A1 = +R 7→ N.−l 7→ crypt(pk(x), pair(yes, N)) ,
A2 = +R 7→ N.−l 7→ crypt(pk(x), no) .

S is not normal since, e.g., (l, crypt(pk(a), no)) ∈ Pairs(S). We can perform a compose-
check, in this case by applying the Privacy split rule. In A1 we have to unify the messages
crypt(pk(x), pair(yes, N)) and crypt(pk(a), no), which is not possible. In A2 we have to
unify crypt(pk(x), no) and crypt(pk(a), no), which gives the mgu σ = [x 7→ a]. Then we get
two symbolic states S1 and S2, which have the same α0 as S but we update β0 and P.
Moreover, in both S1 and S2 we have Checked = {(l, crypt(pk(a), no))}.

In S1 : β0 = (y .= yes ∨ y ̸ .= yes) ∧ (y .= yes⇒ false) ∧ (y ̸ .= yes⇒ x
.= a) ,

P = {(0, y ̸ .= yes ∧ x .= a,A2, true, true, [])} .
In S2 : β0 = (y .= yes ∨ y ̸ .= yes) ∧ (y .= yes⇒ true) ∧ (y ̸ .= yes⇒ x ̸ .= a) ,

P = {(0, y .= yes,A1, true, true, []), (0, y ̸
.= yes ∧ x ̸ .= a,A2, true, true, [])} . ◁

Using the compose-checks, we can transform a symbolic state into a set of normal
symbolic states, since by definition a symbolic state is normal when there are no more
pairs to compare. Moreover, the compose-checks preserve the semantics of symbolic states
by partitioning the ground states represented.

Theorem 3.3.1 (Compose-check correctness). Let S be a finished symbolic state, (l, r) ∈
Pairs(S) and S1, . . . ,Sn be the symbolic states such that S ↣ {S1, . . . ,Sn} w.r.t. (l, r).
Then [[S]] =

⊎n
i=1[[Si]]. Moreover, there does not exist any infinite sequence (Si)i≥1 where

for every i, there exists Ci such that Si↣ Ci and Si+1 ∈ Ci.

In a normal symbolic state, there are no more pairs of recipes that could distinguish
the possibilities (they have all been checked). Thus, given a ground choice of recipes,
all the concrete instantiations of frames are statically equivalent. This means that in a
normal symbolic state, the FLICs do not contain any more insights for the intruder, and
all remaining violations of (α, β)-privacy can only result from any other information β0
that the intruder has gathered. We thus define that a symbolic state is consistent iff β0
cannot lead to violations either.

Definition 3.3.5 (Consistent symbolic state). We say that a finished symbolic state S is
consistent iff (α, β0)-privacy holds for every (α, β0,_,_) ∈ [[S]].

Even though [[S]] is infinite, we need to consider only finitely many (α, β0) pairs. This
is because the corresponding α and β0 in S do not contain intruder variables and we only
need to resolve the meta-notation if present. For truth γ, we also have only to consider
finitely many instances of the privacy variables (as they range over finite domains). Our
construction ensures that β0 only contains symbols in Σ0, and for each α and β0, the
Σ0-models are computable as we show in Appendix A.1. While that algorithm is based on
an enumeration of models as a simple means to prove we are in a decidable fragment, our
prototype tool uses the SMT solver cvc5 [12] to check consistency more efficiently.1

1In a nutshell, for each possibility i, we make the following check. We first assert the formula α0∧β0∧γ0∧φi

where every occurrence of a variable x is replaced with a fresh variable xγ . Then we assert the formula α

30 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Example 3.3.3. In the symbolic state S from Example 3.3.2, we have α0 = x ∈ Agent ∧ y ∈
{yes, no} and β0 = y

.= yes ∨ y ̸ .= yes. Since (α0, β0)-privacy holds, S is consistent.
In the symbolic state S1 that results from comparing recipes l and crypt(pk(a), no),

we have the same α0 but now β0 = y ̸ .= yes ∧ x .= a. Here (α0, β0)-privacy does not hold
anymore because β0 rules out a model of α0, namely [x 7→ a, y 7→ yes]. Thus S1 is not
consistent. ◁

To verify whether a symbolic state satisfies privacy, we perform all compose-checks to
get a set of normal symbolic states, and then in each of these normal states it suffices to
verify consistency.

Theorem 3.3.2. Let S be a normal symbolic state. Then S satisfies privacy iff S is
consistent.

3.4 Algebraic properties

So far, our procedure consists in (i) executing a transaction with the rules of Table 3.2,
(ii) normalizing symbolic states with intruder experiments, and (iii) checking consistency
in the reached normal symbolic states. The above gives us a decision procedure for (α, β)-
privacy (under a bound k on the number of transitions) as long as the intruder has no
access to destructors. Note that transactions can apply destructors already. This allows
for a very convenient and economical way to extend the intruder model with destructors
as well without painfully extending all the above machinery to destructors: we define a set
of special transactions called destructor oracles, one for each destructor. They receive a
term and decryption key candidate, and send back the result of applying the destructor
unless it fails. Note that calling these oracles does not count towards the bound on the
number of transitions, but rather we apply them to a reached symbolic state until they
yield no further results.

3.4.1 The supported algebraic theories

We give in Fig. 2.1 a concrete example theory, but our result can be quite easily used for
many similar theories. For instance, many modelers prefer for asymmetric cryptography
that private keys are defined as atomic constants and the corresponding public key is
obtained by a public function pub. We like, in contrast, to start with public keys and have
a private function inv to obtain the respective public key. This allows us to define a public
function from agent names to public keys, which can be convenient in reasoning about
privacy when the public-key infrastructure is fixed. Similarly, one may want to define
further functions, in particular transparent functions like pair, i.e., functions that describe

where every γ(x) is replaced with xγ . Finally we assert ∀y1 ∈ dom(y1), . . . , yn ∈ dom(yn). ¬β0 where yi
are the privacy variables that only occur in β0 (i.e., the variables chosen with mode ⋄). There is a model
satisfying all these assertions iff for some truth γ (i.e., interpretation of all privacy variables according to their
domains) and some model of α, no compatible model of β0 exists. If there is no model for these assertions,
then it means that every model of α can be extended to a model of β0, i.e., (α, β0)-privacy holds. For
instance, following Example 3.2.2 we can consider the situation where the server has sent a positive response
to intruder i. This corresponds to a reachable symbolic state with the payload α0 = x ∈ Agent∧y ∈ {yes, no},
intruder deductions β0 = x

.= i ∧ y
.= yes, and a possibility with condition φ = x

.= i ∧ y
.= yes where the

formula x
.= γ(x) ∧ y

.= γ(y) has been released. Thus, the intruder has found out the name of the agent
and the server’s decision, but both have been released so it is not a violation of privacy. First we assert
xγ ∈ Agent∧ yγ ∈ {yes, no}∧xγ

.= i∧ yγ
.= yes. Then we assert x ∈ Agent∧ y ∈ {yes, no}∧x

.= xγ ∧ y
.= yγ .

Finally, we assert ¬(x .= i ∧ y
.= yes). There is no model satisfying all these assertions, so every model of α

can be extended to a model of β0 (there is a unique model of α and there are no variables chosen with
mode = ⋄).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 31

message serialization and where the intruder can extract every subterm. Finally, in some
cases it is convenient to model some private extractor functions when we are dealing with
messages where the recipient has to perform a small guessing attack. For instance, in a
protocol like Basic Hash [20] (modeled in Appendix B.2) the tag reader actually needs to
try out every shared key with a tag to find out which tag it is. Rather than describing
transitions that iterate over all tags and try to decrypt, it is convenient to model a private
extract function that “magically” extracts the name of the tag, if the message is of the
correct form, and returns false otherwise. This extraction must be a private function since
the intruder should not be able to observe this unless they know the respective shared
keys; if they do, then the experiments in our method automatically allow the intruder to
perform the guessing attack. We thus distinguish three kinds of algebraic properties of
destructors that can be used arbitrarily in our approach:

Definition 3.4.1 (Algebraic theory). A destructor rule is a rewrite rule of one of the
following forms:

• Decryption: d(k, c(k′, X1, . . . , Xn))→ Xi where d is a destructor, c is a constructor,
fv(k) = fv(k′), k, k′ are destructor-free, the Xj are variables and i ∈ {1, . . . , n}.

• Projection: di(c(X1, . . . , Xn)) → Xi where i ∈ {1, . . . , n}, di is a public destructor
called a projector, c is a constructor of arity n, the Xj are variables. There must be
such a rule for every i ∈ {1, . . . , n} and c is then called transparent.

• Private extraction: d(c(t1, . . . , tn)) → t0 where d is a private destructor called a
private extractor, c is a constructor, the ti are destructor-free and t0 is a subterm of
one of the ti.

Let E be a set of such rules and =E be the reflexive, symmetric and transitive closure of
the rewrite relation →E induced by E. We require the following:

• Each destructor d occurs in exactly one rule of E.

• Each constructor c cannot occur both in decryption and projection rules.

• For every decryption rule d(k, c(k′, X1, . . . , Xn)) → Xi, we have that k = k′ or
k =E f(k′) or k′ =E f(k) for some public function f .

Let t ↓E denote the normal form of term t. Define ≈ to be the least congruence that
includes =E such that t ≈ ff if t ↓E contains destructors.

The normal form, and thus also the congruence, is well-defined because our requirements
ensure the convergence of the term rewriting system E.

Lemma 3.4.1. Let E be a term rewriting system satisfying the requirements of Defini-
tion 3.4.1. Then E is convergent.

The requirement k = k′ or k =E f(k′) or k′ =E f(k) for some public f means that,
given the decryption key k one can derive the encryption key k′, or the other way around.
In particular, in most asymmetric encryption schemes, the public key can be derived from
the private key; for signatures the private key takes the role of the “encryption key”. This
requirement forces us to define in our example theory the rule pubk(inv(k))→ k. Suppose
that we omitted this rule, denying the intruder to derive the public key to a given private
key. Suppose further that the intruder has received two messages l1 7→ inv(pk(x)) and
l2 7→ pk(y) and is wondering whether maybe x .= y. Then they could make the experiment
whether dcrypt(l1, crypt(l2, r1, r2)) ≈ ff (for arbitrary recipes r1, r2) and this would be the

32 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

case iff x ̸ .= y. For our method, we want however to ensure that the intruder never needs
to decrypt messages that they encrypted themselves. In the example, with the public-key
extraction rule, the intruder can instead derive pubk(inv(pk(x))) ≈ pk(x) and now directly
compare this with l2. The requirement allows us to show that the intruder cannot learn
anything new from decrypting terms that they have encrypted themselves.

The rewrite rules corresponding to the standard cryptographic operators of Fig. 2.1 are
as follows:

dcrypt(inv(X), crypt(X,Y, Z))→ Y

dscrypt(X, scrypt(X,Y, Z))→ Y

open(X, sign(inv(X), Y))→ Y

pubk(inv(X))→ X

proj1(pair(X,Y))→ X

proj2(pair(X,Y))→ Y

3.4.2 Destructor oracles

Since transactions can already apply destructors, we can model oracles that provide
decryption services for the intruder, namely the intruder has to send a term to decrypt and
the proposed decryption key and the oracle gives back the result of applying the destructor.

Definition 3.4.2 (Destructor oracle). Given the decryption rule (d(k, c(k′, X1, . . . , Xn))→
Xi) ∈ E, its destructor oracle is the transaction:

rcv(X).rcv(Y).try Z := d(Y,X) in snd(Z).snd(Y).0 catch 0 .

Given the projection rules (di(c(X1, . . . , Xn))→ Xi) ∈ E, we define a single oracle:

rcv(X).try Z1 := d1(X) in . . . try Zn := dn(X) in
snd(Z1). · · · .snd(Zn).0 catch 0 . . . catch 0 .

For transparent functions, there is no need for a key and for each i ∈ {1, . . . , n}, the ith
subterm can be retrieved with destructor di, so we define one oracle returning all subterms.
There are no oracles for private extractors since these functions are not available to the
intruder.

Obviously, the destructor oracles are redundant if the intruder has access to the
destructors and also it is sound to add such transactions. Also redundant is the output
snd(Y), because Y is already an input, but this ensures that different ways of composing
the key will be considered by our compose-checks.

The reader may wonder why we do not do the same also for constructors, e.g., using
transactions of the form rcv(X1). · · · .rcv(Xn).snd(c(X1, . . . , Xn)).0, so we could use an
intruder who neither encrypts nor decrypts and just uses oracles for both jobs. The reason
is that constructors give rise to an infinite set of terms that can be produced and it is
difficult to limit that—this is why we use the lazy intruder technique as a way to represent
the infinitely many choices in a finite and yet complete way. For destructors on the other
hand, we do not have the same problem since it is limited what we can achieve here. In
particular there is no need for the intruder to destruct terms that they have constructed
themselves, thus allowing us to limit the use of destructors, respectively the destructor
oracles, in a simple way.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 33

3.4.3 Analysis strategy

In general the destructor oracles are applicable without boundary. We use a strategy in
which to apply them that does not lead into non-termination, but covers all applications
that are necessary for any attack. Note also that the application of oracles does not count
towards the bound on the number of transitions.

Definition 3.4.3 (Term marking). All received terms and subterms in a FLIC shall be
marked with one of three possible markings: ⋆ for terms that might be decrypted but have
not been so far; + for terms that cannot be decrypted at the given intruder knowledge for
any instance of the variables; and ✓ for terms that either have already been decrypted or
have been composed by the intruder themselves (so the intruder knows already the subterms
that may result from a decryption).

The default initial marking is ⋆. The exceptions are privacy and intruder variables, as
well as functions that do not have a public destructor; all such terms (and subterms if they
have) are marked with ✓. Markings are only changed according to Definition 3.4.4. In
particular, when a variable gets instantiated, the resulting term keeps its ✓ marking.

Our strategy applies the destructor oracles to a given symbolic state S to obtain a
finite set of analyzed symbolic states S1, . . . ,Sn that are together equivalent to S except
that the FLICs are augmented with the results of decryptions (or projections), which we
call shorthands.

Definition 3.4.4 (Analysis strategy). Let S be a normal symbolic state. (Recall that in S
all FLICs are simple, and thus intruder variables represent messages the intruder composed;
and S is normal, i.e., all compose-checks have been made.)

The following strategy is applied as long as there exists a label l that maps to a ⋆-marked
term. Let l be the first label (in the order of the domain) that maps to a term c(s0, . . . , sn)
which is ⋆-marked in some FLIC; note that by construction, it can only be a constructor
term, since variables are marked ✓. If c(s0, . . . , sn) is an encryption, i.e., c occurs in a
decryption rule (the intruder can decrypt iff they can produce the appropriate key), then
we apply the oracle for that rewrite rule under the specialization that the recipe for X (the
oracle input for the constructor term) must be the label l. If c is a transparent function,
then we use the appropriate oracle that applies all its projectors and returns all subterms.

Executing the oracle transaction and performing experiments leads to a finite number
of successor states S1, . . . ,Sm (there is at least one, so m ≥ 1) that are again normal and
have simple FLICs. In each Si the decryption has either worked in every FLIC, or failed
in every FLIC. We now update the marks in the Si as follows.

If in Si decryption has failed, assuming that c is the constructor for which we had
executed the corresponding oracle, then in every FLIC where l 7→ c(t0, . . . , tn) that is marked
⋆, we change to mark + because it is (with the current knowledge) not decipherable. If
it was already marked ✓, we do not change the label. (Note that in some FLIC, l may
map to a term with a different constructor c′; if that term is marked ⋆, it maintains this
marking, so that one of the next analysis steps will be to check if the respective destructor
for c′ can be applied.)

If in Si decryption has worked, then we update and introduce markings in each FLIC
as follows. In case of a decryption rule, and thus in a given FLIC, l maps to some
term c(k′, t1, . . . , tn), the result of the analysis is bound to a new label l′ 7→ ti (for some
i ∈ {1, . . . , n}); the decryption key is bound to new label l′′ 7→ k. If mi is the mark of ti in
l, then the new occurrence of ti at l′ shall also be marked with mi. In turn, c(k′, t1, . . . , tn)
are now all marked ✓, because they are fully analyzed. Similarly the key term l′′ 7→ k
and all its subterms receive the ✓ mark, because they have been produced by the intruder

34 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

already (and are thus taken from another label that is already analyzed, or composed by
the intruder and thus not interesting for decryption). All terms that were marked + are
changed with marking ⋆, because the newly analyzed term may allow for some decryption
that was impossible before. In case of projection rules, the marking is similar for the new
subterms.

We repeat this process of attempting to decrypt the first ⋆-marked term until there are
no more ⋆-marks. A symbolic state is analyzed iff it does not contain any ⋆-marked terms.

We call a label l in a symbolic state S a shorthand iff there exists a recipe r over labels
before l such that A(l) ≈ A(r) for every FLIC A in S.

The analysis strategy augments FLICs only by shorthands and thus does not change
what is derivable for an intruder who can decompose.

Theorem 3.4.1 (Analysis correctness). For a symbolic state S, the analysis strategy
produces in finitely many steps a set {S1, . . . ,Sn} of symbolic states that are analyzed.
Further, for every ground state S ∈ [[S]] there exists S′ ∈ [[Si]], for some i ∈ {1, . . . , n}, such
that S and S′ are equivalent except that the frames in S′ may contain further shorthands;
and vice versa, for every S′ ∈ [[Si]] there exists S ∈ [[S]] such that S′ is equivalent to S
except for shorthands.

Example 3.4.1. In the symbolic state reached after executing the transaction from Exam-
ple 2.2.1, there is one FLIC that contains −l 7→ crypt(pk(x), pair(yes, N), r) (marked ⋆) as
well as another mapping −l0 7→ inv(pk(i)) modeling that the intruder knows their own
private key. Then the strategy will execute the asymmetric decryption oracle for label l.
This gives two states: S1 where for this possibility we unify x .= i and the intruder has a
new label −l1 7→ pair(yes, N), and S2 where we have x ̸ .= i and the intruder cannot decrypt
l (given the intruder knows no other private keys inv(pk(·))). The encrypted message at
label l is now marked ✓ in S1 and + in S2. ◁

Let S0 = (true, true, {(0, true, [], true, true, [])}, ∅) be the initial symbolic state. Given a
transaction P and a finished symbolic state S, let start(P,S) denote the symbolic state
identical to S but where the 0-process in every possibility of S is replaced with process P .
Our decision procedure defines how to symbolically execute processes, perform intruder
experiments and apply the analysis strategy such that, given a finished symbolic state
S and a bound k on the number of transitions, we compute a finite set {S1, . . . ,Sn} of
normal, analyzed symbolic states that can be reached after executing at most k transactions
(not counting the destructor oracles). In normal analyzed states, the intruder does not
need any destructors anymore, because we can show that for every recipe, there exists a
destructor-free one (possibly using the shorthands added during analysis), and then there
are also no relevant experiments that could be made with recipes using destructors. It
then suffices to verify consistency in the reached normal analyzed symbolic states to decide
whether (α, β)-privacy holds. Fig. 3.2 summarizes the different steps of this procedure.

We can now conclude the correctness of our decision procedure. All the proofs are in
Appendix A.3. Note that we need a bound on the number of transitions, and this bound is
restricting the number of transactions that are executed. All “internal” transitions taken
by our compose-checks and analysis steps do not count towards that bound.

Theorem 3.4.2 (Procedure correctness). Given a protocol specification for (α, β)-privacy,
a bound on the number of transitions and an algebraic theory allowed by Definition 3.4.1,
our decision procedure is sound, complete and terminating.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 35

1. Symbolic execution of one
transaction

2. Normalization (intruder
experiments)

3. Analysis (execution of
destructor oracles)

4. Verification of consistency

Counts as 1 towards the
bound

Figure 3.2: Summary of the decision procedure

3.5 Case studies

We have developed a prototype tool called noname [39] implementing our decision procedure.
The tool is a proof-of-concept showing that automation for (α, β)-privacy is achievable
and practical. The user must provide as input the protocol specification, consisting of the
transactions that can be executed, and a bound on the number of transactions to execute.
For the cryptographic operators, we make available by default primitives for asymmetric
encryption/decryption, symmetric encryption/decryption, signatures and pairing (Fig. 2.1).
The user can define custom operators with the restriction to constructor/destructor theories
given in Definition 3.4.1. We have also implemented an interactive running mode (the
default is automatic, i.e., exploring all reachable states) in which the user is prompted
whenever there are multiple successor states, so that one can manually explore the symbolic
transition system.

In case there is a privacy violation, the tool provides an attack trace that includes the
sequence of atomic transactions executed and steps taken by the intruder (i.e., the recipes
they have chosen) to reach an attack state, as well as a countermodel proving that the
privacy goals in that state do not hold, i.e., a witness that the intruder has learned more
in that state than what is allowed by the payload.

As case studies, we have focused on unlinkability goals in the following protocols: our
running example, Basic Hash [74], OSK [66] (which is particularly challenging as it is a
stateful protocol), and several variants of BAC [57] and Private Authentication [1] (the
(α, β)-privacy specifications of these last two protocols are given in [41]). For each protocol,
we describe briefly our results on whether it satisfies (α, β)-privacy. The models, together
with more details, are in Appendix B.

3.5.1 Running example

As explained in Example 3.2.2, if the server is replying to a compromised agent, then there
is a privacy violation because the intruder is able to learn the identity of that agent, and
the tool finds this attack. When permitting that the intruder learns the compromised
agent’s identity, the tool discovers another problem: if the agent is not compromised,
then the intruder is also able to learn this fact. When releasing also that information, no
more violations are found. This illustrates how the tool can help to discover all private
information that is leaked, and thus either fix the protocol or permit that leak, and then

36 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

finally verify that no additional information is leaked (given the bound on the number of
transitions).

3.5.2 Basic Hash

In this RFID protocol, a tag sends to a reader a pair of messages containing a nonce
and a MAC, using a secret key shared between tag and reader. Then the reader tries to
recompute the MAC with every secret key they know to identify the tag (this behavior of
the reader is modeled with a private extractor that retrieves the tag name from the MAC).
We have verified that the Basic Hash protocol satisfies unlinkability, but fails to provide
forward privacy [20].

3.5.3 OSK

This is also an RFID protocol with tags and readers. We have modeled two variants where,
respectively, no desynchronization and one desynchronization step is tolerated. For both
versions the tool finds the known linkability flaws [11].

3.5.4 BAC

This standard RFID protocol is used to read data from passports. A tag and a reader
perform a challenge-response, where the tag sends a nonce and an encrypted message
containing that nonce, and the reader receives both and verifies that the nonces match.
The tool finds the known problems in some implementations [6, 30, 45].

3.5.5 Private Authentication

This protocol specifies communication between agents that encrypt messages using a
public-key infrastructure. The initiator sends a message containing their name and a nonce,
and the responder either sends back a message with a fresh nonce or sends a decoy message.
We consider several variants: AF0 denotes the situation where agents always want to talk
to other agents, while AF denotes the situation where agents might not want to talk to
some other agents. For AF0, there is one model with a privacy violation due to insufficient
release in α and another model fixing this issue; AF builds on top of the fixed AF0 and
adds a binary relation to model whether agents want to talk.

3.5.6 Discussion of the results

Finding a privacy violation is usually fast, because the tool stops as soon as it finds one
without exploring the rest of the transition system. Most protocols take a few seconds to
analyze, but when incrementing the bound on the number of transitions we can notice a
steep increase in the verification time. Indeed, in our model, transactions can always be
executed so there is in general a large number of possible interleavings. The tool seems
thus to be limited by the substantial size of the search space, like earlier tools for deciding
equivalence such as APTE [22]. In our decision procedure, we are not deciding static
equivalence between frames, but the experiments made by the intruder to try and distinguish
the different possibilities seem to have a comparable complexity. For unlinkability goals, in
particular, our tool and others (for bounded sessions) essentially provide similar privacy
guarantees. We share the challenges and techniques such as symbolic representation of
constraints for the unbounded intruder. Thus, we believe that optimizations implemented
in tools such as DeepSec [26], e.g., forms of symmetries and partial order reductions, could
be adapted to our procedure.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 37

3.6 Related work

It is a striking parallel between (α, β)-privacy and equivalence-based privacy models that the
vast amount of possibilities leads to very high complexity for procedures, as mentioned in,
e.g., [36]. In equivalence-based approaches, the underlying problem is the static equivalence
of (concrete) frames, representing two possible intruder knowledges. In (α, β)-privacy, we
have instead the multi message-analysis problem: there is just one concrete frame concr ,
the observed messages, and one or more structi that result from a symbolic execution of
the transactions by the intruder, where the privacy variables are not instantiated. Each
possibility has a corresponding condition φi, exactly one of which is actually true, and
the intruder knows that concr is an instance of the corresponding structi, i.e., under the
true instance of the privacy variables, concr ∼ structi for the true φi. Thus, evaluating
the static equivalence can exclude several instantiations of privacy variables (even if there
is just one struct) or rule out an entire possibility φi. The methods for solving these two
problems bear many similarities, in particular one essentially in both cases looks for a pair
of recipes that distinguishes the frames, i.e., the experiments that the intruder can do on
their knowledge.

Like many other tools for a bounded number of sessions such as APTE [22] and
DeepSec [25], we also use the symbolic representation of the lazy intruder, using variables
for messages sent by the intruder that are instantiated only in a demand-driven way when
solving intruder constraints, turning frames into FLICs. This makes the frame distinction
problems a magnitude harder (e.g., [14]). In recipes we have to also take into account
variables that represent what the intruder has sent earlier and the actual choice may allow
for different experiments now. We tackle this problem by first considering a model where
the intruder cannot use destructors. It suffices then to check only if any message in any
structi can be composed in a different way, which in turn can be solved with intruder
constraint solving. This is the idea behind the notion of a normal state, i.e., where all
said experiments have been done, and we can thus check if the results of the experiments
exclude any model of α.

What makes the handling of destructors relatively easy is our requirement that all
destructors yield a subterm or ff, which the intruder and honest agents can observe. Thus
we have no problem with “garbage terms” like decryption of a nonce. This allows us to
show that it is sufficient that the intruder has applied destructors as far as possible to their
knowledge using the oracles—the notion of an analyzed state: for any recipe that contains
destructors, there is an equivalent recipe that uses the result of an oracle.

One restriction of our procedure is the class of algebraic theories we support. In
the future, we would like to extend the procedure to handle more general theories. In
particular, we plan to include unification modulo theories like AC to support Diffie-Hellman
exponentiation. Moreover, for voting protocols it would be nice to allow arithmetic
expressions in the formulas for the payload (e.g., the tally may be a sum of votes) and the
information gathered by the intruder. We believe the integration with SMT solvers is a
promising direction, as we can benefit from built-in support of arithmetic.

Another objective for future work is to obtain a full-fledged tool that is user-friendly,
with an easier to read output, and more performant, as the prototype is not optimized.

One may wonder if a procedure for an unbounded number of transitions is possible. If
we look at the equivalence-based approaches, it seems the best option for this is the notion
of diff-equivalence [36, 27] as used in ProVerif [16] and Tamarin [60], or the observational
and may-testing relations of [28] that are less restrictive than diff-equivalence. Roughly
speaking, diff-equivalence sidesteps the problem of the intruder’s uncertainty in branching
by requiring that the conditions are either true in both executions or both false. This seems

38 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

to correspond to the restriction in (α, β)-privacy that the intruder can always observe
whether a condition was true or false, and we thus have just one structi in each state. We are
investigating whether this can allow for an unbounded-step procedure similar to ProVerif
for (α, β)-privacy. Again it is a striking similarity with equivalence-based approaches that
one may either need a tight bound on the number of transitions or substantial restrictions
on the processes one can model.

The main difference with other tools is in the properties being verified. Our tool looks
at the reachable states from an (α, β)-privacy specification of a protocol, and the privacy
goals are constructed by the tool when exploring the transition system. Instead of verifying
whether a number of properties hold, we thus verify whether the intruder is ever able to
learn more than the information allowed (payload α). One advantage is that, in case of
successful verification, we ensure that the intruder cannot learn anything more (about the
privacy variables) than what the protocol is intentionally releasing.

One may wonder how fair the comparison between privacy in trace-equivalence models
and (α, β)-privacy actually is. Gondron, Mödersheim, and Viganò [47] give an argument
how trace-equivalence properties can be translated into (α, β)-privacy problems and vice-
versa. Nonetheless there are several substantial differences in the models. (α, β)-privacy
assumes that the intruder can always observe which transaction is executed, and may
be just unclear about the concrete values like privacy variables, and which branch of a
conditional is taken. In contrast, the trace-equivalence approaches are focused on a trace of
messages that the intruder sent or received, thus the intruder is a priori unable to tell which
position in the considered process has produced a particular output, and where a particular
input was received. Thus, the intruder gets a little more information in (α, β)-privacy than
typically in the model in other approaches; this can actually be often justified in practice
since the intruder can know which inputs and outputs belong to the same session, and they
are a substantial simplification for automated reasoning.

For some protocols such as Private Authentication, we believe that a characterization
of the privacy goals with (α, β)-privacy can give a better understanding of what guarantees
the protocol actually provides, as we do not see an obvious way of expressing all the privacy
goals with equivalences between processes.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 39

40 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 4

Typing

This chapter is based on [43].
Type-flaw attacks occur when a security protocol uses several messages that have differ-

ent meaning but have a similar shape so that an intruder can exploit it and send a message of
one type where a message of another type is expected. For example, one message of the pro-
tocol is a signature on a nonce for challenge-response, say sign(inv(pk(x)), N), and another
message is a signature on an encrypted message like sign(inv(pk(y)), crypt(pk(z),M,R)). It
is actually easy to prevent type-flaw attacks by good protocol design: agents should not
sign or encrypt raw data, but rather include a few bits of information that specify the
meaning of the message. In the example, the signatures should contain at least some kind
of tag that distinguishes the different types of signed statements. Such a countermeasure is
not only almost for free, it is completely in line with prudent engineering principles [2, 50].

Formal verification of security protocols generally gets easier if we can rule out type-flaw
attacks and analyze everything in a typed model where the intruder is restricted to sending
well-typed messages. Then, many security problems become decidable (and, e.g., one can
guarantee termination of tools like ProVerif [18]).

This motivates a relative soundness result of the form: “if a protocol that obeys certain
type-flaw resistance requirements has an attack, then it has a well-typed attack.” It is then
sound to verify such a protocol in the typed model. This is particularly relevant in practice,
if many existing protocols without modification already satisfy type-flaw requirements.

Most of the existing typing results, e.g., [7, 3, 52, 51, 32], use a constraint-based method
for analyzing security protocols that is based on a symbolic representation like we did with
the lazy intruder in Chapter 3. We remind the reader that this technique avoids exploring
all the messages that the intruder could generate at a given point, but instead uses a
variable with the constraint that this variable represents any message that the intruder
can generate from their current knowledge. This variable is only instantiated when the
choice matters for the attack.

One can then show that in a type-flaw resistant protocol, these instantiations are always
well-typed, and that all remaining variables (that do not matter for the attack in the end)
can be instantiated with something well-typed as well. Thus, if an attack exists, there
exists a well-typed one. Although the decision procedure obtained in Chapter 3 using the
lazy intruder method works only for a bounded number of transitions, since the argument
applies to an attack of arbitrary length, the typing result is not bounded to a fixed number
of transitions and can be used in approaches/tools that do not use the lazy intruder (like
ProVerif).

A trend in protocol verification is the support for privacy-type properties such as
unlinkability or vote-secrecy, i.e., secrecy of a choice over a small domain of intruder-known
values. This is challenging for verification tools and thus many tools require a restriction

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 41

like diff-equivalence where, roughly speaking, conditions—and thus control flow—cannot
depend on the private choice. It is thus very desirable to simplify the tools’ lives by a
typing result, but that is harder to obtain for privacy as well. For instance, a typing
result needs to exclude that the intruder can gain any insight about a condition (and thus
possibly private choices) by sending an ill-typed message. This is in fact related again to
the problem of control flow (that classical diff-equivalence sidesteps): the intruder may
not know in general what exactly is happening in the protocol, while in standard protocol
verification the intruder is only unclear about the concrete value of some cryptographically
strong secrets.

Our second contribution in this thesis is a typing result for (α, β)-privacy: “if there is
an attack, then there is a well-typed one.” We define a set of requirements for protocols and
algebraic theories we can support, and prove that under these requirements the procedure
performs only well-typed instantiations of variables and well-typed intruder experiments.
As in previous typing results, this is independent of the number of transitions considered.
This result is, to our knowledge, not only more general than previous typing results
for privacy, since the requirements are less restrictive and a larger class of protocols is
considered, but it also has a more declarative proof.

The chapter is organized as follows. In Section 4.1, we define the class of type-flaw
resistant protocols that our typing result supports. In Section 4.2, we present the typing
result for an unbounded number of transitions. In Section 4.3, we look at type-flaw
resistance in case study protocols. Finally we conclude in Section 4.4 with the discussion
of related work.

4.1 The typed model

We now define a simple type system and the protocol specification includes the type of
every constant and variable, e.g., agent or h(nonce). This is first a mere annotation: we
specify the intended type. The intruder is of course able to send messages of any type and
an honest agent in general cannot check if a received message is of the intended type. We
then develop a notion of type-flaw resistant protocols and show in the following section
a typing result for them: if there is an attack, then there is a well-typed attack. Thus,
given a type-flaw resistant protocol, it is sound to restrict the intruder model to well-typed
messages.

To that end, we show that our procedure of the previous chapter will never perform an
ill-typed substitution, when it is applied to a type-flaw resistant protocol. This is in fact
proved for an arbitrary reachable state, i.e., our typing result holds without any bound
on the number of transitions. We will make two adaptations to the procedure: we reduce
the destructor applications with try to pattern matching and conditions, and we formulate
analysis as built-in transitions instead of special transactions (destructor oracles); we also
show that these transformations are correct.

4.1.1 Type system

Types are defined similarly to terms. Instead of a set of variables, we use a set of atomic
types, e.g., {agent, nonce, . . . }. The composed types are defined using the functions in
Σ, with the restriction to constructors of non-zero arity, i.e., we forbid destructors and
constants in composed types. The type system assigns an atomic or composed type to
every message with the following requirements:

Definition 4.1.1 (Typing function). A typing function Γ is such that:

42 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

• Γ(c) is atomic for every function c ∈ Σ of arity 0.

• Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every constructor f ∈ Σ of arity n > 0.

• Γ(x) is a type (atomic or composed) for every variable x ∈ V.

Our type system does not include terms containing destructors, because they represent
terms that need to be evaluated and we rather want to give a type to the result. Recall that,
in a protocol specification, destructors can only occur as part of a destructor application of
the form try Y := d(k,X) in . . . where either the result is ff and the transaction stops (for
the typing result, we will require that all catch branches are empty), or Y is bound to the
respective subterm of X, and thus shall have the respective (destructor-free) type.

The fact that instantiations of variables are well-typed is defined with the notion of a
substitution being well-typed.

Definition 4.1.2 (Well-typed substitution). A substitution σ is well-typed iff for every
x ∈ dom(σ), we have Γ(x) = Γ(σ(x)).

We need to ensure that the intruder is always able to make a well-typed choice, therefore
they must be able to compose arbitrarily many messages of each type, even before receiving
any message from honest agents. Hence, we require that, for each atomic type, there is an
infinite set of public constants of that type, i.e., the intruder initially knows an unbounded
number of constants of each atomic type. Suppose all function symbols were public, then
the intruder would also immediately have access to an unbounded number of terms of
every composed type. In fact, [51] observes that, even if all functions are public, one can
still model a private function f of arity n by a public function f ′ of arity n + 1, where
the additional argument is filled with a distinct secret constant. Thus, private functions
like f are just syntactic sugar. We adopt this suggestion and, for the rest of the thesis,
continue to use public and private functions, with the subset Σpub ⊆ Σ to identify the
public functions.

We first define the precise class of algebraic theories that our typing result supports. We
consider linear terms, i.e., terms in which every variable occurs at most once. Compared
to Definition 3.4.1, we include the requirement of linearity for the constructor terms in the
rewrite rules and we exclude constants in encryption/decryption keys (they may still use
private functions). This will be used when proving the typing result for state transitions
(in particular in proofs relying on Definition 4.2.2).

Definition 4.1.3 (Algebraic theory for typing result). Let E be a set of rewrite rules
satisfying Definition 3.4.1. For every decryption rule (d(k, c(k′, X1, . . . , Xn))→ Xi) ∈ E,
we require that the constructor term c(k′, X1, . . . , Xn) is linear and that neither k nor k′
contains a constant. For every projection and private extraction rule (d(c(t1, . . . , tn))→
t0) ∈ E, we require that c(t1, . . . , tn) is linear.

In a protocol specification, we write type annotations with a colon, i.e., t : τ specifies
that Γ(t) = τ . We further define what it means for a protocol specification to type check.
This does not yet include all the requirements for type-flaw resistance but simply ensures
that the type annotations are consistent throughout the specification.

Definition 4.1.4 (Type checking). For every constant c, one has to specify Γ(c), i.e., the
type of that constant. For every memory cell cell[·], one has to specify Γ(cell) which is the
type of the argument for cell reads. The type annotations of constants and memory cells
are global to the specification, while type checking a transaction uses local type annotations
for the variables bound in that transaction. Every transaction must satisfy the following:

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 43

• For every choice x ∈ D, we have that D is a set of public constants of the same
atomic type τ , and we then set Γ(x) = τ .

• For every message received rcv(X : τ), we have that τ is a type and we then set
Γ(X) = τ .

• For every destructor application try Y := d(t,X), consider a fresh instance of the
rewrite rule for d: d(k, c(k′, X1, . . . , Xn))→ Xi, where the variables in k, k′ and the
Xi do not have a type yet. Let τk = Γ(t). Γ(X) must be of the form c(τk′ , τ1, . . . , τn)
for some types τk′ , τi and there must exist types for the variables in k, k′ and the Xi

such that τk = Γ(k) and τk′ = Γ(k′). We then set Γ(Y) = τi.

• For every cell read X := cell[s], we have Γ(s) = Γ(cell) and we then set Γ(X) =
Γ(C[s]), where C[·] is the ground context for the initial value of cell[·]. For every cell
write cell[s] := t, we have Γ(s) = Γ(cell) and Γ(t) = Γ(C[s]).

• For every equality s .= t in a formula, we have Γ(s) = Γ(t).

• For every step νX1 : τ1, . . . , Xk : τk, the τi are atomic types and we then set
Γ(Xi) = τi.

In the rest of this chapter, we will only consider protocol specifications such that the
type checking requirements above are satisfied.

In Definition 2.2.1, there can be a process for handling failure, e.g., sending an error
message, while for the typing result we only support transactions that silently stop in case
of destructor failure. For notation, we now omit writing catch 0, else 0 and trailing 0’s in
processes. Moreover, try in Definition 2.2.1 is part of the center process, while we now
require it before branching, so that any destructor failure means that the entire transaction
goes directly to 0. We also introduce additional requirements on protocols, which we use
to ensure that the intruder knows the types of the messages in their knowledge and to
control the shapes of messages that can occur during the protocol execution.

Definition 4.1.5 (Requirements). Consider the tree that is induced by the conditionals
of the transactions (i.e., every if-then-else is a node with the respective subprocesses as
children). We say two execution paths are statically distinguishable for the intruder, iff a
different number of messages are sent along the paths.1 Every transaction must satisfy the
following:

1. Every destructor application occurs before any cell read or conditional statement, and
every catch branch is empty, i.e., it only contains the nil process.

2. For any two execution paths that are not statically distinguishable (and thus have the
same number of sent messages), and under any instantiation of the intruder variables
(including ill-typed instantiations), the ith message sent in either path has the same
type.

3. In every cell write cell[s] := t, the term t does not contain intruder variables.

4. When a decryption destructor is applied to a variable, this variable does not occur in
other destructor applications.

5. If several projectors or private extractors are applied to the same variable, then the
rewrite rules for these destructors are defined over the same constructor term.

1One could use here a finer distinction criterion, but with a coarser relation one errs on the safe side as
it excludes more protocols from being admitted.

44 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

6. For every message sent snd(t) and every subterm t′ of t, if t′ is composed with a
constructor c occurring in a decryption rule d(k, c(k′, X1, . . . , Xn)) → Xi, we have
that t′ is an instance of c(k′, X1, . . . , Xn).

Our requirements ensure the following invariant: the intruder always knows what type
every message has; so revealing the type of a message is never an issue. Requirement 1
ensures that if the intruder sends an ill-typed message such that a destructor application
in the recipient transaction fails, then the recipient does nothing on this input; thus the
intruder could at most learn from this transaction that the input was ill-typed. Since our
approach ensures that the intruder knows the type of every message, this is completely
pointless for the intruder, and an attack that contains such steps (i.e., a try that fails) can be
simplified by omitting the respective transaction. Said another way, without this restriction,
we would have the problem of an ill-typed attack that runs into some catch-process and
that we cannot simulate by any well-typed attack.

An example for a protocol that does not satisfy Requirement 2 immediately, i.e., that
messages on two paths either are statically distinguishable or have the same type, is the
model of Private Authentication found in [41]: here an agent B receives a message and
performs a check on it. If the check succeeds, then B sends an encrypted reply as an answer.
Otherwise, B sends a random nonce as a decoy to hide whether the check succeeded. Thus
there are two paths where the messages sent have different types, and indeed the point is to
hide from the intruder which message was really sent. In the original model by Abadi and
Fournet [1], however, B instead of a random nonce as decoy sends an encrypted message
with a fresh key and random contents of the same type as the positive case. In that
formulation, the protocol satisfies our requirement. The only example we can think of that
would resist a similar transformation are onion-routing protocols where the intruder should
not be able to tell the number of encryption layers of a given message. For protocols that
do not rely on hiding the taken branch from the intruder, one can of course easily make
the messages of the branches statically distinguishable and thus can also use messages of
different types.

Requirement 3 is a significant restriction on cell writes, because it essentially means
that we cannot update the memory with an arbitrary message sent by the intruder. Indeed,
if the intruder was able to send some message to a transaction that writes this message in
memory without doing any checks on it, then we could not maintain the desired invariant
that the intruder always knows the types of the messages they observe.

Requirements 4 and 5 are not directly about the intruder knowing the types of the
messages. We consider the requirements on the use of destructors as a reasonable restriction
that ensures compatible destructor applications: whenever a variable is decomposed, we
can instantiate the variable with a unique corresponding constructor term, because for this
decryption there is a unique rewrite rule or for these projections/private extractions all
rewrite rules are defined over the same term.

Requirement 6 on the use of constructor terms in messages sent will be useful when
proving the well-typedness of analysis: if a subterm in a message sent is composed with
a constructor that can be decomposed, it should be an instance of the constructor term
in the corresponding rewrite rule. For instance, if we model signatures with the rewrite
rule open(K, sign(inv(K),M)) → M , then signatures sent by honest agents must have a
key starting with inv and cannot use a variable in this place, e.g., we do not allow sending
sign(X,m), because sign(X,m) is not an instance of sign(inv(K),M).

Using Definition 4.1.5, we can maintain the following invariant: in a reachable state, a
given label maps to the same type in every possibility, i.e., the intruder always knows the
types of the messages they have observed. Thus whatever recipe they use when sending a
message, it corresponds to the same type in every possibility.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 45

Lemma 4.1.1. Let S be a reachable state in a protocol satisfying Definition 4.1.5,
struct1, . . . , structn be the frames in S and r be a recipe over the domain of the structi.
Then Γ(struct1(r)) = · · · = Γ(structn(r)).

4.1.2 Message patterns
To show the typing result, it is convenient to replace the try mechanism for handling
destructors with pattern matching. In fact, the (α, β)-privacy semantics does not have a
notion of pattern matching, because in a general untyped model, it is unclear how to define
such a construct in a suitable way. However, for a specification that satisfies Definition 4.1.5,
the intruder knows the type of every message, and thus also knows whether a given message
will agree with a given pattern. Hence, we make a conservative extension of the receive
construct with pattern matching (under the restrictions of Definition 4.1.5).

Instead of rcv(X) for an intruder variable X, we now allow also rcv(t) where t is a
linear pattern term: it contains fresh intruder variables, where each intruder variable can
only occur once, and no constants. The meaning is that the agent only accepts an incoming
ground message m, if m is an instance of t and then binds the variables of t with the
respective subterms of m. (This ignores how an agent would be able to check that m
is an instance of t.) This is a conservative extension of the semantics on ground states
(Table 2.1).

Definition 4.1.6. We extend the Receive rule of Table 2.1 with the following:

(α, β0, γ, {(rcv(t).Pi, φi, structi, δi) | i ∈ {1, . . . , n}})
→ (α, β0, γ, {(P ′

i , φi, structi, δi) | i ∈ {1, . . . , n}})

for every recipe r over the domain of the structi, where for every i ∈ {1, . . . , n}, σi =

mgu(t .= structi(r)), and P ′
i =

{
σi(Pi) if σi ̸= ⊥
0 otherwise

.

Note for protocols satisfying Definition 4.1.5, following Lemma 4.1.1 either the unifier
exists in every possibility or every possibility goes to 0. Now we can replace try with
pattern matching and a condition, because the intruder already knows the type of every
message in their knowledge and thus knows whether the messages they send will have the
correct structures for every destructor application to succeed. (Of course, a message with
the correct structure can still fail, e.g., if it does not have the right key.) Consider, for
instance,

rcv(X).try Y := dscrypt(k,X) in try Z := proj1(Y) in P .

If the intruder sends for X any term that is not of the form scrypt(K, pair(M,N), R) (for
someK,M , N and R), then the destructors are going to fail. Thus we can split the try’s into
a structural check that we can describe with a linear pattern like scrypt(K, pair(M,N), R)
and a condition on the pattern variables. This transformation allows us to get rid of
destructors in processes entirely. The transformed example is

rcv(scrypt(K, pair(M,N)), R).if k .= K then P [Y 7→ pair(M,N), Z 7→M] .

Definition 4.1.7 (Removing destructors). Let P be a transaction, from a protocol satisfying
Definition 4.1.5, that contains a destructor application for decryption, i.e., P = C[try Y :=
d(t,X) in P ′] for some process context C[·] that does not contain any destructor applications.
Let d(k, c(k′, X1, . . . , Xn))→ Xi be the corresponding rewrite rule with all variables freshly
renamed. Let σ = [X 7→ c(k′, X1, . . . , Xn), Y 7→ Xi]. Then we replace the transaction P
with σ(C[if t .= k then P ′]).

46 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

In case of projectors or private extractors, X may appear in m destructor applica-
tions: we have try Y j := dj(X) in . . ., j ∈ {1, . . . ,m}, and rewrite rules of the form
dj(c(t1, . . . , tn))→ tj. Then we remove all destructor applications for X since there are
no keys, and we apply the substitution [X 7→ c(t1, . . . , tn), Y 1 7→ t1, . . . , Y m 7→ tm] to the
transaction.

This transformation is repeated until the transaction does not contain any destructor
application anymore. The result is denoted Ppat.

Example 4.1.1. We adapt Example 2.2.1, where now the agent sends a message containing
two nonces to the server and the server includes one of these nonces in their reply. We
assume that we have three atomic types agent, decision and nonce. Every constant in the
set Agent and the constant s are of type agent, and the constants yes, no are of type decision.
We now apply the transformation to remove the destructors occurring in the following
transaction P :

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(M : crypt(pk(agent), pair(nonce, nonce), nonce)).
try N := dcrypt(inv(pk(s)),M) in
try N1 := proj1(N) in
try N2 := proj2(N) in
if y .= yes then

νr : nonce.snd(crypt(pk(x), pair(yes, N1), r))
else νr : nonce.snd(crypt(pk(x), pair(no, N2), r))

The first step is to remove try N := dcrypt(. . .) with the application of substitution
[M 7→ crypt(X,Y, Z), N 7→ Y], and the second step is to remove both projections with the
substitution [Y 7→ pair(Y1, Y2), N1 7→ Y1, N2 7→ Y2]. We now have Ppat :

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(crypt(X : pk(agent), pair(Y1 : nonce, Y2 : nonce), Z : nonce)).
if inv(pk(s)) .= inv(X) then
if y .= yes then

νr : nonce.snd(crypt(pk(x), pair(yes, Y1), r))
else νr : nonce.snd(crypt(pk(x), pair(no, Y2), r)) ◁

Lemma 4.1.2. A protocol satisfying Definition 4.1.5 and its transformation to use pattern
matching according to Definition 4.1.7 yield the same set of reachable ground states (up to
logical equivalence of the contained formulas α and β).

We now define how to compute the message patterns from a protocol specification
using the Ppat version of transactions.

Definition 4.1.8 (Protocol message patterns). For a protocol transaction P , we define
patterns(P) as the set of terms occurring in Ppat. For a memory cell cell[·], we define
the message pattern cellpat as the message C[X], where C[·] is the ground context for the
initial value of cell[·] and X is a variable of type Γ(cell), i.e., the argument type for the cell.
For a protocol Spec, we define patterns(Spec) as the union of the patterns(P) for every
transaction P and of the cellpat for every cell[·] in the specification (up to α-renaming of
variables so they are distinct in each transaction/cell).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 47

Example 4.1.2. Continuing Example 4.1.1, for the messages patterns of transaction P , we
consider the terms occurring in Ppat and this gives the following:

patterns(P) = Agent ∪ {x, y, r, yes, no, inv(pk(s)), inv(X), crypt(X, pair(Y1, Y2), Z)}
∪ {crypt(pk(x), pair(yes, Y1), r), crypt(pk(x), pair(no, Y2), r)}

where the type of x is agent, y is decision, X is pk(agent) and r, Y1, Y2, Z are nonce. ◁

4.1.3 Type-flaw resistance

The core part in the proof of our typing result is that variables can always be instantiated
with messages of the same type. We first define the set of sub-message patterns, which
includes all subterms, well-typed instantiations and key terms. To prove our result we will
use the fact that every message in the symbolic execution of the protocol is in this set of
sub-message patterns.

Definition 4.1.9 (Sub-message patterns). The set of sub-message patterns, SMP(M), of
a set of terms M is the least set closed under the following rules:

1. If t ∈M , then t ∈ SMP(M).

2. If t ∈ SMP(M) and t′ is a subterm of t, then t′ ∈ SMP(M).

3. If t ∈ SMP(M) and σ is a well-typed substitution, then σ(t) ∈ SMP(M).

4. If t ∈ SMP(M), k and t′ are terms such that for some destructor d we have d(k, t)→ t′

as an instance of the rewrite rule for d, then k ∈ SMP(M).

With rule 4, we ensure that relevant decryption keys are in SMP(M), because they
may occur in the symbolic constraints when performing analysis steps.

We have now everything in place to formally define type-flaw resistance, which ensures
that composed messages of different types cannot be unified.

Definition 4.1.10 (Type-flaw resistance). A set of terms M is type-flaw resistant iff for
all s, t ∈ SMP(M) \ V we have that Γ(s) = Γ(t) if s and t are unifiable.

A protocol Spec is type-flaw resistant iff it satisfies Definition 4.1.5 and the set
patterns(Spec) is type-flaw resistant.

Example 4.1.3. The protocol from Example 4.1.2 is not type-flaw resistant, because in the
message patterns we have the input pattern crypt(X, pair(Y1, Y2), Z) and an output pattern
crypt(pk(x), pair(yes, Y1), r), which can be unified even though they have different types:
the mgu [X 7→ pk(x), Y1 7→ yes, Y2 7→ yes, Z 7→ r] is not well-typed since Γ(Yi) ̸= Γ(yes).

One can make the protocol type-flaw resistant by using formats, for instance by replacing
the function pair with f1 in the input and with f2 in the outputs, where the fi are transparent
functions (this requires also replacing the projectors in the process). ◁

4.2 Typing result

4.2.1 Well-typedness of the constraint solving

We now turn back to the lazy intruder rules (Table 3.1) and show that, for a type-flaw
resistant protocol, none of the rules perform ill-typed instantiations of intruder variables.
In particular, recall that for the Unification rule, we have to unify two terms s and t

48 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

which are not variables. If the protocol is type-flaw resistant and s and t are unifiable,
then they must have the same type and their most-general unifier thus by well-typed.

Using type-flaw resistance, we can show that every lazy intruder rule preserves the well-
typedness of the substitution σ of variables performed in previous lazy intruder reduction
steps. Let terms(A) = {t | −l 7→ t ∈ A or +R 7→ t ∈ A} be the set of terms occurring in a
FLIC A. We extend the notion of well-typed substitutions to well-typed choices of recipes.

Definition 4.2.1 (Well-typed choice of recipes). Let A be a simple FLIC and ρ be a choice
of recipes for A. We say that ρ is well-typed w.r.t. A iff for every +R 7→ X ∈ A, we have
Γ(X) = Γ(ρ(A)(ρ(R))).

We can now conclude that the lazy intruder results are doing only well-typed instantia-
tions.

Theorem 4.2.1 (Lazy intruder well-typedness). Let Spec be a type-flaw resistant protocol,
A be a simple FLIC such that terms(A) ⊆ SMP(patterns(Spec)) and let σ be a well-typed
substitution. Then every ρ ∈ LI (A, σ) is well-typed w.r.t. A.

4.2.2 Well-typedness of state transitions

We have defined in Table 3.2 the relation ⇒ that models the execution of processes for
symbolic states. Since we have made an extension for pattern matching for ground states,
we now define how to handle this construct for symbolic states, extending the relation ⇒
and proving correctness for this case. To that end, we use the lazy intruder to consider
all choices of recipes producing a linear pattern: the intruder can either use a label that
produces a message of the same type, or compose the pattern themselves. We want to
ensure that if a label is a solution in one FLIC, then it is a solution in every FLIC. This
is why the linearity requirement in rewrite rules is crucial, since the type information
cannot distinguish variables of the same type. For instance, if a message rcv(f(X,X)) was
expected, it might be that in one FLIC a label l maps to f(t, t) for some message t of
type τ , and in another FLIC the label l maps to f(t, s) where s ̸ .= t but s is still of type
τ . Then the choice of using label l for receiving this message would be a solution in the
first FLIC but not the second. We instead consider only linear patterns, so in the example
we might have rcv(f(X,Y)) (the transaction could still check whether X .= Y after the
receive). Similarly, we forbid constants in patterns because otherwise we cannot, using
only the type information, know which value matches a pattern.

Definition 4.2.2 (Receiving message patterns). We extend the semantics of receive steps
to support linear patterns, with the following transition if t /∈ Vintruder :

(α0, β0, {(rcv(t).Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)
⇒ {ρ((α0, β0, {(Pi, φi,Ai.+R 7→ X,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked))
| ρ ∈ LI (A1.+R 7→ X, [X 7→ t]), where R is a fresh recipe variable and
X is a fresh intruder variable}
∪ {(α0, β0, {(0, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)}

In case t ∈ Vintruder , the transition is the same as Receive in Table 3.2.

Example 4.2.1. Continuing Examples 4.1.1 and 4.1.3, the transaction Ppat starts by receiving
the linear pattern rcv(crypt(X, f1(Y1, Y2), Z). The intruder may compose that message
themselves with the recipe crypt(RX , f1(RY1 , RY2), RZ). Another solution, assuming they

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 49

have observed earlier a message −l 7→ crypt(pk(s), f1(n1, n2), r) sent by an honest agent, is
to use the label l to instantiate the pattern (if there are multiple possibilities, this label
could map in other FLICs to other messages of the same type, e.g., where the nonces are
different, and the substitutions are done accordingly in each process). ◁

This conservative extension means that even when receiving patterns, we keep FLICs
simple, and the representation with symbolic states is still correct when using pattern
matching.

Lemma 4.2.1. Given a type-flaw resistant specification, then the set of reachable states in
the symbolic semantics represents exactly the reachable states of the ground semantics.

The lazy intruder is used in two ways for the experiments: (i) to compute recipes
that can be compared to labels, and (ii) to solve constraints whenever the outcome of an
experiment depends on messages sent earlier. Since we have already shown that the lazy
intruder results are well-typed, we have the guarantee that in a experiment with a pair
(l, r), the label l and the recipe r produce messages of the same type and all transitions to
determine the outcome of an experiment are only doing well-typed instantiations. Thus,
there is nothing more to show for intruder experiments.

It remains to show that analysis also never introduces ill-typed instantiations. In a
normal symbolic state, the intruder can perform analysis by decrypting messages in their
knowledge, if they know the appropriate key. The analysis is always done in normal
states, i.e., after the experiments. In Definition 3.4.4, the analysis is performed through
destructor oracles, which are defined as transactions available to the intruder. These
destructor oracles do not work directly with the typing result: since they are defined
as transactions, the computation of the sub-message patterns set SMP would need to
include the patterns from the destructor oracles. This prevents us from achieving type-flaw
resistance even for reasonable protocols and when formats are used. By formats we refer
to transparent functions that are used to express the meaning of messages. This is a
slight generalization of the usual tagging schemes where the messages of different meaning
contain a tag to tell them apart; rather formats like f1, f2 represent an arbitrary way to
implement the message formats (e.g., XML or JSON) and we just assume that they are
unambiguous and pairwise disjoint [62]. For instance, consider a protocol that uses several
times crypt but with contents of different types, e.g., crypt(pk(agent), f1(agent), nonce) and
crypt(pk(agent), f2(nonce), nonce). To compute the message patterns, we have to consider
the transformed destructor oracle that uses pattern matching instead of try; for dcrypt, this
would yield the transaction rcv(crypt(X,Y, Z)).rcv(K).if K .= inv(X) then snd(Y).snd(K).
We have the pattern crypt(X,Y, Z), because the decryption does not care about the actual
content of the message but just about whether the key is correct. If we assume that there
are multiple instances of this transaction where only the type annotations change (to cover
all possible types), we would have crypt(X1, Y1, Z1) and crypt(X2, Y2, Z2) in SMP, with
for instance Γ(Xi) = pk(agent), Γ(Zi) = nonce, Γ(Y1) = f1(agent) and Γ(Y2) = f2(nonce).
These two message patterns are unifiable but have different types, so type-flaw resistance
is not achieved.

However, the procedure does not unconditionally apply destructor oracles but always
restricts the step rcv(X) to using a label l as recipe for message X, where l maps to a
message composed with the top-level constructor corresponding to the oracle. Therefore,
we can be more precise and specialize the processes coming out of the destructor oracles:
instead of a general pattern like crypt(X,Y, Z), we only consider instances of that pattern
with messages that the intruder has observed, e.g., crypt(pk(a), f1(A), R).

We define analysis steps as part of the transition system instead of special transactions.
We will show that, for a type-flaw resistant protocol, this alternative way of performing

50 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

analysis is equivalent to using destructor oracles. The benefit of this formulation of analysis
is that we ensure all messages are instances of the protocol message patterns, and thus we
can obtain the typing result.

Definition 4.2.3 (Analysis transition). Let S be a reachable symbolic state in a type-flaw
resistant protocol. The transition for analysis is:

(α0, β0, {(0, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)
⇒•(α0, β0, {(Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)

if S is normal and there exist a label l ∈ dom(S) and a public destructor d ∈ Σpub such
that l may be analyzed with d, i.e., for every i ∈ {1, . . . , n}, −l 7→ c(k′i, t1i , . . . , tmi) ∈ Ai

where d(ki, c(k′i, t1i , . . . , tmi))→ tji (for some j ∈ {1, . . . ,m}) is an instance of the rewrite
rule for d and for every i ∈ {1, . . . , n}, let Pi = rcv(Y).if Y .= ki then snd(tji).snd(ki). In
case c is transparent, we define Pi = snd(t1i). · · · .snd(tmi).

Note that the processes Pi that we put in each possibility are exactly the instances of the
corresponding destructor oracle, after transformation to pattern matching and substitution
of the message to analyze with the respective message that the label maps to in each FLIC.

Example 4.2.2. Continuing Examples 4.1.1 and 4.1.3, suppose the intruder is an agent with
their own private key, they have sent the message crypt(pk(s), f1(X1, X2), X3) to the server
and received a reply. The intruder knowledge is represented with two possibilities, where
one contains the following FLIC:

−l1 7→ inv(pk(i)).+R1 7→ X1.+R2 7→ X2.+R3 7→ X3.−l2 7→ crypt(pk(x), f2(yes, X1), r1) .

The other possibility contains a similar FLIC with f2(no, X2) in the reply. Apply-
ing the transition for analysis means that we execute the transaction rcv(Y).if Y .=
inv(pk(x)) then snd(f2(yes, X1)).snd(inv(pk(x)) (respectively snd(f2(no, X2))). Assuming
the intruder does not know any other private key, the lazy intruder would return the label
l1 for instantiating the message Y , which means Y = inv(pk(i)).

This yields two symbolic states, one in which decryption succeeded and one in which
it failed. If it succeeded, the intruder would learn x .= i and receive the decrypted pair;
projecting the pair, the intruder would learn whether y .= yes. If it failed, they would learn
x ̸ .= i but nothing about y. ◁

We now consider two transition relations. =⇒ is a relation on finished symbolic states
induced by the transitions of Table 3.2 for executing a transaction with the evaluation of the
process and by the normalization through experiments, where the transactions include the
destructor oracles. More formally, S =⇒ S ′ iff there is a transaction P (including destructor
oracles) such that {start(P,S)} ⇒∗↣∗ C and S ′ ∈ C. In contrast, we define now a relation
=⇒• that replaces the destructor oracles with the analysis transitions: S=⇒•S ′ iff either
(there is a transaction P (excluding destructor oracles) such that {start(P,S)} ⇒∗↣∗ C
and S ′ ∈ C) or (S⇒•Sa, {Sa} ⇒∗↣∗ C and S ′ ∈ C).2

We have made two changes to the procedure of Section 3.4: first, we have replaced
explicit destructor applications with pattern matching (Definitions 4.1.7 and 4.2.2) and
second, we have replaced destructor oracles with analysis transitions (Definition 4.2.3).

2In this form, both transition systems admit infinite sequences of analysis steps (e.g., attempting
repeatedly to decrypt the same message), but we showed that there is a terminating strategy to saturate
the intruder knowledge after every transaction. This strategy can here be applied in the same way and is
orthogonal to our typing result.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 51

In Lemmas 4.1.2 and 4.2.1, we have already shown that, for type-flaw resistant protocols,
using pattern matching instead of explicit destructor applications is correct. Thus, for
every transaction P in the protocol specification, we now consider that the transaction
Ppat is executed instead of P . That way, we ensure that the messages in the symbolic
constraints are always in the set of sub-message patterns SMP of the protocol. For type-flaw
resistant protocols, we can show that the analysis transitions are equivalent to destructor
oracles, and thus the two transition relations are actually the same: =⇒ = =⇒•. Moreover,
for type-flaw resistant protocols, all instantiations performed by the relation =⇒• are
well-typed. Hence, we conclude and obtain our main typing result, which holds for an
unbounded number of transitions.

Theorem 4.2.2 (Typing result). Given a type-flaw resistant protocol, it is correct to
restrict the intruder model to well-typed recipes/messages for verifying privacy.

4.3 Case studies
We consider again the protocols already studied in Section 3.5, namely: our running
example, Basic Hash, OSK, BAC and Private Authentication. For each protocol, we
explain how to achieve the type-flaw resistance requirements or why that is not possible in
a reasonable way in case of the OSK protocol.

4.3.1 Running example

We explained how to make the protocol type-flaw resistant using formats in Example 4.1.3.

4.3.2 Basic Hash

Basic Hash is type-flaw resistant, where for the type annotations, we consider that we have
the following atomic types: tag, used for the names of the tags and the privacy variable
representing some tag name; nonce, used for the fresh number created by the tag; and ok,
used for the reply from the reader when identification succeeds.

4.3.3 OSK

This protocol is out of the scope of our typing result. In OSK, similarly to Basic Hash, a
reader tries to identify a tag. However, in OSK, both the tag and the reader use memory
cells as ratchets (initialized with a shared secret), instead of a MAC. The processes contain
steps like S := cell[x].cell[x] := h(S) representing a turn of the ratchet with the application
of a hash function, and thus the updates change the type of the content stored in memory,
which is not allowed by Definition 4.1.4.

4.3.4 BAC

In the model from [41], there is a non-empty catch branch and thus it violates our typing
requirements. However, the interesting aspect of the try in this case—namely that it can
reveal whether it is the right agent—is independent of whether it is an encryption in the
first place (which the intruder knows). Thus with the pattern matching notation introduced
in Section 4.1, we can equivalently formulate this as a pattern match and an if condition
with a non-empty else branch and achieve the requirements of type-flaw resistance.3

3Currently the noname tool does not support the pattern matching notation, but it can be simulated
using private extractors.

52 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

4.3.5 Private Authentication

The models of [41] violate our typing requirements in three regards. First, the decoy
message is a fresh nonce, while a normal reply is an encrypted message. It is intended that
the intruder in general cannot tell which one is the case, violating our requirement that
in this case the messages must have the same type. However, the original model from [1]
actually ensures that the decoy message is of the same type as the regular message: it is
an encryption of a fresh nonce with a fresh key. Following this, the requirement is actually
met, as the intruder now in each case knows the type of each message (just not whether its
content and key are decoys or regular). Second, there are non-empty catch branches which
however can now be solved using our pattern matching notation as in the case of BAC.
Third, the message from the initiator and the reply from the responder are unifiable but
do not have the same type. This is a type-flaw similar to Example 4.1.3, and we can use
formats to solve this third issue and thus achieve type-flaw resistance.

For BAC and Private Authentication, we have been able to solve the issue of non-
empty catch branches by using pattern matching. Thus, one may wonder if we could not
do that in general and drop some restrictions on our typing result. In fact here is an
example that we would not be able to transform to pattern matching: rcv(X).try Y :=
dscrypt(k,X) in snd(h(Y)) catch snd(sign(inv(pk), X)), where the message in the catch is a
signed (error) message on the input X. Even if the intruder knows a priori that a particular
message is not decipherable, obtaining the signature on it may be relevant in an attack
that cannot be done in a well-typed way.

4.4 Related work

There are in our view four benefits to typing results: robust engineering, efficiency,
decidability, and simplifying interactive theorem proving. First, robust engineering: we
spend a few extra bits (if not already present) to explicitly say what messages mean and
thereby “solve” type-flaw attacks. In fact, the intruder can still take an encrypted message
and send it in a place where a nonce is expected (thus still sending an “ill-typed” message),
but due to the clear annotation of the meaning, every honest agent will always treat this
bitstring as a nonce and never try to decrypt it. Hence, if there is an attack, the same
attack would work if the intruder had indeed sent a random nonce, and it is thus sound to
consider an intruder model with only well-typed messages.

This leads to efficiency. The first typing result was by Heather, Lowe, and Schneider [50]
and supports the Casper tool based on the model checker FDR2 to explore the state space.
This requires bounds on the number of steps honest agents and the intruder can perform;
restricting the intruder to well-typed messages drastically cuts down the search space.
Similarly, the model checker SATMC of the AVISPA Tool and AVANTSSAR Platform
requires a typed model [8, 10, 9]. The result of Heather, Lowe, and Schneider [50] and
several that followed are based on inserting tags into messages. This has a disadvantage
when we consider existing protocols, say TLS, that do use some tagging but do not follow
the precise tagging scheme of the typing result in question—then that result is simply not
applicable. We follow the approach of Hess and Mödersheim [51] and model the concrete
formatting of messages in a protocol implementation by using transparent functions, where
different functions represent disjoint formats in the implementation. This style of typed
model is compatible, e.g., with TLS 1.2 [68]. Several papers have shown how to apply
typing results to larger classes of protocols and properties, e.g., Arapinis and Duflot [7]
show how to extend beyond secrecy goals, and Hess and Mödersheim [51] how to extend to
stateful protocols.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 53

For several typing results, including the present one, the proof is based on a constraint-
based representation of protocol executions. The core of the proof is to show that the
constraint-solving procedure for the lazy intruder constraints never performs an ill-typed
substitution when applied to a constraint that originates from a type-flaw resistant protocol.
Originally, the lazy intruder was however devised not as a proof technique but as a symbolic
model-checking technique, namely in tools like OFMC and CL-Atse of AVISPA and
AVANTSSAR [13, 64, 72, 10, 9], and the noname tool [39] for (α, β)-privacy implementing
our decision procedure. It is in the nature of the matter that these tools, for a type-flaw
resistant protocol, will not consider any ill-typed messages, so the restriction to a typed
model does not further cut down the size of the state space they explore.

The mentioned model-checking approaches are concerned with bounded number of
steps of the honest agents. However, for verifying protocol security without such bounds,
one of the most popular tools is ProVerif [16], based on abstract interpretation, basically
abstracting the fresh messages into a coarser set of abstract values, while maintaining
unbounded steps of both honest agents and intruder. This is in general still undecidable,
but with a typed model, it becomes decidable as shown by Blanchet and Podelski [18]:
essentially, we will have finitely many equivalence classes and thereby a finite set of well-
typed messages that can occur in the saturation of Horn clauses that represent “what can
happen”. A similar tool based on abstract interpretation is PSPSP [54], which relies on a
typed model and computes a finite fixpoint for stateful protocols. While the abstraction is
in general an over-approximation, PSPSP implements a decision procedure for the resulting
abstraction under a typed model.

There are currently no tools and methods for (α, β)-privacy that perform verification
for an unbounded number of sessions; therefore we currently cannot demonstrate how a
typed model can help here and possibly allow for a decision procedure here, as well, but
this seems very likely.

Finally, concerning interactive theorem proving, the first results in Isabelle/HOL by
Paulson [67] in fact use a typed model (without any typing result). It underlines how the
typed model allows for easier reasoning than dealing with ill-typed messages in manual
proofs. Similarly, the compositionality result of Hess, Mödersheim, and Brucker [53] in
Isabelle relies on typed model. Our compositionality result for (α, β)-privacy in Chapter 5
also largely benefits from a typed model.

A major challenge, and in fact the focus of our second contribution, is to give a typing
result for privacy-type properties, where the most common approaches work with models
based on trace-equivalence. [32, 31] are, to our knowledge, the only major results for this
question, and thus also the related work closest to ours. Since our approach is based on
(α, β)-privacy, it plays a quite different game but results in [47, §V] suggest that the two
notions have similar expressive power.

Our work is more general than [32, 31] in the following three regards. First, they require
that protocols are deterministic and they do not support if-then-else branching. In contrast,
we allow non-deterministic choice of privacy variables by honest agents and if-then-else
with conditions that can refer to all messages in scope (including privacy variables). This
generalization is significant because it allows for protocols where the privacy also depends
on the control flow, e.g., where the intruder does not know whether a recipient accepted a
message (and sent a legitimate answer) or not (and sent a decoy answer). Note also that a
common restriction for verification tools is the notion of diff-equivalence which (at least in
its original form) forbids dependence on conditions.

A second generalization is the handling of constructors and destructors. [31] does
not model destructors in the processes (only in the intruder model) and rather obtains
decryption by pattern matching. We instead support the explicit application of destructors

54 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

by honest agents that (α, β)-privacy uses in try-catch statements, where we only require
the catch branch to be the nil process, i.e., honest agents just abort when decryption fails.
We in fact turn this into a pattern-matching problem, but it is part of the method (and its
soundness proof) rather than being part of the model. Note that we assume that failure of
a destructor is detectable; this is significant as an intruder may learn something from this
failure. It seems reasonable to assume for the constructor/destructor theories supported
here as most standard cryptographic implementations of primitives like AES and RSA
indeed reveal if decryption failed. An interesting question is how to handle more algebraic
properties like those of exponentiation with inverses that does not allow to detect failure
to “decrypt” in general. However, such algebraic properties are not supported by any of
the mentioned typing results.

A final generalization is that our approach supports protocols with long-term state (the
memory cells). An interesting aspect of this is that there are several results concerning
decidability based on typing and bounding the number of fresh nonces; one may wonder if
this is also applicable in our case. However, there is an obstacle since our argument requires
an infinite supply of constants of all types for the intruder to solve the disequalities that
arise, among other things, from handling the long-term state. We thus leave this question
to future work.

Another closely related problem is that of compositionality, which is also regarded
as a relative soundness result: given that several protocols are secure in isolation, can
we show that also their composition is secure? It works indeed also by similar methods,
namely transforming an attack against the composed system to an attack against one
component. Since here one of the key problems is when the attacker can use messages
from one component in another component, and a solution can be similarly some form of
tagging, one could call compositionality a form of “typing” for a family of protocols. In fact,
typing can thus be a stepping stone for a compositionality result [51] and we investigate
this for (α, β)-privacy in Chapter 5.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 55

56 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 5

Compositionality

This chapter is based on [42].
Using a communication medium like the Internet where a variety of protocols run in

parallel, sharing a public-key infrastructure, begs the question of protocol composition:
whether any attacks can arise even if each protocol in isolation is secure. It is challenging
to verify the composition directly, not the least because any new protocol and any protocol
update would require one to start verification from scratch. There are compositionality
results that show: this composition is secure, if the messages of the component protocols
are sufficiently disjoint [49], which can be achieved, e.g., using tags [34, 33, 7].

Beyond protocols that only share network and public-key infrastructure, there are some
compositionality results that allow for some interaction between the component protocols,
e.g., one protocol P1 negotiates a key that is then used by another protocol P2. There
needs to be an interface between the components; for instance, P1 gives guarantees of
secrecy, authentication, and freshness of the negotiated keys, and P2 may guarantee that it
does not leak those keys to another party. This also allows one to verify that components
can be replaced with ones that offer the same interface to the other protocol: for P2 it does
not matter how exactly P1 achieves its goals and vice-versa.

For non-privacy properties like secrecy and authentication that can easily be expressed
as trace properties, the compositionality argument consists in demonstrating that any
attack trace against the composed protocol can be split into traces for the component
protocols in isolation such that the goals of at least one component are violated. This
reasoning is substantially more complicated when considering privacy properties; this is
especially true for the common approaches to privacy based on trace-equivalence notions.
Thus, there exist but a few compositionality results for privacy-type goals and they have
rather restrictive assumptions; this is discussed in detail in the final section.

We now investigate how to obtain a compositionality result based on (α, β)-privacy.
Since (α, β)-privacy allows for turning privacy into a reachability problem without losing the
expressive power of equivalence-based notions, we can thus resort to the standard approach
for compositional reasoning, i.e., showing that an attack trace against the composed
protocol can be mapped into traces for the component protocols, and in fact obtain a
general result:

• The component protocols do not need to be disjoint: they can have a set of shared
secrets, and these secrets can also be declassified in the course of the protocol.

• A component protocol can be used as a subprotocol called by another protocol, e.g.,
to query a key server and proceed with the result from the key server.

• The component protocols can include long-term state (that lasts beyond a single

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 57

session) and this long-term state can also be shared.

In this chapter, we assume that the cryptographic operators are modeled with construc-
tors and destructors according to Definition 3.4.1. Moreover, we assume a typed model,
where the intruder is only sending messages of the correct types. This makes the reasoning
about attack traces much easier and typing results for similar protocol models show that
this is without loss of attacks for well-tagged protocols [7, 52, 51, 31, 53, 43]. Note that
in this chapter the fact that all messages are well-typed is an assumption. The result
of Chapter 4 is one way to ensure that this assumption is sound (for type-flaw resistant
protocols) and there may be other ways to achieve this.

Our third contribution in this thesis is a compositionality result for (α, β)-privacy: we
start by extending (α, β)-privacy to generalize the class of protocols that can be modeled,
with new constructs useful for protocol composition, and we identify requirements for
composable protocols, which allow for the modular verification of privacy goals with an
“assume-guarantee” approach, i.e., we verify one component with the interface of the other
components.

The chapter is organized as follows. In Section 5.1, we introduce protocol composition
through an example based on Needham-Schroeder. In Section 5.2, we define some extensions
of the protocol specifications and their semantics. In Section 5.3, we define the class of
composable protocols that can be composed securely. In Section 5.4, we present our
compositionality result. In Section 5.5, we summarize how to apply our result and discuss
some limitations. Finally we conclude in Section 5.6 with the discussion of related work.
All the proofs and intermediate results are provided in Appendix A.5, and we give a larger
example of composition based on a simplified model of TLS in Appendix C.

5.1 Running example
As a simple example we play a bit with the famous Needham-Schroeder-Lowe public-key
protocol (NSL) [65, 59]. In this protocol, the initiator A communicates with the responder
B over an insecure network in order to establish a key. Privacy was not a concern in the
original protocol, but we can easily add this as a requirement: when A contacts B, nobody
else but A and B should learn who is communicating here. In fact, A and B may not know
each other in advance and need to first get each other’s public key from a key server S who
thus also learns their identities. In the original protocol, the key-exchange with the server
is not encrypted, therefore everybody can observe that A is looking up B’s public key and
vice-versa. We are going to encrypt this exchange. As an example for compositionality, we
actually split the protocol into two components: P1 the three-way handshake between A
and B and P2 the lookup protocol for the key server, so we can verify handshake and key
server protocol separately.

We give the specification of P1 the handshake protocol in Fig. 5.1 (on the left); the
notation is adapted from the transaction language used in the previous chapters, with
some extensions for protocol composition, procedure calls and sequencing of transactions.
We give in the next sections the precise syntax and semantics. We use the color red to
highlight the parts in a protocol that the other protocol must know about.

In the first component, we have two roles, Initiator and Responder, which each consist
of a number of transactions. Recall that a transaction is a sequence of steps that will be
executed atomically (without interleaving by other transactions). One of our extensions is
to express a role with transactions separated by semicolons. This is relevant for privacy as
we assume that the intruder knows the protocol and can observe when an agent reaches the
end of a transaction in our semantics, because typically the agent is inactive and waiting
for another input message.

58 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Role Initiator :
⋆ xA ∈ Honest.
⋆ xB ∈ Agent.
PKB := lookup(xA, xB)
;
νNA : nonce, R : nonce.
snd(crypt(PKB, f1(NA, xA), R)).
if xB ∈ Honest then
⋆ xB ∈ Honest

else
⋆ xA

.= γ(xA) ∧ xB
.= γ(xB).

snd(NA)
;
rcv(crypt(pk(xA),

f2(NA, NB : nonce, xB),_ : nonce)).
νR′ : nonce.
snd(crypt(PKB, f3(NB), R′))

Role Responder :
rcv(crypt(pk(B : agent),

f1(NA : nonce, A : agent),_ : nonce)).
if B /∈ Honest then
stop

;
PKA := lookup(B,A)
;
νNB : nonce, R : nonce.
snd(crypt(PKA, f2(NA, NB, B), R)).
if A /∈ Honest then
snd(NB)

;
rcv(crypt(pk(B), f3(NB),_ : nonce))

Procedure lookup(A : agent, B : agent) :
νN : nonce, R : nonce.
snd(scrypt(sk(A, s), req(B,N), R))
;
rcv(scrypt(sk(A, s),

resp(B,PKB : pk(agent), N),_ : nonce)).
assert(PKB .= pk(B)).
return(pk(B))

Role Server :
rcv(scrypt(sk(A : agent, s),

req(B : agent, N : nonce),_ : nonce)).
νR : nonce.
snd(scrypt(sk(A, s), resp(B, pk(B), N), R))

Figure 5.1: Specification based on the Needham-Schroeder-Lowe public-key protocol

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 59

The first transaction in the initiator role is that we choose two privacy variables xA
and xB from the sets Honest and Agent. These can be any finite sets (that we do not
specify here) where Honest ⊆ Agent and the intruder can control a number of dishonest
agents in Agent\Honest. The symbol ⋆ means here that the intruder is allowed to learn the
domains of xA and xB. More precisely every state will contain a formula α, also called the
payload, which contains all the information that was deliberately released to the intruder;
in this case the conjunct xA ∈ Honest∧ xB ∈ Agent. Note that the variables will be freshly
renamed for every session, i.e., instantiation of the role. One may wonder why xA ∈ Honest
rather than Agent. This is because xA would be the agent executing this role; since a
dishonest agent may not follow the protocol, their behavior is described by the intruder
rules (that includes the possibility of following the protocol), and thus it is convenient to
restrict the execution here to the honest xA (while xB may well be a dishonest agent). The
first thing that xA really does is to look up the public key of xB. Whatever happens here
will be the job of the other protocol P2, so we just consider here that this results in a key
PKB.

In its second transaction, xA generates nonces NA and R and sends out the first real
message of the protocol: crypt(PKB, f1(NA, xA), R) where R is a randomization value to
avoid deterministic encryption, and f1 is abstracting the data format of the first message
of the protocol.

Note that in this way, the protocol would be violating privacy: if xB is honest, then
the intruder would learn this fact from the outgoing message, assuming the intruder knows
the private keys of all dishonest agents. (This is the worst-case assumption behind the
Dolev-Yao model that all dishonest agents work together and we can thus think of them
as one single intruder.) Moreover, if the intruder is dishonest, then they learn at this
point both the values of xA and xB. Both deductions are hardly avoidable, and so we just
specify as part of this transaction that we release this information, again to be stored in the
formula α. Recall that xA

.= γ(xA) refers to a third formula γ that is present besides α and
β in every state: it represents the truth, mapping every privacy variable to its true value.
Thus if γ(xA) = a, then we release here the formula xA

.= a. Our compositionality model
by default treats all fresh values like nonces as secrets, and it counts as an attack (called
leakage) if the intruder learns these values, unless we explicitly declassify them. Therefore,
the nonce NA is initially a shared secret of the two protocols, but in the dishonest xB case,
the intruder is now able to learn NA since xB is the intended recipient for it. Thus the
nonce has to be declassified, while in the honest xB case it would count as a leakage if the
intruder finds out NA as it is then shared between two honest agents.

The third and final transaction consists of both receiving the answer from xB and
sending the reply. Here, the process for receiving uses pattern matching expressing that
xA only accepts the incoming message iff: it is encrypted with the public key pk(xA) of
xA, it contains the format f2 of the second step of the protocol, the first item under f2
is nonce NA that xA created earlier, and the third item under f2 is the name xB chosen
before. Moreover, the variable NB is bound at this point to whatever (apparently) xB has
sent as their nonce. (The underscore corresponds to variable that is not used.) The role
will just abort when receiving a message that does not fit; this also prevents the intruder
from sending several messages attempting an online-guessing attack, since the role will
stop at the first failure. We will later explain in more detail that this pattern matching is
syntactic sugar for receiving a linear pattern (as defined in Definition 4.1.6) and making
equality checks with an if-then-else statement.

Let us turn now to the responder role. Here, we start with a receive message that
contains again a pattern with variables B, NA and A; similarly as before, we stop if the
input has not the right form, but the variables B and NA and A can be arbitrary and this

60 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

is their binding occurrence. Thus, in this model, B “learns” its name from this message,
meaning that the encrypted message reaches it intended recipient. Since we want that
this is only executed by an honest agent, we stop here if B /∈ Honest. The stop means
that in this case the following transactions of this role are not going to be executed. (In
fact, this is the same stop that occurs when the pattern of a receive is not matched.) Our
semantics assumes that the intruder can observe such a stop, because the agent ceases to
communicate.1 The rest of the responder role is similar to the initiator role.

Let us now describe the protocol P2 (given in Fig. 5.1, on the right). Here the first
role is the procedure lookup, i.e., this role cannot spontaneously start or be triggered by a
received message, but rather this is started by an invocation from P1, binding the agent
names A and B. Here we assume that each honest agent has a shared key sk(A, s) with
the trusted key server s. Note that s is a constant of type agent i.e., this represents a fixed
honest server that cannot be played by the intruder. The first message is an encrypted
request (message format req) for the public key of B, including a fresh nonce N .

For the sake of this running example, we consider that the public-key infrastructure is
fixed but not publicly known: agents do not initially know the keys of other agents (hence
the lookup), but each agent x has their own fixed key pk(x).2 When the lookup process
receives the answer from the server, we have the assertion PKB .= pk(B). This reflects
a protocol goal: it should never happen that the server returns another key than pk(B)
as answer to a request for public key of B. If such a mismatch were to happen, then it
would count as an attack; in this way we make the assertion part of the verification of the
security of the lookup protocol. Finally, if the assertion has succeeded, the lookup process
returns the key it has received from the server. Since we can at this point be sure that
PKB .= pk(B), we can simply return pk(B). Thus lookup is guaranteed to always give back
the correct key, or fail with an attack before returning something.

5.1.1 The composition

Now the composition is in some sense obvious: the calls to lookup in the initiator and re-
sponder roles shall be replaced with the procedure’s body under the respective instantiation
of the formal parameters, and replacing PKB and PKA in the initiator and responder roles
with the return values pk(B) and pk(A), respectively. This is formalized in Definition 5.2.3.
The composed protocol consists then of this expanded initiator and responder roles of P1
and the server role of P2 (because the server is triggered by incoming messages, not a
procedure call).

This gives the entire protocol as a monolith, and we rather want to verify the two
protocols as components in isolation. However, in complete isolation, neither component
really makes sense. This is because P1 cannot really do anything without some form of
mechanism to get the key of the intended recipient. While P2 can work sort of independently,
it really gets its actual goals from the context with P1, namely that it is transporting the

1One may wonder whether the if could break privacy: since the intruder observes the stop, they also
observe that B was not honest. However, it is easy to notice that the intruder must already know this in
any case, because either the intruder has composed this message themselves (and thus knows that they put
the name of a dishonest agent in it) or this was sent by an honest initiator, so the information about sender
and receiver was already released earlier. Thus the protocol is not revealing any information about the
agents at this point. In general, if the modeler accidentally forgets to release something that the intruder
can indeed learn, this means erring on the safe side: the verification of (α, β)-privacy will just fail and
demonstrate how the intruder can learn more than was deliberately released. In this case the modeler can
review and adapt the model either by changing the protocol to strengthen privacy, or by releasing more
information.

2In contrast to previous chapters, we assume here that pk is not a public function, so the intruder also
does not know this public-key infrastructure.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 61

names and public keys of agents that are privacy variables chosen in P1; we need this
context to make clear that P2 has the obligation to keep these values private.

We thus need to define an interface between the two protocols, and we do so by
highlighting in each protocol which steps are relevant to the other protocol. In [53], the
interface is made explicit with the ⋆ symbol; for now we use highlighting to avoid confusion
with the choices of privacy variables. Let us now discuss the highlighting in Fig. 5.1.
Basically this is saying: when verifying either protocol, one needs to consider at least the
highlighted steps from the other protocol, because these are relevant things happening in the
other protocol. Most notably this includes the non-deterministic choices like xA ∈ Honest,
because here a privacy-critical information is introduced, as well as all released information
that is released in α, like xA

.= γ(xA) Procedure calls are replaced with the body of
procedures so we did not highlight them in Fig. 5.1, but they are obviously relevant to the
other protocol. Creation of fresh nonces is also highlighted, because it introduces fresh
secrets that can in principle reach either protocol. As part of the protocol composition,
it is necessary to specific a set Secrets of messages that are initially secret and may be
declassified during the protocol execution. For our running example, we have to specific all
nonces as secrets, as well as all ground messages of the form crypt(pk(a), f1(na, a), r) (and
their subterms) where a is a concrete agent name and na, r are nonces. These messages
need to be part of the set Secrets because we will require in Definition 5.3.4 that all terms
in the interface are either public or declared as secrets.

All other kinds of steps are not necessarily highlighted: it depends on whether this
step is deemed relevant for the other protocol. We will have below some requirements on
the highlighting, but besides these requirements it is the choice of the modeler what to
highlight. Naturally, we want as few highlighted steps as possible, because the more details
can be hidden, the easier the verification task gets.

As can be seen in the specification, we have highlighted all the conditionals: in the
initiator role, releases depend on the condition; in the first conditional of the responder role,
it depends on the condition whether we proceed in the first place, and the second conditional
is again containing a release. Of all the protocol messages we have only highlighted the
first message of P1. This is because the message is binding several of the variables in the
responder role upon reception, in particular A and B that are again relevant for highlighted
steps. Thus this binding occurrence is also relevant.3

Highlighting a snd(t) step has another important meaning in our composition: it means
that the message t is now declassified, i.e., the intruder may know it. We use declassification
in the initiator role with snd(NA) in the case xB is dishonest: the intruder is just allowed
to know NA in this case, because one of the dishonest agents is the intended recipient of
NA.

We thus regard as a component protocol the individual steps of that component
protocol plus all the highlighted steps of the other component protocol. In a nutshell, the
compositionality result below is that an attack trace against the composed protocol can be
transformed into an attack trace against one of the components. Thus it suffices to verify
the security of the components to show the security of their composition—provided they
satisfy the requirements of our compositionality theorem.

3In Appendix C, we discuss an alternative model that avoids highlighting the protocol-specific message.

62 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

5.2 Extensions of specification and semantics

5.2.1 Protocol specification
We follow the same notations as in Chapters 2 and 4 with additional constructs for protocol
composition.

Definition 5.2.1 (Protocol specification). A protocol specification consists of

• a number of roles and procedures according to the syntax below;

• a number of memory cells, e.g., cell[·], together with a ground context C[·] for each
memory cell defining the initial value of the memory, so that initially cell[t] = C[t];

• a set Γ0 of Σ0-interpretations of the relations occurring in the roles and procedures;
and

• an assignment of every constant and memory cell to a type.

R Role
::= Pl;R Sequence
| Pl Transaction

P ::= proc(X1 : τ1, . . . , Xn : τn) : R Procedure

Pl Left process
::= ⋆ x ∈ D.Pl Non-deterministic choice
| rcv(t : τ).Pl Receive
| let X = t.Pl Let statement
| X := proc(t, . . . , t) Procedure call
| Pc Center process

Pc Center process
::= X := cell[t].Pc Cell read
| if φ then Pc else Pc Conditional statement
| let X = t.Pc Let statement
| stop Stop
| νX1 : τ1, . . . , Xk : τk.Pr Fresh constants

Pr Right Process
::= snd(t).Pr Send
| cell[t] := t.Pr Cell write
| ⋆ φ.Pr Release
| assert(φ).Pr Assertion
| let X = t.Pr Let statement
| return(t) Return
| 0 Terminate (nil process)

where D is a finite set of public constants, t ranges over destructor-free messages (that
do not contain ff), τ, τi range over types and φ ranges over quantifier-free Herbrand logic
formulas.

The non-deterministic choices, receives, let statements, procedure calls, cell reads and
fresh constants are binding.

We require that every role is closed. Every procedure has a number of parameters,
which are the free variables (each associated with a type) of the procedure’s body, and every
procedure call must give the appropriate number of arguments. Moreover, the last step of a

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 63

procedure must be either a return statement or stop. Finally, there must be no cycle in the
graph of procedure calls.

In the previous chapters, a protocol specifies a fixed interpretation γ0 of all relations.
To consider several interpretations, we would have to apply our decision procedure several
times. Here instead, the specification defines a set Γ0 of interpretations for the relations that
are used in the processes, and we consider that the intruder knows that in every concrete
execution, the true interpretation is in Γ0 (but they do not know a priori which one). Note
that Γ0 is finite since we only allow relations over the finite alphabet Σ0. Relations can
model some context about the agents participating in the protocol. For instance, in our
model of NSL, we could have a relation talk(·, ·) over agent names that represents whether
some agent wants to talk to another one. Then the set of interpretations could contain,
e.g., some interpretations where Alice (denoted a) wants to talk to Bob (denoted b), i.e.,
where talk(a, b) holds, and some other interpretations where it is not the case, modeling
that the intruder does not know whether Alice actually wants to talk to Bob. We could
then require that all interpretations agree on talk(x, y) whenever x is dishonest, modeling
that initially the intruder knows who dishonest agents want to talk to.

Definition 5.2.2 (Syntactic sugar). For ease of notation, we allow the following in
specifications:

• Trailing 0 and else 0 can be omitted.

• Variables bound in a message received but otherwise never used can be written with a
wildcard _ instead of a variable name.

• A step of a right process can be written in the left or center part with the meaning
that this step is executed in every branch.

As in Chapter 4, the semantics of receiving a message is only defined when the message
is linear with only fresh variables and no constants. In order to ensure this, we transform a
message received, that may contain variables bound earlier or some constants, into a linear
term with only fresh variables and no constants. We then insert a conditional statement to
check that the freshly introduced variables have the expected values.

Formally, for a message received of the form R;P1.rcv(t).P2.P3, where R is a sequence
of transactions, P2.P3 is a left process and P3 is a center process, we obtain a linear term
t′ by replacing in t every variable already bound in R or P1 and every constant with fresh
intruder variables, and we replace rcv(t).P2.P3 with rcv(t′).P2.if t

.= t′ then P3 else stop.

Example 5.2.1. snd(t).if φ then P else Q is short for if φ then snd(t).P else snd(t).Q.
The process ⋆ x ∈ Agent.rcv(scrypt(sk(x, s),M,_).P , where P is a center process, is

short for ⋆ x ∈ Agent.rcv(scrypt(sk(X,S),M,_)).if X .= x ∧ S .= s then P else stop. Here
we have simplified the formula since only X and S have expected values. ◁

We have already presented informally most of the steps in processes when describing
the example in Section 5.1. Moreover, many constructs are explained in Chapter 2 and
in this chapter, these constructs have the same semantics as in Table 2.1, except that we
extend the definition to support roles. We explain below the parts of protocol specification
which are newly introduced in this chapter. The details of the semantics for processes are
given in Definition 5.2.7.

Roles

The behavior of agents can be modeled as roles, which are defined as sequences of transac-
tions. The benefit of using roles is that we can express the behavior of agents in a single

64 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

role, where the variables bound in some transaction in the role are still in scope in every
transaction coming later in the role. For instance, we can express that an agent generates
a fresh value, sends a message containing that value, and then later receives a message
that they can check contains the fresh value generated earlier. Without the notion of roles,
we would need to use memory cells or message passing to communicate the local state of
the agent from one transaction to the next. The execution of a sequence P1; . . . ;Pn is not
on the whole atomic, but each transaction Pi is executed atomically, in order. Between
each of these Pi, other transactions from the protocol may be executed.

Let

In a let statement, a fresh variable can be bound to a message, where the scope of
the binding is the rest of the role or procedure (and not just the current transaction).
Let statements are part of the semantics and not just syntactic sugar: we will consider
interleavings of transactions and the substitution has to be applied to all transactions that
follow the let statement.

Procedure call and return

A role can call a procedure, which is also a sequence of transactions but takes formal param-
eters and returns a value. When the procedure is called, its parameters are instantiated
with the arguments of the call, and the returned value is bound to a fresh variable that
can be used in the rest of the role. Procedure call is one of the constructs that can be used
for modeling protocol composition.

Stopping

The execution of a role or procedure can be stopped, which terminates not only the current
transaction but also the rest of that role or procedure. In our semantics, the intruder can
distinguish possibilities that are stopping and the ones that are not stopping (e.g., sending
a message).

Assertion

A transaction can contain assertions, and if during the protocol execution, there is an
assertion that does not hold, then it is considered as an attack on the protocol. Assertions
are useful for our modular verification using an “assume-guarantee” approach: for a
component that contains an assertion, the abstract interface typically does not contain the
assertion and from the point of view of other components, the assertion can be assumed to
hold; the assertion is however checked when verifying the component itself.

5.2.2 Semantics

The grammar of specifications allows for procedure calls, where one protocol is calling a
process that may be specified by another protocol. Procedure calls can be used to define
the interface between two protocols, e.g., one protocol obtains a key that is established by
another protocol. The semantics of a procedure call is essentially to inline the body of the
procedure. Formally, we define the replacement of procedure calls with the processes they
represent as procedure call expansion.

Definition 5.2.3 (Procedure call expansion). Let R1, R2 be sequences of transactions such
that R1 does not contain any procedure call and let P.X := proc(t1, . . . , tn) be a transaction,

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 65

where proc is a procedure with parameters X1, . . . , Xn and body R. Define

expand(R1;P.X := proc(t1, . . . , tn);R2) = R1; expand(P.σ(R′);R2)

where σ = [X1 7→ t1, . . . , Xn 7→ tn] and R′ is the same as R except that every return(t) is
replaced with let X = t, i.e., the return value is bound to variable X.

The semantics of let X = t (defined in Table 5.1) is that the variable X will be
substituted with t in the rest of the sequence of transactions when this step is executed.
Since the graph of procedure calls is required to be acyclic, the expansion terminates.
Example 5.2.2. Let us consider again our NSL running example from Section 5.1. In the
initiator role, there is a procedure call to look up the public key of the responder. After
procedure call expansion, we get the following sequence of transactions:

⋆ xA ∈ Honest.
⋆ xB ∈ Agent.
νN : nonce, R′′ : nonce.
snd(scrypt(sk(xA, s), req(xB, N), R′′))
;
rcv(scrypt(sk(xA, s), resp(xB,PKB′ : pk(agent), N),_ : nonce)).
assert(PKB′ .= pk(xB)).
let PKB = pk(xB)
;
νNA : nonce, R : nonce.
snd(crypt(PKB, f1(NA, xA), R)).
if xB ∈ Honest then
⋆ xB ∈ Honest

else
⋆ xA

.= γ(xA) ∧ xB
.= γ(xB).

snd(NA)
;
rcv(crypt(pk(xA), f2(NA, NB : nonce, xB),_ : nonce)).
νR′ : nonce.
snd(crypt(PKB, f3(NB), R′))

Similarly, before executing the responder role, the lookup procedure call needs to be
expanded. ◁

In this chapter, we extend the notion of state with additional information that is used
for compositionality. Every state contains a sequence ρ called choice of recipes that stores
the recipes used by the intruder whenever the protocol was receiving a message4, and a
boolean flag that tracks whether some assertion was broken.

Definition 5.2.4 (State). A state S is a tuple S = (α, γ,P, ρ,flag) such that:

• α is a Σ0-formula, the payload;
4In contrast to the previous chapters, here a choice of recipes is a sequence of recipes and not a

substitution, because we only deal with ground recipes and we simply need to record which recipes were
used.

66 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

• γ is a Σ0-formula, the truth;

• P is a set of possibilities, which are each of the form (R,φ, struct, δ), where R is
a sequence of processes, φ is a Σ-formula, struct is a frame and δ is a sequence of
memory updates of the form cell[s] := t for messages s and t;

• ρ is a sequence of recipes, the choice of recipes made so far for every message sent
by the intruder; and

• flag is either true or false, where the flag set to true represents that some assertion
did not hold.

Let P = {(R1, φ1, struct1, δ1), . . . , (Rn, φn, structn, δn)} be the possibilities in S. Then
S is well-formed iff

• α |=
∨

γ0∈Γ0 γ0;

• γ |= α ∧
∨n

i=1 φi;

• the φi are such that |=Σ ¬(φi ∧ φj) for i ̸= j and fv(φi) ⊆ fv(α);

• the structi are frames with the same labels occurring in the same order; and

• the recipes in ρ are over the domain of the structi.

S is a milestone iff every sequence Ri starts with the nil process, and S is an intermediate
state otherwise.

In the rest of the chapter, we only consider well-formed states (our semantics ensures
that the reachable states of a protocol are well-formed).

Note that, in contrast to Chapter 2, we do not need the Σ0-formula β0 anymore,
because for compositionality we only support non-deterministic choices with mode = ⋆,
i.e., privacy variables that become part of the payload α (that is, we do not have any
variables with mode = ⋄). Another difference is that, since a protocol now specifies a set
Γ0 of interpretations, the requirements of well-formedness are updated accordingly with
the disjunction over Γ0 instead of a single interpretation γ0. This models the fact that the
intruder a priori does not know exactly which interpretation of relations is true; they just
know that one among Γ0 holds.

In a given state, the privacy goals are expressed through the payload α. The intruder
knowledge is expressed through a formula β, which is defined based on the possibilities in
that state. The intruder has made concrete observations, recorded in a frame concr , they
consider a set of possibilities containing φi, structi such that, if condition φi holds, then
the concrete instances of structi are statically equivalent with concr .

Definition 5.2.5 (Intruder knowledge). Given a well-formed state S = (α, γ,P,_,_), let
concr = γ(structj) where (_, φj , structj ,_) ∈ P is the unique possibility such that γ |= φj.
The intruder knowledge in state S is defined as

β(S) = α ∧
n∨

i=1
φi ∧ concr ∼ structi .

We say that S satisfies privacy iff (α, β(S))-privacy holds.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 67

5.2.3 State transition system
A protocol specification defines a set of roles, which are sequences of transactions, and
a concrete protocol execution corresponds to an interleaving of such transactions. We
later want to consider any number of instances of the roles of the protocol, and call them
threads. Each such thread will get a unique thread ID. We allow any interleaving of the
transactions of the different threads: as before, each transaction is atomic, but for instance
after the first transaction of thread TID1, can come a transaction of thread TID2, and then
another of thread TID1. In this way, we get any sequence of transactions corresponding
to unbounded “sessions” of the protocol: when projecting to one particular thread ID,
we get (a prefix of) an instance of a role. This will be made precise in Definition 5.2.9
below, but for now we define a protocol execution as a sequence of transactions, where
each transaction is annotated with a thread ID. All possibilities in a state will contain such
a sequence of transactions and we will ensure the invariant that in every possibility, the
sequence has the same length and corresponding transactions have the same thread ID.

Definition 5.2.6 (Thread filtering). Let P1︸︷︷︸
TID1

; . . . ; Pn︸︷︷︸
TIDn

be a sequence of transactions (after

expansion), where every transaction is annotated with a thread ID.
We define filter=TID(P1︸︷︷︸

TID1

; . . . ; Pn︸︷︷︸
TIDn

) as the largest subsequence that only contains trans-

actions with thread ID equal to TID. Conversely, filter ̸=TID(P1︸︷︷︸
TID1

; . . . ; Pn︸︷︷︸
TIDn

) is the largest

subsequence that does not contain any transaction with thread ID equal to TID.

In the rest of the chapter, we will omit the braces with thread IDs whenever they are
not relevant and we just need to consider the transactions themselves.

The symbolic execution is defined through a set of rules that are transitions between
states. Each transition evaluates one step of the processes.

Definition 5.2.7 (Semantics). The semantics of the symbolic execution is given in Table 5.1.
The changes to the state are highlighted in red. The semantics defines a relation → on
states. Let S, S′ be two milestones. We define −→ as the relation such that S −→ S′ iff
S →∗ S′ and with the requirement that whenever the Eliminate rule is applicable, then it
must be applied.

Compared to Table 2.1, we have the following new rules:

• Let: We use let statements to bind variables to messages. Note that this is part of
the semantics and not purely syntactic sugar because we have to substitute a variable
in every transaction that remains in the sequence being executed.

• Assert: We check an assertion in the unique possibility that is the case (according
to the ground truth γ) and update the assertion flag if the formula asserted does not
hold.

• Stop: The process stop aborts an entire role (sequence of transactions), so at this
point we remove all transactions having the same thread ID from the transactions
that remain to be executed. Note that we have made the stop observable to the
intruder, so they can distinguish possibilities that are not stopping and rule them
out.

• Milestone: This is the updated version of the Terminate rule, where now every
process may be stopping, sending or just 0 and the intruder only keeps the possibilities
that are 0 to reach a milestone.

68 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Table 5.1: Semantics of the symbolic execution

Choice
(α, γ, {(⋆ x ∈ D.Pi;Ri, φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)
→ (α ∧ x ∈ D, γ ∧ x .= c, {(Pi;Ri, φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)
for every c ∈ D

Receive

(α, γ, {(rcv(t).Pi;Ri, φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)
→ (α, γ, {(σi(Pi;Ri), φi, structi, δi) | i ∈ {1, . . . , n}}, ρ.r,flag)
for every recipe r over the domain of the structi,
where σi = mgu(t .= structi(r))

Let (α, γ, {(let X = t.P ;R,φ, struct, δ)} ⊎ P, ρ,flag)
→ (α, γ, {((P ;R)[X 7→ t], φ, struct, δ)} ∪ P, ρ,flag)

Cell read

(α, γ, {(X := cell[s].P ;R,φ, struct, δ)} ⊎ P, ρ,flag)
→ (α, γ, {(P ′;R,φ, struct, δ)} ∪ P, ρ,flag)
where δ|cell = cell[s1] := t1. · · · .cell[sk] := tk, the ground context for initial
value of cell is C[·] and P ′ = if s .= s1 then let X = t1.P else . . .

if s .= sk then let X = tk.P else let X = C[s].P

Cell write (α, γ, {(cell[s] := t.P ;R,φ, struct, δ)} ⊎ P, ρ,flag)
→ (α, γ, {(P ;R,φ, struct, cell[s] := t.δ)} ∪ P, ρ,flag)

Conditional (α, γ, {((if ψ then P1 else P2);R,φ, struct, δ)} ⊎ P, ρ,flag)
→ (α, γ, {(P1;R,φ ∧ ψ, struct, δ), (P2;R,φ ∧ ¬ψ, struct, δ)} ∪ P, ρ,flag)

Release
(α, γ, {(⋆ ψ.P ;R,φ, struct, δ)} ⊎ P, ρ,flag)
→ (α′, γ, {(P ;R,φ, struct, δ)} ∪ P, ρ,flag)
where α′ = α ∧ ψ if γ |= φ and α′ = α otherwise

Assert
(α, γ, {(assert(ψ).P ;R,φ, struct, δ)} ⊎ P, ρ,flag)
→ (α, γ, {(P ;R,φ, struct, δ)} ∪ P, ρ,flag′)
where flag′ = true if γ |= φ ∧ ¬ψ and flag′ = flag otherwise

Eliminate S = (α, γ, {(P ;R,φ, struct, δ)} ⊎ P, ρ,flag)→ (α, γ,P, ρ,flag)
if β(S) |=Σ ¬φ

Send

(α, γ, {(snd(ti).Pi;Ri, φi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P, ρ,flag)
→ (α, γ, {(Pi;Ri, φi, structi.l 7→ ti, δi) | i ∈ {1, . . . , n}}, ρ,flag)
if γ |=

∨n
i=1 φi and every process in P starts with stop or 0,

where l is a fresh label

Stop

(α, γ, {(stop︸︷︷︸
TID

;Ri, φi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P, ρ,flag)

→ (α, γ, {(0︸︷︷︸
TID

;filter ̸=TID(Ri), φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)

if γ |=
∨n

i=1 φi and every process in P starts with snd(·) or 0

Milestone
(α, γ, {(0;Ri, φi, structi, δi) | i ∈ {1, . . . , n}} ⊎ P, ρ,flag)
→ (α, γ, {(0;Ri, φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)
if γ |=

∨n
i=1 φi, P ≠ ∅ and every process in P starts with stop or snd(·)

Next (α, γ, {(0;Ri, φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)
→ (α, γ, {(Ri, φi, structi, δi) | i ∈ {1, . . . , n}}, ρ,flag)

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 69

• Next: Once we have reached a milestone, if there is still a transaction to execute,
then we can start it.

The symbolic execution maintains some invariants, assuming that initially every possi-
bility starts with the same sequence of transactions, with the same thread IDs:

• The non-deterministic choices happen at the same time in every possibility, because
these steps occur before any branching.

• The receives also happen at the same time in every possibility, because these steps
occur before any branching and also because we are only considering well-typed
instantiations and messages received are linear with only fresh intruder variables and
no constants, so in every frame, the unification problem between the received pattern
and the actual message has a solution.

• The thread ID of the transaction being executed is the same in every possibility,
because the possibilities are synchronized when starting the next transaction in the
sequence.

• There is always a single possibility with condition φ such that γ |= φ in the current
state, which means that when every possibility is either stopping, sending a message
or reaching a milestone, then exactly one of the rules Stop, Send and Milestone is
applicable. If any possibility starts with a different step, then another rule must be
applied.

• The messages in the frames can be considered destructor-free without loss of generality,
even though they may contain privacy variables. The intruder can always compare
the outcome of a destructor with what happens in the concrete frame, since we allow
destructors in recipes. The Eliminate rule allows for eliminating all frames that are
not statically equivalent to the concrete frame observed by the intruder. Therefore,
for every message received by a process, even if a recipe chosen by the intruder
contains a destructor, either the destructor gives a subterm in every frame, or the
constant ff in every frame.

We are able to maintain these invariants thanks to the structure of processes: the distinction
between left, center and right processes ensures that during symbolic execution, the
processes are progressing all together (for the left part) or reducing one at a time, until we
reach a milestone.

Before the symbolic execution, we perform a number of preparatory steps on the roles
that are specified by the protocol.

Definition 5.2.8 (Fresh role instance). Let R be a role. A fresh instance R′ of R is
obtained by

1. Renaming all variables apart in the role R and in the procedures it calls.

2. Expanding the role.

3. Removing every step νX1, . . . , Xk by instantiating the Xi with distinct fresh constants.

4. Giving every transaction in the resulting sequence R′ the same fresh thread ID.

We now have all the necessary concepts to define the overall state transition system
and the traces of a protocol. A trace consists of the sequence of transactions executed,
the interpretation of all relations and privacy variables chosen in those transactions, and

70 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

the recipes chosen for the messages sent by the intruder (i.e., messages received in the
transactions). Recall that the intruder does not know a priori what is the true interpretation
of relations: the protocol specifies a set Γ0 of possible interpretations, and for the symbolic
execution we need to fix this interpretation. Thus, for the set of reachable states we
consider several initial states where for each, we fix some γ0 ∈ Γ0.

Definition 5.2.9 (State transition system). A sequence of transactions P1; . . . ;Pn is valid
iff there exist role instances R1, . . . , Rm, with thread IDs TID1, . . . ,TIDm, such that for
every j ∈ {1, . . . ,m}, filter=TIDj

(P1; . . . ;Pn) is a prefix of Rj.
Let γ be a Σ0-formula such that γ |=

∨
γ0∈Γ0 γ0 and P1; . . . ;Pn be a valid sequence of

transactions. Then the initial state w.r.t. γ and P1; . . . ;Pn is

init(γ, P1; . . . ;Pn) = (
∨

γ0∈Γ0

γ0, γ, {(0;P1; . . . ;Pn, true, [], [])}, [], false)

where [] denotes the empty frame, empty memory and empty choice of recipes.
A tuple (P1; . . . ;Pn, γ, ρ) is a trace iff P1; . . . ;Pn is valid and there exist γ0 ∈ Γ0 and

a milestone S = (_, γ,_, ρ,_) such that γ |= γ0 and init(γ0, P1; . . . ;Pn) −→ S. The
milestone S is then called a reachable state.

5.3 Composition and composability

5.3.1 Composition

We consider a composed protocol as the composition of two smaller specifications (the
definitions and results can be generalized to an arbitrary number of specifications, we use
two here for convenience of notation). Our main result is that, for the class of composable
protocols (Definition 5.3.4), an attack trace on the composed protocol can be projected to
an attack on one smaller protocol. To achieve this, every protocol specifies its interface
and our projection corresponds to an individual protocol composed with the interface of
the other protocol.

In the following we adopt the marking convention from [53] where all protocol steps
are marked as 1, 2, or ⋆ for individual steps of the component protocols P1 and P2 and the
interface, respectively. The ⋆ mark for process steps replaces here the highlighting we had
in Section 5.1.

Definition 5.3.1 (Protocol composition). Let Spec1 and Spec2 be protocols. The composi-
tion Spec1 ∥ Spec2 is the protocol defined with:

• the union of the roles, procedures, memory cells and algebraic theories from Spec1
and Spec2; and

• the set of interpretations Γ0, where we assume that both protocols specify the same
set.

If there are shared memory cells, then both protocols must specify the same ground contexts
for the initial values of these cells.

In the context of a composed protocol, we consider that some steps of the processes
specified are marked with either a protocol-specific index or the symbol ⋆. Let i ∈ {1, 2}
and P be a transaction from Speci. In the specification of P , the steps for receives, let
statements, procedure calls, conditional statements, cell reads or writes, sends and assertions
are marked with either i or ⋆. However, the steps for non-deterministic choices, stops,

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 71

fresh constants, releases and nil processes are not marked because they are always relevant
for the composition.

During procedure call expansion, every statement let X = t that replaces a return(t) is
marked with the same mark as the procedure call that is being expanded.

In frames, every mapping has the mark of the corresponding snd(·) step.

Our main result is that we can project an attack on a composed protocol to an attack
on a smaller protocol. In the context of composition, every step in a process has a mark
that says whether it is part of the protocol’s interface, i.e., it must always be present in
the projection, or it is protocol-specific and can be abstracted away in the projection.

Definition 5.3.2 (Projection to one component). Let i, j ∈ {1, 2, ⋆}. The projection of a
transaction (after expansion) is defined below.

(⋆ x ∈ D.P)|j = ⋆ x ∈ D.P |j

(i : rcv(t).P)|j =
{
rcv(t).P |j if i ∈ {j, ⋆}
P |j otherwise

(i : let X = t.P)|j =
{
let X = t.P |j if i ∈ {j, ⋆}
P |j otherwise

(i : X := cell[s].P)|j =
{
X := cell[s].P |j if i ∈ {j, ⋆}
P |j otherwise

(i : if φ then P else Q)|j =
{
if φ then P |j else Q|j if i ∈ {j, ⋆}
P |j otherwise

(stop)|j = stop
(νX1, . . . , Xk.P)|j = νX1, . . . , Xk.P |j

(i : snd(t).P)|j =
{
snd(t).P |j if i ∈ {j, ⋆}
P |j otherwise

(i : cell[s] := t.P)|j =
{
cell[s] := t.P |j if i ∈ {j, ⋆}
P |j otherwise

(⋆ φ.P)|j = ⋆ φ.P |j

(i : assert(φ).P)|j =
{
assert(φ).P |j if i ∈ {j, ⋆}
P |j otherwise

(0)|j = 0

The notion of projection is extended to sequences of transactions and protocols. For a
frame F , we define F |i as the projection of the frame to mappings marked with i or ⋆.

The reader may wonder at this point why for a protocol-specific conditional statement,
we only keep the interface of the then branch, and completely disregard the else branch. This
projection is correct because of our composability requirements listed in Definition 5.3.4;
in particular, we have Requirement 1, which ensures that for protocol-specific branching,
the else branch is simply the process stop.

Example 5.3.1. In Example 5.2.2, we showed the initiator role after procedure call expansion.
We now add marks to denote which process steps are part of the abstract interface of the
protocols and which steps are protocol-specific (and in this case, from which protocol they

72 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

are). We mark with 1 the steps from the NSL initiator, and with 2 the steps from the
lookup procedure.

⋆ xA ∈ Honest.
⋆ xB ∈ Agent.
νN : nonce, R′′ : nonce.

2 snd(scrypt(sk(xA, s), req(xB, N), R′′))
;

2 rcv(scrypt(sk(xA, s), resp(xB,PKB′ : pk(agent), N),_ : nonce)).
2 assert(PKB′ .= pk(xB)).
⋆ let PKB = pk(xB)
;
νNA : nonce, R : nonce.

⋆ snd(crypt(PKB, f1(NA, xA), R)).
⋆ if xB ∈ Honest then
⋆ xB ∈ Honest
⋆ else
⋆ xA

.= γ(xA) ∧ xB
.= γ(xB).

⋆ snd(NA)
;

1 rcv(crypt(pk(xA), f2(NA, NB : nonce, xB),_ : nonce)).
νR′ : nonce.

1 snd(crypt(PKB, f3(NB), R′))

Let us project this to component 1, i.e., we keep all the steps that are part of NSL plus
the interface of lookup. The projection corresponds to removing the three lines marked
with 2. Note that one of the messages received is using pattern matching on privacy
variables and a nonce: this is syntactic sugar for receiving a message with only fresh
variables and a conditional statement such that the process stops if the message received
does not contain the expected values (Definition 5.2.2). Thus removing this step involves
projecting a protocol-specific conditional statement.

The projection of the initiator is effectively abstracting the behavior of the lookup
procedure: assuming that the lookup does not lead to any attack (which would be checked
when verifying the lookup component together with the interface of NSL), we can simply
consider that the variable PKB is bound to the public key of agent xB.

Note also that in this example of projection, we have the step νN : nonce, R′′ : nonce
from the lookup procedure that remains in the projection, even though neither N nor R′′

are used anymore (they were only present in messages specific to protocol 2). While in
this example the generation of these nonces could be soundly removed from the projection,
it makes no difference to the symbolic execution, and in general we need to keep such
steps since we consider them as part of the interface. This is because in our approach,
all freshly generated values like nonces are initially declared secrets: these values should
not be accessible to the intruder unless they are explicitly declassified. In this particular
example, it is clear that N and R′′ cannot be leaked since they are never used. ◁

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 73

5.3.2 Composability
In general, the composition of secure protocols is not necessarily secure. In this section, we
identify a set of requirements that form the class of protocols called composable. These
requirements control the interface between protocols and the messages they share.

As mentioned in previous sections, in this chapter we only consider well-typed in-
stantiations. In an execution of the protocol, the concrete messages observed are ground
instances of the terms that occur in the specification. We define below the notion of ground
sub-message patterns and we will express our requirements using these ground patterns.
Recall that SMP(·) (Definition 4.1.9) is closed under well-typed substitutions, and it also
includes the key terms of encrypted messages.

Definition 5.3.3 (Ground sub-message patterns). The set of ground sub-message patterns,
GSMP(M), of M is {t ∈ SMP(M) | t is ground}.

Let Tpub = T (Σc ∩ Σpub, ∅) denote the set of destructor-free public ground terms. Let
Spec = Spec1 ∥ Spec2 be a composed protocol. Our result is parameterized over a set of
secret terms that has to be given with the composed protocol. It can be convenient to have
protocols that share terms, where the terms themselves are not secrets but contain secrets
as subterms. For instance, some protocols may use the same public key certificates signed
with a trusted private key. We support this by specifying such terms as secrets, and when
messages are sent they can be marked as declassified so that the intruder is now allowed
to learn those messages. Formally, let Secrets be a set of ground terms disjoint from Tpub.
Let GSMPi denote the ground sub-message patterns of the terms occurring in Spec|i for
i ∈ {1, 2}, and let GSMP⋆ = GSMP1 ∩GSMP2. The intersection GSMP⋆ corresponds to
all ground messages (and their subterms) that are shared by the protocols.

We now list our requirements on composed protocols.

Definition 5.3.4 (Composability). Spec is composable w.r.t. Secrets iff

1. For every conditional statement if φ then P else Q, if the branching is not marked
with ⋆, then Q = stop.

2. For every cell read or cell write, if the memory cell is shared (i.e., it occurs in both
Spec1 and Spec2), then the step is marked with ⋆.

3. If a process calls a procedure from the other protocol, then the procedure call is marked
with ⋆.

4. In every formula released φ, all the variables fv(φ) are privacy variables chosen earlier
in that role or procedure.

5. In every transaction, if there are two branches that send the same number of messages,
then the marks of the messages sent must match.

6. Every role in Spec|1 and Spec|2 is well-formed (in the sense of Definition 5.2.1).

7. GSMP⋆ ⊆ Tpub ∪ Secrets.

Let us provide an intuitive explanation for the requirements:

1. If the branching is protocol-specific, i.e., not marked with ⋆, then we want the
projection to abstract it away. Given an attack trace on the composed protocol, we
will argue why it is not necessary for the intruder to reach the second branch given
that it stops immediately, so that we only have to consider the projection of the first
branch.

74 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

2. Shared memory cells are a way for the two protocols to interact, and in order for the
projection to faithfully represent the behavior of the original role or procedure, all
reads and writes on shared memory cells must also be present in the projection.

3. Procedure calls are another way for the two protocols to interact, and the values
returned by these calls must also be present in the projection.

4. We exclude releasing information on variables that are bound in messages received,
procedure calls or cell reads, i.e., variables that are not necessarily privacy variables.
This is a strong restriction that seems necessary to obtain an intermediate result,
which in short means that whenever a protocol is receiving a message, we can consider
that the intruder sends a message from that same protocol (and not the other one)
without loss of generality. Intuitively, since releases are changing the information
allowed about privacy variables, it makes sense that an agent only releases information
about the choices they have made themselves and not arbitrary messages that may
or may not contain privacy variables chosen in other transactions.

5. In every reachable state, the frames in the different possibilities are indistinguishable
and we must further have that a given label has the same mark in every possibility.
Intuitively, the intruder should know whether a message is protocol-specific (and
then from which protocol it comes from) or shared (and then it is always present in
the projections).

6. When projecting to 1 or 2, the resulting (expanded) roles must be well-formed so that
the semantics is well-defined for the projected protocols; in particular, the sequences
of transactions after projection must be closed.

7. Messages shared by the two protocols must be either public or specified as secrets.
We will have to verify that the components do not leak any secret, and if that is the
case then we can show (also using Item 4) that the intruder never needs to use a
protocol-specific message, say from protocol 1, when executing protocol 2.

5.4 Compositionality result

5.4.1 Compositionality on the frame level

In the rest of the chapter, we consider a composable protocol Spec. Before concluding on
the compositionality for the protocol itself, we present results on frames. We give here
informal proof sketches and all detailed proofs and intermediate results are provided in
Appendix A.5.

Definition 5.4.1. A ground frame F is well-formed iff for every mapping i : l 7→ t in F ,
we have i ∈ {1, 2, ⋆} and t ∈ GSMPi.

The set of declassified terms of F is declassified(F) = {t | ∃r. F |⋆(r) ≈ t}. We say
that F leaks a secret from Secrets iff there exist t ∈ Secrets \ declassified(F), i ∈ {1, 2} and
r such that F |i(r) ≈ t. The frame F is leakage-free iff F does not leak any secrets.

We will only consider well-formed frames.
We define that a secret is leaked when it is leaked in one projection of the frame

instead of the full frame. This is crucial, because leakage-freeness is a requirement of the
composition; due to our construction it is only necessary to check that the component
protocols do not leak (rather than having to check their composition for leakage).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 75

We introduce the notion of homogeneous recipes to describe recipes that can be used
in a projection of the composed protocol, i.e., recipes that are not using protocol-specific
messages from two different protocols.

Definition 5.4.2. Let F be a ground frame and i ∈ {1, 2, ⋆}. A recipe r over dom(F) is
i-homogeneous iff every label in r is marked in F with i or ⋆. A pair of recipes (r1, r2) is
i-homogeneous iff every label in r1 and every label in r2 is marked with i or ⋆.

The results in this section are formulated for ground frames, and we will later use them
with frames from a reachable state. Thus we only consider frames that have the same
domain, with the same marks for the labels.

Definition 5.4.3. Two ground frames F1 and F2 are comparable iff they have the same
domain and for every label, they agree on its mark.

The first result is that, if a frame does not leak any secret, then for every message
occurring in the protocol execution, we can obtain a homogeneous recipe to produce that
message.

Lemma 5.4.1. Let F be a leakage-free frame, i ∈ {1, 2, ⋆} and r be a recipe such that
F (r) ∈ GSMPi. Then there exists an i-homogeneous recipe r′ such that F (r) ≈ F (r′).

Proof sketch. If r is not i-homogeneous, then there is a subterm of F (r) that is in GSMP⋆

and thus this subterm must be either public or a secret. If it is a secret, then it must
be declassified since the frame is leakage-free. Then the protocol-specific label producing
the subterm can be replaced with either a public term or a recipe containing only labels
marked with ⋆ (for the declassified case). ◁

The second result is that, if both frames do not leak any secret and are not statically
equivalent, then we can find a witness against static equivalence that is homogeneous.
Recall that the intruder knowledge in a state is defined through static equivalence between
the frames that the intruder considers possible in that state. Thus the lemma is useful
to prove that a violation of privacy in a reachable state of the composed protocol can be
mapped to a violation of privacy in a state of a projection of the protocol.

Theorem 5.4.1. Let F1, F2 be leakage-free comparable frames. If for every i ∈ {1, 2},
F1|i ∼ F2|i, then F1 ∼ F2.

Proof sketch. We proceed by contraposition and assume that F1 ̸∼ F2, so there exists a
witness against static equivalence. Then we apply a reduction strategy that successively
replaces some labels in the witness with homogeneous recipes until the witness is homoge-
neous. During these reduction steps, we may find another simpler homogeneous witness,
e.g., if two recipes for key terms suffice to distinguish the frames without needing to apply
decryption. The main argument in the reduction is that if a recipe is not homogeneous,
then there is a term that is shared between protocols and since the frames are leakage-free,
we can find a homogeneous recipe for that term. In the end we get a homogeneous witness,
which means that we can project the frames such that the witness is still well-defined (i.e.,
using only labels available in the projected frames). ◁

5.4.2 Compositionality on the state level

Definition 5.4.4 (Leakage-free state and protocol). A state S is leakage-free iff the
concrete frame concr in that state is leakage-free. A protocol is leakage-free iff every
reachable state is leakage-free.

76 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

The properties that we are verifying for a protocol are reachability properties, even
privacy, so a protocol has an attack iff some reachable state has an attack. Besides the
main focus on (α, β)-privacy properties, we also need to check that no assertion is broken
and that no secrets are leaked.

Definition 5.4.5 (Attack state and attack trace). A milestone S is an attack state iff at
least one of the following is true:

• The flag in S is set to true.

• S is not leakage-free.

• S does not satisfy privacy.

Let (P1; . . . ;Pn, γ, ρ) be a trace and S0, . . . , Sn be the milestones such that for every
i ∈ {0, . . . , n − 1}, executing Pi+1, starting from Si, leads to Si+1, following the truth γ
and using the recipes in ρ (recall that by Definitions 5.2.7 and 5.2.9 a trace determines a
unique sequence of milestones, because γ indicates how the Choice transitions, and others
depending on the true possibility, are taken, and ρ the Receive transitions).

(P1; . . . ;Pn, γ, ρ) is an attack trace iff

• For every i ∈ {0, . . . , n− 1}, Si is not an attack state.

• Sn is an attack state.

Finally we can state our main result: if no projection of the protocol has an attack,
then also the composed protocol has no attack.

Theorem 5.4.2. If for every i ∈ {1, 2}, Spec|i has no attack, then Spec has no attack.

Proof sketch. We proceed by contraposition and assume that there exists an attack trace
on the composed protocol. Our goal is to prove the existence of an attack trace on a
projection of the protocol, i.e., to show that there is an attack on one protocol composed
with the interface of the other protocol.

The first step is to show that we can assume the intruder chooses homogeneous recipes
without loss of generality, i.e., whenever a protocol is receiving a message, then the intruder
uses labels from that same protocol (or declassified messages). Since we only consider
well-typed instantiations, we can use our result of Lemma 5.4.1 to show that whenever a
process is receiving a message, then the intruder can use a homogeneous recipe to produce
that message. This step is actually quite difficult because we need to show that the change
to homogeneous recipe does not significantly alter the reached state.

As a second step, we consider transactions that went into an else branch for a conditional
that is not marked ⋆, i.e., that is protocol specific. Here the problem is that such a branching
is not possible in the projection to the other protocol, but we can use our requirement that
the else branch for protocol-specific conditionals must be stop. Thus, the transaction can
only have the effect to show that the respective condition is false. So either that gives an
attack on privacy, or we can remove this transaction from the trace.

Finally, we make a case distinction on the kind of attacks: if some assertion was broken
or some secret was leaked, then the projected attack trace also leads to a broken assertion
or secret leaked. If the attack is instead a violation of privacy, i.e., there is a model of
privacy variables allowed by the payload α that the intruder can actually rule out given
their knowledge, then we show that either we find a “simpler” attack that is just a secret
leaked or we also have a violation of privacy from the projected trace. ◁

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 77

5.5 Application of the result and limitations
In order to apply our compositionality result, the workflow is the following:

1. The modeler has to specify a composed protocol; part of the specification is the
assignment of types to constants and variables, the explicit marking of process steps
that form the abstract interface of components and also the set of shared secrets.

2. The composability requirements of Definition 5.3.4 have to be checked. Since one
requirement is that every projected role be closed, at this point we can find specifi-
cation errors. For instance, if we have a variable used in a shared message (part of
the interface) and the step binding that variable is marked protocol-specific, then
the projection to other components would miss the binding. Therefore, the modeler
might have to adapt the markings for the interfaces, but we can give feedback on the
specification error to help the modeler.

3. For each component, the specification is projected to that component (keeping the
interface of other components) and the goals of the resulting specification have to be
verified (i.e., we check the assertions, leakage of secrets and (α, β)-privacy for each
component, not for the entire composed protocol).

The composability requirements we list in Definition 5.3.1 are sufficient, not necessary:
we are not claiming that every protocol has to meet our requirements in order to enable
compositional reasoning. However, we have justified why we have each requirement, i.e.,
why we failed to find a feasible proof argument without these restrictions. In particular, we
have Requirement 1 that says else branches must be just stop if the conditional statement
is not part of the interface. The motivation is to be able to ignore such branching, when the
condition is local to the process and not relevant for other components. In our examples,
we make use of this with syntactic sugar when a message received is marked as protocol-
specific: most pattern-matching examples in Fig. 5.1 stand for receiving a fresh message
and then performing equality checks; in case any value is not equal to the expectation, the
process stops. The point of compositionality is that we can indeed ignore steps such as
receiving protocol-specific messages, and checks on them, from the point of view of the
other components.

Let us return to the running example of Fig. 5.1. We now consider a variant where, in
the lookup procedure, we omit the random number N that should be included in a request
and the corresponding response. The component is given in Fig. 5.2. We show how the
omission of the nonce induces a privacy violation that we find when verifying the lookup
component with the abstract interface of the initiator role. In order to verify the security
of this lookup component, we still have to consider the steps in the initiator and responder
roles that were marked as part of the interface (highlighted in Fig. 5.1). In particular, the
choices of privacy variables are present in this component.

The first time that the initiator role (its projected version) is executed, two privacy
variables xA and xB are chosen, and there is a call to the lookup procedure. After receiving
the request, the server responds with a message containing the public key of xB. At
this point, the intruder has observed the messages l1 7→ scrypt(sk(xA, s), req(xB), r1) and
l2 7→ scrypt(sk(xA, s), resp(xB, pk(xB)), r2).

Now we consider that the initiator is started a second time. This leads to choices of new
privacy variables x′A and x′B and the intruder observing two messages for the new request and
response: l3 7→ scrypt(sk(x′A, s), req(x′B), r3) and l4 7→ scrypt(sk(x′A, s), resp(x′B, pk(x′B)), r4).
Finally, we resume the process from the first call to lookup, but the intruder uses message
labeled l4 instead of the expected l2. That is to say, the intruder forwards the second

78 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Procedure lookup(A : agent, B : agent) :
νR : nonce.
snd(scrypt(sk(A, s), req(B), R))
;
rcv(scrypt(sk(A, s), resp(B,PKB : pk(agent)),_ : nonce)).
assert(PKB .= pk(B)).
return(pk(B))

Role Server :
rcv(scrypt(sk(A : agent, s), req(B : agent),_ : nonce)).
νR : nonce.
snd(scrypt(sk(A, s), resp(B, pk(B)), R))

Figure 5.2: Insecure variant of the lookup component

response from the server instead of the first one. In the process that receives this response,
the message is expected to be encrypted with the shared key sk(xA, s) and to contain the
public key of xB, however in the execution we are considering, the message is encrypted
with the shared key sk(x′A, s) and contains the public key of x′B. The matching on xA and
xB is actually syntactic sugar for equality checks, which means that the process continues
only if xA

.= x′A ∧xB
.= x′B, and simply stops otherwise. Since the fact that a process stops

is observable by the intruder, at this point they can deduce whether xA
.= x′A ∧ xB

.= x′B.
This is a privacy violation since the payload α only specifies in which domains the variables
are but no relation between them.

The example of privacy violation that we have described happens in the composed
protocol because the lookup component is insecure, and we have explained how the
verification of the lookup component (instead of the entire composed protocol) is enough
to find this attack.

Since our result supports stateful protocols that read from and write to memory cells, the
protocol from the running example could potentially be developed further to allow agents
to update their private/public key pairs: instead of having a fixed public-key infrastructure,
the server could read from a database of public keys, and additional transactions could
model an agent write to their own memory cell for updating the key. In such a protocol,
the memory cells containing the public keys would be shared between several components,
thus in the model we should mark the steps of reading from and writing to memory as
part of the abstract interface.

For our compositionality result, when verifying a composed protocol, we need to consider
each component together with the abstract interface of the other components. This means
that we are not verifying each component completely in isolation. This can be seen as a
limitation, since we cannot derive the security of the composed protocol “for free” from the
security of the components. However, there is also benefit in the specification of protocol
interfaces: if one wants to swap a component with another implementation that has the
same interface, then we only need to verify that new component with the interface of the
others.

For generality, we have considered components that can interact through messages,
memory cells and procedure calls. A special case of composition is when the different

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 79

components are executed concurrently but without any interaction: it is typical that several
protocols having nothing to do with one another run on the same machine. This suggests
a “disjoint” case where there are no shared messages, no shared memory cells and no
procedure calls from one protocol to the other. By Definitions 5.3.1 and 5.3.2, there are
some steps in processes such as non-deterministic choices and generation of fresh constants
that always remain in every projection. Thus, even for protocols that are disjoint enough,
we would have that the projection to one component contains some steps from the other
components because interfaces are basically never empty. However, it may be possible to
detect cases such as, e.g., when the privacy variables from one protocol are used in a way
such that they can never be reused by the intruder in other protocols. This would enable
complete modular verification, for these special disjoint cases.

An important limitation of our compositionality result is the restriction to construc-
tor/destructor theories according to Definition 3.4.1. This is used in the proofs showing
that for composable protocols, when executing transactions from one component, the
intruder never needs to use messages coming from other components. We can still model
many standard cryptographic operators, but we cannot model for instance operators such
as exponentiation or blind signatures, which means that our compositionality result is not
applicable to protocols using, e.g., Diffie-Hellman key exchange or commitments.

5.6 Related work

There is a number of works that show compositionality for standard trace-based properties
in the symbolic (Dolev-Yao-style) model [48, 29, 5, 24, 53]. The closest to ours is [53]
which shows a compositionality result for stateful protocols. Here the state is represented
by a family of sets of messages, e.g., a set of key registered as valid at a server. These
sets can be shared between the component protocols. This is similar to our work where
we have instead a family of memory cells which can only hold one message and also in
our case these can be shared between the components. This is because previous work
on (α, β)-privacy [47] uses such memory cells, but we want to investigate in future work
whether we can also support sets. From [53] we adopted the idea that the protocols do not
need to be completely disjoint but can share a set of messages that either are public or
initially secret.

As already mentioned there are very few works on symbolic compositionality for privacy-
type goals. The standard model for privacy goals is based on a notion of indistinguishability,
i.e., the intruder cannot tell two processes apart. In a nutshell, for every trace that one
process can exhibit, one has to show that the other process can have a similar trace in the
sense that the intruder frames are indistinguishable. This is particularly challenging in case
of conditionals, because the intruder may in general not be able to tell whether the condition
was true and thus the then or the else branch was the case. Note that in (α, β)-privacy this
is handled by maintaining a number of possibilities P: the rule Conditional in Table 5.1
says that a possibility with a conditional statement is split into two possibilities for the
positive and negative branch. Moreover, the rule Eliminate says that the intruder can
then discard possibilities that are not compatible with observations, and keeps all that
are. As this is a major difficulty in approaches for unbounded session verification of trace
equivalence, a restriction is often considered: bi-processes and diff-equivalence [36, 27].
Here, the two processes that should be indistinguishable for the intruder differ only in
the concrete terms which come in two variants, and one requires that all conditionals are
satisfied for both or for neither variant, so that it is always either the then or the else case.
This allows to easily turn the problem into a trace problem that is much easier to deal
with.

80 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

The most advanced work on compositionality for trace-equivalence that we are aware
of, [5], also uses the restriction to bi-processes and diff-equivalence. (They do also have a
result for the standard trace properties that does not need this restriction, of course.) They
show results for both the parallel case and a sequential case where one protocol generates a
key and another protocol uses it. Our compositionality result is significantly more general
than this: we do not need the restriction to bi-processes, i.e., we consider the standard
model of (α, β)-privacy where all branches of conditionals are possible and maintained.
For what concerns different types of composition, the generality of our result blurs the
boundaries between concepts like parallel and sequential composition: in our parallel
composition the components can actually communicate with each other, this just has to be
part of the interface, either via memory cells and via shared messages (and declassification).
Communication via memory cells actually allows for sequential composition: for instance,
the first protocol could establish a key and write it to a shared memory cell, while the
second protocol reads the value of that memory cell to use as a key in the rest of the
communication. Moreover, we can employ components as subprotocols that can be invoked
by other components.

We believe that the reason we can make such a generalization with complicated but
still manageable proofs is due to the technically more simple concepts of (α, β)-privacy:
we deal with a simple reachability problem where each state carries enough information to
model the intruder reasoning, namely which models of the relations and privacy variables
are still compatible with all observations (and messages sent by the intruder). This allows
us to show that any trace of the composed system, when projected to the steps of one
component and the shared (⋆-marked) steps, still works with that component alone; thus
the security of every component implies the security of the composition.

There are however also some aspects where [5] is more general. First, they allow for
one component to use Diffie-Hellman (however it cannot be shared between components),
which is valuable for key-exchange protocols. We plan to investigate as future work how
to support more algebraic properties. Moreover, we require a typed model while the
requirements of [5] seem less restrictive—except for Diffie-Hellman where they essentially
have a strictly typed model.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 81

82 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 6

Tool support

Sections 6.2 and 6.3 in this chapter are based on [41].
When writing a protocol specification for (α, β)-privacy, the modeler needs to specify

what information is released in α, but does not specify β directly. Rather, the modeler
specifies a set of transactions describing how honest agents send and receive messages and
update their local state. The β of every reached state is then defined by the semantics
of the transaction language and reflects all observations and deductions the intruder can
make. Thus the modeler only needs to specify the protocol itself and what information
is released in α and that is a positive specification, i.e., what the intruder is allowed to
know. Thus, in the worst case the modeler errs on the safe side: if one forgets to specify
something that the intruder can actually derive, then (α, β)-privacy is violated and the
noname tool presents a violation. Then the modeler can decide whether the information
that the intruder can derive is indeed acceptable, and specify that by adding an appropriate
α release, or otherwise strengthen the protocol. In this way one can even explore what
privacy guarantees a protocol gives by starting with α containing only what is obviously
released and then incrementing the release until no more violations occur.

Our fourth contribution in this thesis is the implementation of the decision procedure
from Chapter 3 in the noname tool. Our fifth contribution is the detailed case studies
for the BAC [57] and Private Authentication [1] protocols, with the discussion of several
variants of the protocols, explanations on how to apply the tool to the models and how to
understand attack traces.

The chapter is organized as follows. In Section 6.1, we explain how to write an (α, β)-
privacy specification and analyze it with the noname tool. In Sections 6.2 and 6.3, we
go into details about the modeling and analysis results for the case studies of BAC and
Private Authentication, respectively.

6.1 Brief introduction to noname

6.1.1 Writing a specification

The reference for the tool is the release of noname version 0.3 [39]. The rest of the chapter
applies to this specific version and in case of a different version one should check the
documentation provided with the tool.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 83

We consider again the simple protocol from Example 2.2.1, with the transaction:

⋆ x ∈ Agent. ⋆ y ∈ {yes, no}.
rcv(M).
try N := dcrypt(inv(pk(s)),M) in
if y .= yes then

νR.snd(crypt(pk(x), pair(yes, N), R)).0
else νR.snd(crypt(pk(x), no, R)).0

catch 0

We now present how to express the protocol specification as a text file parsed by the
noname tool. The first thing to write is the declaration of the symbols used in the protocols:

1 Sigma0: public yes/0 no/0 a/0 b/0 i/0 s/0

Here we only have to declare a few public constants: yes and no represent the possible
decisions of the server; a, b, i and s are four agent names, where a and b will be used
as the honest agents, i the intruder (a dishonest agent) and s the server receiving the
message and sending a reply. These constants are all declared as part of Σ0: they are
concrete values that the privacy variables are chosen from.

In general, the syntax for declarations is f/n where f is a function name and n its
arity. Private functions can be declared after the public functions: one has to write the
keyword private followed by the declarations. Similarly, we can declare symbols in Σ, i.e.,
technical symbols that are used in the processes but not part of Σ0, by writing Sigma:
followed by the function declarations as above.

Next, one may define rewrite rules for the algebraic properties of operators, in the form:
Algebra: d(k’,c(k,X1,...,Xn))->Xi For instance, the behavior of symmetric
encryption is written as dscrypt(X,scrypt(X,Y,Z))->Y. By default, noname includes
the standard set of cryptographic operators from Fig. 2.1, with the addition of the
public function pk: these functions and their algebraic properties do not need to be
written explicitly. For our running example, there is no algebraic property to write in the
specification because we are only using standard operators.

Now comes the specification of transactions: each transaction is given a name, followed
by the process for that transaction. Let us define two transactions:

2 Transaction ReceivePrivateKey:
3 send inv(pk(i)). nil
4

5 Transaction Server:
6 * x in {a,b,i}.
7 * y in {yes ,no}.
8 receive M.
9 try N:= dcrypt(inv(pk(s)),M) in

10 if y=yes then
11 new R.
12 send crypt(pk(x),pair(yes ,N),R). nil
13 else
14 new R.
15 send crypt(pk(x),no ,R). nil
16 catch nil

The Server transaction corresponds exactly to the process in this running example. We
have added the ReceivePrivateKey transaction here to model the compromise of the
dishonest agent. This transaction simply sends the private key inv(pk(i)) of agent i over

84 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

the network. Given our intruder model, this message can be observed by the intruder and
they are then able to use this private key in the rest of the execution.

This transaction sending a private key is just one way of modeling the compromise
of dishonest agents. One alternative would be to have built-in the tool this special agent
i as the intruder with their own private key. Another option would be to support the
declaration of initial knowledge, i.e., a set of messages that are added before the protocol
is started, so that in the initial state the frame is not empty but contains these messages.
One advantage of our modeling with a transaction is that the compromise does not have to
happen at the beginning, but may be executed later in the protocol. This may be relevant
when verifying protocols such that parties are initially trusting each other and only later
on one of them becomes compromised. In our semantics of the symbolic execution, any
transaction can always be executed, thus the disadvantage of having a transaction sending
the private key is that it may happen multiple times. When setting the bound to 2, we will
for instance consider traces where ReceivePrivateKey is executed twice in a row, which
is unnecessary. This suggests the specification could allow the modeler to give some hints
about the relevant traces to verify, for example we could mark a particular transaction to
be executed at most n times, while other transactions can always be executed; another
possible improvement would be to give a partial order between transactions.

Finally, the specification should provide a bound on the number of transitions (if the
bound is not declared, the default is 0). One may write any integer here; for our running
example, 2 is enough because we know that there is a violation of privacy (Example 3.2.2).

17 Bound: 2

Recall that the tool stops as soon as it finds a violation of privacy, so even if we were to
write a greater number, the result would be exactly the same.

For the syntax of specifications, we have omitted here the declarations of relation
symbols, interpretation of these relations, and ground context for the initial values of
memory cells. Examples for these are provided in the models of case studies in Appendix B.

6.1.2 Analyzing a specification

We assume that the specification described in the previous section is the content of a
file named runex.nn. In order to verify whether this protocol satisfies (α, β)-privacy, we
execute the command noname runex.nn. We get the following output1:

1 Privacy violation found after 2 transactions.
2 alpha = x2∈{yes ,no}∧x1∈{a,b,i}
3 beta_0 = (x1=i)∧(x2 ̸=yes)
4 (alpha , beta_0)-privacy does not hold.
5 Model found: x1=i∧x2=yes
6 State: Executed = ReceivePrivateKey.Server
7 Recipe choice = [R1 ->l1 ,R2 ->crypt(pk(s),R4 ,R5),R3 ->pk(s),R6 ->s,R7 ->l3 ,R8 ->

l1]
8 alpha_0 = x2∈{yes ,no}∧x1∈{a,b,i}
9 beta_0 = (x1=i)∧(x2 ̸=yes)

10 gamma_0 = ⊤
11 Possibilities = {(nil ,(x1=i)∧(x2 ̸=yes),[-l1 ->inv(pk(i)).-l2 ->pk(i).+R4 ->X11

.+R5->X13.-l3 ->crypt(pk(x1),no ,n2).-l4 ->no.-l5 ->inv(pk(i))],{},⊤,[])}
12 Checked = {(l4 ,no),(l1 ,l5),(l2 ,pk(i))}

1We omit here the marks for analysis of messages and additional lines about the exact model returned
by the SMT solver, because these are mostly useful for debugging purposes.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 85

The first line tells use that there is a violation of privacy, as expected. The issue is
that the recipient of the server’s message may be the dishonest agent i, in which case the
intruder learns the value of both privacy variables chosen by the server. In the output,
we have that two transactions were executed: first ReceivePrivateKey and then Server.
The privacy variable x1 corresponds to the agent name (x in the transaction) and x2 to the
server’s decision (y in the transaction). During the symbolic execution, there were at some
point two possibilities, depending on whether x2=yes. After the server transaction finished,
the messages observed by the intruder were analyzed, and here we considered the states
where x1=i, i.e., the intruder used the private key inv(pk(i)) to decrypt the server’s
message and the decryption was successful. This added a label l4 mapping to the content
of the message, either pair(yes,x1) or no depending on the server’s decision. Finally,
among the intruder experiments that were performed, there is the comparison between
label l4 and constant no. Here we considered the states where the two recipes produced
the same message, which ruled out the case that x2=yes. The intruder deductions are
summarized in the formula β0. There is a violation of privacy because the intruder has
learned more than what is allowed by the payload α.

Note that the output also contains a model that interprets the privacy variables. We
find a violation of privacy by checking whether (α, β0)-privacy holds, i.e., whether the
symbolic state is consistent (Definition 3.3.5). The countermodel is an interpretation that
is a model of α but that cannot be extended to a model of β0. Here the countermodel is
simple: α only discloses information about the domain of privacy variables, while in β0 the
intruder has deduced that one particular interpretation must hold.

If we update the specification to fix the issue, i.e., in case of a dishonest recipient the
server releases the values of the privacy variables and in case of an honest agent the server
releases that the agent is indeed honest and not the intruder (Example 3.2.2), then we get
the following output:

1 Bound reached , no privacy violation found after 2 transactions.

In addition to the file containing the protocol specification, noname takes several
command-line arguments, for instance to indicate a path to write the output to or to
enable the interactive mode. The user may also specify the bound as a command-line
argument. In this case, the argument overrides the bound specified in the text file. The
different options can be found by running noname --help or in the README.org provided
along with the source files for the tool [39].

6.2 Case study: BAC
Our first case study is the unlinkability in the Doc 9303 BAC protocol for passport readers
[57], where we replicate known problems in some implementations [6, 30, 45]. The BAC
protocol is an RFID protocol used for passports with RFID card readers. We simplify
matters for two reasons: it allows us to focus on the actual issue, avoiding complicated
and irrelevant modeling challenges, and moreover, the noname tool quickly runs into state
space explosions otherwise. The full specification is found in [39].

The first step is that an RFID tag x starts a new session, with a new random nonce N
that it sends to the tag reader. There is a unique key sk(x) for each tag x that is derived
from the passport data (that the reader obtains using OCR). The reader uses sk(x) to
encrypt N as a response to the challenge, as well as a challenge N’ of its own. We omit N’
here for simplicity. Also for simplicity, not to have to model the exchange of sk(x), we
put these two steps into one atomic transaction.

1 Transaction Challenge:

86 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

2 * x in {t1,t2}.
3 new N. send session(x,N). send N.
4 send scrypt(sk(x),N). nil

Here, Line 2 means that x is non-deterministically chosen from a set of two tags {t1,t2}
(we have to bound the number of tags tightly for the tool performance). The * symbol
indicates that the information is added to α: at this point the intruder is allowed to know
that x in {t1,t2}, but nothing more. If this transaction is executed repeatedly, then
the variables will all be freshly renamed each time, the intruder obtains an α formula
like x1 in {t1,t2},...,xn in {t1,t2}, saying that there have been n transactions
performed by some tags x1,...,xn and the intruder is not allowed to learn anything more
than that they are tags. In particular the intruder is not allowed to know whether or not
x1=x2 holds. This is indeed all that needs to be specified to formulate unlinkability as a
goal in (α, β)-privacy.

Line 3 creates a new random number, sends it out on the network (so the intruder
can observe it), and we send also a special pseudo-message session(x,N), i.e., a message
that only exists in our model: it formalizes the session state of the tag x were session
is a private function that the intruder cannot apply. Line 4 represents the answer that
the server sends: a symmetric encryption (scrypt) with key sk(x) and content N. (In
this case study, we use scrypt as a binary function to model deterministic encryption;
in Appendix B.4, the third argument for the randomness is set to a constant.) The nil
command finishes the transaction.

The next step is that the tag receives the messages from the reader, tries to decrypt it,
check that it contains the number N challenged to the server, and sends an error message
otherwise:

1 Transaction Response:
2 receive Session.
3 receive M.
4 try X:=sfst(Session) in
5 try N:=ssnd(Session) in
6 try NN:= dscrypt(sk(X),M) in
7 State := noncestate[N].
8 if N=NN and State=fresh then
9 noncestate[N]:= spent.

10 send ok. nil
11 else send nonceErr. nil # nonce check failed
12 catch send formatErr. nil # decryption failed
13 catch nil
14 catch nil

In Line 2, the tag actually tries to retrieve its session state (that we had sent as a pseudo-
message in the other transaction). This is supposed to be of the form session(X,N)
consisting of the tag name and challenge of that session. To check and extract this
information, we have two private functions (i.e., functions not accessible to the intruder)
called sfst and ssnd with the property that they return X and N respectively if the given
message has the form session(X,N), and give an error otherwise. The try-in-catch
construct accordingly continues with the in part if there is no error, and to the catch part
otherwise; here that would be the last two lines where the transaction does nothing.

In Lines 3 and 6, the tag receives the actual message that (supposedly) the tag reader
has sent and tries to decrypt it with its key sk(X) (where X is the value just retrieved from
its session state). The function dscrypt is public, i.e., also the intruder can apply it with
known keys, but the intruder in this example does not know any sk(X). (One could model
that the intruder has its own passport with tag tI and knows the key sk(tI).) Again
the decryption function either returns the content if this is a symmetric encryption with

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 87

the given key, or an error otherwise. In the error case (Line 12) the tag responds with a
formatErr code.

The next step is to compare the received nonce NN with the actual nonce N from the
session state. Here we have however a slight challenge in modeling: since the session state
is modeled here as a pseudo-message that was sent in the first transaction and received
back in the second, an intruder can replay an old session state that was actually already
processed by the tag, and we cannot prevent that in our model. However, (α, β)-privacy
transactions have a notion of long-term state that we can use. Here we use an (infinite)
array of memory cells noncestate[.] that is initialized with fresh. In Line 7 we retrieve
the state of the nonce N in question, check that the state is still fresh in Line 8, and then
set it to spent in Line 9, effectively blocking a nonce from being used twice. Finally the
tag responds with an ok message or a nonceErr.

6.2.1 The attack

A sequence of three transactions is sufficient to get to a violation of (α, β)-privacy. We
start with two Challenge transactions giving alpha = x1,x2 in {t1,t2} and respective
messages observed by the intruder:
l1 -> session(x1 ,N1) l3 -> session(x2 ,N2)
l2 -> scrypt(sk(x1),N1) l4 -> scrypt(sk(x2),N2)

Next, we execute the Response transaction where the intruder chooses for Session the
message l1 and for M the message l4. Now there are two possibilities for what can happen:
either x1=x2, then the decryption works (Line 6 of the Response transaction), but the
nonce check fails (Line 8), or x1/=x2 and then already the decryption fails. The error
message by the tag is nonceErr in the first case, and formatErr in the second case, so
the intruder now knows whether or not x1=x2. Since this does not follow from α, the
observations β of the intruder violate (α, β)-privacy, and we can find this attack with the
noname tool.

This attack was first reported by Arapinis et al. [6] and it is interesting that the
French implementation of the protocol was vulnerable to this attack, while the British
implementation was not. The Doc 9303 standard [57] requires the tag to send error messages
when receiving an ill-formed or incorrect message from the reader, however this standard
does not prescribe what the error message should be. In the French implementation, two
different error messages were used (represented here with nonceErr and formatErr), while
the British implementation uses the same error message in both cases, and in fact, doing
so we can verify the specification with the noname tool (for up to four transactions).

6.2.2 Another problem

Filimonov et al. [45] actually pointed out that the protocol has another problem that is
here (and in several other models) buried by the fact that the first exchange between tag
and reader, namely the nonce N from the tag and the response scrypt(sk(x),N) from the
reader is merged into one transaction. This does not allow for a possible confusion that
can arise when multiple tags in parallel are shown to the same or different readers.

We thus split the Challenge transaction into two transactions.
1 Transaction InitSession:
2 * x in {t1,t2}.
3 new N.
4 send session(x,N).
5 send N. nil
6

88 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

7 Transaction Challenge:
8 receive Session.
9 receive N.

10 try X:=sfst(Session) in
11 send scrypt(sk(X),N). nil
12 catch nil

Here the InitSession is the part of the tag creating a new nonce and session state, and
this is where the only augmentation of α occurs, thus one may not learn more than that x
is a tag.

The Challenge transaction now receives the pseudo-message Session, which simply
models that the reader receives the (claimed) identity X of the card and can compute
the key sk(X). Note that we would be “cheating” if the server also received the nonce N
from the session state, because that is actually transmitted over a public channel that
the intruder can access and manipulate. This Challenge transaction now allows for the
confusion that the reader gets the claimed identity and shared key from one passport, and
the nonce from another.

Now suppose the following transactions: two tags x1 and x2 (possibly the same) perform
the transaction InitSession and the intruder sends the session message from x1 and
the nonce N2 from x2 to the server in the Challenge transaction, who thus produces
scrypt(sk(x1),N2). The intruder feeds this message to the second tag, i.e., executing the
Response transaction with the session state of x2. This will give the ok message if and
only if x1=x2.

This attack can be found by the noname tool, however due to complexity, we introduced
a “guardrail”, guiding the tool to first execute two InitSession, followed by a Challenge
and a Response. With this guidance we prune other interleavings from the search tree,
and it is then small enough to find the attack in a reasonable amount of time. We also
verified with the tool under this guardrail that the attack does not exist when encrypting
the responses from the tag. The particular attack trace can also be found by running the
tool in interactive mode, where the user can select which transactions are executed and
which messages the intruder sends.

We observe here a clear advantage of (α, β)-privacy: the attack description in [45]
requires one page of explanation and an understanding of their particular notion of
bi-similarity between processes. It may be impossible to make that intuitive to non-
mathematical readers because it refers to a world in which only one tag exists, so that the
above strategy of the intruder cannot lead to an error. In contrast our specification of the
privacy goal is rather simple (the intruder may not find out more about the involved tags
other than that they are tags) and also the violation is: confusing the steps of two parallel
sessions leads to an observable error message unless the two sessions are with the same tag.

Finally, one may wonder if this is really an issue, because RFID tags do not actually
really perform multiple sessions at the same time. If every tag works strictly sequentially,
i.e., a new session can only be started once the current session is finished or timed out,
then the attack is also prevented. However, this situation is also troublesome: since the
intruder also knows that tags cannot participate in two sessions at the same time, the
successful completion of two interleaved sessions means that distinct tags are involved. The
encryption of all response messages also prevents this attack.

6.3 Case study: Private Authentication

Our second case study is the Private Authentication by Abadi and Fournet [1] that hides
as far as possible the identity of participants as well as the fact which participant is willing

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 89

to talk to which other participants. To our knowledge this is the tightest characterization
of the privacy goals that this protocol enjoys.

We denote the Private Authentication protocol with AF for short. The protocol contains
two roles, initiator and responder. The initiator sends an encrypted message containing a
nonce to the responder, who either replies with a nonce for authentication or with a decoy
message. The purpose of the decoy is to hide the fact that the responder does not want to
talk to the initiator, or that the incoming message does not have the right format. The
intruder should not be able to tell the difference between a decoy message and a properly
encrypted reply. AF is parameterized over a specification of which agent is willing to talk
which other agents. We first look at simple variant AF0 where everybody is willing to talk
to everybody.

6.3.1 AF0: initial attempt
We consider three agents a,b,i in this specification where a and b are honest, and i is
the intruder, all of which can play as participants here. Each participant x has a public
key pk(x) and the corresponding private key inv(pk(x)). The intruder knows all public
keys (because pk is a public function, and agent names are public constants) and their own
private key inv(pk(i)).2

The first transaction describes how an honest agent xA initiates communication with a
(possibly dishonest) agent xB (the case of a dishonest xA is already covered by the intruder
model).

1 Transaction Initiator:
2 * xA in {a,b}.
3 * xB in {a,b,i}.
4 if xB=i then
5 new NA ,R.
6 send crypt(pk(xB),pair(xA ,NA),R).
7 * xA=gamma(xA) and xB=gamma(xB). nil
8 else
9 new NA ,R.

10 send crypt(pk(xB),pair(xA ,NA),R).
11 * xB in {a,b}. nil

Like in the previous case study, Lines 2 and 3 specify the non-deterministic choices of
agent names from the respective domains, and thus specify that the intruder so far is only
allowed to know that xA and xB are chosen from these domains. The initiator sends an
encrypted message to the recipient, containing a pair of their name and a fresh nonce
NA. (R is also a nonce for randomized encryption.) If the recipient is dishonest, then the
intruder will learn the values of xA and xB from this message (knowing the private key to
decrypt it). Thus we get in this case a violation of (α, β)-privacy unless we release this
information, which we do in Line 7. Here the formula x=gamma(x) means that we release
the true value gamma(x) of x: gamma(x) will be replaced with the true value of x when
reaching this point. Also in the case that the recipient is honest, the intruder can learn
something from the fact that they cannot decrypt the message: that xB is honest, which
we release in Line 11. Releasing means that we allow this information to be known by
the intruder, so that it does not count as an attack if the intruder finds this out. If we
had forgotten any of these releases, the noname tool would have notified us with an attack.
Note that, except for the α-release, the then and else branches are identical: they reflect
the steps that xA indeed performs, while the if-then-else and α-releases are only for
specifying the privacy goal.

The response is now described from the perspective of an honest xB.
2As in Section 6.1, we model this with an additional transaction that simply sends the private key.

90 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

1 Transaction Responder:
2 * xB in {a,b}.
3 receive M.
4 try DEC:= dcrypt(inv(pk(xB)),M) in
5 try A:= proj1(DEC) in
6 if A=i then
7 new NB ,R.
8 send crypt(pk(A),NB ,R).
9 * xB=gamma(xB). nil

10 else
11 new NB ,R.
12 send crypt(pk(A),NB ,R). nil
13 catch new NB. send NB. nil
14 catch new NB. send NB. nil

It may be surprising that xB is here also non-deterministically chosen. The example
protocol actually leaves the communication model abstract and just models that a message
may arrive at any participant, since this may be caused by the intruder. xB receives a
message M that they try to decrypt with their private key. The operator dcrypt satisfies
the equation dcrypt(inv(K),crypt(K,M,R))=M. If the decryption succeeds, the result DEC
must be a pair of a sender name A and a nonce. To obtain A, the responder uses proj1
which satisfies the equation proj1(pair(X,Y))=X. If this succeeds, xB sends an answer
encrypted for A containing a fresh nonce NB and randomization R (Lines 8 and 12). As
before, we must take into account what the intruder can learn if A=i: since then the answer
is decipherable for them, they learn the name of xB (in case they did not know already). If
anything goes wrong (if decryption fails or the content is not a pair) then the recipient
sends a decoy message, a random nonce NB that is not distinguishable from an encrypted
message that the intruder does not have the decryption key for.

The attack

The noname tool reports an attack on this specification. In this attack, only the Responder
transaction was executed where the intruder provided as input for message M the following
recipe: crypt(pk(a),pair(i,R8),R5) where R8 and R5 are recipe variables that stand
for arbitrary recipes. The intruder has thus sent a message to recipient a under their true
name i. We have thus two cases. First, xB=a and thus the message is correctly decrypted
by xB and the intruder receives as an answer crypt(pk(i),NB,R) for some fresh values NB
and R. Second, xB/=a and the decryption fails and xB sends a decoy message NB. This is
of course observable for the intruder, since they can decrypt in the first case, but not in
the second. The concrete state that the noname tool presents is the latter case, and the
intruder thus learns xB/=a without that being released.

This illustrates how we may forget something that the intruder might find out and we
may then decide that this is completely benign: the intruder here acts under their real
name and just finds out that xB who did answer the message was not the intended recipient.
Without a basic change of communication model, this information release is unavoidable
and the solution is thus to release just this information in this case.

6.3.2 AF0: corrected release
We update the responder transaction to add the information being released in the case
that the decryption fails, i.e., the catch branch following Line 14.

1 Transaction Responder:
2 * xB in {a,b}.
3 receive M.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 91

4 try DEC:= dcrypt(inv(pk(xB)),M) in
5 try A:= proj1(DEC) in
6 if A=i then
7 new NB ,R.
8 send crypt(pk(A),NB ,R).
9 * xB=gamma(xB). nil

10 else
11 new NB ,R.
12 send crypt(pk(A),NB ,R). nil
13 catch new NB. send NB. nil
14 catch
15 try C:= recipient(M) in
16 try DEC:= dcrypt(inv(pk(C)),M) in
17 try A:= proj1(DEC) in
18 if A in {a,b,i} and C in {a,b} then
19 new NB.
20 send NB.
21 * not (C=xB and A=i). nil
22 else new NB. send NB. nil
23 catch new NB. send NB. nil
24 catch new NB. send NB. nil
25 catch new NB. send NB. nil

The case where the actual recipient xB could not decrypt the given message is complicated.
To even talk about who is the intended recipient C (if the message is even an encryption) we
need to model a function that agents in reality cannot perform, namely extracting the name
of the recipient from the message, if it exists (Line 15). That is the purpose of the private
function recipient which satisfies the equation recipient(crypt(pk(B),M,R))=B. These
steps do not correspond to actions an agent would do and which we only need in order
to determine whether the intruder is allowed to learn something. This is the case if the
message is indeed encrypted for some agent C and contains a pair of an agent name A (the
claimed sender) and a nonce. We can even restrict this to an honest C, as the intruder
can otherwise already decrypt the given message and learn A and C. If A is an agent and C
is honest, then the intruder learns that at least one of two things must be true: C is not
the actual recipient xB or A is honest, for if C=xB and A dishonest, then the intruder could
decipher the answer.

In the case where the first specification had the attack, the intruder knew that A=i
and C=a by construction. The released formula α in the updated specification is thus
not(a=xB and i=i) or simply a/=xB. We can indeed verify with the noname tool that
there are no more violations of (α, β)-privacy under a bound of three transactions.

6.3.3 AF
We now lift the simplification of AF0 that everybody is willing to talk to everybody. We
define a binary relation talk, where talk(x,y) means that x is willing to talk to y. The
noname tool requires to give a fixed interpretation of such a relation. We choose for our
experiments the interpretation: talk: (a,b),(a,i),(b,a) which specifies that talk is
true for the listed tuples and false otherwise. The aim of the protocol is that privacy holds
for every interpretation of talk, but we cannot encode this in the noname tool and in fact
the definition of (α, β)-privacy requires a fixed interpretation of all relation symbols [47].

The initiator now checks that the given xA really wants to talk to the given xB in Line 4:
1 Transaction Initiator:
2 * xA in {a,b}.
3 * xB in {a,b,i}.
4 if talk(xA ,xB) then
5 if xB=i then

92 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

6 new NA ,R.
7 send crypt(pk(xB),pair(xA ,NA),R).
8 * talk(xA,xB) and xA=gamma(xA) and xB=gamma(xB). nil
9 else

10 new NA ,R.
11 send crypt(pk(xB),pair(xA ,NA),R).
12 * talk(xA,xB) and xB in {a,b}. nil
13 else * not talk(xA ,xB). nil

In the positive cases the intruder learns that talk(xA,xB) (in case xB=i the intruder learns
also the concrete agent names, in case xB/=i the intruder learns that xB is honest), in the
negative case, the intruder learns not talk(xA,xB). This case is a bit artificial, because
if xA does not want to talk to xB, they would not even start this transaction in reality,
but here we need to non-deterministically choose the agent names first and then abort if
not talk(xA,xB), and then the intruder learns that because no message goes out.

This has an interesting consequence: suppose we are in a state where the intruder,
as part of α, has learned that agent a talks to every other agent, and now observes
not talk(xA,xB). From xA in {a,b} follows that xA=b. This is not a violation of (α, β)-
privacy, since this xA=b holds in every model of α. In general, it is completely acceptable
that the intruder learns the value of privacy variables like xA, as long as this is a consequence
of α.

The responder role is now getting more complex.
1 Transaction Responder:
2 * xB in {a,b}.
3 receive M.
4 try DEC:= dcrypt(inv(pk(xB)),M) in
5 try A:= proj1(DEC) in
6 if A=i then
7 if talk(xB ,A) then
8 new NB ,R.
9 send crypt(pk(A),NB ,R).

10 * xB=gamma(xB) and talk(xB,A). nil
11 else
12 new NB.
13 send NB.
14 * not talk(xB,A). nil
15 else if A in {a,b} then
16 if talk(xB,A) then
17 new NB ,R.
18 send crypt(pk(A),NB ,R). nil
19 else new NB. send NB. nil
20 else new NB. send NB. nil
21 catch new NB. send NB. nil
22 catch
23 try C:= recipient(M) in
24 try DEC:= dcrypt(inv(pk(C)),M) in
25 try A:= proj1(DEC) in
26 if A in {a,b,i} and C in {a,b} then
27 new NB.
28 send NB.
29 * not (C=xB and A=i and talk(xB,A)). nil
30 else new NB. send NB. nil
31 catch new NB. send NB. nil
32 catch new NB. send NB. nil
33 catch new NB. send NB. nil

The main change here is the case split on whether talk(xB,A) in Lines 7 and 16: if not,
we get into the decoy cases. Observe that only in the dishonest cases the intruder learns
whether talk(xB,A) or not in Lines 10 and 14. In case the message is a valid message to

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 93

some different agent C, the intruder learns a bit less in Line 29 when compared to the AF0
version: it basically says that now the reason for not being able to decipher the reply could
be that not talk(xB,A).

We have verified privacy with the noname tool up to four transactions, both for the
above interpretation of talk, and when everybody talks to everybody.

94 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Chapter 7

Conclusion

In this thesis, we have developed three main results for (α, β)-privacy in the following
topics: automated verification, typing and compositionality. Moreover, we have applied
our results to several example protocols.

7.1 Decision procedure

In Chapter 3, we have defined a decision procedure for a bounded number of transitions.
We focused first on the symbolic execution of protocols and in particular on the constraint
solving using the lazy intruder. This showed how we can represent, in a finite way, the
intruder choices of recipes in the absence of destructors. Then we have defined rules for
normalizing a symbolic state by performing all relevant intruder experiments that could
distinguish possibilities in that state. Finally, we have explained how to support algebraic
properties of constructor/destructor theories by following an analysis strategy that decrypts
messages as far as possible, so that our representation is sound and complete also in the
presence of destructors.

There are two important limitations. First, our restriction of algebraic theories is
significant: primitives such as Diffie-Hellman exponentiation or blind signatures for commit-
ment schemes are not supported. Hence, one opportunity for future work is to investigate
whether the requirements on primitives can be relaxed in order to obtain a procedure
that can used with more protocols. Second, the verification is done for a bounded number
of transitions: another area for future work is the design of a procedure for unbounded
steps. This would require a significant change in the model of protocol execution and could
involve computing an over-approximation of the intruder knowledge.

7.2 Typing

In Chapter 4, we have introduced a typed model, where a protocol specification includes
the intended type of every message. We have also extended the semantics of the symbolic
execution to support pattern matching. Then we proved that, for protocols that satisfy
some requirements, all the destructor applications in transactions can be replaced with
pattern matching. After that, we defined the notion of type-flaw resistance, which in
short ensures that messages of different types cannot be confused. Finally, we have shown
that, given a type-flaw resistant protocol, each part of the procedure of Chapter 3 only
performs well-typed substitutions. (This required some change in the formalization of the
analysis procedure.) We thus obtained a typing result of the form: “if a type-flaw resistant
protocol has an attack, then it has a well-typed attack.” This result is more general than

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 95

related work on typing for privacy properties, because we allow non-deterministic choices
to influence the control flow of processes, we fully support if-then-else branches, and we
also support stateful protocols with memory cells.

We have discussed the benefits of such typing results. In particular, it is good practice
for protocol design to rule out all attacks relying on type-flaws, and working a typed model
can significantly help to achieve additional results such as compositionality. Since our
method for obtaining the typing result is essentially to prove well-typedness of the decision
procedure, we again have a main limitation for the supported algebraic theories. However,
our typing result holds without any bounds on the number of transitions.

7.3 Compositionality

In Chapter 5, we studied protocol composition. We started by extending the grammar
of protocols and the semantics of the symbolic execution to support new constructs such
as procedure calls used for modeling composition. We assumed a typed model and only
considered well-typed executions. The typing result of Chapter 4 is one way to ensure that
this assumption is sound, but it would require some extension to include the constructs
added for composition. We also introduced the notion of roles, which are sequences of
transactions allowing for interleaving with other transactions between each atomic execution.
We illustrated our definitions with an example based on the Needham-Schroeder-Lowe
protocol together with procedure calls to a key server. We defined the projection of a
composed protocol to an individual component as the restriction to transactions from that
component plus the abstract interface of the other components. Then we defined the notion
of composability, which in short ensures that every projection of the composed protocol
is well-defined and can be executed. Finally, we presented our compositionality results,
focusing on frames and recipes before obtaining our main result of the form: “given a
composable protocol, if every component is secure, then the composed protocol is secure.”

Our main limitation is again the restriction to constructor/destructor theories. Moreover,
when verifying one component of the composed system, we still need to consider the
abstract interface of other components, so we are not verifying each component completely
in isolation. (We discussed in Section 5.5 why this is the case in our approach.) There
are very few compositionality results that target privacy properties and support stateful
protocols. Our result is more general than related work in several aspects because we are less
restrictive in the way protocols are composed: we support shared messages, declassification
of secrets, composition through memory cells and procedure calls.

7.4 Tool support

In Chapter 6, we have given a brief introduction to the noname tool implementing our
decision procedure and presented in details the analysis of two protocols, BAC and Private
Authentication. The other protocols of the case studies (presented in Chapter 3) are
the simple running example protocol (Example 2.2.1), Basic Hash and OSK. We have
focused on unlinkability goals, but some models like for Private Authentication go beyond
this. The case studies show the benefits of the declarative approach to privacy goals. In
particular, we find it useful to iterate on specifications: if the protocol has an attack, the
tool reports it to the user who can then decide whether the information learned by the
intruder constitutes a real violation of privacy. In case the intruder deductions are deemed
acceptable, one can then update the specification with precise releases of information in
the transactions and apply the tool again to check whether there are other attacks.

96 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

The case studies with the noname tool show that automated analysis of (α, β)-privacy
is practical, at least within small bounds on the number of transactions. While this is a
prototype tool, there is still much room for improvement, but on the other hand we do
obtain a massive state explosion with an increase of bounds. Similar effects are indeed
observed with other tools like DeepSec that, like us, focus on expressive power. It is
striking that, although (α, β)-privacy is such a different approach, we seem to hit the
similar technical limits, so one could argue that they are truly inherent in the problem of
verifying privacy.

7.5 Future work

There are several directions to explore for automated verification of (α, β)-privacy:

• Development of tool support: the procedure from Chapter 3 has been implemented in
the prototype tool noname, but it can be improved for optimization and presentation of
results to the user. Moreover, the verification of type-flaw resistance and composability
requirements is amenable to automation, since they are syntactic requirements. Even
though the set of messages patterns of a protocol is infinite in general, the condition
for type-flaw resistance can be checked automatically using a finite representation [51].
While the decision procedure from Chapter 3 does not consider protocol composition,
it seems that it could be extended to support the constructs introduced in Chapter 5
without any theoretical challenge.

• Modeling and analysis: studying more protocols, both older protocols with known
attacks and new protocols that have not been verified, can provide insights to extend
or refine the (α, β)-privacy specification language, and it would also be beneficial
to benchmark and showcase how (α, β)-privacy works. For instance, it would be
useful to identify and model different composed protocols in order to understand how
applicable our compositionality result from Chapter 5 is in practice.

• Relaxation of requirements, in particular for algebraic theories: the handling of
destructors may be generalized to support more primitives; Diffie-Hellman exponenti-
ation would be particularly relevant. One example is the verification of the EMV
protocol for contactless payment card transactions [38]. Even though our tool does
not support the blinded Diffie-Hellman key exchange used in this protocol, we can
find (using manual exploration) a linkability attack in case of an active attacker [56],
because this particular attack does not require the algebraic property of blinding.
However, we currently cannot prove that the extended version presented in [56] is
unlinkable.

• Support for probabilistic (α, β)-privacy: [46] defines semantics where privacy variables
can be sampled with probabilities, which we have not considered in this thesis.

• Design of procedure for unbounded steps: can we prove that a protocol satisfies
(α, β)-privacy without putting a bound on the number of transitions?

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 97

98 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Bibliography

[1] M. Abadi and C. Fournet. “Private Authentication”. In: Theor. Comput. Sci. 322.3
(2004), pp. 427–476. doi: 10.1016/j.tcs.2003.12.023.

[2] M. Abadi and R. Needham. “Prudent engineering practice for cryptographic proto-
cols”. In: IEEE Trans. Softw. Eng. 22.1 (1996), pp. 6–15. doi: 10.1109/32.481513.

[3] O. Almousa, S. Mödersheim, P. Modesti, and L. Viganò. “Typing and Composi-
tionality for Security Protocols: A Generalization to the Geometric Fragment”. In:
ESORICS 2015. Vol. 9327. LNCS. Springer, 2015, pp. 209–229. doi: 10.1007/978-3-
319-24177-7_11.

[4] D. Aparicio-Sánchez, S. Escobar, R. Gutiérrez, and J. Sapiña. “An Optimizing
Protocol Transformation for Constructor Finite Variant Theories in Maude-NPA”. In:
ESORICS 2020. Vol. 12309. LNCS. Springer, 2020, pp. 230–250. doi: 10.1007/978-3-
030-59013-0_12.

[5] M. Arapinis, V. Cheval, and S. Delaune. “Composing Security Protocols: From
Confidentiality to Privacy”. In: POST 2015. Vol. 9036. LNCS. Springer, 2015, pp. 324–
343. doi: 10.1007/978-3-662-46666-7_17.

[6] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. “Analysing Unlinkability and
Anonymity Using the Applied Pi Calculus”. In: CSF 2010. IEEE, 2010, pp. 107–121.
doi: 10.1109/CSF.2010.15.

[7] M. Arapinis and M. Duflot. “Bounding messages for free in security protocols –
extension to various security properties”. In: Inf Comput 239 (2014), pp. 182–215.
doi: 10.1016/j.ic.2014.09.003.

[8] A. Armando, R. Carbone, and L. Compagna. “SATMC: A SAT-Based Model Checker
for Security-Critical Systems”. In: TACAS 2014. Vol. 8413. LNCS. Springer, 2014,
pp. 31–45. doi: 10.1007/978-3-642-54862-8_3.

[9] A. Armando et al. “The AVANTSSAR Platform for the Automated Validation of
Trust and Security of Service-Oriented Architectures”. In: TACAS 2012. Vol. 7214.
LNCS. Springer, 2012, pp. 267–282. doi: 10.1007/978-3-642-28756-5_19.

[10] A. Armando et al. “The AVISPA Tool for the Automated Validation of Internet
Security Protocols and Applications”. In: CAV 2005. Vol. 3576. LNCS. Springer,
2005, pp. 281–285. doi: 10.1007/11513988_27.

[11] D. Baelde, S. Delaune, and S. Moreau. “A Method for Proving Unlinkability of
Stateful Protocols”. In: CSF 2020. IEEE, 2020, pp. 169–183. doi: 10.1109/CSF49147.
2020.00020.

[12] H. Barbosa et al. “cvc5: A Versatile and Industrial-Strength SMT Solver”. In: TACAS
2022. Vol. 13243. LNCS. Springer, 2022, pp. 415–442. doi: 10.1007/978-3-030-99524-
9_24.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 99

https://doi.org/10.1016/j.tcs.2003.12.023
https://doi.org/10.1109/32.481513
https://doi.org/10.1007/978-3-319-24177-7_11
https://doi.org/10.1007/978-3-319-24177-7_11
https://doi.org/10.1007/978-3-030-59013-0_12
https://doi.org/10.1007/978-3-030-59013-0_12
https://doi.org/10.1007/978-3-662-46666-7_17
https://doi.org/10.1109/CSF.2010.15
https://doi.org/10.1016/j.ic.2014.09.003
https://doi.org/10.1007/978-3-642-54862-8_3
https://doi.org/10.1007/978-3-642-28756-5_19
https://doi.org/10.1007/11513988_27
https://doi.org/10.1109/CSF49147.2020.00020
https://doi.org/10.1109/CSF49147.2020.00020
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24

[13] D. Basin, S. Mödersheim, and L. Viganò. “OFMC: A Symbolic Model Checker for
Security Protocols”. In: Int. J. Inf. Secur. 4.3 (2005), pp. 181–208. doi: 10.1007/
s10207-004-0055-7.

[14] M. Baudet. “Deciding Security of Protocols Against Off-line Guessing Attacks”. In:
CCS 2005. ACM, 2005, pp. 16–25. doi: 10.1145/1102120.1102125.

[15] D. Bernhard et al. “Adapting Helios for Provable Ballot Privacy”. In: ESORICS 2011.
Vol. 6879. LNCS. Springer, 2011, pp. 335–354. doi: 10.1007/978-3-642-23822-2_19.

[16] B. Blanchet. “An Efficient Cryptographic Protocol Verifier Based on Prolog Rules”.
In: CSFW 2001. IEEE, 2001, pp. 82–96. doi: 10.1109/CSFW.2001.930138.

[17] B. Blanchet, M. Abadi, and C. Fournet. “Automated Verification of Selected Equiva-
lences for Security Protocols”. In: J Log Algebr Program 75.1 (2008), pp. 3–51. doi:
10.1016/j.jlap.2007.06.002.

[18] B. Blanchet and A. Podelski. “Verification of cryptographic protocols: tagging enforces
termination”. In: Theor. Comput. Sci. 333.1 (2005), pp. 67–90. doi: 10.1016/j.tcs.
2004.10.018.

[19] A. Boutet et al. Contact Tracing by Giant Data Collectors: Opening Pandora’s
Box of Threats to Privacy, Sovereignty and National Security. Tech. rep. EPFL,
Switzerland; Inria, France; JMU Würzburg, Germany; University of Salerno, Italy;
base23, Switzerland; TU Darmstadt, Germany, 2020. url: https://hal.inria.fr/hal-
03116024.

[20] M. Brusó, K. Chatzikokolakis, and J. den Hartog. “Formal Verification of Privacy for
RFID Systems”. In: CSF 2010. IEEE, 2010, pp. 75–88. doi: 10.1109/CSF.2010.13.

[21] R. Chadha, V. Cheval, Ş. Ciobâcă, and S. Kremer. “Automated Verification of
Equivalence Properties of Cryptographic Protocols”. In: ACM Trans. Comput. Logic
17.4 (2016), pp. 1–32. doi: 10.1145/2926715.

[22] V. Cheval. “APTE: An Algorithm for Proving Trace Equivalence”. In: TACAS 2014.
Vol. 8413. LNCS. Springer, 2014, pp. 587–592. doi: 10.1007/978-3-642-54862-8_50.

[23] V. Cheval, H. Comon-Lundh, and S. Delaune. “A Procedure for Deciding Symbolic
Equivalence Between Sets of Constraint Systems”. In: Inf Comput 255 (2017), pp. 94–
125. doi: 10.1016/j.ic.2017.05.004.

[24] V. Cheval, V. Cortier, and B. Warinschi. “Secure Composition of PKIs with Public
Key Protocols”. In: CSF 2017. IEEE, 2017, pp. 144–158. doi: 10.1109/CSF.2017.28.

[25] V. Cheval, S. Kremer, and I. Rakotonirina. “DEEPSEC: Deciding Equivalence
Properties in Security Protocols Theory and Practice”. In: S&P 2018. IEEE, 2018,
pp. 529–546. doi: 10.1109/SP.2018.00033.

[26] V. Cheval, S. Kremer, and I. Rakotonirina. “Exploiting Symmetries When Proving
Equivalence Properties for Security Protocols”. In: CCS 2019. ACM, 2019, pp. 905–
922. doi: 10.1145/3319535.3354260.

[27] V. Cheval, S. Kremer, and I. Rakotonirina. “The Hitchhiker’s Guide to Decidability
and Complexity of Equivalence Properties in Security Protocols”. In: Logic, Language,
and Security. Vol. 12300. LNCS. Springer, 2020, pp. 127–145. doi: 10.1007/978-3-
030-62077-6_10.

[28] V. Cheval and I. Rakotonirina. “Indistinguishability Beyond Diff-Equivalence in
ProVerif”. In: CSF 2023. IEEE, 2023, pp. 184–199. doi: 10.1109/CSF57540.2023.
00036.

100 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1007/s10207-004-0055-7
https://doi.org/10.1145/1102120.1102125
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1109/CSFW.2001.930138
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1016/j.tcs.2004.10.018
https://doi.org/10.1016/j.tcs.2004.10.018
https://hal.inria.fr/hal-03116024
https://hal.inria.fr/hal-03116024
https://doi.org/10.1109/CSF.2010.13
https://doi.org/10.1145/2926715
https://doi.org/10.1007/978-3-642-54862-8_50
https://doi.org/10.1016/j.ic.2017.05.004
https://doi.org/10.1109/CSF.2017.28
https://doi.org/10.1109/SP.2018.00033
https://doi.org/10.1145/3319535.3354260
https://doi.org/10.1007/978-3-030-62077-6_10
https://doi.org/10.1007/978-3-030-62077-6_10
https://doi.org/10.1109/CSF57540.2023.00036
https://doi.org/10.1109/CSF57540.2023.00036

[29] C. Chevalier, S. Delaune, S. Kremer, and M. Ryan. “Composition of password-based
protocols”. In: Form Methods Syst Des 43.3 (2013), pp. 369–413. doi: 10.1007/s10703-
013-0184-6.

[30] T. Chothia and V. Smirnov. “A Traceability Attack against e-Passports”. In: FC
2010. Vol. 6052. LNCS. Springer, 2010, pp. 20–34. doi: 10.1007/978-3-642-14577-3_5.

[31] R. Chrétien, V. Cortier, A. Dallon, and S. Delaune. “Typing Messages for Free
in Security Protocols”. In: ACM Trans. Comput. Logic 21.1 (2020), pp. 1–52. doi:
10.1145/3343507.

[32] R. Chrétien, V. Cortier, and S. Delaune. “Typing Messages for Free in Security
Protocols: The Case of Equivalence Properties”. In: CONCUR 2014. Vol. 8704.
Springer, 2014, pp. 372–386. doi: 10.1007/978-3-662-44584-6_26.

[33] S. Ciobâca and V. Cortier. “Protocol Composition for Arbitrary Primitives”. In: CSF
2010. IEEE, 2010, pp. 322–336. doi: 10.1109/CSF.2010.29.

[34] V. Cortier and S. Delaune. “Safely composing security protocols”. In: Form Methods
Syst Des 34.1 (2009), pp. 1–36. doi: 10.1007/s10703-008-0059-4.

[35] V. Cortier et al. “Machine-Checked Proofs of Privacy for Electronic Voting Protocols”.
In: S&P 2017. IEEE, 2017, pp. 993–1008. doi: 10.1109/SP.2017.28.

[36] S. Delaune and L. Hirschi. “A Survey of Symbolic Methods for Establishing Equiva-
lence-based Properties in Cryptographic Protocols”. In: J. Log. Algebraic Methods
Program. 87 (2017), pp. 127–144. doi: 10.1016/j.jlamp.2016.10.005.

[37] S. Doghmi, J. Guttman, and F. J. Thayer. “Searching for Shapes in Cryptographic
Protocols”. In: TACAS 2007. Vol. 4424. LNCS. Springer, 2007, pp. 523–537. doi:
10.1007/978-3-540-71209-1_41.

[38] EMV Contactless Specifications for Payment Systems. Books A–E. https://www.
emvco.com/specifications/.

[39] L. Fernet. noname: Formal Verification of (Alpha, Beta)-Privacy in Security Protocols.
Version 0.3. Nov. 2024. doi: 10.5281/zenodo.14198336. url: https://doi.org/10.5281/
zenodo.14198336.

[40] L. Fernet and S. Mödersheim. “Deciding a Fragment of (alpha, beta)-Privacy”. In:
STM 2021. Vol. 13075. LNCS. Springer, 2021, pp. 122–142. doi: 10.1007/978-3-030-
91859-0_7.

[41] L. Fernet and S. Mödersheim. “Private Authentication with Alpha-Beta-Privacy”. In:
OID 2023. LNI. GI, 2023. doi: 10.18420/OID2023_05. url: https://people.compute.
dtu.dk/samo/alphabeta.

[42] L. Fernet, S. Mödersheim, and L. Viganò. A Compositionality Result for Alpha-Beta
Privacy. Tech. rep. DTU, Denmark; King’s, United Kingdom, 2024. url: https :
//people.compute.dtu.dk/samo.

[43] L. Fernet, S. Mödersheim, and L. Viganò. “A decision procedure and typing result
for alpha-beta privacy”. In: J. Comput. Secur. (2024). Submitted for review.

[44] L. Fernet, S. Mödersheim, and L. Viganò. “A Decision Procedure for Alpha-Beta
Privacy for a Bounded Number of Transitions”. In: CSF 2024. Extended version
at https://people.compute.dtu.dk/samo/alphabeta. IEEE, 2024, pp. 159–174. doi:
10.1109/CSF61375.2024.00011.

[45] I. Filimonov, R. Horne, S. Mauw, and Z. Smith. “Breaking Unlinkability of the ICAO
9303 Standard for e-Passports Using Bisimilarity”. In: ESORICS 2019. Vol. 11735.
LNCS. Springer, 2019, pp. 577–594. doi: 10.1007/978-3-030-29959-0_28.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 101

https://doi.org/10.1007/s10703-013-0184-6
https://doi.org/10.1007/s10703-013-0184-6
https://doi.org/10.1007/978-3-642-14577-3_5
https://doi.org/10.1145/3343507
https://doi.org/10.1007/978-3-662-44584-6_26
https://doi.org/10.1109/CSF.2010.29
https://doi.org/10.1007/s10703-008-0059-4
https://doi.org/10.1109/SP.2017.28
https://doi.org/10.1016/j.jlamp.2016.10.005
https://doi.org/10.1007/978-3-540-71209-1_41
https://www.emvco.com/specifications/
https://www.emvco.com/specifications/
https://doi.org/10.5281/zenodo.14198336
https://doi.org/10.5281/zenodo.14198336
https://doi.org/10.5281/zenodo.14198336
https://doi.org/10.1007/978-3-030-91859-0_7
https://doi.org/10.1007/978-3-030-91859-0_7
https://doi.org/10.18420/OID2023_05
https://people.compute.dtu.dk/samo/alphabeta
https://people.compute.dtu.dk/samo/alphabeta
https://people.compute.dtu.dk/samo
https://people.compute.dtu.dk/samo
https://people.compute.dtu.dk/samo/alphabeta
https://doi.org/10.1109/CSF61375.2024.00011
https://doi.org/10.1007/978-3-030-29959-0_28

[46] S. Gondron. “Vertical Composition of Distributed Systems”. PhD thesis. Technical
University of Denmark, 2021.

[47] S. Gondron, S. Mödersheim, and L. Viganò. “Privacy as Reachability”. In: CSF 2022.
IEEE, 2022, pp. 130–146. doi: 10.1109/CSF54842.2022.9919668.

[48] J. Guttman. “Cryptographic Protocol Composition via the Authentication Tests”.
In: FOSSACS 2009. Vol. 5504. LNCS. Springer, 2009, pp. 303–317. doi: 10.1007/978-
3-642-00596-1_22.

[49] J. Guttman and F. J. Thayer. “Protocol independence through disjoint encryption”.
In: CSFW 2000. IEEE, 2000, pp. 24–34. doi: 10.1109/CSFW.2000.856923.

[50] J. Heather, G. Lowe, and S. Schneider. “How to prevent type flaw attacks on security
protocols”. In: J. Comput. Secur. 11.2 (2003), pp. 217–244. doi: 10.3233/JCS-2003-
11204.

[51] A. Hess and S. Mödersheim. “A Typing Result for Stateful Protocols”. In: CSF 2018.
IEEE, 2018, pp. 374–388. doi: 10.1109/CSF.2018.00034.

[52] A. Hess and S. Mödersheim. “Formalizing and Proving a Typing Result for Security
Protocols in Isabelle/HOL”. In: CSF 2017. IEEE, 2017, pp. 451–463. doi: 10.1109/
CSF.2017.27.

[53] A. Hess, S. Mödersheim, and A. Brucker. “Stateful Protocol Composition in Is-
abelle/HOL”. In: ACM Trans. Priv. Secur. 26.3 (2023), pp. 1–36. doi: 10.1145/
3577020.

[54] A. Hess, S. Mödersheim, A. Brucker, and A. Schlichtkrull. “Performing Security
Proofs of Stateful Protocols”. In: CSF 2021. IEEE, 2021, pp. 1–16. doi: 10.1109/
CSF51468.2021.00006.

[55] T. Hinrichs and M. Genesereth. Herbrand Logic. Tech. rep. LG-2006-02. Stanford
University, USA, 2006. url: http://logic.stanford.edu/reports/LG-2006-02.pdf.

[56] R. Horne, S. Mauw, and S. Yurkov. “Unlinkability of an Improved Key Agreement
Protocol for EMV 2nd Gen Payments”. In: CSF 2022. IEEE, 2022, pp. 364–379. doi:
10.1109/CSF54842.2022.9919666.

[57] ICAO. Machine Readable Travel Documents. Doc Series, Doc 9303. https://www.icao.
int/publications/pages/publication.aspx?docnum=9303.

[58] V. Iovino, S. Vaudenay, and M. Vuagnoux. On the Effectiveness of Time Travel to
Inject COVID-19 Alerts. Cryptology ePrint Archive, Paper 2020/1393. 2020. doi:
10.1007/978-3-030-75539-3_18.

[59] G. Lowe. “An attack on the Needham-Schroeder public-key authentication protocol”.
In: Inf Process Lett 56.3 (1995), pp. 131–133. doi: 10.1016/0020-0190(95)00144-2.

[60] S. Meier, B. Schmidt, C. Cremers, and D. Basin. “The TAMARIN Prover for the
Symbolic Analysis of Security Protocols”. In: CAV 2013. Vol. 8044. LNCS. Springer,
2013, pp. 696–701. doi: 10.1007/978-3-642-39799-8_48.

[61] J. Millen and V. Shmatikov. “Constraint Solving for Bounded-Process Cryptographic
Protocol Analysis”. In: CCS 2001. ACM, 2001, pp. 166–175. doi: 10.1145/502006.
502007.

[62] S. Mödersheim and G. Katsoris. “A Sound Abstraction of the Parsing Problem”. In:
CSF 2014. IEEE, 2014, pp. 259–273. doi: 10.1109/CSF.2014.26.

[63] S. Mödersheim and L. Viganò. “Alpha-Beta Privacy”. In: ACM Trans. Priv. Secur.
22.1 (2019), pp. 1–35. doi: 10.1145/3289255.

102 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

https://doi.org/10.1109/CSF54842.2022.9919668
https://doi.org/10.1007/978-3-642-00596-1_22
https://doi.org/10.1007/978-3-642-00596-1_22
https://doi.org/10.1109/CSFW.2000.856923
https://doi.org/10.3233/JCS-2003-11204
https://doi.org/10.3233/JCS-2003-11204
https://doi.org/10.1109/CSF.2018.00034
https://doi.org/10.1109/CSF.2017.27
https://doi.org/10.1109/CSF.2017.27
https://doi.org/10.1145/3577020
https://doi.org/10.1145/3577020
https://doi.org/10.1109/CSF51468.2021.00006
https://doi.org/10.1109/CSF51468.2021.00006
http://logic.stanford.edu/reports/LG-2006-02.pdf
https://doi.org/10.1109/CSF54842.2022.9919666
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://www.icao.int/publications/pages/publication.aspx?docnum=9303
https://doi.org/10.1007/978-3-030-75539-3_18
https://doi.org/10.1016/0020-0190(95)00144-2
https://doi.org/10.1007/978-3-642-39799-8_48
https://doi.org/10.1145/502006.502007
https://doi.org/10.1145/502006.502007
https://doi.org/10.1109/CSF.2014.26
https://doi.org/10.1145/3289255

[64] S. Mödersheim and L. Viganò. “The Open-Source Fixed-Point Model Checker for
Symbolic Analysis of Security Protocols”. In: FOSAD 2007/2008/2009 Tutorial
Lectures. Vol. 5705. LNCS. Springer, 2009, pp. 166–194. doi: 10.1007/978-3-642-
03829-7_6.

[65] R. Needham and M. Schroeder. “Using encryption for authentication in large networks
of computers”. In: Commun. ACM 21.12 (1978), pp. 993–999. doi: 10.1145/359657.
359659.

[66] M. Ohkubo, K. Suzuki, and S. Kinoshita. “Cryptographic Approach to ‘Privacy-
Friendly’ Tags”. In: RFID Privacy Workshop 2003. 2003.

[67] L. Paulson. “The inductive approach to verifying cryptographic protocols”. In: J.
Comput. Secur. 6.1 (1998), pp. 85–128. doi: 10.3233/JCS-1998-61-205.

[68] E. Rescorla and T. Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246. 2008. doi: 10.17487/RFC5246. url: https://www.rfc-editor.org/info/
rfc5246.

[69] M. Rusinowitch and M. Turuani. “Protocol Insecurity with a Finite Number of
Sessions and Composed Keys is NP-Complete”. In: Theor. Comput. Sci. 299.1 (2003),
pp. 451–475. doi: 10.1016/S0304-3975(02)00490-5.

[70] A. Tiu and J. Dawson. “Automating Open Bisimulation Checking for the Spi Calcu-
lus”. In: CSF 2010. IEEE, 2010, pp. 307–321. doi: 10.1109/CSF.2010.28.

[71] A. Tiu, N. Nguyen, and R. Horne. “SPEC: An Equivalence Checker for Security
Protocols”. In: APLAS 2016. Vol. 10017. LNCS. Springer, 2016, pp. 87–95. doi:
10.1007/978-3-319-47958-3_5.

[72] M. Turuani. “The CL-Atse Protocol Analyser”. In: RTA 2006. Vol. 4098. LNCS.
Springer, 2006, pp. 277–286. doi: 10.1007/11805618_21.

[73] S. Vaudenay and M. Vuagnoux. Analysis of SwissCovid. Tech. rep. EPFL, Switzerland;
base23, Switzerland, 2020. url: https://lasec.epfl.ch/people/vaudenay/swisscovid/
swisscovid-ana.pdf.

[74] S. A. Weis, S. E. Sarma, R. L. Rivest, and D. W. Engels. “Security and Privacy Aspects
of Low-Cost Radio Frequency Identification Systems”. In: Security in Pervasive
Computing. Vol. 2802. LNCS. Springer, 2004, pp. 201–212. doi: 10.1007/978-3-540-
39881-3_18.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 103

https://doi.org/10.1007/978-3-642-03829-7_6
https://doi.org/10.1007/978-3-642-03829-7_6
https://doi.org/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://doi.org/10.3233/JCS-1998-61-205
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://doi.org/10.1016/S0304-3975(02)00490-5
https://doi.org/10.1109/CSF.2010.28
https://doi.org/10.1007/978-3-319-47958-3_5
https://doi.org/10.1007/11805618_21
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://doi.org/10.1007/978-3-540-39881-3_18
https://doi.org/10.1007/978-3-540-39881-3_18

104 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Appendix A

Proofs

A.1 Decidability of fragment of Herbrand logic

We support the fragment such that:

• The alphabet Σ0 is finite (in particular, there are finitely many constants).

• The equivalence class [t]E of every Σ0-term t is computable (and thus finite).

• Every variable x (both bound and unbound) must range over a fixed domain of
constants, dom(x) ⊆ Σ0

0.

Before giving a decision procedure, we first need some definitions. Given the Herbrand
universe U induced by Σ0 and given α, we define the relevant part of U for α as follows:

Uα
0 = {[σ(ti)]E | R(t1, . . . , tn) occurs in α and for all x ∈ fv(t1, . . . , tn), σ(x) ∈ dom(x)}

We say that θ is an interpretation representation (w.r.t. α) iff θ maps every x ∈ fv(α)
to some element of dom(x) and every n-ary relation symbol R to a subset of (Uα

0)n. We
say that θ represents interpretation I iff θ(x) = I(x) for every x ∈ fv(α) and t⃗ ∈ θ(R) iff
t⃗ ∈ I(R) for every n-ary relation symbol R and t⃗ ∈ (Uα

0)n.
We now describe an algorithm that, given α, returns the set of all interpretation

representations that represent a model of α (which implies a decision procedure for the
model relation). We first compute all interpretation representations for α. This is finite
since there are only finitely many variables and they have finite domains; moreover, Uα

0
is finite, since finitely many relations R(t1, . . . , tn) are used, their variables can range
over finitely many values, and the equivalence classes of every term is finite. Thus there
are finitely many possible interpretations of every R over Uα

0 . For a given interpretation
representation θ, we can check the model relation with α as follows:

θ |= s
.= t iff [θ(s)]E = [θ(t)]E

θ |= R(t1, . . . , tn) iff ([θ(t1)]E , . . . , [θ(tn)]E) ∈ θ(R)
θ |= φ ∧ ψ iff θ |= φ and θ |= ψ

θ |= ¬φ iff not θ |= φ

θ |= ∃x. φ iff there exists c ∈ dom(x) such that
θ[x 7→ c] |= φ

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 105

A.2 Correctness of representation with symbolic states

[47] defines rules for the symbolic execution of transactions and explains how to define
(α, β)-privacy as a reachability property, in a transition system with ground states. We
follow a similar approach but we have two additional layers of symbolic representation,
namely: the merging of ground states that differ only in the truth formula, and the intruder
variables for the lazy intruder. We say that the rules from [47], given in Table 2.1, are
working on the ground level, while the rules from this thesis given in Table 3.2, are working
on the symbolic level.

Definition A.2.1 (Starting symbolic state). Let S = (_,_,P,_) be a finished symbolic
state, P be a transaction and σ be a substitution such that σ substitutes the variables
X1, . . . , Xk (from a νX1, . . . , Xk.Pr specification) with fresh and distinct constants from
Σ\Σ0 that do not occur elsewhere in S or P , and such that σ substitutes all other variables
with fresh variables that do not occur elsewhere. The starting symbolic state for P w.r.t. S
and σ is

S[P ← {(σ(P), φ,A,X , α, δ) | (0, φ,A,X , α, δ) ∈ P}] .

We write start(P,S) and omit σ to denote a starting symbolic state, because the point is
that all variables are substituted with fresh and distinct constants or fresh variables, so the
actual values are not relevant.

The definition is similar for ground states, thus we also write start(P, S) for a state S.
On the ground level, there is always a unique possibility that is underlined. The

underlined possibility corresponds to the concrete execution observed by the intruder.
On the symbolic level, there is no underlined possibility because we actually represent
together all different instantiations for the underlined possibility. Our rules work so that
each possibility could be the underlined one, and which one is underlined is defined in the
semantics of the symbolic states (Definition 3.2.3).

We now argue that our rules on the symbolic level are correct w.r.t. the ground level,
i.e., the symbolic states generated by our rules represent the ground states generated by
the rules on the ground level. In the following, we describe the differences in the rules from
Tables 2.1 and 3.2. For simplicity, we ignore the Eliminate rules because the redundant
possibilities do not change the semantics of symbolic states, and the elimination can be
seen as a kind of optimization.

Non-deterministic choice

All possibilities have this choice step at the same time. On the ground level, the variable
x is chosen non-deterministically from the values in the domain D. There is a transition
for every value c ∈ D that the variable can take. On the symbolic level, we have a single
transition and we only update α0 or β0 with the formula x ∈ D. The semantics of the
symbolic states includes all models of α0∧β0∧γ0∧φi, so we represent all models γ |= x

.= c
for every c ∈ D (and such that γ is consistent with the rest of the formulas).

Receive

By construction, every possibility starts with a receive step (with the same variable). On
the ground level, there is a transition for every recipe r that the intruder can generate,
and the variable standing for the message received is directly substituted with what the
recipe produces in each structural frame. On the symbolic level, we have the lazy intruder
representation. Thus, we have a single transition, where the recipe and the corresponding

106 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

message are left as recipe and intruder variables, respectively. Note that there are in
general infinitely many transitions at this point on the ground level, while on the symbolic
level there is just one transition. The intruder variables are not instantiated, unless we
need to consider different values in order to resolve the conditions. The semantics of the
symbolic states includes all ground choices of recipes, so all instantiations for the recipe
variable (which determine the instantiations of the intruder variable in each structural
frame).

Cell read

On the ground level, the memory δ contains the sequence cell[s1] := t1. · · · .cell[sk] := tk
for the given cell, and the initial value is given with ground context C[·]. The process is
updated with conditional statements and ensures that the most recent update is read. On
the symbolic level, the rule is the same.

Cell write

On the ground level, a memory update is prepended to the sequence δ. On the symbolic
level, the rule is the same.

Destructor application

On the ground level, try-catch is syntactic sugar around if-then-else, so there is only the
rule for conditional statements. On the symbolic level, we handle in a specific way the
destructor applications in try-catch using our assumptions that this is the only place in
a specification where destructors are allowed, and maintaining this as an invariant. In
case the constraints can be solve, we have one symbolic state for every choice of recipes
computed by the lazy intruder in the possibility under consideration, and one more symbolic
state for not taking any of these choices. We show the correctness of our representation of
choices of recipes in the proof of Theorem 3.1.1, and the point is that we here partition
the concrete instantiations of recipes variables. After applying a choice of recipes, the
destructor, in the possibility considered, succeeds under a particular substitution of privacy
variables, and we split the possibility in two to represent whether this substitution holds.
In case the constraints cannot be solved, we have one symbolic state where the process
simply goes to the catch branch.

Conditional statement

On the ground level, we split a possibility into two, one for the case that the condition
is true and we go into the then branch, and one for the else branch. By construction, if
the underlined possibility is split then there is only one branch that is consistent with the
current truth γ and it is underlined accordingly. On the symbolic level, there are two base
cases: when the condition is a relation R(t1, . . . , tn) and when the condition is an equality
s
.= t. For an arbitrary formula, we can eliminate the negation by swapping the branches

and eliminate the conjunction by nesting conditional statements; this does not change the
semantics.

• When the condition is a relation: The possibility is split into two possibilities, just
like on the ground level.

• When the condition is an equality s .= t: We first compute the unifier σ = mgu(s .= t)
and then the transitions are just like for destructor application, i.e., we partition the

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 107

ground choices of recipes and split on whether the substitution of privacy variables
holds.

Release

On the ground level, the formula released by the underlined possibility is added to the
payload, and formulas released by other possibilities are ignored. On the symbolic level,
we have that each possibility could be the underlined one. Therefore, we do not update
the common payload but rather the partial payload attached to the given possibility. The
formula released should be consistent with all models of α0 ∧ β0 ∧ γ0 ∧ φ, i.e., the truths
that this possibility symbolically represents. If that is not the case, it counts as a privacy
violation: it would mean that after the transaction for some ground state we have a pair
(α, β) where the payload is inconsistent and thus (α, β)-privacy trivially holds. For the
procedure we can either assume that all releases are consistent or, as an option, we can
detect inconsistent releases and give a warning to the user, because this indicates that
something is wrong in the model.

In the semantics of the symbolic states, we consider all payloads α0 ∧ [αi]γ that the
intruder can observe so our rules cover the releases with ⋆. [47] actually allows releases
with mode = ⋄, with the meaning that the formula is added to the truth γ instead of the
payload α. This kind of release can be useful for modeling, e.g., voting protocols with
interpreted functions. We do not support releases with mode = ⋄ in this thesis, as the
procedure does not support interpreted functions and many protocol models do not require
this construct. However, it might be possible to support such releases, for instance we
could add a component for “partial truth” γi similarly to the partial payloads, that would
be used in the semantics when defining the models.

Send

On the ground level, if the intruder observes that a message is sent, then they can rule out
all possibilities where the remaining process is 0. Note that this rule can only be applied
if all possibilities start either with snd(·) or 0; otherwise another evaluation rule must be
applied. For all others, each structi is augmented by the message sent in the respective
possibility. On the symbolic level, the rule is similar.

Terminate

On the ground level, the intruder observes that the execution has terminated because no
messages are sent, so they can rule out all possibilities that are not terminated. On the
symbolic level, the rule is actually merged with the Send rule. Note that on the ground
level, eventually the underlined possibility either sends or terminates and the corresponding
rule is applied. Other steps are done in different evaluation rules that must be applied
before, so the processes that do not send are actually terminating (nil process). On the
symbolic level both the send and terminate cases are in general applicable at the same
time, which is why the symbolic Send rule yields two symbolic states.

Correctness

In Table 3.2, in general several rules may be applicable at the same time. However, the
order does not matter and the procedure arbitrarily fixes an order for the rules of the
symbolic execution.

• The rules Cell read, Cell write, Destructor (2), Conditional and Release only
change one possibility without affecting the others, so the ordering is irrelevant.

108 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

• Eliminate and (Destructor (1) or Conditional): If a possibility can be eliminated
and has a process starting with a destructor application or conditional statement,
then the possibilities that replace it in the states yielded by Destructor (1) or
Conditional can also be eliminated.

• Eliminate and Send: If a possibility can be eliminated, then the same possibility
can be eliminated in one of the states yielded by Send, depending on whether the
process in that possibility was sending or already terminated.

• Eliminate and any other rule: If a possibility can be eliminated before another rule
is applied, then the same possibility can be eliminated after the other rule has been
applied.

• The rules Choice, Receive and Send cannot be applicable at the same time as
other rules, except with Eliminate which we have treated above.

In Definition 3.3.4, in general there may be several pairs of recipes to choose from for the
next intruder experiment, and given a pair, there may be several instances of the Recipe
split rule that are applicable at the same time. However, again it does not matter in which
order the experiments are done because here we are only partitioning the set of ground
states represented, i.e., the set of symbolic states yielded by one experiment are together
semantically equivalent to the symbolic state before the experiment (Theorem 3.3.1). Thus
the procedure arbitrarily fixes an order for the experiments.

In Definition 3.4.4, in general there may be several destructor oracles applicable at the
same time. For example, we may have a symbolic state S such that, in two FLICs, the same
label l maps to ⋆-marked terms with different constructors, say, −l 7→ c(t1, . . . , tn) ∈ A
and −l 7→ c′(t′1, . . . , t′m) ∈ A′ where c ≠ c′. For instance, the next message to analyze is
either an encryption or a pair. Then it does not matter which destructor oracle is applied
first, i.e., the one for the rewrite rule of c or the one for c′, because the symbolic states
yielded by application of one destructor oracle are semantically equivalent to the state
before applying the oracle. Note that in this example, if the oracle for c is applied first
and the term could not be analyzed, then the marking of the c′(. . .) term is not changed,
and thus the oracle for c′ can be applied afterwards. If the c(. . .) term was successfully
analyzed, then we only kept possibilities where analysis succeeded as well and removed
the possibility with the c′(. . .) term because the possibilities are distinguishable (there is
no point in applying this oracle knowing in advance that it fails). Thus, in case several
oracles are applicable at the same time, the procedure arbitrarily fixes an order for the
application of these destructor oracles.

Our evaluation rules correspond to internal transitions for the symbolic execution of
transactions, which is distinct from the overall transition system where the transactions are
atomic. We have defined in Chapter 2 the relation −→ between finished ground states that
models the execution of some transaction, using the relation → of evaluation rules until all
processes in P have terminated. Similarly, we have defined in Section 4.2.2 the relation
=⇒ for symbolic states. We write −→P and =⇒P to explicitly mention the transaction P
that is executed. Moreover, we define S−→P to be the set of ground states that are reached
by executing P , and similarly S=⇒P to be the set of symbolic states after executing P :

S−→P = {S′ | start(P, S) −→P S′} , {start(P,S)} =⇒P S=⇒P .

The transitions on the symbolic level are correct w.r.t. the transitions that can happen on
the ground level.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 109

Proposition A.2.1 (Reachability correctness). Let S be a finished symbolic state and P
be a transaction. Let [[S]]−→P be the ground states after transitions between ground states
and [[S=⇒P]] be the ground states after transitions between symbolic states:

[[S]]−→P = {S′ | S ∈ [[S]] and S′ ∈ S−→P } , [[S=⇒P]] = {S | S ′ ∈ S=⇒P and S ∈ [[S ′]]} .

Then we have [[S]]−→P = [[S=⇒P]].

A.3 Decision procedure

A.3.1 Lazy intruder correctness

We start with a lemma relating the recipes for FLICs before and after one lazy intruder
application.

Lemma A.3.1. Let A be a FLIC, ρ be a choice of recipes such that dom(ρ)∩ rvars(A) = ∅
and let σ be a substitution such that dom(σ) ∩ vars(A) = ∅. Let (ρ′,A′, σ′) such that
(ρ,A, σ)⇝ (ρ′,A′, σ′). Then for every recipe r, we have σ′(A(r)) = σ′(A′(ρ′(r))).

Proof. For a recipe variable that is changed by the rule application:

• Unification: A = A1.−l 7→ s.A2.+R 7→ t.A3, A′ = σ′(A1.−l 7→ s.A2.A3), ρ′(R) = l
and σ′ |=Σ s

.= t so σ′(A′(ρ′(R))) = σ′(s) = σ′(t) = σ′(A(R)).

• Composition: A = A1.+R 7→ f(t1, . . . , tn).A2, A′ = A1.+R1 7→ t1. · · · .+Rn 7→
tn.A2 and ρ′(R) = f(R1, . . . , Rn) so A′(ρ′(R)) = f(t1, . . . , tm) = t = A(R).

• Guessing: A = A1.+R 7→ x.A2, A′ = σ′(A1.A2), ρ′(R) = c and σ′ |=Σ x
.= c so

σ′(A′(ρ′(R))) = σ′(c) = σ′(x) = σ′(A(R)).

• Repetition: A = A1.+R1 7→ X.A2.+R2 7→ X.A3, A′ = A1.+R1 7→ X.A2.A3 and
ρ′(R2) = R1 so A′(ρ′(R2)) = X = A(R2).

For a recipe variable R that is not changed by the rule application, we also have σ′(A(R)) =
σ′(A′(ρ′(R))) and similarly for labels. For a composed recipe, this holds by induction on
the structure of the recipe.

The next four lemmas prove the soundness, completeness, correctness and termination
of the lazy intruder rules defined in Table 3.1.

Lemma A.3.2 (Lazy intruder soundness). Let A be a FLIC, ρ be a choice of recipes such
that dom(ρ) ∩ rvars(A) = ∅, let σ be a substitution such that dom(σ) ∩ vars(A) = ∅, let
I |≡ A such that I |=Σ σ and let ρ0 be a ground choice of recipes such that ρ0 |=Σ ρ. Let
(ρ′,A′, σ′) such that (ρ,A, σ) ⇝ (ρ′,A′, σ′), ρ′ represents ρ0 with ρ′0 w.r.t. A and I, ρ′0
constructs I(A′) and I |=Σ σ

′. Then ρ0 constructs I(A).

Proof. We start by showing that ρ′0 constructs I(A). Let R be a recipe variable such
that I(A) = A1.+R 7→ t.A2. First, we consider the case that R /∈ dom(ρ′). Then
I(A′) = A′

1.+R 7→ t.A′
2 and A′

1(ρ′0(R)) = t, so A1(ρ′0(R)) = t.
Next, we consider the case that R ∈ dom(ρ′). We proceed by distinguishing which lazy

intruder rule has been applied.

• Unification: Then I(A) = A1.−l 7→ t.A2.+R 7→ t.A3 and ρ′0(R) = l so A1(ρ′0(R)) =
t.

110 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

• Composition: Then

I(A) = A1.+R 7→ f(t1, . . . , tn).A2 ,

I(A′) = A′
1.+R1 7→ t1. · · · .+Rn 7→ tn.A′

3 ,

ρ′0(R) = f(ρ′0(R1), . . . , ρ′0(Rn)) .

Therefore A1(ρ′0(R)) = f(I(A′)(ρ′0(R1)), . . . , I(A′)(ρ′0(Rn))) = f(t1, . . . , tn) = t.

• Guessing: Then I(A) = A1.+R 7→ c.A2 and ρ′0(R) = c so A1(ρ′0(R)) = c.

• Repetition: Then I(A) = A1.+R′ 7→ t.A2.+R 7→ t.A3, +R′ 7→ t ∈ I(A′) and
ρ′0(R) = ρ′0(R′). Let A0 = A1.+R′ 7→ t.A2. Then A0(ρ′0(R)) = I(A′)(ρ′0(R′)) = t.

We have shown that ρ′0 constructs I(A). Since ρ′ represents ρ0 with ρ′0, for every R ∈
rvars(A), we have I(A)(ρ′0(R)) = I(A)(ρ0(R)). Thus ρ0 constructs I(A).

For completeness, we are given a ground choice of recipes ρ0 that satisfies the constraints.
We consider the first non-simple constraint and we show that there is one lazy intruder rule
applicable. For the most part, we simply follow the recipe that ρ0 gives, however in some
cases the same recipe cannot be chosen using the lazy intruder rules, and this is where our
representation of choice of recipes (Definition 3.1.8) comes in: we show that there is in fact
some applicable rule such that the lazy intruder solution represents ρ0.

Lemma A.3.3 (Lazy intruder completeness). Let A be a FLIC, ρ be a choice of recipes
such that dom(ρ) ∩ rvars(A) = ∅, let σ be a substitution such that dom(σ) ∩ vars(A) = ∅,
let I |≡ A such that I |=Σ σ and let ρ0 be a ground choice of recipes such that ρ0 |=Σ ρ
and ρ0 constructs I(A). Then either A is simple or there exists (ρ′,A′, σ′) such that
(ρ,A, σ) ⇝ (ρ′,A′, σ′), ρ′ represents ρ0 with ρ′0 w.r.t. A and I, ρ′0 constructs I(A′) and
I |=Σ σ

′.

Proof. Assume that A is not simple. Let +R 7→ t ∈ A denote the first non-simple
constraint, i.e., t is either a composed term, an intruder variable that occurred before, or a
privacy variable. We proceed by case distinction on t:

• If t /∈ V, i.e., t = f(t1, . . . , tn): We consider different subcases depending on the
recipe ρ0(R).

– If ρ0(R) = l ∈ dom(A) and A(l) = s /∈ V : Then A = A1.−l 7→ s.A2.+R 7→ t.A3.
Therefore Unification is applicable, producing (ρ′,A′, σ′) where ρ′ = [R 7→ l]ρ,
A′ = σ′(A1.−l 7→ s.A2.A3) and σ′ = mgu(σ ∧ s .= t). Let ρ′0 = ρ0. Then
ρ′ represents ρ0 with ρ′0 w.r.t. A and I, because the only recipe variable in
rvars(A) ∩ dom(ρ′) is R, and ρ′0(R) = ρ0(R) = l. Moreover, since ρ0 constructs
I(A), we have ρ′0 constructs I(A′) and also I(s) = I(t), thus I |=Σ σ

′.
– If ρ0(R) = l ∈ dom(A) and A(l) ∈ V: We cannot directly use Unification

because the label l used in ρ0 maps to a variable. We have two subcases,
depending on whether we can find an earlier label suitable for Unification.
∗ If there exists a label l′ <A l such that I(A)(l′) = t and A(l′) = s /∈ V:
Then A = A1.−l′ 7→ s.A2.+R 7→ t.A3. Therefore Unification is applicable,
producing (ρ′,A′, σ′) where ρ′ = [R 7→ l′]ρ, A′ = σ′(A1.−l′ 7→ s.A2.A3) and
σ′ = mgu(σ ∧ s .= t). Let ρ′0(R) = l′ and ρ′0(R′) = ρ0(R′) for other recipe
variables. Then ρ′ represents ρ0 with ρ′0 w.r.t. A and I, because the only
recipe variable in rvars(A) ∩ dom(ρ′) is R, and ρ′0(R) = l′ <A l = ρ0(R).
Moreover, since ρ0 constructs I(A), we have ρ′0 constructs I(A′) and also
I(s) = I(t), thus I |=Σ σ

′.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 111

∗ Otherwise: Let A = A1.+R 7→ f(t1, . . . , tn).A2. Since all labels in A1 that
produce the message t under model I are mapping to variables, we know
that t can be composed by the intruder before they receive the message
labeled with l (recall that all instances of privacy variables are public
constants, so if a label maps to a privacy variable x then the constraints
can just as well be solved using the recipe I(x)). Thus f ∈ Σpub and there
exists a ground recipe r <A l such that I(A)(r) = t and r = f(r1, . . . , rn).
Therefore, Composition is applicable, producing (ρ′,A′, σ′) where ρ′ =
[R 7→ f(R1, . . . , Rn)]ρ, A′ = A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2 and σ′ = σ,
where the Ri are fresh recipe variables. Let ρ′0(Ri) = ri for i ∈ {1, . . . , n}
and ρ′0(R′) = ρ0(R′) for other recipe variables. Then ρ′ represents ρ0 with
ρ′0 w.r.t. A and I, because the only recipe variable in rvars(A) ∩ dom(ρ′)
is R and ρ′0(R) = r <A l = ρ0(R). Moreover, since ρ0 constructs I(A), we
have ρ′0 constructs I(A′).

– If ρ0(R) = f(r1, . . . , rn): Then A = A1.+R 7→ f(t1, . . . , tn).A2 and f ∈ Σpub.
Therefore, Composition is applicable, producing (ρ′,A′, σ′) where ρ′ = [R 7→
f(R1, . . . , Rn)]ρ, A′ = A1.+R1 7→ t1. · · · .+Rn 7→ tn.A2 and σ′ = σ, where
the Ri are fresh recipe variables. Let ρ′0(Ri) = ri for i ∈ {1, . . . , n} and
ρ′0(R′) = ρ0(R′) for other recipe variables. Then ρ′ represents ρ0 with ρ′0 w.r.t.
A and I, because the only recipe variable in rvars(A) ∩ dom(ρ′) is R, and
ρ0(R) = ρ′0(R) = f(r1, . . . , rn). Moreover, since ρ0 constructs I(A), we have ρ′0
constructs I(A′).

• If t ∈ Vintruder : Then A = A1.+R′ 7→ t.A2.+R 7→ t.A3. Therefore, Repetition is
applicable, producing (ρ′,A′, σ′) where ρ′ = [R 7→ R′]ρ, A′ = A1.+R′ 7→ t.A2.A3
and σ′ = σ. Let ρ′0(R) = ρ0(R′) and ρ′0(R′′) = ρ0(R′′) for other recipe variables.
Then ρ′ represents ρ0 with ρ′0 w.r.t. A and I, because the only recipe variable
in rvars(A) ∩ dom(ρ′) is R and I(A)(ρ0(R)) = I(A)(ρ′0(R)). Moreover, since ρ0
constructs I(A), we have ρ′0 constructs I(A′).

• If t ∈ Vprivacy : ThenA = A1.+R 7→ t.A2 and I(t) = c for some c ∈ dom(t). Therefore,
Guessing is applicable, producing (ρ′,A′, σ′) where ρ′ = [R 7→ c]ρ, A′ = σ′(A1.A2)
and σ′ = mgu(σ ∧ t .= c). If ρ0(R) = c, let ρ′0 = ρ0. Otherwise let ρ′0(R) = c
and ρ′0(R′) = ρ0(R′) for other recipe variables. Then ρ′ represents ρ0 with ρ′0 w.r.t.
A and I, because the only recipe variable in rvars(A) ∩ dom(ρ′) is R and either
ρ0(R) = ρ′0(R) = c or ρ′0(R) = c <A ρ0(R). Moreover, since ρ0 constructs I(A), we
have ρ′0 constructs I(A′) and also I(t) = c, thus I |=Σ σ

′.

In the lemma below we simply use the soundness and completeness lemmas to combine
both implications and obtain an equivalence.

Lemma A.3.4. Let A be a FLIC, ρ be a choice of recipes such that dom(ρ)∩rvars(A) = ∅,
let σ be a substitution such that dom(σ) ∩ vars(A) = ∅, let I |≡ A such that I |=Σ σ and
let ρ0 be a ground choice of recipes such that ρ0 |=Σ ρ. Then ρ0 constructs I(A) iff there
exists (ρ′,A′, σ′) such that (ρ,A, σ)⇝∗ (ρ′,A′, σ′), ρ′ represents ρ0 with ρ′0 w.r.t. A and
I, ρ′0 constructs I(A′) and I |=Σ σ

′.

Proof. By induction, using Lemmas A.3.2 and A.3.3.

For termination, we prove that the lazy intruder rules really form a reduction relation by
defining a weight for FLICs and showing that every rule decreases the weight. Intuitively,
either the lazy intruder rule instantiates some intruder variable so the constraints are

112 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

simpler or the total size of the messages to send decreases because there is one less message
to send.

Lemma A.3.5 (Lazy intruder termination). Let A be a FLIC, ρ be a choice of recipes such
that dom(ρ) ∩ rvars(A) = ∅ and let σ be a substitution such that dom(σ) ∩ vars(A) = ∅.
Then there is a finite number of (ρ′,A′, σ′) such that (ρ,A, σ)⇝∗ (ρ′,A′, σ′).

Proof. We define the weight of a FLIC A to be the pair (v, s), where

• v is the number of intruder variables in the FLIC: v = #ivars(A); and

• s is the sum of the size of the messages sent: s =
∑

+R 7→t∈A size(t), where the size of
a message is defined as 1 for a variable and size(f(t1, . . . , tn)) = 1 +

∑n
i=1 size(ti) for

a composed message.

The weights with the lexicographic order form a well-founded ordering. Every rule decreases
the weight.

• Unification: The mgu may instantiate intruder variables so v would decrease, and
if not then v stays the same but one message sent is removed so s decreases.

• Composition: v stays the same, but the message is decomposed by removing the
outermost function application so s decreases (by 1).

• Guessing and Repetition: v stays the same, but one message sent is removed so s
decreases (by 1).

There cannot be an infinite sequence of decreasing weights so the lazy intruder terminates.

The correctness of the lazy intruder is defined as the conjunction of soundness, com-
pleteness and termination.

Theorem 3.1.1 (Lazy intruder correctness). Let A be a FLIC, σ be a substitution, I |≡ A
such that I |=Σ σ and let ρ0 be a ground choice of recipes. Then ρ0 constructs I(A) iff
there exists ρ ∈ LI (A, σ) such that ρ represents ρ0 w.r.t. A and I. Moreover, LI (A, σ) is
finite.

Proof. This follows directly from Lemmas A.3.4 and A.3.5.

A.3.2 Compose-check correctness
In this section we prove results for our compose-checks, i.e., the intruder experiments where
one label is compared to a recipe that may produce the same message.

The following lemma is used to prove the termination of the compose-checks in the
next theorem. We have that given a FLIC, two recipes and the unifier for the messages
produced by these recipes, either: the unifier only depends on privacy variables and then
no matter the further choices of recipes applied to the FLIC, the unifier between the two
messages will always only depends on privacy variables; or the unifier depends on at least
one intruder variable and then for every lazy intruder result, after applying it to the FLIC
the unifier will not depend on intruder variables anymore.

Lemma A.3.6. Let A be a simple FLIC, r1, r2 be recipes and σ = mgu(A(r1)
.= A(r2)).

• If isPriv(σ), then for every choice of recipes ρ, we have isPriv(σ′), where σ′ =
mgu(ρ(A)(ρ(r1))

.= ρ(A)(ρ(r2))).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 113

• If not isPriv(σ), then for every ρ ∈ LI (A, σ), we have isPriv(σ′), where σ′ =
mgu(ρ(A)(ρ(r1))

.= ρ(A)(ρ(r2))).

Proof. First we consider the case that isPriv(σ). Let ρ be a choice of recipes and σ′ =
mgu(ρ(A)(ρ(r1))

.= ρ(A)(ρ(r2))). If A(r1) contains an intruder variable as a subterm, then
A(r2) contains the same intruder variable in the same position; otherwise, the intruder
variable would be substituted and we would not have isPriv(σ). The argument is similar
if A(r2) contains intruder variables. Since the intruder variables are not relevant for
unifying the two messages, the intruder variables can be instantiated in any way. Then we
have σ(ρ(A)(ρ(r1))) = σ(ρ(A)(ρ(r2))), which means that σ is an instance of σ′ and thus
isPriv(σ′).

Next we consider the case that not isPriv(σ). Let ρ ∈ LI (A, σ), σ′ = mgu(ρ(A)(ρ(r1))
.=

ρ(A)(ρ(r2))) and A′, σ′′ be such that (ε, σ(A), σ) ⇝∗ (ρ,A′, σ′′) and A′ is simple. By
definition of ρ and A′, A′(ρ(r1)) = A′(ρ(r2)). Moreover, ρ(A) and A′ are the same up to
renaming of intruder variables and up to substitution of privacy variables, so there exists
a substitution τ such that isPriv(τ) and τ(ρ(A)(ρ(r1))) = τ(ρ(A)(ρ(r2))). Note that we
have isPriv(τ) because the fresh intruder variables, i.e., the ones that are introduced by ρ,
are just renamed compared to the intruder variables in A′. Then τ is an instance of σ′ and
thus isPriv(σ′).

We prove that the compose-checks terminate by defining a weight for symbolic states
and showing that every rule decreases the weight. Intuitively, after Privacy split there is
one less pair of recipes to check, and after Recipe split we have applied some lazy intruder
result, so using the previous lemma we have fewer FLICs where the unifier depends on
intruder variables.

Theorem A.3.1 (Compose-check termination). There does not exist any infinite sequence
of symbolic states (Si)i≥1 where for every i, there exists Ci such that Si↣ Ci and Si+1 ∈ Ci.

Proof. Let S be a symbolic state and A1, . . . ,An be the FLICs in that state. We define
the weight of S to be the pair (p, s), where

• p is the number of pairs recipes to check: p = #Pairs(S); and

• s is the sum, over the pairs of recipes, of the number of FLICs in which the unifier
depends on intruder variables and there exists a solution to the constraints: s =∑

(l,r)∈Pairs(S)#{Ai | not isPriv(σi,(l,r)) and LI (Ai, σi,(l,r)) ̸= ∅}, where σi,(l,r) =
mgu(Ai(l)

.= Ai(r)) for i ∈ {1, . . . , n} and (l, r) ∈ Pairs(S).

The weights with the lexicographic order form a well-founded ordering. Every rule decreases
the weight. Let S ′ be a symbolic state such that there exists C with S ↣ C and S ′ ∈ C.
First we consider that S ′ is produced by the rule Privacy split. One pair (l, r) is now
checked and the FLICs are not changed, so p decreases.

Next we consider the case that S ′ is produced by the rule Recipe split. There
exist (l, r) ∈ Pairs(S) and i ∈ {1, . . . , n} such that not isPriv(σi) and LI (Ai, σi) ̸= ∅,
where σi = mgu(Ai(l)

.= Ai(r)). The first subcase is that S ′ is produced by applying
some choice of recipes ρ ∈ LI (Ai, σi). For every pair (l′, r′) ∈ Pairs(S), there is at most
one corresponding pair (l′, ρ(r′)) ∈ Pairs(S ′) so p may decrease (e.g., if some choice of
recipes used to compute the pairs in S ′ is not an instance of ρ) but p cannot increase. By
Lemma A.3.6, if the unifier only depends on privacy variables, this is still the case in S ′,
and for the FLIC ρ(Ai), the unifier does not depend on intruder variables anymore, thus s
decreases.

114 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

The second subcase is that S ′ is produced by excluding σi. Then the FLICs are not
changed so p stays the same, but s decreases because now LI (Ai, σi) = ∅, since σi is
excluded.

There cannot be an infinite sequence of decreasing weights so the compose-checks
terminate.

For correctness, we show that every rule partitions the set of ground states represented,
so that all compose-checks preserve the semantics of symbolic states.

Theorem 3.3.1 (Compose-check correctness). Let S be a finished symbolic state, (l, r) ∈
Pairs(S) and S1, . . . ,Sn be the symbolic states such that S ↣ {S1, . . . ,Sn} w.r.t. (l, r).
Then [[S]] =

⊎n
i=1[[Si]]. Moreover, there does not exist any infinite sequence (Si)i≥1 where

for every i, there exists Ci such that Si↣ Ci and Si+1 ∈ Ci.

Proof. Let P = {(0, φ1,A1,_,_,_), . . . , (0, φn,An,_,_,_)} be the possibilities in S. First
we consider the case that Privacy split is applicable. For every i ∈ {1, . . . , n}, isPriv(σi)
or LI (Ai, σi) = ∅, where σi = mgu(Ai(l)

.= Ai(r)). We are partitioning the set of ground
states based on the interpretations of privacy variables. Let S1 and S2 be the symbolic
states produced by the first and second subcase of the rule, respectively. We start by
showing that [[S]] ⊆ [[S1]] ⊎ [[S2]]. Let S = (α, β0, γ,P ′) ∈ [[S]], ρ be the ground choice of
recipes defining S and concr = γ(structi) for some i ∈ {1, . . . , n} be the concrete frame in
S, where structj = ρ(Aj) for j ∈ {1, . . . , n}.

• If isPriv(σi) and γ |= σi: Then we show that S ∈ [[S1]]. Define

β′ = β(S) ∧
n∧

j=1

(
φj ⇒

{
σj if isPriv(σj)
false otherwise

)
.

We need to show that β(S) ≡Σ β
′. Let I |=Σ β(S). There exists j ∈ {1, . . . , n} such

that I |=Σ φj ∧ concr ∼ structj . Since γ |= σi and concr = γ(ρ(Ai)), concr(l) =
concr(r). Then I(structj)(l) = I(structj)(r), so I |= σj . Then I |=Σ φj∧σj∧concr ∼
structj , so I |=Σ β′. Conversely, for every I |=Σ β′, we have I |=Σ β(S). Thus
β(S) ≡Σ β

′.

• Otherwise, we show that S ∈ [[S2]]. Define

β′ = β(S) ∧
n∧

j=1

(
φj ⇒

{
¬σj if isPriv(σj)
true otherwise

)
.

We need to show that β(S) ≡Σ β
′. Let I |=Σ β(S). There exists j ∈ {1, . . . , n} such

that I |=Σ φj∧concr ∼ structj . Since γ |= ¬σi or LI (Ai, σi) = ∅, concr(l) ̸= concr(r).
Then I(structj)(l) ̸= I(structj)(r), so if isPriv(σj) then I |=Σ φj ∧ ¬σj ∧ concr ∼
structj . Then I |=Σ β′. Conversely, for every I |=Σ β′, we have I |=Σ β(S). Thus
β(S) ≡Σ β

′.

The cases are mutually exclusive, so [[S]] ⊆ [[S1]]⊎ [[S2]]. Similarly, we have [[S1]]⊎ [[S2]] ⊆ [[S]].
Next we consider the case that Recipe split is applicable. There exists i ∈ {1, . . . , n}

such that not isPriv(σi) and LI (Ai, σi) = {ρ1, . . . , ρk}, where σi = mgu(Ai(l)
.= Ai(r)).

We are partitioning the set of ground states based on the ground choices of recipes. Let
Sj = ρj(S) for j ∈ {1, . . . , k}, and S ′ be the symbolic state in which σi is excluded for Ai.
Let S ∈ [[S]] and ρ be the corresponding ground choice of recipes. Then S ∈ [[Sj]] if ρ is
represented by ρj (note that the ρj are mutually exclusive); otherwise S ∈ [[S ′]]. Conversely,
[[S ′]] ⊎

⊎n
j=1[[Sj]] ⊆ [[S]].

The termination follows from Theorem A.3.1.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 115

A.3.3 Normal symbolic states
We now prove our results for normal symbolic states. The lemma below says that given a
ground state represented by a normal symbolic state (with some choice of recipes), the
concrete frame in that state is statically equivalent to all other frames considered possible
by the intruder (using the same choice of recipes). In other words, in a normal symbolic
state, the intruder cannot distinguish the possibilities anymore. The proof assumes that
there is an arbitrary witness against static equivalence and shows a contradiction.

Lemma A.3.7. Let S = (α0, β0,_,_) be a normal symbolic state, where the possibilities
have conditions φ1, . . . , φn and FLICs A1, . . . ,An. Let S ∈ [[S]], ρ0 be the ground choice of
recipes defining S and concr be the concrete frame in S. Let θ |= α0 ∧ β0 ∧ φi for some
i ∈ {1, . . . , n} and concr ′ = θ(ρ0(Ai)). Then concr ∼ concr ′.

Proof. Assume that the frames are not statically equivalent. This means there exists
a witness, i.e., a pair of ground recipes (r1, r2) such that concr(r1) = concr(r2) and
concr ′(r1) ̸= concr ′(r2). We show that for each witness (r1, r2), either it contradicts that
S is normal or there is a smaller witness according to the following well-founded ordering:

(r1, r2) < (r′1, r′2) iff w(r1) < w(r′1) and w(r2) ≤ w(r′2)
or w(r1) ≤ w(r′1) and w(r2) < w(r′2)
or w(r1) < w(r′2) and w(r2) ≤ w(r′1)
or w(r1) ≤ w(r′2) and w(r2) < w(r′1)

where the weight w(r) of recipe r is defined as the lexicographically ordered pair (s, h)
where s is the size of concr(r) and h is the number of the highest label in r, i.e., that
occurs on the hth position in concr ; and h = 0 if there are no labels in r.

We first handle the case that both r1 and r2 are composed. Then r1 = f(r11, . . . , rn1)
and r2 = f(r12, . . . , rn2) for the same f (otherwise they cannot produce the same value in
concr). Then at least one of the pairs (ri1, ri2) is already a witness that is smaller in the
ordering.

Thus, in all remaining cases we have a pair (l, r) where l is a label and r is a ground
recipe. Without loss of generality, we can assume that if r is also a label then l occurs
after r in the frames. By definition of [[S]], there exist j ∈ {1, . . . , n}, one FLIC Aj and one
model γ |= α0 ∧ β0 ∧ γ0 ∧ φj such that concr = γ(ρ0(Aj)). Let R be a fresh recipe variable
and A = Aj .+R 7→ Aj(l). Let I be the interpretation such that I and γ agree on the
privacy variables and for every R′ such that Aj = A0.+R′ 7→ X.A′

0, I(X) = concr(ρ0(R′)).
Let us extend ρ0 with ρ0(R) = r, where r is the ground recipe such that (l, r) is a witness.
Then we have that ρ0 constructs I(A). By Theorem 3.1.1, there exists ρ ∈ LI (A, ε) such
that ρ represents ρ0 w.r.t. A and I. Let ρ′0 be the respective instance of ρ. Since S is
normal, we know that l ≃ ρ(R), i.e., we have checked that for every ground choice of
recipes ρ′, (l, ρ′(ρ(R))) is not a witness.

Let us consider the case that ρ(R) = R′ ∈ rvars(Aj), which can only happen if the
repetition rule has been used, which in turn can only happen if Aj = A0.+R′ 7→ X.A′

0.−l 7→
X.A′′

0, so l maps to a message that the intruder has sent earlier and that they received
back from some agent. As mentioned above, since S is normal, the pair (l, ρ0(R′)) is not a
witness (the intruder can check that in all FLICs they received back at l whatever they
sent at R′). Thus, the pair (ρ0(R′), r) must be a witness, and this is smaller than (l, r),
because the size of the produced message is the same, but ρ0(R′) can only use labels from
A0 and has thus a lower weight than l.

Next we consider the case that ρ(R) ∈ dom(S). Since ρ represents ρ0 with ρ′0, we
have ρ0(R) ∈ dom(S) and either ρ′0(R) = ρ0(R) or ρ′0(R) <A ρ0(R). The subcase

116 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

ρ′0(R) = ρ0(R) = l′ is however impossible, because as mentioned above, S is normal so
(l, l′) is checked and cannot be a witness. For the subcase ρ′0(R) = l′ <A ρ0(R) = l′′, we
have that (l, l′′) is a witness and l ≃ l′, so (l′, l′′) must be a witness, and this is smaller
because l′ <A l′′ <A l.

Finally we consider the case that ρ(R) is a composed recipe. Since ρ represents
ρ0 with ρ′0, we have either ρ′0(R) = f(r′1, . . . , r′n) and ρ0(R) = f(r1, . . . , rn) such that
I(A)(r′i) = I(A)(ri) for i ∈ {1, . . . , n} or ρ0(R) ∈ dom(S) and ρ′0(R) <A ρ0(R). For the
subcase ρ′0(R) = f(r′1, . . . , r′n) and ρ0(R) = f(r1, . . . , rn) such that I(A)(r′i) = I(A)(ri) for
i ∈ {1, . . . , n}, again since S is normal, (l, f(r′1, . . . , r′n)) has been checked and cannot be a
witness. Thus, for (l, f(r1, . . . , rn)) to be a witness, at least one of the pairs (r′i, ri) has to
be a witness. This is smaller than (l, r) since the recipes r′i, ri produce proper subterms of
the message concr(l). For the subcase ρ0(R) ∈ dom(S) and ρ′0(R) <A ρ0(R) = l′, we have
that (l, l′) is a witness and l ≃ ρ′0(R), so (ρ′0(R), l′) must be a witness, and this is smaller
because ρ′0(R) <A l′ <A l.

Thus for every witness we can find a smaller witness, which is impossible along a
well-founded ordering, and thus we can be sure that there are no witnesses.

For the theorem below, we use the fact that in a normal symbolic state, the intruder
cannot distinguish the possibilities (lemma above) to prove that all intruder deductions
relevant for (α, β)-privacy are part of the formula β0 in that state. Basically, the static
equivalence encoded in the intruder knowledge β cannot lead to a violation of privacy, due
to the indistinguishability, so it is enough to check consistency, i.e., (α, β0) pairs.

Theorem 3.3.2. Let S be a normal symbolic state. Then S satisfies privacy iff S is
consistent.

Proof. Let P = {(0, φ1,A1,_,_,_), . . . , (0, φn,An,_,_,_)} be the possibilities in S. First
we assume that S satisfies privacy and show that S is consistent. Let S = (α,_,_,_) ∈ [[S]]
and I |=Σ0 α. Since S satisfies privacy, (α, β(S))-privacy holds so there exists I ′ |=Σ β(S)
such that I and I ′ agree on fv(α) and on the relations in Σ0. Since β(S) |=Σ β0, I ′ |=Σ0 β0.
Therefore (α, β0)-privacy holds. Thus S is consistent.

Next we assume that S is consistent and show that S satisfies privacy. Let S =
(α, β0,_,_) ∈ [[S]], ρ be the ground choice of recipes defining S and concr be the concrete
frame in S. Let structi = ρ(Ai) for i ∈ {1, . . . , n} and I |=Σ0 α. Since S is consistent,
(α, β0)-privacy holds, i.e., there exists I ′ |=Σ0 β0 such that I and I ′ agree on fv(α) and
the relations in Σ0. Since α ∧ β0 |=

∨n
i=1 φi, there exists i ∈ {1, . . . , n} such that I ′ |= φi.

By Lemma A.3.7, concr ∼ I ′(structi) so I ′ |=Σ concr ∼ structi. Therefore I ′ |=Σ β(S),
so (α, β(S))-privacy holds, i.e., S satisfies privacy. This is true for every S ∈ [[S]], thus S
satisfies privacy.

A.3.4 Algebraic properties
First, we prove that our congruence relation from Definition 3.4.1 is well-defined because
our requirements imply that the supported term rewriting systems are convergent. Our
destructor rules do not conflict with each other because every destructor occur in exactly
one rule, and each rule yields a direct subterm of the message being decrypted.

Lemma 3.4.1. Let E be a term rewriting system satisfying the requirements of Defini-
tion 3.4.1. Then E is convergent.

Proof. For every rewrite rule, the right-hand side is a strict subterm of the left-hand side,
therefore →E is terminating. We now need to show that →E is confluent. Let t, t1, t2 be
terms such that t→E t1 and t→E t2. We show that we can join t1 and t2, i.e., there exists

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 117

t′ such that t1 →∗
E t′ and t2 →∗

E t′. Let p1 and p2 be the positions of t where the rewrite
rules l1 → r1 and l2 → r2 have been applied to yield t1 and t2, respectively. We proceed
by case distinction:

1. p1 = p2: Then the two rewrite rules must be identical, because at that position there
must be a destructor and each destructor can only occur in one rewrite rule. Thus
t1 = t2.

2. p1 and p2 are disjoint, i.e., neither p1 ⊏ p2 nor p2 ⊏ p1 where ⊏ denotes the prefix
relation: Then in t1, the position p2 is unchanged and vice-versa, so t1 and t2 can be
joined.

3. p1 ⊏ p2: Let p0 = p2 − p1 be the relative position.

• If p0 /∈ Pos(l1) or l1 at position p0 is a variable: Then the first rule is applicable
both in t and t2 at position p1. The latter gives a term t′ that is either identical
to t1 or the second rule can be still applied in t1 to yield t′.

• If p0 ∈ Pos(l1) and l1 at position p0 is not a variable: Then it must be a
destructor. Since l1 only has a destructor at the root (recall that in every rewrite
rule, all terms below the destructor, including the key terms, are destructor-free),
p1 = p2 which is handled in Case 1 of this proof. This is however absurd, since
p0 can only have a destructor at the root , thus p1 = p2 which is a different case.

4. p2 ⊏ p1: By symmetry with the previous case.

For correctness of analysis, we show that the analysis strategy only adds shorthands
to the FLICs and that it terminates (the strategy saturates the intruder knowledge by
decrypting as far as possible).

Theorem 3.4.1 (Analysis correctness). For a symbolic state S, the analysis strategy
produces in finitely many steps a set {S1, . . . ,Sn} of symbolic states that are analyzed.
Further, for every ground state S ∈ [[S]] there exists S′ ∈ [[Si]], for some i ∈ {1, . . . , n}, such
that S and S′ are equivalent except that the frames in S′ may contain further shorthands;
and vice versa, for every S′ ∈ [[Si]] there exists S ∈ [[S]] such that S′ is equivalent to S
except for shorthands.

Proof. It is quite straightforward to observe that all states that we reach by analysis steps
are equivalent modulo the augmentation with shorthands: the intruder learns only terms
that could be obtained with access to destructors anyway, and none of the transactions puts
a constraint on the intruder since in the worst case the decryption fails and the intruder
just does not learn anything from it.

For termination, we define a measure (a, b) for symbolic states S as a lexicographical
ordering of the following two well-founded components a and b:

• a is the total number of ⋆ marks and + marks in the FLICs.

• b is the total number of ⋆ marks in the FLICs.

Consider going from a symbolic state S to S ′ with a destructor oracle transaction according
to our strategy. We show that on the transition from S to S ′ the measure can only decrease.
In an intermediate state of the symbolic execution, when we evaluate the try-catch, we
split each possibility into two further cases (the one where the try succeeds, and where
it fails), but from the snd steps only one possibility survives—the intruder observes from
the outcome whether the destructor works or not. Thus the number of possibilities can

118 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

only remain the same or decrease from S to S ′. (We have a decrease if in some FLICs
the decryption works and in others not, because then each S ′ is reduced either to those
that worked or those that did not.) Any instantiations of intruder variables that happen
are neutral for the measure, because intruder variables in received messages are already
marked ✓, and thus also the instantiation is marked ✓. The only changes in the measures
are from updating the mark of the term under analysis and the marking of the newly
received terms (i.e., the result of the analysis and the decryption key that is repeated by
the oracle).

We now distinguish the two cases whether S ′ represents a successful decryption or
failure (w.r.t. the destructor oracle that brings us from S to S ′).

In the first case, if the destructor fails, then in every FLIC where l maps to a term
marked ⋆, we replace it with + (others we leave alone). This does not change the a measure,
but reduces the b measure by at least one (since there was at least one ⋆-marked term we
have addressed).

In the second case, if the destructor is successful, let us consider decryption again. In
every FLIC where the label l maps to c(k′, t1, . . . , tn) marked ⋆, recall that the strategy
marks the newly received l′ 7→ ti with the same mark as the respective subterm ti in l;
in turn the term c(k′, t1, . . . , tn) with all its subterms gets marked ✓ (and similarly in
a transparency rule). This reduces the a measure by at least one: even if l′ 7→ ti now
contains several ⋆ or + marks, these marks were counted in the previous marking of
l 7→ c(k′, t1, . . . , tn), which is now marked with ✓ for c and the subterms, so the mark ⋆
that c bore is not counted anymore. If there are any FLICs where l is mapped to a term
marked + or ✓, we do not necessarily have a reduction, but new l′-terms can only contain
⋆ and + marks that are removed from l. Since there is always at least one ⋆-marked term
in S to apply a destructor oracle, the a measure is strictly reduced from S to S ′.

The measure is well-founded and thus proves there is no infinite chain of analysis steps,
and since the branching is also finite (because applying a transaction leads to finitely many
successor states), it thus follows by Kőnig’s lemma that for every state S, we obtain a
finite number of analyzed states S1, . . . ,Sn with the destructor oracle strategy.

The lemma below says that after analysis, every recipe using destructors is equivalent
to a destructor-free recipe. This is the point of introducing shorthands where labels map
to messages coming out of the analysis: the shorthands abbreviate destructor applications
that the intruder would do if we gave them direct access to destructors.

Lemma A.3.8. Let S be a normal analyzed state, S ∈ [[S]] and r be any recipe over the
domain of S. Then there is a destructor-free recipe r′ such that struct(r) ≈ struct(r′) in
every frame struct of S.

Proof. Note that this proof works on a ground state S which does not contain intruder
variables anymore (but still privacy variables). Thus, the FLICs are now frames that
contain just incoming messages. We also formulate this only for decryption, transparency
is in all cases very similar.

We have to show how to replace any subterm rd = d(r1, r2) of r with a destructor-free
equivalent recipe. We can also w.l.o.g. assume that r1 and r2 are destructor-free (by
starting with an inner-most occurrence of a destructor). Thus r2 is either a label or a
composed recipe:

1. Case r2 = c(r′1, . . . , r′n) for some public function c. If c is not a constructor cor-
responding to destructor d, then we can already replace rd with ff and are done.
Otherwise rd means the intruder applies a destructor to a term they constructed
themselves. We distinguish three subcases:

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 119

(a) If rd does not yield ff in any frame, then the result of the destructor must be
the ith subterm (for some i ∈ {1, . . . , n}) of r2 in every frame, i.e., struct(rd) ≈
struct(r′i) for every FLIC struct, and we can thus replace rd with r′i.

(b) If rd yields ff in all frames, i.e. struct(rd) ≈ ff in every frame struct, we can
just replace rd with ff.

(c) If rd yields ff in some frame struct1 and does not yield ff in another frame
struct2, it means that comparing rd with ff is an intruder experiment that
distinguishes the frames. We show that this contradicts the fact that S is
analyzed and normal. The only reason that struct1 and struct2 give different
results is that the encryption and decryption key do not match in struct1 but
do match in struct2. Recall that in a decryption rule with decryption key k and
encryption key k′, we require that either k = k′ or k ≈ f(k′) or k′ ≈ f(k) for
some public function f . If k = k′, then comparing r1 with r′1 is an experiment
that distinguishes the frames, which contradicts that S is normal. Otherwise,
we only prove the case k ≈ f(k′), the other case is analogous. In struct2, r1
and r′1 correspond to k and k′, respectively. Thus, comparing r1 with f(r′1) is
also an experiment that distinguishes the frames. If f is a constructor, this
directly contradicts that S is normal. If f is a destructor, we now show that
this has already been analyzed, i.e., there must be a label l′ that is a shorthand
for f(r′1) and thus this contradicts that S is normal (because then the intruder
has already compared r1 with l′). If r′1 is a label, then directly the analysis rule
f(r′1) must have been applied; if r′1 = c(r′′1 , . . . , r′′n) and since f is unary, c is
transparent, i.e., it is directly equivalent to one of r′′i . Thus the experiment to
compare r1 with r′′i already distinguishes the frames and that must have been
done already since S is normal and these recipes are destructor-free. Thus, in
all cases this contradicts that S is normal.

2. Case r2 = l for a label l. We distinguish two subcases:

(a) Case l maps to a term t in at least one of the frames such that t was at some
point marked ⋆, i.e., t is a term for which a destructor exists and the respective
destructor rule has been tried for l by the analysis strategy. (The other cases
being that the t in every frame is marked ✓, because it has no destructor or
originated from the intruder.) The state resulting from the application of the
respective destructor oracle has the property that the destructor either succeeded
in all frames or failed in all frames. In the case of failure, we can simply replace
rd by ff and are done. In the case of success, there are labels holding the result
of the destructor, say, l1 for decryption result and l2 repeating the decryption
key if it is a decryption rule. (For the case of transparency the proof is similar.)
One may wonder if comparing r1 with l2 could distinguish the frames. This
would contradict that S is normal because r1 and l2 have no destructors. Thus,
struct(r1) ≈ struct(l2) in every frame struct, and thus struct(rd) ≈ struct(l1)
and we can replace rd with l1.

(b) Case l maps in all frames to terms that have been marked ✓ throughout. If they
are all terms that have no destructor, then we can of course directly replace rd
with ff. Otherwise, in at least one frame struct, l maps to a term c(s1, . . . , sm)
which was composed by the intruder, i.e., there are destructor-free recipes
r′1, . . . , r

′
m that produce si in struct, thus struct(l) = struct(c(r′1, . . . , r′m)). As

these recipes are all destructor-free, this is an experiment that must work
in all frames (otherwise S is not normal). Thus, we can first replace rd =

120 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

d(r1, c(r′1, . . . , r′m)) which then can be reduced to a destructor-free recipe follow-
ing Case 1 of this proof.

Definition 3.3.3 for normal symbolic states only considers pairs of recipes that we find
with our compose-checks (i.e., without destructors). After analysis, using the lemmas
above we show that the intruder still cannot distinguish any possibilities even with recipes
that may contain destructors. In fact, all steps that distinguish the possibilities must have
been done either with compose-checks after executing a destructor oracle, or during the
execution of a destructor oracle (because the intruder knows whether decryption succeeded).

Lemma A.3.9. Let S be an analyzed state and normal. Then it is also normal w.r.t.
arbitrary recipes.

Proof. Suppose S is analyzed and normal w.r.t. destructor-free recipes, and let S ∈ [[S]].
Suppose there are recipes r1 and r2 with destructors such that comparing r1 and r2 is an
experiment that distinguishes concr from a structi in S, then by Lemma A.3.8, there exist
equivalent destructor-free r′1 and r′2 that thus also distinguish concr and structi and thus
S (thus S) is not normal w.r.t. destructor-free recipes.

Finally, we conclude our results for the decision procedure with the proof that our
representation with symbolic states is correct even in the presence of destructors. The
argument is that whatever the intruder can learn by applying destructors themselves, they
can learn the same with destructor oracles.

Theorem 3.4.2 (Procedure correctness). Given a protocol specification for (α, β)-privacy,
a bound on the number of transitions and an algebraic theory allowed by Definition 3.4.1,
our decision procedure is sound, complete and terminating.

Proof. This is essentially lifting Proposition A.2.1 to the case where the intruder has access
to destructors (except private extractors, of course). A problem is however that the states
that our lifting produces include shorthands, i.e., the terms obtained from the destructor
oracles. The construction ensures that such shorthands are indeed just shorthands in the
sense that each corresponds to a recipe with destructor (that gives the same term in each
FLIC as the shorthand). We can thus regard a state with shorthands as an equivalent
representation of the state without shorthands.

Let now S be a symbolic state that is analyzed and normal w.r.t. destructor-free recipes.
By Lemma A.3.9, it is also normal w.r.t. arbitrary recipes. In the model where destructors
are private, by Proposition A.2.1, we have for transaction P that [[S=⇒P]] = [[S]]−→P , i.e.,
what is reachable on the symbolic level is equivalent to what is reachable on the ground
level using P . We now show how to arrive at the same result for the case where the
intruder can access destructors (except private extractors). Consider first the recipes for
messages that the intruder may send during this transaction. These recipes can only use
labels that already occur in S—whatever messages the process sends out in response is not
available to the intruder when sending. Given a ground state S ∈ [[S]] and some recipes
with destructors that the intruder sends during this transition, they are equivalent to
destructor-free recipes due to Lemma A.3.8. Thus, [[S]]−→P is the same when allowing
destructors in recipes the intruder sends for the messages that P receives.

Observe that the symbolic states S=⇒P that are reached from S with P are not
yet analyzed and only normalized w.r.t. destructor-free experiments. By applying the
destructor oracle strategy to every symbolic state in S=⇒P , we obtain finitely many analyzed
states S1, . . . ,Sn such that [[S=⇒P]] =

⋃n
i=1[[Si]] by Theorem 3.4.1. By Lemma A.3.9 these

symbolic states in S1, . . . ,Sn are also normal w.r.t. recipes with destructors.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 121

Thus, starting at a normal analyzed symbolic state S and given a transaction P , our
procedure computes a finite set of normal analyzed symbolic states that represent exactly
those states that can be reached on the ground level with P from any state represented by
S. Thus, by repeatedly applying this procedure, we obtain a correct finite representation
of all states reachable from S after a given number of transactions.

A.4 Typing

We start by showing that Definition 4.1.5 maintains the invariant that a given recipe
produces messages of the same type in every possibility.

Lemma 4.1.1. Let S be a reachable state in a protocol satisfying Definition 4.1.5,
struct1, . . . , structn be the frames in S and r be a recipe over the domain of the structi.
Then Γ(struct1(r)) = · · · = Γ(structn(r)).

Proof. Initially, the property holds because the intruder has not observed any message
yet. Then whenever a transaction is receiving, the message is determined by the intruder
and thus, if the intruder before the transaction knows the type of every message in their
knowledge, then they know the types of the messages the transaction receives. They also
know the type of every other variable in the transaction, because privacy variables are
chosen from homogeneous domains, the type of messages in the memory cells never changes
(only the content can), and the result of a destructor application has the type of a subterm
of the input (if it does not fail anyway). Since destructor applications occur before any cell
read or conditional statement and behave as 0 in case of failures, if any destructor fails
then the entire transaction behaves as 0, i.e., it terminates immediately. Thus the intruder
can determine the type of every message sent in a given execution path. Moreover, the
intruder can observe how many messages the process sends and rule out all those execution
paths that are not compatible with that. By Definition 4.1.5, the remaining execution
paths, being not statically distinguishable, must have the same type for corresponding
messages for any given input messages from the intruder. Thus, the intruder may not know
which of the remaining execution paths is the case, but they still know which types the
respective messages have, so also after the transaction the intruder knows the type of every
message in their knowledge.

We continue with the proof that using pattern matching is correct w.r.t. destructor
applications. This proof refers to the semantics for ground states, while our later proofs
will work directly on symbolic states.

Lemma 4.1.2. A protocol satisfying Definition 4.1.5 and its transformation to use pattern
matching according to Definition 4.1.7 yield the same set of reachable ground states (up to
logical equivalence of the contained formulas α and β).

Proof. The ground semantics in Chapter 2 of try X := d(k, t) in P catch Q is syntactic
sugar for a conditional if φ then P [X 7→ d(k, t)] else catch Q where Q = 0 for the typing
result and φ is a formula expressing that the destructor application is successful. By
construction, if φ is true, then d(k, t) yields the respective subterm of t.

Since in this work, Q = 0 and try is only allowed before cell reads and conditional
statements (i.e., before branching), then a sequence of try’s can be written as a single if
condition φ (the conjunction of the conditions of the individual try’s) and that can again
be split φ = φ1 ∧ φ2 into conditions φ1 on the structure (that the transformed process
handles as a pattern) and a condition on the values φ2.

122 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

In the transformed specification, if the pattern is satisfied, then the pattern variables
are bound to the corresponding subterms of t as the destructor terms d(k, t) mentioned
above. This also leads to the same possibilities in both models: in the original process,
each possibility splits into two, namely whether φ is satisfied or not. In the transformed
specification, if φ1 holds there is also a split into two on whether φ2 holds or not. Otherwise,
if ¬φ1 holds, there is no split (we arrive at 0 for sure). Now in each model, the intruder
knows the typing of the messages and thus whether φ1 holds. Thus, if φ1 holds, the intruder
in the original model can simplify the conditions φ and ¬φ to φ2 and ¬φ2, respectively,
yielding exactly the same conditions as in the new model. Conversely, if ¬φ1 holds, then
the intruder in the original model can rule out the φ case and then the process just goes to
0, exactly as in the new model.

A.4.1 Well-typedness of the constraint solving
We now prove that the lazy intruder rules only return well-typed solutions when used on a
type-flaw resistant protocol. First, we consider a single rule application. The main rule
that matters is Unification and in that case we are sure that the unifier is well-typed by
the type-flaw resistance assumption.

Lemma A.4.1. Let Spec be a type-flaw resistant protocol, A be a FLIC such that
terms(A) ⊆ SMP(patterns(Spec)), ρ be a choice of recipes such that dom(ρ)∩rvars(A) = ∅,
σ be a well-typed substitution such that dom(σ) ∩ vars(A) = ∅, and (ρ′,A′, σ′) be such that
(ρ,A, σ)⇝ (ρ′,A′, σ′). Then σ′ is well-typed.

Proof. To show that the constraint solving always makes well-typed instantiations of
intruder and privacy variables, we proceed by distinguishing which lazy intruder rule has
been applied.

Unification: Then A = A1.−l 7→ s.A2.+R 7→ t.A3, ρ′ = [R 7→ l]ρ and σ′ = mgu(σ ∧
s
.= t). We have that s, t ∈ SMP(patterns(Spec)) \ V . Since Spec is type-flaw resistant and

s and t are unifiable, Γ(s) = Γ(t). Thus, σ′ is well-typed.
Guessing: Then A = A1.+R 7→ x.A2, ρ′ = [R 7→ c]ρ and σ′ = mgu(σ ∧ x .= c), for

some c ∈ dom(x). The guess c is a constant in the domain of the privacy variable x so
Γ(x) = Γ(c). Thus, σ′ is well-typed.

Composition or Repetition: Then σ′ = σ, i.e., no intruder or privacy variables are
instantiated. Thus, σ′ is well-typed.

Note that since σ′ is well-typed and SMP(patterns(Spec)) is closed under well-typed
instantiations, then terms(A′) ⊆ SMP(patterns(Spec)).

The previous lemma considers a single transition from the lazy intruder rules. We
then have that every lazy intruder result is well-typed because every transition preserves
well-typedness.

Theorem 4.2.1 (Lazy intruder well-typedness). Let Spec be a type-flaw resistant protocol,
A be a simple FLIC such that terms(A) ⊆ SMP(patterns(Spec)) and let σ be a well-typed
substitution. Then every ρ ∈ LI (A, σ) is well-typed w.r.t. A.

Proof. By induction and using Lemma A.4.1, for every σ′ such that (ε, σ(A), σ) ⇝∗

(ρ,A′, σ′) and A′ is simple, we have that σ′ is well-typed. For every +R 7→ X ∈ A, we
have σ′(A′(ρ(R))) = σ′(X), so Γ(A′(ρ(R))) = Γ(X). Moreover, ρ(A)(ρ(R)) and A′(ρ(R))
are unifiable, because they only differ in the variables introduced by applying ρ to A.
Since there are infinitely many variables of each type, then without loss of generality the
fresh intruder variables introduced by ρ can be taken of the appropriate types such that
Γ(X) = Γ(ρ(A)(ρ(R))). Thus, ρ is well-typed w.r.t. A.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 123

A.4.2 Well-typedness of the state transitions

As an intermediate result, we show that, given a set of FLICs with the same domain and
constraints, solving the constraints to send a message pattern in one FLIC is equivalent
to solving the constraints in any other FLIC. We start by reasoning about a single rule
application. The interesting case is again Unification. Here we use the fact that every
pattern in a message received is linear, and thus if a label maps in one FLIC to a message
that unifies with the pattern, then any other message of the same type (including what
the label maps to in other FLICs) also unifies.

Lemma A.4.2. Let Spec be a type-flaw resistant protocol and A1, . . . ,An be FLICs such
that:

• dom(A1) = · · · = dom(An) and for every label, the messages in the different FLICs
have the same type.

• The messages sent in each FLIC are equal.

• For every i ∈ {1, . . . , n}, terms(Ai) ⊆ SMP(patterns(Spec)) and for every +R 7→ t ∈
Ai, t is linear, does not contain constants and the intruder variables in fv(t) do not
occur in any other message sent.

Then a lazy intruder rule is applicable in A1 iff that rule is applicable in every Ai.

Proof. Let us consider the first non-simple constraints, say it is to send a message t. First,
we assume that Unification is applicable in A1. Then it means that t can be unified with
another message observed earlier, i.e., there is a label l that maps to a message unifying
with t. Since t contains only fresh variables and no constants, then t can be unified with
any message of the same type. Since the label l maps to messages of the same type in
every FLIC, then l is a solution in every FLIC so Unification is applicable in the same
way in every FLIC. Note that the variables in t that are substituted do not make any other
constraints non-simple, since these variables do not occur in any other message sent.

Second, we assume that Composition is applicable. Then it means that t is composed
with a public function at the top-level. The intruder can produce t with a composed recipe,
using the same function at the top-level and subrecipes for the arguments, and this is
applicable in every FLIC.

Since every message to send is linear and contains only fresh intruder variables, the rules
of Guessing and Repetition are not applicable. Moreover, after one rule application,
the updated FLICs still form a set of FLICs with identical messages to send. This means
that Guessing and Repetition will never be applicable when solving the constraints.

We extend the lemma above from one lazy intruder rule application to lazy intruder
results (i.e., the solutions returned after solving all the constraints) and obtain well-
typedness for the receive transitions.

Lemma A.4.3. Given a type-flaw resistant protocol, the transitions for receiving message
patterns always perform well-typed instantiations.

Proof. First, we consider the case that the intruder makes some choice of recipes computed
with the lazy intruder. The transition is:

(α0, β0, {(rcv(t).Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked)
⇒ ρ((α0, β0, {(Pi, φi,Ai.+R 7→ X,Xi, αi, δi) | i ∈ {1, . . . , n}},Checked))

124 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

where t /∈ Vintruder , R is a fresh recipe variable, X is a fresh intruder variable, ρ ∈
LI (A1.+R 7→ X, [X 7→ t]). By Theorem 4.2.1, ρ is well-typed w.r.t. A1.+R 7→ X, and
thus also w.r.t. A1. By induction using Lemma A.4.2, the lazy intruder gives the same
results in every FLIC. Therefore ρ is actually well-typed w.r.t. Ai.+R 7→ X, and thus Ai,
for every i ∈ {1, . . . , n}.

Next, we consider the case that the intruder sends a message that does not match the
pattern. Then there is no instantiation of variables.

Next we show that our rules for pattern matching in symbolic states are a correct
representation of pattern matching in ground states. This is an update of the correctness
result in Proposition A.2.1, when adding the new pattern-matching construct.

Lemma 4.2.1. Given a type-flaw resistant specification, then the set of reachable states in
the symbolic semantics represents exactly the reachable states of the ground semantics.

Proof. We use the fact that this is already proved for all previous constructs in Appendix A.2
and just show it for the newly added rules for receiving with pattern matching (found in
Definitions 4.1.6 and 4.2.2).

Given a symbolic state S with possibilities {(rcv(t).Pi, φi,Ai,Xi, αi, δi) | i ∈ {1, . . . , n}}
such that the pattern-matching receive rules are applicable, i.e., t /∈ Vintruder is a linear
pattern with fresh variables and no constants.

For the positive case (i.e., satisfying the pattern) for a type-flaw resistant protocol, it
follows from Lemma A.4.3 that all Ai have the same set ρ of solutions for producing t, i.e.,
for Ai.+R 7→ t.

Completeness (all reachable ground states are represented on the symbolic level): The
new ground rule for pattern-matching receive (Definition 4.1.6) is applicable for an arbitrary
recipe r in every state ground S represented by S. If r produces an instance of t, then by
the correctness of the lazy intruder, the choice of r is represented by one of the ρ’s that
solve Ai.+R 7→ t. The resulting ground state S′ is thus covered by the symbolic state that
uses the positive rule with ρ.

If r does not produce an instance of t, then we go directly to 0 process in all possibilities,
and this is covered by the second rule of the symbolic level, since in this case the pattern
cannot be a variable.

Soundness (only reachable ground states are represented on the symbolic level): If ρ is
a solution in Ai.+R 7→ t, then all ground states represented by ρ(S) allow for applying the
pattern rule with an instance r of ρ(R). Moreover, if the second rule is applicable, then
there is a ground recipe r that produces a message which is not an instance of t, thus the
transition that makes all processes 0 is also possible on the ground level.

Before proving, for type-flaw resistant protocols, the equivalence between analysis
transitions and destructor oracles, we show an intermediate result. Whenever a label maps
to a composed term, then in every FLIC the label maps to a composed term with the
same top-level function. This will be useful to make sure that if a destructor oracle can be
applied, then also the transition for analysis can be applied.

Lemma A.4.4. Let S be a normal symbolic state with FLICs A1, . . . ,An and l ∈ dom(S)
such that −l 7→ c(t11, . . . , tm1) ∈ A1, where m > 0. Then for every i ∈ {1, . . . , n}, we have
−l 7→ c(t1i , . . . , tmi) ∈ Ai for some terms tji .

Proof. Assume that in some FLIC Aj (j ̸= 1) we have −l 7→ X, where X ∈ Vintruder . Since
S is normal, the experiment (l, R) must have been done already, i.e., (l, R) ∈ Checked,
where +R 7→ X ∈ Aj . We will show that this contradicts the assumption that S is
well-formed. (All states in the symbolic execution are well-formed by construction.) Let

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 125

σi = mgu(Ai(l)
.= Ai(R)) for i in {1, . . . , n}. Since (l, R) ∈ Checked, either for every

i ∈ {1, . . . , n}, isPriv(σi) and α0 ∧ β0 ∧ φi |= σi, or for every i ∈ {1, . . . , n}, LI (Ai, σi) = ∅
or (isPriv(σi) and α0 ∧ β0 ∧ φi |= ¬σi).

However, we have not isPriv(σ1). We also have that σj = ε, so LI (Aj , σj) = {ε} ≠ ∅
and α0 ∧ β0 ∧ φj ̸|= ¬σj . This contradicts well-formedness, so we conclude that in every
FLIC, the label does not map to an intruder variable. Recall that, since the messages sent
in different branches have the same types, every label maps to messages of the same type.
Moreover, since m > 0, it cannot be the type of a privacy variable. Therefore the message
mapped by l has the same constructor in every FLIC.

The lemma below says that the analysis transitions of Definition 4.2.3 are equivalent
to destructor oracles. The main difference is that destructor oracles are applied to more
general patterns based on the destructor rules, while the analysis transitions only consider
instances of these oracles with messages in the FLICs. However, we can use the lemma
above together with Requirement 6 in Definition 4.1.5 to make sure that if a message can
be analyzed in one FLIC, then all corresponding messages in the other FLICs can also be
analyzed.

Lemma A.4.5. Given a type-flaw resistant protocol, =⇒= =⇒•.

Proof. Let S,S ′ be reachable symbolic states in a type-flaw resistant protocol. For executing
regular transactions, the same transitions are possible in both relations. The only thing
we have to show is that destructor oracles and analysis transitions are equivalent. Let
A1, . . . ,An be the FLICs in the state S.

First, we assume that S =⇒ S ′, where some destructor oracle is executed. Then
it means that S is normal and there exist a label l ∈ dom(S) and a public destructor
d ∈ Σpub such that l can be analyzed with d, i.e., −l 7→ c(k′, t1, . . . , tm) in some FLIC,
where c occurs in the rewrite rule for d. By Lemma A.4.4, l also maps in all the other
FLICs to composed messages with the same constructor c, i.e., for every i ∈ {1, . . . , n},
we have −l 7→ c(k′i, t1i , . . . , tmi) ∈ Ai. By Definition 4.1.5, for every i ∈ {1, . . . , n}, we have
d(ki, c(k′i, t1i , . . . , tmi))→ tji as an instance of the rewrite rule for d, for some term ki and
some j ∈ {1, . . . ,m}. Executing the destructor oracle specialized with label l means that
for each FLIC Ai, the process is now rcv(Y).if Y .= ki then snd(tji).snd(ki), which is exactly
what we get from the corresponding analysis transition. Thus S=⇒•S ′.

Second, we assume that S=⇒•S ′, where some analysis transition is taken. Then it
means that S is normal and there exist a label l ∈ dom(S) and a public destructor d ∈ Σpub
such that l can be analyzed with d, i.e., −l 7→ c(k′, t1, . . . , tn) in some FLIC, where c occurs
in the rewrite rule for d. The corresponding destructor oracle transaction can be executed,
leading to the same state. Thus S =⇒ S ′.

Finally, we conclude with our main theorem for the typing result by combining the
intermediate results: every part of the procedure only does well-typed instantiations, so it
is enough only consider well-typed traces.

Theorem 4.2.2 (Typing result). Given a type-flaw resistant protocol, it is correct to
restrict the intruder model to well-typed recipes/messages for verifying privacy.

Proof. The only way that variables are instantiated during the transitions is by applying
some lazy intruder result. For every transition, we ensure that all messages in the FLICs are
in the set of sub-message patterns of the protocol. By Definition 4.1.4, all the constraints
occurring during the symbolic execution are well-typed, and thus by Theorem 4.2.1, the
lazy intruder only performs well-typed instantiations. In a reachable state, all constraints
are simple, i.e., all the messages sent are pairwise distinct intruder variables. Since the

126 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

intruder can produce an unbounded number of messages of each type, then they can
instantiate the intruder variables in a well-typed way.

A.5 Compositionality

A.5.1 Compositionality on the frame level
We start with our proofs for the compositionality on the frame level. In Definition 3.4.4,
we introduced a notion of shorthand where a label is equivalent to some recipe. This was
used in the context of our analysis strategy for the decision procedure of Chapter 3, where
we add shorthands to frames as labels mapping to terms resulting from decryption. In this
section, we redefine a notion of shorthands where a label is not mapping directly to a term,
but rather is assigned a recipe. The reason is that for the proofs below, we need to keep
track of which concrete recipes were used in the shorthands, and not only which terms are
produced.

Definition A.5.1. A shorthand i : l ← r consists of a label l associated with a recipe
r and marked with i. We extend the notion of recipes so that they can use labels from
shorthands: a recipe containing label l from a shorthand l← r produces the same message
as the recipe where l is replaced with r.

Let F be a ground frame. A frame F ′ is an extension of F with shorthands iff
dom(F) ⊆ dom(F ′) and for every label l ∈ dom(F ′)\dom(F) such that F ′ = F1.i : l← r.F2,
we have F1(r) ∈ GSMPi (this requires that every label in r is in dom(F1)) and r is i-
homogeneous.

We extend the notion of comparable frames as well: two frames are comparable iff they
have the same domain, the same shorthands and for every label, the frames agree on its
mark.

The notion of shorthands does not impact the static equivalence between frames.

Lemma A.5.1. Let F1, F2 be ground frames and let F ′
1, F

′
2 be extensions of the respective

frames with the same shorthands. Then F1 ∼ F2 iff F ′
1 ∼ F ′

2.

Proof. Case F1 ̸∼ F2: Then there exists a witness (r1, r2) that distinguishes the frames,
which is then also a witness that distinguishes F ′

1 and F ′
2.

Case F ′
1 ̸∼ F ′

2: Then there exists a witness (r1, r2) that distinguishes the frames. Any
label l that comes from a shorthand l← r can be replaced with r while preserving the fact
that the pair of recipes if a witness. Then there exists a witness that distinguishes F1 and
F2.

Given two leakage-free frames, a destructor-free recipe producing a message from one
protocol can either be made homogeneous or we may find a homogeneous witness against
static equivalence. The proof argument is that shared terms are either public or secret,
so we can replace non-homogeneous labels with equivalent homogeneous recipes (with a
public term seen as a recipe or with a recipe for a declassified secret), unless we find a
witness along the way.

Lemma A.5.2. Let F1, F2 be leakage-free comparable frames, i ∈ {1, 2, ⋆} and r be a
destructor-free recipe such that F1(r), F2(r) ∈ GSMPi. Then at least one of the following
is true:

1. There exist a destructor-free i-homogeneous recipe r′ and frames F ′
1, F

′
2 extensions of

F1, F2 with the same shorthands such that F1(r) ≈ F ′
1(r′) and F2(r) ≈ F ′

2(r′).

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 127

2. There exist j ∈ {1, 2} and a j-homogeneous witness against static equivalence of F1
and F2.

Proof. Assume that i = 1 (the cases that i = 2 or i = ⋆ are handled similarly). We
define the weight of recipe r as w(r) = #{l | l occurs in r and is marked with 2}. The
weights form a well-founded ordering. If w(r) = 0, then we already have a destructor-free
1-homogeneous recipe. Otherwise, let l be a label in r marked with 2, t1 = F1(l) and
t2 = F2(l). Since l is marked with 2, t1, t2 ∈ GSMP2. Since r is destructor-free, t1 is a
subterm of F1(r) and thus t1 ∈ Tpub ∪ Secrets.

• Case t1 ∈ Tpub: If t1 = t2, then we continue with the recipe r[l 7→ t1] and the weight
decreases by 1. Otherwise, (l, t1) is a witness and thus Item 2 is true, since this pair
of recipes is 2-homogeneous.

• Case t1 ∈ Secrets: Since F1 is leakage-free and F1|2(l) = t1, we have t1 /∈ Secrets \
declassified(F1) and thus t1 ∈ declassified(F1). By definition of declassified(F1), there
exists a recipe r′ such that F1(r′) ≈ t1 and all labels in r′ are marked with ⋆. If
(l, r′) is a witness, then Item 2 is true since this pair of recipes is 2-homogeneous.
Otherwise, we add the shorthand ⋆ : l′ ← r′ in both frames. Then we have F1(l′) ≈ t1
and F2(l′) ≈ t2, so we continue with the recipe r[l 7→ l′] and the weight decreases by
1.

By repeating these steps, we can successively replace all labels in the recipe r with equivalent
labels (possibly using shorthands) so that the recipe becomes 1-homogeneous, or we may
find a 2-homogeneous witness during some step.

Given a leakage-free frame, a destructor-free recipe producing a message from one
protocol can be made homogeneous. This is a special case of the previous lemma.

Lemma A.5.3. Let F be a leakage-free frame, i ∈ {1, 2, ⋆} and r be a destructor-free
recipe such that F (r) ∈ GSMPi. Then there exists an i-homogeneous recipe r′ such that
F (r) ≈ F (r′).

Proof. By Lemma A.5.2, when considering twice the same frame, there exist an extension F ′

of F with shorthands and a destructor-free i-homogeneous recipe r′′ such that F (r) ≈ F ′(r′′).
Then we obtain the recipe r′ from r′′ by replacing every label from a shorthand with the
recipe it is assigned to (and removing the shorthands preserves i-homogeneity, since the
recipe in a shorthand is homogeneous w.r.t. the mark of the shorthand).

The lemma above can be extended to arbitrary recipes. We show this by considering
an inner-most destructor and replacing it with either ff (if the decryption fails) or a
simpler recipe (if the decryption succeeds); simpler in the sense that either it is directly
homogeneous or it contains one less destructor.

Lemma 5.4.1. Let F be a leakage-free frame, i ∈ {1, 2, ⋆} and r be a recipe such that
F (r) ∈ GSMPi. Then there exists an i-homogeneous recipe r′ such that F (r) ≈ F (r′).

Proof. We define the weight of recipe r as the number of destructors that occur in r. The
weights form a well-founded ordering. If w(r) = 0, i.e., r is destructor-free, then the lemma
holds by Lemma A.5.3. Otherwise, we consider an inner-most destructor in r. We have
r = r0[d(rk, rt)] where rk and rt are destructor-free and r0[·] is a recipe context. (A recipe
context is a recipe with a hole, and the hole is filled when the context is applied to a
recipe.) We have the rewrite rule d(k, c(k′, X1, . . . , Xn)) → Xj , where j ∈ {1, . . . , n}. If
F (d(rk, rt)) ≈ ff, then we continue with the recipe r0[ff] and the weight decreases by 1.
Otherwise:

128 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

• Case rt = c(r′k, r′1, . . . , r′n): The decryption succeeds, so we continue with the recipe
r0[r′j] and the weight decreases by 1.

• Case rt = l ∈ dom(F): The decryption succeeds. By definition of GSMP, we have
F (rk), F (rt) ∈ GSMPi. By Lemma A.5.3, there exist i-homogeneous recipes r′k
and r′t such that F (rk) ≈ F (r′k) and F (rt) ≈ F (r′t). Then we add the shorthand
i : l′ ← d(r′k, r′t). Note that d(r′k, r′t) is i-homogeneous, so the shorthand is well-defined.
Then we continue with the recipe r0[l′] and the weight decreases by 1.

By repeating these steps, we can successively replace all destructor applications in the
recipe with equivalent labels (possibly using shorthands) so that we can get an extension
F ′ of F with shorthands and a destructor-free recipe r1 such that F (r) ≈ F ′(r1). By
Lemma A.5.3, there exists a recipe r2 such that F ′(r1) ≈ F ′(r2) and r2 is i-homogeneous.
Then we obtain the recipe r′ from r2 by replacing every label from a shorthand with the
recipe it is assigned to.

Given two leakage-free frames, we obtain a homogeneous witness against static equiv-
alence by reducing an arbitrary witness step by step towards a homogeneous one. The
replacement of subrecipes is similar to the previous lemmas: either we use public terms as
recipes or we use recipes for declassified secrets.

Lemma A.5.4. Let F1, F2 be leakage-free comparable frames. If there exists a destructor-
free witness against static equivalence of F1 and F2, then there exist i ∈ {1, 2} and an
i-homogeneous witness.

Proof. For recipe r1, r2, let labels(r1, r2) denote the set of labels occurring in r1 or r2 that
are not marked with ⋆. Given a pair of recipes (r1, r2), we define the weight of the pair as:

wF1,F2(r1, r2) =

(#labels(r1, r2), size(F1(r1)))
if F1(r1) ≈ F1(r2) and F2(r1) ̸≈ F2(r2)

(#labels(r1, r2), size(F2(r1)))
if F1(r1) ̸≈ F1(r2) and F2(r1) ≈ F2(r2)

and wF1,F2(r1, r2) is undefined otherwise (i.e., the weight is only defined for witnesses).
The weights with the lexicographic order form a well-founded ordering.

Assume that there exists a destructor-free witness (r1, r2) against static equivalence of
F1 and F2. If both recipes are composed, then they must have the same constructor at
the top-level, because they produce the same term in exactly one frame: r1 = c(r11, . . . , rn1)
and r2 = c(r12, . . . , rn2). Then at least one of the (ri1, ri2) must already be a witness. We can
thus move to a smaller witness: if labels(ri1, ri2) ⊊ labels(r1, r2), then the first component of
the weight decreases; otherwise, the second component of the weight decreases (the recipes
produce a strict subterm of the original message). This is well-founded: at some point, at
least one of the recipes is no longer composed and thus a label. Therefore there exists a
witness (l, r) such that l is a label and r is destructor-free. Assume that:

• F1(l) ≈ F1(r) and F2(l) ̸≈ F2(r).

• l is marked with 1 and r contains a label l′ marked with 2.

Note that these assumptions are without loss of generality, because we can just rename
the frames and the case that l is marked with 2 or ⋆ is handled in a similar way as below.
Since l is marked with 1, F1(l), F2(l) ∈ GSMP1. Let t = F1(l′). Since l′ is marked with 2,
t ∈ GSMP2. Since r is destructor-free, t is a subterm of F1(l) and thus t ∈ Tpub ∪ Secrets.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 129

• Case t ∈ Tpub: If (l′, t) is a witness, then it is a 2-homogeneous one and the lemma
holds. Otherwise, we continue with the witness (l, r[l′ 7→ t]). This witness is smaller
because we are removing a label not marked with ⋆, so the first component of the
weight decreases.

• Case t ∈ Secrets: Since F1 is leakage-free and F1|2(l′) = t, we have t /∈ Secrets \
declassified(F1) and thus t ∈ declassified(F1). By definition of declassified(F1), there
exists a recipe r′ such that F1(r′) ≈ t and all labels in r′ are marked with ⋆. If (l′, r′)
is a witness, then it is a 2-homogeneous one and the lemma holds. Otherwise, we
add the shorthand ⋆ : l′′ ← r′ in both frames. Then we have, F1(l′) ≈ F1(l′′) and
F2(l′) ≈ F2(l′′), so continue with the witness (l, r[l′ 7→ l′′]). This witness is smaller
because we are removing a label not marked with ⋆ and the label we introduce is a
shorthand marked with ⋆, so the first component of the weight decreases.

By repeating these steps, we can successively replace all labels in the recipe r with equivalent
labels (possibly using shorthands) so that the witness becomes 1-homogeneous, or we may
find a 2-homogeneous witness during some step.

The lemma above can be extended to arbitrary recipes. Again, the proof looks at an
inner-most destructor and we consider the different cases of the witness: it could be that
the encryption/decryption key terms already distinguish the frames, or we can distinguish
with another recipe to produce the key, or we can replace the destructor with the subterm
it produces (when decryption succeeds in both frames).

Lemma A.5.5. Let F1, F2 be leakage-free comparable frames. If there exists a witness
against static equivalence of F1 and F2, then there exist i ∈ {1, 2} and an i-homogeneous
witness.

Proof. Assume that there exists a witness (r1, r2) against static equivalence of F1 and F2.
Given a pair of recipes (r1, r2), we define the weight of the pair as:

wF1,F2(r1, r2) =

(nd, size(F1(r1)))

if F1(r1) ≈ F1(r2) and F2(r1) ̸≈ F2(r2)
(nd, size(F2(r1)))

if F1(r1) ̸≈ F1(r2) and F2(r1) ≈ F2(r2)

where nd is the number of destructors in r1 and r2, and wF1,F2(r1, r2) is undefined otherwise
(i.e., the weight is only defined for witnesses). The weights with the lexicographic order
form a well-founded ordering.

If the witness is destructor-free, then the lemma holds by Lemma A.5.4. Otherwise,
we assume w.l.o.g. that r1 is not destructor-free. We consider an inner-most destructor
in r1. We have r1 = r[d(rk, rt)] where rk and rt are destructor-free. We have the rewrite
rule d(k, c(k′, X1, . . . , Xn))→ Xj , where j ∈ {1, . . . , n}, and either k = k′ or there exists
some public function f such that k ≈ f(k′) or k′ ≈ f(k). If F1(d(rk, rt)) ≈ ff and
F2(d(rk, rt)) ≈ ff, then (r[ff], r2) is a witness and the first component of the weight
decreases. Otherwise:

• Case rt = c(r′k, r′1, . . . , r′n):

– Case k = k′: If (rk, r′k) is a witness, then by Lemma A.5.4 there exist i ∈ {1, 2}
and an i-homogeneous witness so the lemma holds. Otherwise, the decryption
succeeds in both frames so we continue with the witness (r[r′j], r2) and the first
component of the weight decreases.

130 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

– Case k ≈ f(k′): If (rk, f(r′k)) is a witness, then we continue with that simpler
witness (the first component of the weight may only decrease, and even if it
stays the same, this witness produces a strict subterm of the original witness,
so the second component of the weight decreases). Otherwise, the decryption
succeeds in both frames so we continue with the witness (r[r′j], r2) and the
second component of the weight decreases.

– Case k′ ≈ f(k): Similar to the previous case.

• Case rt = l ∈ dom(F1): Let i be the mark of l, or let i = 1 if l is marked with ⋆.
By Lemma A.5.2, we may find j ∈ {1, 2} and a j-homogeneous witness so that the
lemma holds, or there exist a destructor-free i-homogeneous recipe r′k and frames
F ′
1, F

′
2 extensions of F1, F2 with the same shorthands such that F1(rk) ≈ F ′

1(r′k) and
F2(rk) ≈ F ′

2(r′k). If (d(rk, l), ff) is a witness, then (d(r′k, l), ff) is also a witness and
since it is i-homogeneous, the lemma holds. Otherwise, the decryption succeeds in
both frames and we add the shorthand i : l′ ← d(r′k, l). Then we continue with the
witness (r[l′], r2) and the second component of the weight decreases.

By repeating these steps, we can successively replace all destructor applications in the
witness with equivalent labels (possibly using shorthands) so that the witness becomes
homogeneous, or we may find a homogeneous witness during some step.

Our theorem for frames is simply the contraposition of the lemma above.

Theorem 5.4.1. Let F1, F2 be leakage-free comparable frames. If for every i ∈ {1, 2},
F1|i ∼ F2|i, then F1 ∼ F2.

Proof. We proceed by contraposition. Assume that F1 ̸∼ F2. By Lemma A.5.5, there exist
i ∈ {1, 2} and an i-homogeneous witness (r1, r2) against static equivalence of F1 and F2.
Then (r1, r2) is a witness against static equivalence of F1|i and F2|i.

A.5.2 Compositionality on the state level

We now define an equivalence relation between states and show some intermediate results
about equivalent states. In particular, if two states are equivalent, then their reachable
states are also equivalent.

Definition A.5.2. Let S = (α, γ,P,_,flag) and S′ = (α′, γ′,P ′,_,flag′), where the
respective sets of possibilities are P = {(R1, φ1, struct1, δ1), . . . , (Rn, φn, structn, δn)} and
P ′ = {(R′

1, φ
′
1, struct ′1, δ′1), . . . , (R′

n, φ
′
n, struct ′n, δ′n)}.

S and S′ are equivalent iff

• α ≡ α′;

• γ ≡ γ′;

• flag = flag′; and

• For every i ∈ {1, . . . , n}, β(S) ∧ φi ≡Σ β(S′) ∧ φ′i and there exists a substitution σi
such that σi(Ri) = σi(R′

i) (with the same thread IDs), β(S)∧ φi |=Σ σi, σi(structi) =
σi(struct ′i) and σi(δi) = σi(δ′i).

Lemma A.5.6. The relation in Definition A.5.2 is an equivalence relation.

Proof. Straightforward, it suffices to expand the definitions.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 131

Two equivalent states represent the same intruder knowledge.

Lemma A.5.7. Let S, S′ be equivalent states. Then β(S) ≡Σ β(S′).

Proof. We only show β(S) |=Σ β(S′), the other direction follows by symmetry. Let
I |=Σ β(S). Then there exists a possibility with condition φ in S such that I |=Σ φ.
Since S and S′ are equivalent, there exists a possibility with condition φ′ in S′ such that
β(S) ∧ φ ≡Σ β(S′) ∧ φ′. Then I |=Σ β(S′) ∧ φ′ and thus I |=Σ β(S′).

Equivalence between states is preserved by the symbolic execution.

Lemma A.5.8. Let S1, S′
1 be equivalent states. Then for every state S2 such that S1 → S2,

there exists a state S′
2 such that S′

1 → S′
2 and S2 and S′

2 are equivalent.

Proof. By definition of equivalence, S1 and S′
1 have the same payload α, truth formula

γ and assertion flag flag. Moreover, for every possibility (Ri, φi, structi, δi) in S1, there
is a corresponding possibility (R′

i, φ
′
i, struct ′i, δ′i) in S′

1 and a substitution σi such that
σi(Ri) = σi(R′

i) (with the same thread IDs), β(S1) ∧ φi |=Σ σi, σi(structi) = σi(struct ′i)
and σi(δi) = σi(δ′i). Let S2 be a state such that S1 → S2. We proceed by case distinction
of the rule applied in the transition S1 → S2. Note that for every step in a process in S1,
there is a corresponding step in a process in S′

1, where only the instantiations of privacy
variables may differ. Thus there exists a state S′

2 such that S′
1 → S′

2. We show that every
transition preserves the equivalence.

• Choice: The truth formula is extended in the same way in S2 and S′
2.

• Receive: For the message received rcv(t), the intruder uses a recipe r, then the
variables bound in the linear term t are substituted in the rest of the process according
to what the recipe r produces in the respective frame. The messages structi(r)
and struct ′i(r) may be different, therefore the bound variables may be substituted
differently in the rest of the process, but we have that σi(structi(r)) = σi(struct ′i(r)).
Thus the messages occurring in the rest of the process are still related by the
substitutions σi in S2, S′

2.

• Let: For a step let X = t in S1, there is a corresponding step let X = t′ in S′
1

and a substitution σi such that σi(t) = σi(t′). The variable X may be substituted
differently but the messages in the rest of the process are still related by the σi in
S2, S

′
2.

• Cell read: For the possibility with memory δi that is doing a cell read in S1, there
is a corresponding possibility with memory δ′i that is also doing a cell read and
a substitution σi such that σi(δi) = σi(δ′i). The cell read introduces conditional
statements with the memory updates and the variable bound to the cell read is
substituted in each branch according to the respective memory update. The values
read from δi and δ′i may be different, therefore the bound variable may be substituted
differently in the rest of the process, but the messages occurring in the rest of the
process are still related by the σi in S2, S′

2.

• Cell write: For a step cell(s) := t in S1, there is a corresponding step cell(s′) := t′

in S′
1 and a substitution σi such that σi(s) = σi(s′) and σi(t) = σi(t′). The sequences

of memory updates are still related by the σi in S2, S′
2.

• Conditional: For a statement branching on condition ψ in the possibility with
condition φi in S1, there is a corresponding branching on condition ψ′ in a possibility

132 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

with condition φ′i in S′
1 and a substitution σi such that ψ ∧ σi ≡Σ ψ′ ∧ σi and

β(S1) ∧ φi ≡Σ β(S′
1) ∧ φ′i. The possibility can be split in two in each state. Then we

have that γ |= φi ∧ ψ iff γ |= φ′i ∧ ψ′, and γ |= ψi ∧ ¬ψ iff γ |= φ′i ∧ ¬ψ′.

• Release: For a step ⋆ ψ in the possibility with condition φi in S1 such that γ |= φi,
there is the same step ⋆ ψ in a possibility with condition φ′i in S′

1 such that γ |= φ′i.
Thus the new payload in S2 and S′

2 is the same. Note that we have the same formula
ψ in both cases because the variables in ψ can only be privacy variables chosen in
previous transactions following Definition 5.3.4. If we did not make this restriction,
then the formulas released would be related by the σi but the payload might be
different and thus we would not obtain equivalent states.

• Assert: For a step assert(ψ) in the possibility with condition φi in S1 such that
γ |= φi, there is a corresponding step assert(ψ′) in a possibility with condition φ′i in
S′
1 such that γ |= φ′i and a substitution σi such that ψ ∧ σi ≡Σ ψ′ ∧ σi. Moreover,
γ |= σi because β(S1) ∧ φ |=Σ σi, γ is consistent with β(S1) and γ |= φ. Thus γ |= ψ
iff γ |= ψ′ and the assertion flag is the same in S2 and S′

2.

• Stop or Milestone: For every possibility that starts with stop in S1, there is a
corresponding possibility that also starts with stop in S′

1 (and similarly for 0 instead
of stop). Then corresponding possibilities are discarded in the same way in the
transitions to S2, S′

2.

• Send: For every step snd(t) in S1, there is a corresponding step snd(t′) in S′ and
a substitution σi such that σi(t) = σi(t′). Thus the frames in S2 and S′

2 are still
related by the σi in S2, S′

2. Moreover, for every possibility in S1 that is discarded
(because it starts with stop or 0) in the transition to S2, there is a possibility in S′

1
that is also discarded in the transition to S′

2.

• Eliminate: For a possibility with condition φi in S1 such that β(S1) |=Σ ¬φi, there
is a possibility with condition φ′i in S′

1 such that β(S′
1) |=Σ ¬φ′i.

• Next: The transition to the next transaction in the sequence can be done for both
S2 and S′

2.

Finally, we show our results for the compositionality on the state level. Given a state
S, we denote with concr(S) the concrete frame in that state. We first show that we
can assume homogeneous recipes w.l.o.g. The proof argument relies on the result for a
single frame that for every recipe producing a message from one protocol, there exists a
homogeneous recipe producing the same message. Technically, changing to homogeneous
recipes does not lead to the same exact states but to equivalent states.

Lemma A.5.9. Let (P1; . . . ;Pn, γ, ρ) be an attack trace and S0, . . . , Sn be the milestones
such that for every j ∈ {1, . . . , n}, executing Pj, starting from Sj−1, leads to Sj (following
the truth γ and using the recipes in ρ).

Then there exists ρ′ such that (P1; . . . ;Pn, γ, ρ
′) is an attack trace leading to milestones

S′
0, . . . , S

′
n where Sj and S′

j are equivalent (for j ∈ {0, . . . , n}) and for every step i : rcv(t)
during the execution of the transactions, where i ∈ {1, 2, ⋆}, the recipe given by ρ′ to produce
t is i-homogeneous.

Proof. Let j ∈ {1, . . . , n} and concr = concr(Sj−1). Consider a step i : rcv(t) (i ∈ {1, 2, ⋆})
in the transaction Pj , let r be the recipe given by ρ for this message received and t′ =
concr(r). We have t′ ∈ GSMPi, because we consider only well-typed instantiations and by
definition GSMPi contains all the well-typed instances of t. By Lemma 5.4.1, there exists

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 133

an i-homogeneous recipe r′ such that concr(r′) ≈ t′. Thus we can consider ρ′ that is the
same as ρ except that it uses r′ instead of r for this message received.

We know that the intruder is able to use an i-homogeneous recipe to produce the
same message. However, we now need to argue that using r′ instead of r is correct
w.r.t. the symbolic execution. Indeed, the two recipes produce the same message
in concr , i.e., the concrete messages are equal, but changing recipes can make a dif-
ference for the instantiation of privacy variables. Let (_, γ,P,_,_) = Sj−1 where
P = {(0;R1, φ1, struct1, δ1), . . . , (0;Rm, φm, structm, δm)}. The underlined possibility is
what really is the case, i.e., γ |= φ1 and concr = γ(struct1). For every k ∈ {1, . . . ,m},
the intruder knows that β(S) ∧ φk |=Σ concr ∼ structk. Since r and r′ produce the
same in concr , the intruder also knows that β(S) ∧ φk |= structk(r)

.= structk(r′). Let
σk = mgu(structk(r)

.= structk(r′)). The state S′
j−1 obtained from Sj−1 by applying the

σ1, . . . , σm to the respective possibilities is equivalent to Sj−1. Thus by Lemma A.5.8, the
states reached when using r′ instead of r leads are equivalent.

This argument holds for every message received in the transaction Pj and for every
transaction in the trace.

Every possibility that the intruder has not ruled out corresponds to some concrete
execution.

Lemma A.5.10. Let S = (α, γ,P, ρ,_) be a state reached with trace (P1; . . . ;Pn, γ, ρ).
Then for every possibility (_, φ, struct,_) ∈ P and interpretation γ′ |= β(S) ∧ φ, we have
that (P1; . . . ;Pn, γ

′, ρ) is a trace and it leads to a state S′ such that concr(S′) = γ′(struct).

Proof. We consider the transitions, in the symbolic execution, that depend on the truth
formula.

• Release: The formulas released in the possibility underlined by γ′ are added to the
payload α′ of S′ while the releases in other possibilities are ignored. Thus the payload
in S and S′ may be different, but the possibilities contain the same frames in both
states.

• Stop, Send or Milestone: Since the possibility with φ, struct remains in S, i.e., it
was not ruled out by the intruder, its process was stopping, sending or reaching a
milestone at the same time as the possibility underlined by γ, so the same transitions
can be taken when considering the truth γ′.

• Assert: The assertions in the possibility underlined by γ′ are checked while the
assertions in other possibilities are ignored. Thus the assertion flag in S and S′ may
be different, but the possibilities contain the same frames in both states.

• Eliminate: The intruder knowledge in the intermediate states to reach S and S′ may
be different, so the eliminated possibilities may be different, but the intruder did not
rule out the possibility with φ, struct in S, so also in S′ there is a possibility with
the same frame.

The other transitions in the symbolic execution do not depend on the truth formula, thus
when executing the transactions following truth γ′, there is a possibility with frame struct
considered by the intruder and it is actually the underlined one, so concr(S′) = γ′(struct).
Note that by well-formedness of states, we have α′ |=

∨
γ0∈Γ0 γ0, where α

′ is the payload in
S′. Thus even if γ and γ′ do not agree on the relations in Σ0, there exists some γ0 ∈ Γ0
such that γ′ |= γ0 and thus (P1; . . . ;Pn, γ

′, ρ) is a trace and S′ is a reachable state.

134 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

For our main compositionality result, we start with an arbitrary attack trace on the
composed protocol and show that there exists an attack trace on one of the components.

Theorem 5.4.2. If for every i ∈ {1, 2}, Spec|i has no attack, then Spec has no attack.

Proof. We proceed by contraposition. We assume that the composed protocol Spec has an
attack and we show that one of the projections to a component, i.e., Spec|1 or Spec|2, also
has an attack. Let (P1; . . . ;Pn, γ, ρ) be an attack trace. The symbolic execution of the
transactions, following recipes in ρ and truth formula γ, defines the milestones S0, . . . , Sn
such that for every j ∈ {1, . . . , n}, executing Pj , starting from Sj−1, leads to Sj . Recall
that by definition of attack traces, Sn is an attack state but all the milestones S0, . . . , Sn−1
do not have any attack.

By Lemma A.5.9, we can assume w.l.o.g. that in the attack trace, only homoge-
neous recipes are used. Now, consider the symbolic execution of a conditional statement
if φ then P else Q occurring in one of the P1, . . . , Pn−1 such that:

• The conditional statement is marked with a protocol-specific index, i.e., 1 or 2 but
not ⋆.

• The underlined possibility, i.e., what really happened concretely, went into branch Q.

Since the branching is protocol-specific, we know that Q = stop (following Definition 5.3.4),
and the execution of stop is observable by the intruder. Moreover, a transaction cannot
have any effects (e.g., writing to memory, sending a message or releasing a formula) before
reaching stop because this step is in the center part of processes. Since reaching this stop
step did not result in a privacy violation (as we are considering transactions before the
last one), we can simplify the trace by removing the execution of this transaction and the
successive ones that the stop would have filtered out. Thus, w.l.o.g. we can assume that
whenever there is a protocol-specific branching occurring in the attack trace before the last
transaction, the underlined possibility went into the first branch.

We know that the last transaction is the one that introduces an attack. Due to
procedure call expansion, this transaction may contain steps from both protocols, i.e., some
steps marked with 1 and other steps marked with 2: it may happen that the left part of
the process has been specified by, say, protocol 1, then during the procedure call expansion
a center process specified by protocol 2 was inserted. However, given a transaction, we can
always uniquely identify the protocol that specifies the center process in that transaction
(because procedure calls can only happen in the left part of the process). Let i be the
index of the protocol that specifies the center process in the final transaction Pn. We show
the existence of an attack by looking at the execution of the transactions P1|i; . . . ;Pn|i.

Let j ∈ {1, . . . , n}. We go over the different steps that can occur in Pj , and argue that
for the projection Pj |i, the steps are either present or have been soundly abstracted.

• Non-deterministic choice, release or nil process: The step remains in Pj |i because it
is always present in every projection.

• Receive: If the message received is marked with i or ⋆, then it remains in Pj |i and
we know that the intruder uses an i-homogeneous recipe. Otherwise, since the role
containing Pj |i is closed, the variables bound in that message are not used in the
projection so the step can be skipped.

• Let statement or cell read: If the step is marked with i or ⋆, then it remains in Pj |i.
Otherwise, since the role containing Pj |i is closed, the variable bound by this step is
not used in the projection so the step can be skipped.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 135

• Cell write: If the cell write is marked with i or ⋆, then it remains in Pj |i. Otherwise,
the memory cell does not occur in Spec|i so the step can be skipped.

• Conditional statement: If the branching is marked with i or ⋆, then it remains in
Pj |i. Otherwise, we know that the underlined possibility went into the first branch
(as justified above), so executing Pj |i (where this branching does not occur, if j < n)
preserves the attack.

• Assertion: If the assertion is marked with i or ⋆, then it remains in Pj |i. Otherwise,
the assertion was not present in the underlined possibility or was true (since the
transactions before the last one do not lead to any attack) so the step can be skipped.

• Stop: This step is never reached in the transactions before the last one (as justified
above). For the last transaction Pn, the stop remains in Pn|i because it is always
present in every projection.

• Send: If the message sent is marked with i or ⋆, then it remains in Pj |i and the
message is added to the frames with the same mark. Otherwise, the step can be
skipped since in the projected transactions, the intruder only uses labels marked with
i or ⋆.

Let ρ′ be the same as ρ except that we remove the recipes corresponding to receive steps
skipped when projecting to i.

We now consider different cases of attacks:

• If the flag in Sn is set to true: Then executing the trace (P1|i; . . . ;Pn|i, γ, ρ′) leads to
a state with the same assertion that does not hold. Thus Spec|i has an attack.

• If the flag in Sn is set to false and Sn is not leakage-free: Then there exist t ∈
Secrets \ declassified(concr(Sn)), i′ ∈ {1, 2} and r such that concr(Sn)|i′(r) ≈ t.
Since it is the last transaction that leads to the attack, we have i′ = i. Then
executing the trace (P1|i; . . . ;Pn|i, γ, ρ′) leads to a state leaking the same secret t.
Thus Spec|i is not leakage-free.

• Otherwise, i.e., the flag in Sn is set to false, Sn is leakage-free and does not
satisfy privacy: Let (α, γ,P, ρ, false) = Sn where the set of possibilities is P =
{(_, φ1, struct1,_), . . . , (_, φm, structm,_)}. Then we have that (α, β(Sn))-privacy
does not hold, so there exists a model I such that I |= α and I ̸|=Σ β(Sn). Executing
the trace (P1|i; . . . ;Pn|i, γ, ρ′) leads to a state S′ = (α, γ,P ′, ρ′, false).

– If there exists j ∈ {1, . . . ,m} such that I |=Σ φj : Then I ̸|=Σ concr(Sn) ∼
structj , so concr(Sn) ̸∼ I(structj). Since Sn is leakage-free, we know that concr
is leakage-free. However, to apply our results on frames we need to have both
frames leakage-free.
∗ If I(structj) is leakage-free: Then by Theorem 5.4.1, there exists i′ ∈ {1, 2}
such that concr(Sn)|i′ ̸∼ I(structj)|i′ . Since it is the last transaction that
leads to the attack, we have i′ = i. Moreover, there exists a possibility
(_, φ′j , struct ′j ,_) ∈ P ′ such that φj |=Σ φ′j and structj |i = struct ′j . Note
also that concr(S′) = concr(Sn)|i. Then I |=Σ α ∧ φ′ and concr(S′) ̸∼
I(struct ′), so S′ does not satisfy privacy. Thus Spec|i does not satisfy
privacy.

∗ Otherwise: Then by Lemma A.5.10, there is a reachable state where the
concrete frame is I(structj), i.e., there is a reachable state that leaks a

136 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

secret and we can show (as done in a previous case) that one component of
the protocol has an attack.

– Otherwise, i.e., I ̸|=Σ
∨m

j=1 φj : The same branching occurs both in the full
trace (P1; . . . ;Pn, γ, ρ) and in the projected trace (P1|i; . . . ;Pn|i, γ, ρ′), except for
protocol-specific branching that has been abstracted, but in this case the intruder
observed in the full trace which branch was taken (as justified earlier). Moreover,
if there are branches in the transactions P1, . . . , Pn−1 that are distinguishable
before the projection but not after (e.g., due to one branch sending a protocol-
specific message), then the intruder can eliminate one of the branches in the
projected trace because observing which branch was taken did not violate privacy,
so even if the condition depended on privacy variables, then it was allowed by
the payload. Thus β(S′) |=Σ

∨m
j=1 φj . Then I |= α and I ̸|=Σ β(S′), so S′ does

not satisfy privacy and thus Spec|i does not satisfy privacy.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 137

Appendix B

Models and details for case studies

We give here the (α, β)-privacy specification of the protocols for the case studies. Below,
we present the models with type annotations and after our changes to achieve type-flaw
resistance, except for OSK since it is not supported by our typing result. Note that in
some of the models below, we write steps of right processes before steps of center processes.
This is syntactic sugar to avoid repetition, for instance if we write snd(t).if φ then P else Q
it means that snd(t) happens in both branches.

Note that in the models given in this chapter, for convenience we make use of syntactic
sugar that is not supported by the tool (yet) and we include type annotations (which are
also not supported yet). The original models in the untyped model are provided together
with the sources of the noname tool [39].

B.1 Running example
We extend the running example presented in this thesis to include the appropriate releases
allowing the server to reply to a dishonest agent, and we also add formats to achieve
type-flaw resistance.

1 Sigma0: public a/0 b/0 i/0 s/0 yes/0 no/0
2 Sigma: public f1/2 f2/2 df11/1 df12/1 df21/1 df22/1
3 Types: a:agent b:agent i:agent s:agent yes:decision no:decision
4 Algebra: df11(f1(X,Y))->X
5 df12(f1(X,Y))->Y
6 df21(f2(X,Y))->X
7 df22(f2(X,Y))->Y
8

9 Transaction ReceivePrivateKey:
10 send inv(pk(i))
11

12 Transaction Server:
13 * x in {a,b,i}.
14 * y in {yes ,no}.
15 receive M:crypt(pk(agent),f1(nonce ,nonce),nonce).
16 try N:= dcrypt(inv(pk(s)),M) in
17 try N1:=df11(N) in
18 try N2:=df12(N) in
19 new R.
20 if y=yes then
21 send crypt(pk(x),f2(yes ,N1),R).
22 if x=i then
23 * x=i and y=yes
24 else
25 * not x=i

138 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

26 else
27 send crypt(pk(x),f2(no ,N2),R).
28 if x=i then
29 * x=i and y=no
30 else
31 * not x=i

Then we have that this protocol satisfies Definition 4.1.5. There is no destructor
application to remove in the transaction sending the private key of the dishonest agent.
However, for the server transaction, we apply Definition 4.1.7 to get the following transaction
with pattern matching.

1 Transaction ServerPat:
2 * x in {a,b,i}.
3 * y in {yes ,no}.
4 receive crypt(pk(A:agent),f1(N1:nonce ,N2:nonce),R’: nonce).
5 if inv(pk(A))=inv(pk(s)) then
6 new R:nonce.
7 if y=yes then
8 send crypt(pk(x),f2(yes ,N1),R).
9 if x=i then

10 * x=i and y=yes
11 else
12 * not x=i
13 else
14 send crypt(pk(x),f2(no ,N2),R).
15 if x=i then
16 * x=i and y=no
17 else
18 * not x=i

Thus, we have the following message patterns:

M = {inv(pk(i)), x, a, b, i, y, yes, no, crypt(pk(A), f1(N1, N2), R′), inv(pk(A)), inv(pk(s)), R,
crypt(pk(x), f2(yes, N1), R), crypt(pk(x), f2(no, N2), R)}

with the following types for variables and constants:

Γ(i) = Γ(x) = Γ(a) = Γ(b) = Γ(A) = agent ,
Γ(y) = Γ(yes) = Γ(no) = decision ;
Γ(N1) = Γ(N2) = Γ(R′) = Γ(R) = nonce .

The set M is type-flaw resistant, and thus Runex is type-flaw resistant.

B.2 Basic Hash

1 Sigma0: public t1/0 t2/0 t3/0
2 Sigma: public h/2 ok/0
3 private sk/1 extract /1
4 Types: t1:tag t2:tag t3:tag ok:reply
5 Algebra: extract(h(sk(X),Y))->X
6

7 Transaction Tag:
8 * x in {t1,t2,t3}.
9 new N:nonce.

10 send pair(N,h(sk(x),N))
11

12 Transaction Reader:

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 139

13 receive M:pair(nonce ,h(sk(tag),nonce)).
14 try N:= proj1(M) in
15 try H:= proj2(M) in
16 try X:= extract(H) in
17 if H=h(sk(X),N) then
18 send ok

Then we have that this protocol satisfies Definition 4.1.5. There is no destructor appli-
cation to remove in the tag transaction. However, for the reader, we apply Definition 4.1.7
to get the following transaction with pattern matching:

1 Transaction ReaderPat:
2 receive pair(N:nonce ,h(sk(T:tag),N’: nonce)).
3 if N=N’ then
4 send ok

Thus, we have the following message patterns:

M = {x, t1, t2, t3, N, pair(N, h(sk(x), N)), pair(N ′, h(sk(X), N ′′)), N ′, N ′′, ok}

with the following types for variables and constants:

Γ(x) = Γ(t1) = Γ(t2) = Γ(t3) = Γ(X) = tag ,
Γ(N) = Γ(N ′) = Γ(N ′′) = nonce ,
Γ(ok) = reply .

The set M is type-flaw resistant, and thus Basic Hash is type-flaw resistant.

B.3 OSK
This protocol is not supported by our typing result. We only give here the untyped models
of the two variants where, respectively, no desynchronization and one desynchronization
step is tolerated.

1 Sigma0: public t1/0 t2/0 t3/0
2 Sigma: public g/2 h/1 ok/0
3 private initr/1
4 extract /1
5 Algebra: extract(g(Tag ,Key))->Tag
6 Cells: t[X]:= initr(X)
7 r[X]:= initr(X)
8

9 Transaction Tag:
10 * x in {t1,t2,t3}.
11 State:=t[x].
12 t[x]:=h(State).
13 send g(x,State)
14

15 Transaction Reader:
16 receive X.
17 try Tag:= extract(X) in
18 State:=r[Tag].
19 if X=g(Tag ,State) then # Accept only if keys match
20 r[Tag]:=h(State).
21 send ok
22 else nil # No desynchronization allowed

140 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

When tolerating one desynchronization step, only the reader transaction changes:
instead of going to 0 when the keys do not match, the reader checks if applying one time
the hash function makes the key match.

1 Transaction Reader:
2 receive X.
3 try Tag:= extract(X) in
4 State :=r[Tag].
5 if X=g(Tag ,State) then # Accept if the keys match
6 r[Tag]:=h(State).
7 send ok
8 else if X=g(Tag ,h(State)) then # Allowing one desynchronization step
9 r[Tag]:=h(h(State))

10 send ok
11 else nil # All other cases fail

B.4 BAC

The model found in [41] contains, in the response transaction, a non-empty catch branch,
which is not supported by the typing result. Therefore we change the model by replacing
the symmetric decryption with private extractors. Note that the original model is slightly
different from the model below: in case the message M received by the tag is not of the
form scrypt(sk(·), ·, ·), the original model returns a format error, while the model here does
not send anything in case M does not have the right form. However, in the original model,
even if the intruder sends a message that does not have the right form message, the tag will
respond with a message of type reply. Thus, the intruder knows the types of the messages
in their knowledge. Therefore, the intruder also knows, before sending, whether a message
matches the pattern, so they would not learn anything by sending a message that is not an
encryption of the right form. This is why we consider our changes reasonable.

1 Sigma0: public t1/0 t2/0
2 Sigma: public ok/0 formatErr /0 fixedR /0
3 private sk/1 fresh/0 spent/0 session /2 sfst/1 ssnd/1
4 recipient /1 content /1
5 Types: t1:tag t2:tag ok:reply nonceErr:reply formatErr:reply
6 fixedR:nonce fresh:state spent:state
7 Algebra: sfst(session(X,Y))->X
8 ssnd(session(X,Y))->Y
9 recipient(scrypt(sk(X),M,R))->X

10 content(scrypt(sk(X),M,R))->M
11 Cells: noncestate[N:nonce]:= fresh
12

13 Transaction Challenge:
14 * x in {t1,t2}.
15 new N:nonce.
16 send session(x,N).
17 send N.
18 send scrypt(sk(x),N,fixedR)
19

20 Transaction Response:
21 receive Session:session(tag ,nonce).
22 receive M:scrypt(sk(tag),nonce ,nonce).
23 try X:=sfst(Session) in
24 try N:=ssnd(Session) in
25 try Y:= recipient(M) in
26 try NN:= content(M) in
27 if Y=X then
28 State := noncestate[N].

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 141

29 if N=NN and State=fresh then
30 noncestate[N]:= spent.
31 send ok
32 else send formatErr
33 else send formatErr

Then we have that this protocol satisfies Definition 4.1.5. There is no destructor
application to remove in the challenge transaction. However, for the response transaction,
we apply Definition 4.1.7 to get the following transaction with pattern matching:

1 Transaction ResponsePat:
2 receive session(X:tag ,N:nonce).
3 receive scrypt(sk(Y:tag),NN:nonce ,R:nonce).
4 if Y=X then
5 State:= noncestate[N].
6 if N=NN and State=fresh then
7 noncestate[N]:= spent.
8 send ok
9 else send formatErr

10 else send formatErr

Thus we have the following message patterns:

M = {x, t1, t2, N, session(x,N), scrypt(sk(x), N, fixedR), session(X,N ′),
scrypt(sk(Y),NN , R), Y,X,State, N ′,NN , fresh, spent, ok, formatErr}

with the following types for variables and constants:

Γ(x) = Γ(t1) = Γ(t2) = Γ(X) = Γ(Y) = tag ,
Γ(N) = Γ(N ′) = Γ(fixedR) = Γ(NN) = Γ(R) = nonce ,
Γ(State) = Γ(fresh) = Γ(spent) = state ,
Γ(ok) = Γ(formatErr) = reply .

The set M is type-flaw resistant, and thus BAC is type-flaw resistant.

B.5 Private Authentication

Like for BAC, the model found in [41] contains, in the responder transaction, a non-empty
catch branch, which is not supported by the typing result. Moreover, the reply sent by the
responder is either an encryption or a fresh nonce as decoy. In general, the intruder does
not know which is the case so when they observe that such a reply is sent, they do not
know a priori its type. Therefore we change the model: first by replacing the asymmetric
decryption with private destructors, and second by replacing the fresh nonce as decoy with
a fresh encryption. In this formulation, the protocol is still not type-flaw resistant because
a reply from the responder can be confused with the message sent by initiator, even though
these have different types. Thus, our final change is replacing the pairing function with
distinct formats.

1 Sigma0: public a/0 b/0 i/0
2 Sigma: public f1/2 f2/1 df11/1 df12/1 df2/1
3 private recipient /1 sender /1
4 Types: a:agent b:agent i:agent
5 Algebra: recipient(crypt(pk(B),f1(A,NA),R))->B
6 sender(crypt(pk(B),f1(A,NA),R))->A
7 df11(f1(X,Y))->X
8 df12(f1(X,Y))->Y
9 df2(f2(X))->X

142 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

10

11 Transaction ReceivePrivateKey:
12 send inv(pk(i))
13

14 Transaction Initiator:
15 * xA in {a,b}.
16 * xB in {a,b,i}.
17 new NA:nonce ,R:nonce.
18 send crypt(pk(xB),f1(xA ,NA),R).
19 if xB=i then
20 * xA=gamma(xA) and xB=gamma(xB)
21 else
22 * xB in {a,b}
23

24 Transaction Responder:
25 * xB in {a,b}.
26 receive M:crypt(pk(agent),f1(agent ,nonce),nonce).
27 try C:= recipient(M) in
28 try A:= sender(M) in
29 new NB:nonce ,R:nonce.
30 if C=xB and A in {a,b,i} then
31 send crypt(pk(A),f2(NB),R).
32 if A=i then
33 * xB=gamma(xB)
34 else
35 new AA:agent.
36 send crypt(pk(AA),f2(NB),R).
37 if A in {a,b,i} and C in {a,b} then
38 * not (C=xB and A=i)

Then we have that this protocol satisfies Definition 4.1.5. There is no destructor
application to remove in the initiator transaction. However, for the responder transaction,
we apply Definition 4.1.7 to get the following version with pattern matching:

1 Transaction ResponderPat:
2 * xB in {a,b}.
3 receive crypt(pk(C:agent),f1(A:agent ,NA ’: nonce)),R’: nonce).
4 new NB:nonce ,R:nonce.
5 if C=xB then
6 send crypt(pk(A),f2(NB),R).
7 if A=i then
8 * xB=gamma(xB)
9 else

10 new AA:agent.
11 send crypt(pk(AA),f2(NB),R).
12 if A in {a,b,i} and C in {a,b} then
13 * not (C=xB and A=i)

Thus we have the following message patterns:

M = {inv(pk(i)), xA, a, b, xB, i,NA, R, crypt(pk(xB), f1(xA,NA), R), xB′,NB, R′′, C,A,AA,
crypt(pk(C), f1(A,NA′), R′), crypt(pk(A), f2(NB), R′′), crypt(pk(AA), f2(NB), R′′)}

with the following types for variables and constants:

Γ(i) = Γ(xA) = Γ(a) = Γ(b) = Γ(xB) = Γ(xB′) = Γ(C) = Γ(A) = Γ(AA) = agent ,
Γ(NA) = Γ(R) = Γ(NA′) = Γ(R′) = Γ(NB) = Γ(R′′) = nonce .

The setM is type-flaw resistant, and thus Private Authentication (AF0 variant) is type-flaw
resistant.

As is done in [41], we can extend AF0 to include a relation talk, where an agent sends
a decoy when they do not want to talk to the claimed sender.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 143

1 Sigma0: public a/0 b/0 i/0
2 rel talk/2
3 Sigma: public f1/2 f2/1 df11/1 df12/1 df2/1
4 private recipient /1 sender /1
5 Types: a:agent b:agent i:agent
6 gamma0: talk: (a,b),(a,i),(b,a)
7 Algebra: recipient(crypt(pk(B),f1(A,NA),R))->B
8 sender(crypt(pk(B),f1(A,NA),R))->A
9 df11(f1(X,Y))->X

10 df12(f1(X,Y))->Y
11 df2(f2(X))->X
12

13 Transaction ReceivePrivateKey:
14 send inv(pk(i))
15

16 Transaction Initiator:
17 * xA in {a,b}.
18 * xB in {a,b,i}.
19 if talk(xA ,xB) then
20 new NA:nonce ,R:nonce.
21 send crypt(pk(xB),f1(xA ,NA),R).
22 * talk(xA ,xB).
23 if xB=i then
24 * xA=gamma(xA) and xB=gamma(xB)
25 else
26 * xB in {a,b}
27 else
28 * not talk(xA,xB)
29

30 Transaction Responder:
31 * xB in {a,b}.
32 receive M:crypt(pk(agent),f1(agent ,nonce),nonce).
33 try C:= recipient(M) in
34 try A:= sender(M) in
35 new NB:nonce ,AA:agent ,R:nonce.
36 if C=xB then
37 if A=i then
38 if talk(xB ,A) then
39 send crypt(pk(A),f2(NB),R).
40 * talk(xB,A) and xB=gamma(xB)
41 else
42 send crypt(pk(AA),f2(NB),R).
43 * not talk(xB,A)
44 else
45 if A in {a,b} then
46 if talk(xB ,A) then
47 send crypt(pk(A),f2(NB),R)
48 else
49 send crypt(pk(AA),f2(NB),R)
50 else
51 send crypt(pk(AA),f2(NB),R)
52 else
53 send crypt(pk(AA),f2(NB),R).
54 if A in {a,b,i} and C in {a,b} then
55 * not (C=xB and A=i and talk(xB,A))
56

57 Transaction ResponderPat:
58 * xB in {a,b}.
59 receive crypt(pk(C:agent),f1(A:agent ,NA ’: nonce),R’: nonce).
60 new NB:nonce ,AA:agent ,R:nonce.
61 if C=xB then

144 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

62 if A=i then
63 if talk(xB ,A) then
64 send crypt(pk(A),f2(NB),R).
65 * talk(xB ,A) and xB=gamma(xB)
66 else
67 send crypt(pk(AA),f2(NB),R).
68 * not talk(xB ,A)
69 else
70 if A in {a,b} then
71 if talk(xB,A) then
72 send crypt(pk(A),f2(NB),R)
73 else
74 send crypt(pk(AA),f2(NB),R)
75 else
76 send crypt(pk(AA),f2(NB),R)
77 else
78 send crypt(pk(AA),f2(NB),R).
79 if A in {a,b,i} and C in {a,b} then
80 * not (C=xB and A=i and talk(xB,A))

B.6 Results
Table B.1 gives an overview of the results of our tool. In the column “Type-flaw resistant”,
we report the execution time of the noname tool for the models after our reasonable
adaptations to achieve type-flaw resistance. The column “Ratio” compares the time before
and after those changes. In all cases, we only considered the variants of the protocols
that do not have any privacy violation (at least until the bounds verified). Note that to
make the running example type-flaw resistant, we have not only added formats but we
also introduced a second nonce, so the encrypted message received by the server has to go
through more checks, which is why in that example the type-flaw resistant version takes
more time to verify. On the other examples we have that either the protocol is already
type-flaw resistant and thus the verification time does not change, or the type-flaw resistant
version takes the same or less time to verify.

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 145

Table B.1: Evaluation of the tool

Protocol Bound Result Untyped Type-flaw Ratioresistant

Runex 2 0.22s
Runex (fix attempt) 2 0.43s
Runex (fixed) 2 0.43s 0.53s 0.8

Basic Hash 4 1.96s 1.96s 1
Basic Hash (compromised tag) 2 0.14s

OSK (no desynchronization) 3 0.37s
OSK (1 desynchronization step) 4 3.12s

BAC (different error messages) 3 0.18s
BAC (same error message) 4 1.12s 1.12s 1
BAC (parallel) 4 1.32s
BAC (sequential) 4 1.51s

AF0 2 2.07s
AF0 (fixed) 2 5.97s 4.08s 1.46
AF0 (fixed) 3 4min33s 2min38s 1.73
AF 2 10.31s 7.84s 1.32
AF 3 13min19s 8min22s 1.59

= No violation, = Violation
Machine used: laptop with i7-4720HQ @ 2.60GHz, 8GB RAM, GHC 9.10.1, cvc5 1.1.2

146 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Appendix C

Simplified TLS for composition

In our running example of Fig. 5.1, the lookup procedure is sending requests to a fixed,
trusted key server. As a further example, we model below the establishment of a fresh key
between some agent and a server, taking inspiration from TLS 1.2 [68].

C.1 Fixed, trusted server
In Fig. C.1, we model a simple version we call TLS0, where the server is always the same
trusted server s, and we also assume that agents already know the public key of that server
so we do not model certificates. In the models below, the wildcard _ is an unused variable
of type nonce. This protocol could for instance be used inside lookup, where the agent that
makes the request is calling tls_client to get a fresh key instead of a long-term shared
secret, and inside Server , where the server calls tls_server to also get the key used for
encrypting the later messages.

Procedure tls_client(C : agent) :
νNC : nonce,PMS : pms, R : nonce.
snd(NC).
snd(ox(PMS)).
snd(crypt(pk(s), g1(PMS , NC), R))
;
rcv(NS : nonce).
rcv(scrypt(kdf(PMS , NC , NS), g2(NS),_)).
return(kdf(PMS , NC , NS))

Procedure tls_server() :
rcv(NC : nonce).
rcv(ox(PMS : pms)).
rcv(crypt(pk(s), g1(PMS , NC),_)).
νNS : nonce, R : nonce.
snd(NS).
snd(scrypt(kdf(PMS , NC , NS), g2(NS), R)).
return(kdf(PMS , NC , NS))

Role Dishonest_client :
νPMS : pms.
snd(ox(PMS)).
snd(PMS)

Figure C.1: Specification of the TLS0 protocol

Note that in the client procedure, we highlighted the reception of server random NS ,
because we need to bind it before returning the value for the fresh key. In the projection,

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 147

the intruder could freely choose any nonce, e.g., some value that the server does not know,
and this does not matter because in the projection the server does not actually need to
be executed: as in the previous model of the lookup, the correct public key is directly
returned without actual communication with the server.

In this model, we use a private function ox in order to abstract the communication of the
pre-master secret PMS : the client sends the abstract message ox(PMS) separately from the
protocol-specific message crypt(pk(s), g1(PMS , NC), R). Then in the tls_server procedure,
the server receives the abstract message containing some PMS and expects a encrypted
message containing the same value. With our additional transaction for dishonest clients,
the intruder can simulate the behavior of honest clients: a fresh PMS is generated and
the abstract message ox(PMS) is sent. Since the function is private, PMS is still a secret,
for a dishonest client we also have to declassify PMS to give the intruder access to it.1
This allows us to not highlight the protocol-specific encryption, and keep the projections
well-formed (PMS is bound in the projections even though the protocol-specific messages
are removed).

The modeling “trick” we do with ox to bind the occurrence of PMS could also be used
in the modeling of the initiator and responder roles of NSL: In Fig. 5.1, we highlighted a
protocol-specific message sent by the initiator, so that the responder can receive it, binding
variables standing for the agent names and a nonce. We could instead introduce a private
function session used in the abstract interface and completely remove the protocol-specific
messages from the projections.

Role Initiator :
⋆ xA ∈ Honest.
⋆ xB ∈ Agent.
PKB := lookup(xA, xB)
;
νNA : nonce, R : nonce.
snd(session(xA, xB, NA)).
snd(crypt(PKB, f1(NA, xA), R)).
. . .

Role Responder :
rcv(session(A : agent, B : agent, NA : nonce)).
rcv(crypt(pk(B), f1(NA, A),_)).
. . .

Note that this does make a change in the protocol, since the abstract messages with ox
and session are purely for modeling purposes and would never occur in concrete executions
of the protocol. However, we can show that this is sound because if there is an attack in
the protocol using these abstract messages, then there is also an attack in the original
protocol without them.

C.2 Server as a parameter
We further develop in Fig. C.2 the model inspired by TLS to make the server identity a
parameter. For the lookup procedure, the argument would be replaced with the concrete
name of the key server. Here we do not assume that the client knows the public key of the
server, but we assume that they know the public key of a trusted certificate authority so
that they can check the certificate sent by the server.

1In tls_client, we do not check in the process that the client C is honest and thus that declassification
of PMS is not needed, because this can be ensured statically by checking the calls to the procedure.

148 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Procedure tls_client(C : agent, S : agent) :
νNC : nonce.
snd(NC)
;
rcv(g0(NC , sign(inv(pk(ca)), cert(S,PKS : pk(agent))))).
νPMS : pms, R : nonce.
snd(ox(PMS)).
snd(crypt(PKS , g1(PMS , NC), R))
;
rcv(NS : nonce).
rcv(scrypt(kdf(PMS , NC , NS), g2(NS),_)).
return(kdf(PMS , NC , NS))

Procedure tls_server(S : agent) :
rcv(NC : nonce).
snd(g0(NC , sign(inv(pk(ca)), cert(S, pk(S))))).
;
rcv(ox(PMS : pms)).
rcv(crypt(pk(S), g1(PMS , NC),_)).
νNS : nonce, R : nonce.
snd(NS).
snd(scrypt(kdf(PMS , NC , NS), g2(NS), R)).
return(kdf(PMS , NC , NS))

Role Dishonest_client :
νPMS : pms.
snd(ox(PMS)).
snd(PMS)

Figure C.2: Specification of the simplified TLS protocol

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 149

150 A Logical Approach for Automated Reasoning about Privacy in Security Protocols

Errata

Corrections made compared to the submitted version of this thesis:

Page Error Correction

v de pågældende privathedsegenskaben den pågældende privathedsegenskab
vi udveskle udveksle
8 fresh r, omit r fresh R, omit R
9 Well-formed of Well-formedness of
21 R′ 7→ X, R 7→ X, R = R′ R1 7→ X, R2 7→ X, R2 = R1
25 Destructor (1) Destructor (1.1)
27 Destructor (2), Destructor (3) Destructor (1.2), Destructor (2)
33 rule (d(c(X1, . . . , Xn))→ Xi) ∈ E rules (di(c(X1, . . . , Xn))→ Xi) ∈ E
66 xB ∈ Honest ⋆ xB ∈ Honest
66 xA

.= γ(xA) ∧ xB
.= γ(xB) ⋆ xA

.= γ(xA) ∧ xB
.= γ(xB)

68 sequence of has sequence has
70 starts initially starts
79 because of because
97 show with with

A Logical Approach for Automated Reasoning about Privacy in Security Protocols 151

Technical
University of
Denmark

Richard Petersens Plads, Building 324
2800 Kongens Lyngby
Phone: +45 45 25 30 31
Email: compute@compute.dtu.dk
Website: www.compute.dtu.dk

mailto:compute@compute.dtu.dk
www.compute.dtu.dk

	Approval
	Abstract (English)
	Abstract (dansk)
	Acknowledgements
	1 Introduction
	1.1 Motivation
	1.2 Security protocols
	1.3 Privacy
	1.4 Automated reasoning
	1.5 Summary of the results
	1.6 Outline of the thesis

	2 Preliminaries
	2.1 (alpha, beta)-privacy for a state
	2.2 (alpha, beta)-privacy for a transition system
	2.2.1 Specification
	2.2.2 Semantics

	2.3 Privacy as reachability

	3 Decision procedure
	3.1 FLICs: Framed Lazy Intruder Constraints
	3.1.1 Defining constraints
	3.1.2 Solving constraints

	3.2 Symbolic states
	3.3 Intruder experiments
	3.4 Algebraic properties
	3.4.1 The supported algebraic theories
	3.4.2 Destructor oracles
	3.4.3 Analysis strategy

	3.5 Case studies
	3.5.1 Running example
	3.5.2 Basic Hash
	3.5.3 OSK
	3.5.4 BAC
	3.5.5 Private Authentication
	3.5.6 Discussion of the results

	3.6 Related work

	4 Typing
	4.1 The typed model
	4.1.1 Type system
	4.1.2 Message patterns
	4.1.3 Type-flaw resistance

	4.2 Typing result
	4.2.1 Well-typedness of the constraint solving
	4.2.2 Well-typedness of state transitions

	4.3 Case studies
	4.3.1 Running example
	4.3.2 Basic Hash
	4.3.3 OSK
	4.3.4 BAC
	4.3.5 Private Authentication

	4.4 Related work

	5 Compositionality
	5.1 Running example
	5.1.1 The composition

	5.2 Extensions of specification and semantics
	5.2.1 Protocol specification
	5.2.2 Semantics
	5.2.3 State transition system

	5.3 Composition and composability
	5.3.1 Composition
	5.3.2 Composability

	5.4 Compositionality result
	5.4.1 Compositionality on the frame level
	5.4.2 Compositionality on the state level

	5.5 Application of the result and limitations
	5.6 Related work

	6 Tool support
	6.1 Brief introduction to noname
	6.1.1 Writing a specification
	6.1.2 Analyzing a specification

	6.2 Case study: BAC
	6.2.1 The attack
	6.2.2 Another problem

	6.3 Case study: Private Authentication
	6.3.1 AF0: initial attempt
	6.3.2 AF0: corrected release
	6.3.3 AF

	7 Conclusion
	7.1 Decision procedure
	7.2 Typing
	7.3 Compositionality
	7.4 Tool support
	7.5 Future work

	Bibliography
	A Proofs
	A.1 Decidability of fragment of Herbrand logic
	A.2 Correctness of representation with symbolic states
	A.3 Decision procedure
	A.3.1 Lazy intruder correctness
	A.3.2 Compose-check correctness
	A.3.3 Normal symbolic states
	A.3.4 Algebraic properties

	A.4 Typing
	A.4.1 Well-typedness of the constraint solving
	A.4.2 Well-typedness of the state transitions

	A.5 Compositionality
	A.5.1 Compositionality on the frame level
	A.5.2 Compositionality on the state level

	B Models and details for case studies
	B.1 Running example
	B.2 Basic Hash
	B.3 OSK
	B.4 BAC
	B.5 Private Authentication
	B.6 Results

	C Simplified TLS for composition
	C.1 Fixed, trusted server
	C.2 Server as a parameter

	Errata

