\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

$ $

Opg 1: Elementære udregninger

Der er givet fire matricer

$$\mA=\begin{matr}{rrr} -1&0&5\\\\ 2&-1&5\\\\ 0&2&-1 \end{matr}\,,\,\, \mB=\begin{matr}{rr} 2&1\\\\0&0\\\\ 1&-2\end{matr}\,,\,\, \mC=\begin{matr}{rrr} 4&0&3\\\\ 1&-2&3\end{matr}\,\,\,\mathrm{og}\,\,\, \mD=\begin{matr}{rrr} 1&1&0\\\\ 1&-1&0\\\\ 2&1&-2 \end{matr}\,.$$
A

Udregn $\,4\mathbf C\,$ og $-\mathbf C\,.$

B

Udregn $\,\mathbf A+\mathbf D\,$ og $\,3\mathbf A-2\mathbf D\,.$

C

Udregn $\,-2\mathbf B+3\mathbf B\,\,.$

### Opg 2: Matrixprodukter

Der er givet matricerne

$$\mathbf A=\begin{matr}{rr} 2&1\\\\0&3\\\\ 1&-2\end{matr}\,,\,\, \mathbf B=\begin{matr}{rrr} 4&0&3\\\\ 1&-2&3\end{matr}\,\,\,\mathrm{og}\,\,\,\mC=\begin{matr}{rrr} 1&1&0\\\\ 1&-1&0\\\\ 2&1&-2 \end{matr}\,$$

samt de to vektorer

$$\mathbf u= \begin{matr}{r} 1\\\\-2\\\\-1\end{matr}\,\,\,\mathrm{og}\,\,\,\mathbf v= \begin{matr}{r} 1\\\\2\end{matr}\,.$$
A

Udregn matrix-vektorprodukterne $\,\mA\mv\,$ og $\,\mB\mathbf u\,.$

B

Hvilken form forventer du at matrix-matrixprodukterne $\,\mA\mB\,$ og $\,\mB\mathbf A\,$ har? Udregn dem!

C

Udregn $\,\mC^2\,.$

Opg 3: Kvadratiske matricer

Der er givet to matricer $\,\mathbf A=\begin{matr}{rr} 1&0\\3&2\end{matr}\,$ og $\,\mathbf B=\begin{matr}{rr} -1&4\\1&-2\end{matr}\,$ samt enhedsmatricen $\,\mathbf E=\begin{matr}{rr} 1&0\\0&1\end{matr}\,.$

A

Find produkterne $\,\mA\mathbf E\,$ og $\,\mB\mathbf E\,.$

B

Udregn produkterne $\,\mA\mathbf B\,$ og $\,\mB\mathbf A\,$ og kommentér!

Opg 4: Determinanter

Givet matricerne

$$\mathbf A=\begin{matr}{rr} -3&-2\\\\5&4\end{matr}\,,\,\,\mathbf B=\begin{matr}{rrr} 1&2&3\\\\4&5&6\\\\7&8&9\end{matr}\,\,\,\mathrm{og}\,\,\,\mC=\begin{matr}{rrrr} 1 & 0 & 1 & 1 \\\\ 0 & 2 & 2 & 4 \\\\ 1 & 1 & 0 & 0 \\\\ 1 & 1 & 2 & 0 \end{matr}\,.$$
A

Udregn det$(\mA)\,$ og det$(\mB)\,$ ved håndregning, og det$(\mC)\,$ med dit matematikværktøj.

B

Prøv med dit matematikværktøj at finde den inverse matrix til hver af de tre matricer.

Opg 5: Inverse matricer

Givet matricerne

$$ \mA = \begin{matr}{rr} 2 & 3 \\\\ 1 & 1 \end{matr} \, , \quad \mB = \begin{matr}{rr} 1 & 0 \\\\ 4 & 1 \end{matr} \, , \quad \mC = \begin{matr}{rr} -1 & 3 \\\\ 1 & -2 \end{matr} \quad \mathrm{og} \quad \mD = \begin{matr}{rr} 1 & 0 \\\\ -4 & 1 \end{matr}\,.$$
A

Find determinanterne af $\,\mA\,$ og $\,\mB\,$ og gør rede for at de begge har en invers matrix.

B

Udregn $\,\mA\mC\,$ og $\,\mB\mD \,$ og kommentér!

C

Find $ \mA^{-1} $ og $ \mB^{-1} \,$ uden at lave nye beregninger!

Opg 6: En matrixligning løst med invers matrix

Info: Hvis en $\,2\times 2\,$ matrix $\,\mA = \begin{matr}{rr} a & b \\ c & d \end{matr} \,$ har en invers matrix, kan den inverse matrix findes ved formlen:

$$ \mA^{-1} = \frac 1{\mathrm{det}(\mA)}\,\begin{matr}{rr} d & -b \\\\ -c & a \end{matr}\,.$$

Der er givet matricerne

$$ \mA = \begin{matr}{rr} 2 & 1 \\\\ 1 & 1 \end{matr}\,\,\,\mathrm{og}\,\,\,\mB = \begin{matr}{rr} 1 & 0 \\\\ 2 & -2 \end{matr} \,.$$
A

Find $ \mA^{-1} $ og løs matrixligningen $\,\mA\mathbf X=\mB\,.$

B

Tjek resultaterne med dit matematikværktøj.