\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: A Linear Mapping

Let $\,f:\reel^3\rightarrow\reel^3\,$ be the mapping that with respect to the standard basis for $\,\reel^3\,$ has the mapping matrix \begin{equation} \mA=\begin{matr}{rrr} 3 & 4 & 4 \\ 6 & 6 & 6 \\ -6 & -7 & -7 \end{matr}. \end{equation}

A

What is the easiest way to check whether the vectors $\,\mv_1=(1,0,-1)\,$, $\,\mv_2=(0,1,-1)\,$ and $\,\mv_3=(1,2,-2)\,$ are eigenvectors for $\,f\,?$ Do this, and state the corresponding eigenvectors!

B

How can we most easily argue that $\mv_1,\,\mv_2$ and $\mv_3$ are linearly independent.

C

How can we most easily show, that $\,f(\reel^3)=\spanVec{\mv_1,\mv_3}\,?$


Exercise 2: Eigenvalues and Eigenvectors in Space

A standard $\,(O,\mathbf i,\mathbf j,\mathbf k)$-coordinate system is given. All vectors are thought to be drawn from the origin. The map $\,p\,$ projects vectors down into the $(X,Y)$-plane in space, see the Figure. It is given that $\,p\,$ is linear (need not be proved).

projektion.png

Now we shall consider the eigenvalue problem for the projection down into the $\,(x,y)\,$-plane.

D

Determine all eigenvalues for $\,p\,$ and the eigen-spaces that belong to the eigenvalues, solely by brain power (pondering).

E

Choose two different eigenbases (these are bases consisting of eigenvectors for $\,p\,$) and determine in each of the two cases the diagonal matrix that becomes the mapping matrix for $\,p\,$ with respect to the chosen basis.

Exercise 3: Maple-Exercise in Reverse

Here is part of a Maple session:

> A:=<16,18,-24|-13,-15,24|-2,-2,4>:

> Eigenvectors(A,output=list);

$$\quad\left[ \left[ 4,1,\left\lbrace \left[ \begin{array}{c} -2 \\\\ -2 \\\\ 1 \end{array}\right] \right\rbrace \right],\left[ 3,1,\left\lbrace \left[ \begin{array}{c} 1 \\\\ 1 \\\\ 0 \end{array}\right] \right\rbrace \right],\left[ -2,1,\left\lbrace \left[ \begin{array}{c} \dfrac{-1}{4} \\\\ \dfrac{-1}{2} \\\\ 1 \end{array}\right] \right\rbrace\right] \right] $$
A

State the matrix $\,\mA\,$ in ordinary notation.

B

State eigenvalues and all corresponding eigenvectors for the linear map $\,f:\reel^3\rightarrow\reel^3\,$ that with respect to the standard basis $\,e\,$ in $\,\reel^3\,$ has the mapping matrix $\,\mA\,.$

C

Find a basis $\,v=(\mv_1,\mv_2,\mv_3)\, $ for $\,\reel^3\,$ consisting of eigenvectors for $\,f\,.$

D

Find the mapping matrix for $\,f\,$ with respect to the basis $\,v\,$ found in the preceding chapter.

E

State a regular matrix $\,\mV\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$, such that

$$\mathbf{\Lambda}=\mV^{-1}\cdot\mA\cdot\mV\,\,.$$

Exercise 4: Diagonalization by Similarity Transformation

This exercise should be solved by hand.

A

Given the matrix

$$\,\mA=\begin{matr}{rr} 9 & -6 \\\\ 8 & -7\end{matr}\,\,.$$

Investigate whether $\,\mA\,$ can be diagonalized and in case state a regular matrix $\,\mV\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$, such that

$$\,\mathbf{\Lambda}=\mV^{-1}\cdot\mA\cdot\mV\,\,.$$

B

Given the matrix

$$\mB=\begin{matr}{rrr} 2 & 0 & 0 \\\\ 1 & 1 & 1 \\\\ -1 & 1 & 1 \end{matr}\,.$$

Investigate whether $\,\mB\,$ can be diagonalized and state in case a regular matrix $\,\mV\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,,$ such that

$$\mathbf{\Lambda}=\mV^{-1}\cdot\mB\cdot\mV\,\,.$$

Exercise 5: Similar Matrices

Given the matrices

$$\mA=\begin{matr}{cc} 0&1\\\\-1&0\end{matr}\,\,\,\mathrm{and}\,\,\, \mB=\begin{matr}{cc} 0&-1\\\\1&0\end{matr}\,.$$
A

Explain that $\mA$ and $\mB$ are similar.

B

Advanced: Determine a regular matrix $\,\mM\,$ that fulfills

$$\mB=\mM^{-1}\,\mA\,\mM\,.$$

C

Advanced: Now we consider $\,\mA\,$ to be a mapping matrix for a linear map $\,f:\reel^2\rightarrow\reel^2\,$ with respect to the standard base in $\,\reel^2\,.\,$ Determine a new basis $\,m\,$ for $\,\reel^2\,$ with respect to which $\,f\,$ is represented by the mapping matrix $\,\mB\,.$


Exercise 6: Complex Diagonalization

Given the matrix \begin{equation} \mA=\begin{matr}{rrr} 3 & 0 & 0 \\ 0 & 1 & -1 \\ 5 & 1 & 1 \end{matr}\,. \end{equation}

D

Find eigenvalues and the corresponding complex eigenvector spaces for $\,\mA\,.$

E

Diagonalize $\,\mA\,$ by a similarity transformation.