\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
%
Give the answer WITHOUT using calculator, paper, pencil. Only using ‘wetware’:
A
Simplify $\,\,\displaystyle{\frac13+\frac12 -\frac{1}{12}}\,.$
A
Given the numbers $\,\,z=3(i-10)-5(7-2i)-i(3i-5)+3i(i-5)\,.\,$ Find the rectangular form for $z\,.$
B
Given the number
$$a=5-i(3-i)+6i\,\,\, \mathrm{and} \,\,\,b=-5-4(-2i+1)\,.$$
Write the number $\,z=a+ib\,$ in rectangular form.
A
Determine the real part and the imaginary part of
$$\frac{-2+3i}i$$
and write the number in rectangular form.
Is easily done by multiplying the numerator and the denominator by the same number.
B
Reduce the following expression and write it in rectangular form.
$\displaystyle{\frac{3}{5}- \frac{3-2i}{2+i}}$
It is probably easiest to write the last fraction in rectangular form.
$$-\frac{1}{5} + \frac{7}{5} i$$
Let $b,c$ and $d$ be the following real numbers:
$$b=5 \,,\, \, c=\frac{6}{7} \,,\, \, d=\frac{2}{3} \,$$
C
Find the following numbers:
$$c+d\,,\, \, d \cdot b\,,\, \,\frac{b}{d}, \, \, \, \frac{d}{c}$$
Let $k,n,m$ og $s$ be the following complex numbers:
$$k=1+i \cdot \sqrt{3} \,,\, \, n=5 \cdot i \,,\, \, m=1+i \,,\, \, s=i \cdot 4 +3$$
D
Write the following complex numbers in rectangular form:
$$\frac{m}{n} \,,\, \, \frac{k}{s} \,,\, \, \frac{1}{m} + s$$
Use the square theorems in the two following questions, where $u$ and $v$ denotes two complex numbers
A
Reduce
$$(u+v)^2+(u-v)^2$$
B
Reduce
$$\frac{u^2-v^2}{u+v}+ \frac{v^2-u^2}{v-u}$$
C
Find by use of elementary computations the rectangular form of the following complex numbers.
-
$(3+5i)(3+5i)$
-
$(3i+5)(3i-5)$
-
$\displaystyle{\frac{3-4i}{3+4i}}$
$\,1) -16+30i \, \, , \, \, 2) -34 \, \, , \, \,3) -\frac{7}{25} - \frac{24}{25} i \, \,.$
D
Prove the formula
$$z\cdot \overline{z}=\left|z\right|^2\,.$$
A
Solve the Equation
$$(1-i)z+1=2+i\,.$$
The solution is wanted in rectangular form.
B
Determine all solutions to
$$(x+2i)(x-2i)(x-5)=0\,.$$
What does the zero rule say?
$$-2i \, \, , \, \, 2i \, \, , \, \, 5$$
C
Show that
$$x^4-x^3+4x^2-4x=0\,$$
has the roots $\,0,\,1,\,2i\,$ og $\,-2i\,.$
Here you do not have to compute the roots!
You only have to verify the solution.
Find the real solutions to the following equations:
C
What are the complex solutions to the equations above?
Let $A$ and $B$ be finite sets, given on the list forms:
$$A = \{n \in \Bbb{N}\, | \, n=m^2 \,\,\,\mathrm{where} \,\,\, m \in \{1,2,3,4,5\}\}$$
$$B = \{n \in \Bbb{N} \, |\, n=2m-1 \,\,\,\mathrm{where} \,\,\, m \in \{1,2,3,4,5\}\}$$
A
Which elements are members of the sets $A \cap B$ and $A \cup B\,$?
Let $C$ and $D$ be sets, given on the list forms:
$$C = \{n \in \Bbb{N}\, | \, n=2m \,\,\,\mathrm{hvor} \,\,\, m \in \Bbb{N}\}$$
$$D = \{n \in \Bbb{N}\, |\, n=3m \,\,\,\mathrm{hvor} \,\,\, m \in \Bbb{N}\}$$
B
Which elements are members of the sets $C \cap D$ and $C \cup D\,$?
C
Describe in you own words the sets $\Bbb{R} \setminus \Bbb{Q}$ and $\Bbb{C} \setminus \Bbb{R}\,.$