\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Homogeneous Second-Order Differential Equations

By hand.

A

Given the homogeneous differential equation \begin{equation} x’‘(t)+2x’(t)+5x(t)=0, \quad t \in \reel. \end{equation}

Find the complete solution.

B

Given the homogeneous differential equation
\begin{equation} x’‘(t)-6x’(t)+9x(t)=0, \quad t \in \reel. \end{equation}

Find the complete solution.

C

Given the homogeneous differential equation \begin{equation} x’‘(t)+3x’(t)-4x(t)=0, \quad t \in \reel. \end{equation}

Find the complete solution.


Exercise 2: Inhomogeneous Differential Equation with Initial Conditions

Maple-exercise. Given the inhomogeneous differential equation \begin{equation} x’‘(t)+4x’(t)+29x(t)=-25\sin(2t)+\frac{109}{4}\mathrm e^{-\frac 12 t}-8\cos(2t), \quad t \in \reel. \end{equation}

D

Find using Maple’s dsolve the complete solution to the differential equation.

E

Plot the solution whose graph passes through the point $(0,1)\,$, and has the slope $-\frac 52\,$ in $\,t=0\,$. Then plot the solution whose graph also passes through the point $(0,1)\,,$ but has the slope $\,\frac 12\,$ i $\,t=0\,$.


Exercise 3: The Structural Theorem

Consider the linear map $\,f:C^{\infty}(\reel)\rightarrow C^{\infty}(\reel)\,$ given by

$$ f(x(t))=x''(t)+3x'(t)-4x(t)\,. $$
F

Guess a particular solution to the inhomogeneous differential equation

$$ f(x(t))=29-12t $$

and then state the complete solution to the equation.

G

Find using the complex guess method a particular solution to the inhomogeneous differential equation

$$ f(x(t))=\cos(t) $$

and then state the complete solution to the equation.

H

Find a particular solution to the inhomogeneous differential equation

$$ f(x(t))=29-12t+\cos(t)$$

and then state the complete real solution to the equation.

Given that the set of vectors

$$\,v=\big(\,\cos(t),\sin(t),\e^t,t,1\,\big)\,,\,\,t\in \reel\,$$

is linearly independent (this should not be proved here). In what follows we consider the restriction of $\,f\,$ to the 5-dimensional subspace $\,U\,$ in $\,C^{\infty}(\reel)\,$ that has $\,v\,$ as a basis.

I

Show that the image $\,f(U)\,$ is a subspace in $\,U\,,$ and determine the mapping matrix $\,\matind vFv\,$ for the map $f:U\rightarrow U\,$ with respect to the basis $\,v\,.$

J

Determine the coordinate vector for

$$\,q(t)=\cos(t)+29-12t\,$$

and find all solutions in $\,U\,$ to the equation

$$\,f(x(t))=q(t)\,.$$

K

Does a particular solution $\,x_0(t) \in U\,$ exist to the equation

$$\,f(x(t))=q(t)\,$$

that fulfills the initial conditions $\,x_0(0)=0\,$ and $\,x_0’(0)=1?\,$ Comment!

Exercise 4: Modelling of a Physical Situation

In this week’s eMaple about differential equations you shall model a physical situation using Maple and use the model for experiments. The procedure is that you execute the commands one at a time - so do not use the Maple-key !!! that computes the entire sheet at once. Note the fields XX that you must replace with your own Maple-command. When you have finished an answer, you are welcome to click the triangle for the suggested solution.

A

Download the file eMaple3 and have fun with the modelling!


Exercise 5: Uniqueness of the Solution. Theory

About a differential equation of the form \begin{equation} x’‘(t)+a_1x’(t)+a_0x(t)=q(t), \quad t \in \reel \end{equation}

it is stated that $\,x_1(t)=\sin(t)\,$ and $\,x_2(t)=\frac{1}{2}\sin(2t)\,$ both are solutions.

B

Prove using the existence and uniqueness theorem that the statement is false.

Exercise 6: Structure of Solutions. Theory

Given the inhomogeneous differential equation \begin{equation} x’‘(t)+a_1x’(t)+a_0x(t)=q(t), \quad t \in \reel. \end{equation}

together with two particular solutions, \begin{equation} x_1(t)=\sin t+2\e^t \quad \mathrm{and} \quad x_2(t)=\sin t+\e^t-\e^{-t}. \end{equation}

A

Determine the complete solution to the homogeneous equation.

B

Determine the complete solution to the inhomogeneous equation.

C

Determine $\,a_0,\,a_1\,$ and $\,q(t)\,.$


Opg 7: Complex Guess Method

D

Determine a particular solution to the complex differential equation \begin{equation} x’‘(t)-2x’(t)-3x(t)=10\,\e^{(-1+2i)t}, \quad t \in \reel. \end{equation}

E

Determine a particular solution to the differential equation \begin{equation} x’‘(t)-2x’(t)-3x(t)=10\,\e^{-t}\,\cos(2t), \quad t \in \reel. \end{equation}

F

Determine a particular solution to the differential equation \begin{equation} x’‘(t)-2x’(t)-3x(t)=10\,\e^{-t}\,\sin(2t), \quad t \in \reel. \end{equation}


Exercise 8: From the Solution to the Differential Equation

All real solutions to an inhomogeneous linear differential equation of second order are \begin{equation} x(t)=c_1\e^{-t}\cos 2t+c_2\e^{-t}\sin 2t+5t^3+t^2+12t+7,\quad (c_1,c_2)\in\reel^2. \end{equation}

G

State the differential equation.