\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Level Curves

A function $\,f:\reel^2\rightarrow\reel\,$ is given by the expression

$$\,f(x,y)=x^2+y^2\,.$$
A

Describe the level curves given by $\,f(x,y)=c\,$ for the values $\,c \in\lbrace 1,2,3,4,5\rbrace\,.$

B

Determine the gradient of $\,f\,$ in the point $\,(1,1)\,$ and determine the directional derivative of $\,f\,$ in the point $\,(1,1)\,$ in the direction determined by the unit directional vector $\,\mathbf e=(1,0)\,.$

A function $\,f:\reel^2\rightarrow\reel\,$ is given by the expression

$$\,f(x,y)=x^2-4x+y^2\,.$$
C

Describe the level curves given by $\,f(x,y)=c\,$ for the values $\,c \in\lbrace -3,-2,-1,0,1\rbrace\,.$

D

Determine the gradient of $\,f\,$ in the point $\,(1,2)\,$ and determine the directional derivative of $\,f\,$ in the point $\,(1,2)\,$ in the direction towards the origin.

Exercise 2: Approximation of First Degree

For $\,(x,y)\in \reel^2\,$ we consider the function

$$\,f(x,y)=\exp(-x+\sin(y))\,.$$
A

Determine the approximating first-degree polynomial for $\,f\,$ with the development point $\,(x,y)=(0,0)\,.$

B

Determine an equation for the tangent plane to the graph for $\,f\,$ in the point of tangency $\,(x,y,z)=\big(0,0,f(0,0)\big)\,.$ And determine a normal vector for the tangent plane.

Exercise 3: Description of Regions in the (x,y)-plane

A

Draw in each of the four cases below a sketch of the given set of points $\,A\,$, det interior $\,A^{\circ}\,$, the boundary $\,\partial A\,$ and the closure $\,\bar{A}\,$. Further investigate whether $\,A\,$ is open, closed or neither. Finally state whether $\,A\,$ is bounded or not.

  1. $\lbrace(x,y)\,\vert\, xy\neq 0\rbrace$
  2. $\lbrace(x,y)\,\vert\, 0<x<1\wedge 1\leq y\leq 3\rbrace$
  3. $\lbrace(x,y)\,\vert\, y\geq x^2\wedge \vert x\vert<2 \rbrace$
  4. $\lbrace(x,y)\,\vert\, x^2+y^2-2x+6y\leq 15 \rbrace$

Exercise 4: An Altitude Function

We consider a real function of two real variables given by the expression

$$f(x,y)=\ln(9-x^2-y^2)\,.$$
A

Determine the domain for $\,f\,,$ and characterize the domain using concepts such as open, closed, bounded, unbounded.

Now we consider a parametrized curve $\,\mathbf r\,$ in the $\,(x,y)$-plane given by

$$\mathbf r(u)=(u,u^3)\,,\,u\in \left[-1.2\,,\,1.2\right]\,.$$
B

Which curve are we talking about (you already know its equation)?

Now we consider the composite function

$$\,h(u)=f(\mathbf r(u))\,.$$
C

Why is it fair to call $\,h\,$ an altitude function?

D

Determine $\,h\,’(1)\,$ by two different methods: 1) Determine a functional expression for $\,h(u)\,$ and differentiate in the ordinary fashion. 2) Use Theorem $\,19.49\,$ in eNote 19: The chain rule along curves.

Exercise 5: Summary Exercise

A real function $f$ of two real variables are given by:

$$f(x,y)=\frac {\mathrm e^x}y\,.$$
A

Determine the domain for $f\,$.

B

Compute the functional value of $f\,$ in the following three points: $\,A(1,1),\,\,B(0,1)\,\,\,\mathrm{and}\,\,\,C(-1,\frac 1{\mathrm e}\,)\,.$ Two out of the three points are on the same level curve for $\,f\,$. Describe this level curve.

C

Determine the gradient of $\,f\,$ in the point $\,(1,1\,)$, and find the directional derivative of $\,f\,$ in the direction that is determined by the vector $\,\mathbf s=(1,-1)\,.$

For $\,u>0\,$ and in the $\,(x,y)$-plane is given the parametrized curve $\,\mathbf r(u)=(u,u)\,$. Furthermore we are given the composite function

$$\,h(u)=f\big(\mathbf r(u)\big)\,.$$
D

Determine the point $\,\mathbf r(u_\texttt{o})\,$ in the $\,(x,y)$-plane, for which $\,h\,’(u_\texttt{o})=0\,$.