\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

%tandborste2.png

Give the answer WITHOUT using calculator, paper, pencil. Only using ‘wetware’:

A

Simplify $\,\,\displaystyle{\frac13+\frac12 -\frac{1}{12}}\,.$

A

Given the numbers $\,\,z=3(i-10)-5(7-2i)-i(3i-5)+3i(i-5)\,.\,$ Find the rectangular form for $z\,.$

B

Given the number

$$a=5-i(3-i)+6i\,\,\, \mathrm{and} \,\,\,b=-5-4(-2i+1)\,.$$

Write the number $\,z=a+ib\,$ in rectangular form.

A

Determine the real part and the imaginary part of

$$\frac{-2+3i}i$$

and write the number in rectangular form.

B

Reduce the following expression and write it in rectangular form. $\displaystyle{\frac{3}{5}- \frac{3-2i}{2+i}}$

Let $b,c$ and $d$ be the following real numbers:

$$b=5 \,,\, \, c=\frac{6}{7} \,,\, \, d=\frac{2}{3} \,$$
C

Find the following numbers:

$$c+d\,,\, \, d \cdot b\,,\, \,\frac{b}{d}, \, \, \, \frac{d}{c}$$

Let $k,n,m$ og $s$ be the following complex numbers:

$$k=1+i \cdot \sqrt{3} \,,\, \, n=5 \cdot i \,,\, \, m=1+i \,,\, \, s=i \cdot 4 +3$$
D

Write the following complex numbers in rectangular form:

$$\frac{m}{n} \,,\, \, \frac{k}{s} \,,\, \, \frac{1}{m} + s$$

Use the square theorems in the two following questions, where $u$ and $v$ denotes two complex numbers

A

Reduce

$$(u+v)^2+(u-v)^2$$

B

Reduce

$$\frac{u^2-v^2}{u+v}+ \frac{v^2-u^2}{v-u}$$

C

Find by use of elementary computations the rectangular form of the following complex numbers.

  1. $(3+5i)(3+5i)$

  2. $(3i+5)(3i-5)$

  3. $\displaystyle{\frac{3-4i}{3+4i}}$

D

Prove the formula

$$z\cdot \overline{z}=\left|z\right|^2\,.$$

A

Solve the Equation

$$(1-i)z+1=2+i\,.$$

The solution is wanted in rectangular form.

B

Determine all solutions to

$$(x+2i)(x-2i)(x-5)=0\,.$$

C

Show that

$$x^4-x^3+4x^2-4x=0\,$$

has the roots $\,0,\,1,\,2i\,$ og $\,-2i\,.$

Find the real solutions to the following equations:

A
$$|x+3|=5$$

B
$$|x-2|=|3-x|$$

C

What are the complex solutions to the equations above?

Let $A$ and $B$ be finite sets, given on the list forms:

$$A = \{n \in \Bbb{N}\, | \, n=m^2 \,\,\,\mathrm{where} \,\,\, m \in \{1,2,3,4,5\}\}$$
$$B = \{n \in \Bbb{N} \, |\, n=2m-1 \,\,\,\mathrm{where} \,\,\, m \in \{1,2,3,4,5\}\}$$
A

Which elements are members of the sets $A \cap B$ and $A \cup B\,$?

Let $C$ and $D$ be sets, given on the list forms:

$$C = \{n \in \Bbb{N}\, | \, n=2m \,\,\,\mathrm{hvor} \,\,\, m \in \Bbb{N}\}$$
$$D = \{n \in \Bbb{N}\, |\, n=3m \,\,\,\mathrm{hvor} \,\,\, m \in \Bbb{N}\}$$
B

Which elements are members of the sets $C \cap D$ and $C \cup D\,$?

C

Describe in you own words the sets $\Bbb{R} \setminus \Bbb{Q}$ and $\Bbb{C} \setminus \Bbb{R}\,.$