\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: The Orthogonal Complement

A

In $\,\reel^2\,$ the vector $\,(3,7)\,$ is given. State a basis for the orthogonal complement.

B

Find in $\,\reel^3\,$ a basis for the orthogonal complement to $\,\mv=(1,2,3)\,.$

C

Find in $\,\reel^3\,$ a basis for the orthogonal complement to the subspace spanned by $\,(1,1,0)\,$ and $\,(0,2,1)\,.$

D

Find in $\,\reel^4\,$ a basis for the orthogonal complement to the subspace spanned by $\,(1,-1,2,5)\,$ and $\,(0,1,0,-2)\,.$


Exercise 2: When There is $\,n\,$ Different Eigenvalues

E

Why is it particular easy to diagonalize a symmetric $\,n\times n\,$-matrix by orthogonal substitution, if it has $\,n\,$ different eigenvalues?

A $\,3\times 3$-matrix $\,\mA\,$ has been treated in Maple, like this:

symM.png

F

State $\,\mA\,$ and explain that it is symmetric.

G

Let $\,f\,$ denote the linear map that has the mapping matrix $\,\mA\,$ with respect to the ordinary basis in $\,\reel^3\,.$ Determine an orthonormal basis for $\,\reel^3\,$ consisting of eigenvectors for $\,f\,,$ and state the mapping matrix that represents $\,f\,$ with respect to the orthonormal basis found.

H

Determine an orthogonal matrix $\,Q\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ such that

$$\,\mathbf Q\transp\cdot\mA\cdot\mathbf Q=\mathbf{\Lambda}\,.$$


Exercise 3: Eigenspaces with gm > 1

A $\,3\times 3$-matrix $\,\mB\,$ has been treated in Maple, like this:

symM2.png

I

State $\,\mB\,$ and explain that it is symmetric.

J

Determine an orthogonal matrix $\,Q\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$ such that %$\,\mathbf Q\transp\cdot\mB\cdot\mathbf Q=\mathbf{\Lambda}\,.$

$$\,\mathbf B=\mathbf Q\cdot \mathbf{\Lambda}\cdot\mathbf Q\transp\,.$$


Exercise 4: Positive Orthogonal Matrix

A linear map $\,f:\reel^2\rightarrow \reel^2\,$ is given by the mapping matrix

$$\,\begin{matr}{rr}5&\sqrt{3}\\\\\sqrt{3}&7\end{matr}\,.$$
K

Exactly eight possible orthonormal bases for $\,\reel^2\,$ consisting of eigenvectors for $\,f\,$ exists. Make a drawing where the basis vectors drawn from the origin are shown.

L

Four of the eight bases have the ordinary orientation. Show that the orthogonal matrix that belongs to each of the four is positive orthogonal, while the other four are negative orthogonal.

Exercise 5: Positive Orthogonal Matrix as Mapping Matrix

Every positive orthogonal matrix in $\,\reel^{2\times 2}\,$ can be written in the form

$$\,\mQ=\begin{matr}{rr} \cos(u)&-\sin(u)\\\\\sin(u)&\cos(u)\end{matr}\,.$$

Note that $\,u\,$ is the direction angle for the first basis vector $\,(\cos(u),\sin(u))\,.$ Or more precisely: The q-coordinate-system appears as a rotation of the standard coordinate system through the angle $\,u\,.$ Now we shall investigate how $\,\mQ\,$ functions as a mapping matrix!

A

Explain that the image $\,\my=\mathbf Q\cdot\mx\,$ appears after rotating the vector $\,\mx\,$ through the angle $\,u\,,$ see the figure

drejQ.png

B

Open the GeoGebra-sheet OrthogonalMap . Verify that while $\,\mQ\,$ maps $\,\mx\,$ in $\,\my\,$ by rotation through the angle $\,u\,,$ then $\,\mQ\transp\,$ does the opposit: maps $\,\mx\,$ in $\,\mz\,$ by rotation through the angle $\,-u\,.$

$\,(\,\mathbf q_1,\mathbf q_2)\,$ is a basis corresponding to $\,\mQ\,$ while $\,(\,\mathbf q_3,\mathbf q_4)\,$ is a basis corresponding to $\,\mQ\transp\,$. $\,\mQ\,$ maps $\,\mx\,$ in $\,\my\,$ and $\,\mQ\transp\,$ maps $\,\mx\,$ in $\,\mz\,$.

Move the vector $\,\mx\,$. What happens to $\,\mx\,$, $\,\my\,$ and $\,\mz\,$ regarding lengths and angles? Move the vector $\,\mathbf q_1\,$. What happens to $\,\mx\,$, $\,\my\,$ and $\,\mz\,$ regarding lengths and angles?


Exercise 6: Analysis of a Symmetric Map

Assume that a symmetric $\,2\times 2\,$ matrix $\,\mA\,$ has been diagonalized by a positive orthogonal substitution, like this:

$$\,\mathbf Q\transp\cdot\mA\cdot\mathbf Q=\mathbf{\Lambda}\,.$$
C

Show that it conversely applies that:

$$\mA=\mathbf Q\cdot\mathbf{\Lambda}\cdot\mathbf Q\transp \,.$$

D

In continuation of this: Explain that therefore a symmetric map is composed like this:

  1. First the object is rotated through the angle -$u\,$ where $\,u\,$ denotes the directional angle for the first column in $\,\mQ\,.$

  2. The rotated object is scaled by the factor $\,\lambda_1\,$ in the direction of the first axis and by a factor $\,\lambda_2\,$ in the direction of the second axis.

  3. The scaled object it rotated (back wards!) by the angle $\,u\,.$

E

Consider the matrix

$$\,\mB=\begin{matr}{rr}2&1\\\\1&2\end{matr}\,$$

as a mapping matrix for geometric vectors in the plane drawn from the origin. Find an angle of rotation $\,u\,$ that enters into step 1 and 3 of the map. And determine the factors that in step 2 are needed for scaling in the direction of the first axis and second axis, respectively.

Now we shall factorize and anlyze the mapping matrix

$$\,\mA=\begin{matr}{rrr}2&1&0\\\\1&2&0\\\\0&0&1\end{matr}\,$$

using the formula $\,\mA=\mathbf Q\cdot\mathbf{\Lambda}\cdot\mathbf Q\transp \,.$

%(Sammenlign $\,\mA\,$ med matricen i forrige spørgsmål. Set fra $z$-aksens positive ende ser alt i (x,y)$-planen ud som i forrige spørgsmål.)

Download the MapleDemo Analysis of a Symmetric Matrix .

F

Follow closely the 3 steps in the map. Try with other parameters, e.g.

$$\,u=-\frac{\pi}{3}\,,\, a=5\,,\, b=-2\,.$$
UNBALANCED INLINE MATH