is often called the idiot rule. Which mathematical explanations can be given for this unflattering name?
A
State the numbers$\,\displaystyle{\mathrm{Arccos}\left(\frac{1}{2}\right),\,\mathrm{Arcsin}\left(-\frac{\sqrt 3}{2}\right)\,\,\,\mathrm{and}\,\,\, \mathrm{Arcsin}(1)}\,.$
Given the sets $\,A=\left{x\in\reel\,|\,x\in \left[\,0\,,\,2\pi\,\right]\right}\,$ and
$\,B=\left{x\in\reel\,|\,x\in \left[\,-\pi\,,\,\pi\,\right]\right}\,.$
B
Solve the equation $\,\displaystyle{\cos(x)=\frac{1}{2}}\,$ within each of the sets $\,A,\,B\,$ and $\,\Bbb R\,.$
answer
$\,\frac{\pi}{3}\,$ and $\,\frac{5\pi}{3}\,.$$\,\frac{-\pi}{3}\,$ and $\,\frac{\pi}{3}\,.$$\,\frac{-\pi}{3}+p\cdot 2\pi\,$ and $\,\frac{\pi}{3}+p\cdot 2\pi\,$ where $\,p \in \Bbb Z\,.$
C
Solve the equation $\,\displaystyle{\sin(x)=-\frac{\sqrt 3}{2}}\,$ within each of the sets $\,A,\,B\,$ and $\,\Bbb R\,.$
answer
$\,\frac{4\pi}{3}\,$ and $\,\frac{5\pi}{3}\,.$$\,\frac{-2\pi}{3}\,$ and $\,-\frac{\pi}{3}\,.$$\,\frac{4\pi}{3}+p\cdot 2\pi\,$ and $\,\frac{5\pi}{3}+p\cdot 2\pi\,$ where $\,p \in \Bbb Z\,.$
D
Solve the equation $\,\displaystyle{\mathrm e^{\,i\cdot v}= \frac{1}{2}-\frac{\sqrt 3}{2}\,i\,}\,$ within each of the sets $\,A\,$ and $\,B\,.$
answer
$\,\frac{5\pi}{3}\,.$$\,-\frac{\pi}{3}\,.$
%####### begin:question
%Løs ligningen $\,\displaystyle{\cos(x)=-\frac 1 5}\,$ inden for hver af mængderne $\,A,\,B\,$ and $\,\Bbb R\,.$
%####### end:question
A
Rewrite the following expressions to numbers of the form $\,a^p\,$ where $\,a\,$ is a positve real number and $\,p\in \mathbb Z$:
Given $z=1+i\,.$ Determine the absolute value and the main argument for $z$, and using this determine the absolute value and main argument for $z^2\,,$$z^5\,,$$z^8\,,$ and $z^{-10}\,$. Finally state the rectangular form for $z^2\,,$$z^5\,,$$z^8\,,$ and $z^{-10}\,$.
A set has at $t=0 $ the magnitude $b$ and grows with $\,20\%\,$ per time unit. Determine the number $a$ such that the functional expression
$$\,f(t)=b\cdot a^t\,,\,\,t\in\reel$$
can be considered to be a model for the growth.
answer
$$a=1,20$$
B
Determine the growth rate and the percentage growth per time unit for the exponentially growing/decreasing functions given by the functional expressions: