\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: The Two Linearity Conditions

Two maps $\,f\,$ and $\,g\,$ which have $\reel^2$ both as domain and co-domain are given by:

$$\,f((x_1, x_2))=(x_1-x_2\,,-x_1+x_2)\,\,\,\mathrm{and}\,\,\,g((x_1,x_2))=(-x_2\,,x_1^{\,\,2})\,.$$
A

Show that exactly one of the two maps is linear. Find out which by investigating whether they fulfill the two requirements for linearity.

B

State the kernel for the linear map found.

C

State the range for the linear map found.

Exercise 2: Investigation of a Linear Map

Let $f:\reel ^4\rightarrow \reel^3$ be given by the expression

$$ f((x_1,x_2,x_3,x_4))= \begin{matr}{r}x_1+x_2+3x_3+x_4\\\\3x_1-x_2+2x_3+4x_4\\\\2x_1+2x_2+6x_3+2x_4\end{matr}\,.$$
A

Show using main Theorem 12.18 i eNote 12, point 2, that $f$ is linear, and state the mapping matrix $ \matind eFe$ for $f$ with respect to the standard bases in $\reel^4$ and $\reel^3$.

B

Find the dimension of the image space and state a basis for the image space.

C

State a basis for the kernel of the map.

D

Does $(1,2,3)$ belong to the image space for $f(\reel ^4)\,$?

E

Solve the vector equation $\,f(\mathbf x)=(2,2,4)\,$.


Exercise 3: Linear Maps in the Plane

We consider in the following an ordinary coordinate system $\,(O, \mathbf i, \mathbf j)\,$ in the plane. All vectors are considered to be drawn from the origin. An arbitrary vector $\,\mathbf x\,$ is drawn in blue, while the image vector $\,\mathbf y\,$ is red. $\,\mathbf F\,$ states the mapping matrix for $f\,$ with respect to the standard base.

F

Download the GeoGebra-sheet LinearMap1.

  1. Check by computation that $\,\mathbf y\,$ is correct, when $\,\mathbf x\,$ and the mapping matrix $\,\mathbf F\,$ is as shown.

  2. Change $\,\mathbf F\,$ to

$$ \mathbf F=\,\begin{matr}{rr}3&1\\\\1&-1\end{matr}$$

by moving the column vectors $\,\mathbf s_1\,$ and $\,\mathbf s_2\,$ using the mouse. Then find the image of $\,(1,2)\,$ by moving $\,\mathbf x\,$ to $\,(1,2)\,$ using the mouse.

  1. Find the image of the basis vector $\,\mathbf i\,$ by pulling $\,\mathbf x\,$ to $(1,0)\,$. Do the same thing with the basis vector $\,\mathbf j\,$. Do the images of the basis vectors fit the numbers in $\,\mathbf F\,$?

G

Download the GeoGebra-sheet LinearMap2.

  1. What happens to the image vectors when $\,\mathbf x\,$ is moved about?

  2. Compute det$\,(\mathbf F)\,$, and determine the rank of $\,\mathbf F\,$. Determine a basis for the image space.

  3. What should our expectation of the dimension of the kernel be? Determine an equation for the straight line that contains the kernel (Hint: Start by finding a vector that is mapped onto the 0-vector by moving $\,\mx\,$).

H

Download the GeoGebra-sheet LinearMap3.

  1. The idea is that $\,\mathbf x\,$ is bound to the line segment shown. Move $\,\mathbf x\,$, and follow the image $\,\mathbf y\,$.

  2. Displace the line segment parallel to itself using the mouse and again move $\,\mathbf x\,.$ What happens to the image. Possibly try other settings for $\,\mathbf F\,$. Summarize your observations in a hypothesis.

I

Download GeoGebra-sheet LineærAfbildning4.

  1. What is the image of a parabola? What happens to image if you move the parabola. Try it. Also, possibly try other settings for $\,\mathbf F\,$.

  2. Summarize your observations in a hypothesis.

Exercise 4: Study of Diagonal Matrices

Download the GeoGebra-sheet LinearMap5.

A
  1. Introductory exercise: How should $\,\mathbf F\,$ be changed so that the blue house is mapped onto the mirror image in the y-axis? Same question for the x-axis.

  2. Test of the diagonal matrix

$$ \mathbf F=\,\begin{matr}{rr}1&0\\\\0&k\end{matr}\,$$

Try different values for $k$, e.g. $\,-3,-2,-1,0,1,2,3\,$. Describe what happens!

  1. Test of the diagonal matrix
$$ \mathbf F=\,\begin{matr}{rr}k&0\\\\0&1\end{matr}$$

Try different values for $k$, e.g. $\,-3,-2,-1,0,1,2,3\,$. Describe what happens!

  1. Other diagonal matrices: Describe the red house in relation to the blue one, when
$$ \mathbf F=\,\begin{matr}{rr}3&0\\\\0&2\end{matr}\,$$
  1. Summarize your observations: What is special about diagonal mapping matrices? How do they affect set of points in the plane?


Exercise 5: The Dimension Theorem

B

A linear map $f:\mathbb R^3\rightarrow \mathbb R^3$ has with respect to the standard base in $\mathbb R^3$ the mapping matrix

$$\matind eFe =\begin{matr}{rrr}1&2&1\\\\2&4&0\\\\3&6&0\end{matr}\,.$$

It is given that the kernel for $f$ has the dimension 1. Find immediately, just by using your brain, a basis for $\,f(V)\,$.

C

%\begin{exercise}\label{tn8.opgDimension2} In space an ordinary coordinate system $\,(O,\mathbf i,\mathbf j,\mathbf k)$ is given. All vectors are imagined to be drawn from the origin. The map $\,p\,$ projects vectors down into the $(X,Y)$-plane in space, see the figure

projektion.png

Show that $\,p\,$ is linear, and state the mapping matrix $\matind ePe$ for $p$ with respect to the standard base $e\,.$ Determine a basis for the kernel and the image space of the projection. Check that the dimension theorem is fulfilled.

Exercise 6: Mapping Matrices for Reflections

In the plane an ordinary $\,(O,\mathbf i,\mathbf j)$-coordinate system is given, and all vectors are imagined to be drawn from the origin. As mentioned in Exercise 12.3 in eNote 12 reflections in lines through the origin are linear.

Here we consider mirror imaging of vectors in the line $\,y=x\,.$ Let us call this linear map $s\,.$

A

Determine $s(\mathbf i)$ and $s(\mathbf j)$, state the mapping matrix $\matind eSe$ for $s\,$ and determine an expression for the mirror image of an arbitrary plane vector $\,\mathbf u\,$ with the $e$-coordinates $(u_1,u_2)\,$.

We consider a new $\,(O,\mathbf v_1,\mathbf v_2)$-coordinate system in which all vectors are imagined to be drawn from the origin. $\,\mv_1\,$ is a unit vector along the line $\,y=\frac 12\,x\,,$ as shown in the figure, and $\,\mv_2\,$ is the vector perpendicular to $\,\mv_1\,.$

We wish to find the mapping matrix $\matind eRe$ for the linear map $\,r\,$ that reflects vectors in the line $\,y=\frac 12\,x\,.$ We do this in two steps.

Spejl.png

B

Determine the mapping matrix $\matind vRv$ for $r\,$ with respect to the base $\,v=(\mv_1,\mv_2)\,.$

C

Determine the mapping matrix $\matind eRe$ for $r\,$ with respect to the standard base. Let $\,\mathbf u\,$ be an arbitrary vector in the plane with the $e$-coordinates $(u_1,u_2)\,.$ Determine an expression for the mirror image of $\,\mathbf u\,$ in the line $\,y=\frac 12\,x\,.$

Exercise 7: Play with Mapping Matrices by Change of Base

Given the vectors $\,\ma_1=(1,2)\,$ and $\,\ma_2=(3,7)\,$ in $\,\reel^2\,$ and $\,\mc_1=(1,2,2)\,,$ $\,\mc_2=(2,3,1)\,$ and $\,\mc_3=(1,2,1)\,$ in $\,\reel^3\,$. Let the linear map $\,f:\reel^2\rightarrow\reel^3\,$ be given by

$$f(\ma_1)=\mc_1+\mc_2-3\mc_3\quad\mathrm{og}\quad f(\ma_2)=\mc_1-\mc_2-2\mc_3\,.$$
A

Show that $\,\ma_1\,$ and $\,\ma_2\,$ constitute a basis for $\,\reel^2\,$ and that $\,\mc_1\,$, $\,\mc_2\,$ and $\,\mc_3\,$ constitute a basis for $\,\reel^3\,.$

B

State the mapping matrix for $\,f\,$ with respect to the basis $\,(\ma_1,\ma_2)\,$ in $\,\reel^2\,$ and the base $\,(\mc_1,\mc_2,\mc_3)\,$ in $\,\reel^3\,$.

C

State the mapping matrix for $\,f\,$ with respect to the basis $\,(\ma_1,\ma_2)\,$ in $\,\reel^2\,$ and the ordinary basis in $\,\reel^3\,.$

D

State the mapping matrix for $\,f\,$ with respect to the ordinary basis in $\,\reel^2\,$ and the base $\,(\mc_1,\mc_2,\mc_3)\,$ in $\,\reel^3\,.$

E

State the mapping matrix for $\,f\,$ with respect to the ordinary bases in $\,\reel^2\,$ and $\,\reel^3\,.$

Exercise 8: Polynomial Spaces

The set of second degree polynomials $\,P_2(\reel)\,$ can be viewed as a 3-dimensional vector space. The real numbers $\,\reel\,$ is a 1-dimensional vector space. We investigate maps from the first vector space to the second. %Hvis man vælger standard monomie-basen $(1,x,x^2)\,$, kan ethvert andengradspolynomium beskrives ved en koordinatvektor, hvor polynomiets koefficienter udgør vektorens koordinater. For eksempel har $P(x)=3x^2+4x-1$ koordinatvektoren $(-1,4,3)$ i forhold til monomie-basen. A map $\,f:P_2(\reel)\rightarrow \reel\,$ is given by

$$\,f(P(x))=P\,'(1)\,.$$

We illustrate with a couple of examples:

pmaerke.png

F

Determine $\,f(x^2)\,$ and $\,f(-x^2+2x-2)\,,$ see the figure.

G

Show that $f$ is linear.

H

One of the two polynomials in the figure belongs to the kernel for $\,f\,,$ which? Determine a basis for $\,\ker (f)\,.$

I

Show that the image space $\,f(P_2(\reel))\,$ for $\,f\,$ is equal to the codomain for $\,f\,.$

A map $\,g:P_2(\reel)\rightarrow \reel\,$ is given by

$$\,g(P(x))=P\,'(0)+1\,.$$
J

Show that $\,g\,$ is not linear.