\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise: The General Solution formula. By Hand

Given the inhomogeneous differential equation

\begin{equation} x’(t)-2x(t)=\e^t\,, \,\, t \in \reel\,.\end{equation}

A

Find using the general solution formula the complete solution to the differential equation.

B

Find the solution, whose graph include the point $(0,1)$.

Given the inhomogeneous differential equation \begin{equation} x’(t)+\frac{1}{t}x(t)=-2t^2, \quad t>0.\end{equation}

C

Find using the general solution formula the complete solution to the differential equation.

D

Find the conditional solution, where $ x(1)=-1 $.

For an arbitrary complex number $\,c\neq 0\,$ we consider the differential equation

$$ z'(t)-c\cdot z(t)=2 $$
E

Find using the general formula the complete solution to the differential equation.

F

Determine for $\,c=i-1\,$ the conditional solution $\,z(t)\,$ that fulfills $\,z(0)=i\,.$


Exercise 2: The Structural Theorem

In this exercise we use knowledge about linear maps to solve three inhomogeneous linear first-order differential equations. In each example we proceed step by step.

G

A mapping $f:C^\infty(\reel)\rightarrow C^\infty(\reel)$ is given by

$$\,f(x(t))= x'(t)\,.$$

Show that $f$ is linear and determine $\,\ker(f)\,.$ State a solution to the equation $\,f(x(t))= \sin (t)\,$ and then state the complete solution to the equation.

H

A map $f:C^\infty(\reel)\rightarrow C^\infty(\reel)$ is given by

$$\,f(x(t))= x'(t)-x(t)\,.$$

Show that $f$ is linear and determine $\,\ker(f)\,.$ Guess a solution to the equation $\,f(x(t))= 5\,$ and then state the complete solution to the equation.

I

A map $f:C^\infty(\reel)\rightarrow C^\infty(\reel)$ is given by

$$f(x(t))= x'(t)+2x(t)\,.$$

Show that $f$ is linear and determine $\,\ker(f)\,.$ Guess a solution to the equation $\,f(x(t))= 2t\,$ and then state the complete solution to the equation.

J

State in the ordinary Leibniz notation the three inhomogeneous linear first-order differential equations that is solved above.


Exercise 3: The General Formula of the Structural Theorem?

Given the differential equation

$$\,\displaystyle{\frac{\mathrm d}{\mathrm d t}\,x(t)+\cos(t)\cdot x(t)=\cos(t)}\,,\,\,t\in\Bbb R.$$
K

Solve the differential equation using the general formula (you may use Maple, for the calculation of the indefinite integrals).

L

Solve the differential equation using the structural theorem.


Exercise 4: Superposition

You should answer this exercise using the structural theorem and superposition.

M

Guess a solution to the differential equation \begin{equation} x’(t)+x(t)=2\cos t\,,\,\,t\in\Bbb R. \end{equation}

N

Guess a solution to the differential equation \begin{equation} x’(t)+x(t)=t^2-1\,,\,\,t\in\Bbb R. \end{equation}

O

Solve the differential equation

$$ x'(t)+x(t)=2\cos t +t^2-1\,,\,\,t\in\Bbb R.$$


Exercise 5: Solution and Visualization using Maple

Given the inhomogeneous differential equation

$$ x'(t)+\frac{1}{7}\,x(t)=3-2\cos(t). $$
P

Find using Maple the complete solution fo the differential equation.

Q

Again find, using Maple, the solution that fulfills the initial condition $ x(0)=0 $.

R

Plot your solution, possibly using different initial conditions.


Exercise 6: Modelling of a Physical Problem

In this exercise we introducere an interactive exercise type called eMaple. The idea is that you yourself right from the start shall model a physical situation using Maple and experiment with the model.

The way to proceed is that you execute commands one at a time - so don’t use the Maple-button !!! that computes the whole sheet at once. After you have completed your answer to a particular question you are welcome to click on the suggested solution.

S

Now download the file eMaple1


Exercise 7: Complex Differential Equations. By Hand

The complex functions $\,z(t)\,$ that are defined for $\,t \in \reel\,,$ and that can be differentiated an arbitrary number of times, constitute a vector space which is denoted $\,\left(C^\infty(\reel),\mathbb C\right)\,.$

A linear map $\,f:\left(C^\infty(\reel),\mathbb C\right)\rightarrow \left(C^\infty(\reel),\mathbb C\right)$ is given by

$$f(z(t))= z''(t) + z(t)\,.$$
T

Explain that $\,U=\mathrm{span}\left{\e^{it},\e^{-it}\right}\,$ is a 2-dimensional subspace in $\,\ker(f)\,.$

U

A real function $\,z_0(t)\,$ in $\,U=\mathrm{span}\left{\e^{it},\e^{-it}\right}$ exists that fulfills the initial value conditions $\,z(0)=1\,$ and $\,z’(0)=0\,.$ Find it!


Exercise 8: Linear mappings between Functional Spaces

Let $\,\mathbf{U}\,$ be the subspace of $\,C^\infty (\reel)\,$ that is spanned by the vectors $\,\cos t$, $\sin t$ and $\e^t\,.$

V

Show that $\,\cos t$, $\sin t$ og $\e^t\,$ constitute a basis for $\,\mathbf{U}\,$

A linear map $f:C^\infty (\reel)\rightarrow C^\infty (\reel)$ is given by:

$$f(x(t))= x'(t)+2x(t)\,.$$
W

Show that $f$ maps $\mathbf{U}$ onto itself.

X

State the mapping matrix for $f:\mathbf{U}\rightarrow\mathbf{U}$ with respect to the basis $(\cos t, \sin t, \e^t)$.

Exercise 9: Linear and Nonlinear Differential Equations

Consider the following seven 1. order differential equations: $ $ $1.\,\,\,\,x’(t)+t \cdot x(t) \cdot (1+x(t))=0, \quad t \in \reel.$ $2.\,\,\,\,x’(t)+t^2\cdot x(t)=0, \quad t \in \reel.$ $3.\,\,\,\,x’(t)+x(t)=t^2, \quad t \in \reel.$ $4.\,\,\,\,x’(t)+(x(t))^2=t, \quad t \in \reel.$ $5.\,\,\,\,x’(t)+t^3 \cdot x(t)=0, \quad t \in \reel.$ $6.\,\,\,\,x’(t)+\e^{x(t)}=1, \quad t \in \reel.$ $7.\,\,\,\,(x’(t))^2+x(t)=0, \quad t \in \reel.$

A

Three of the equations are linear, which?

B

Solve the three linear equations, using Maple for ‘simulated by hand’.

C

Find, using Maple, at least one solution to the seven differential equations.

D

Experiment with the solutions: Plot the solutions for different choices of the arbitrary constant $c$.