\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: The Equations for the Circle and the Sphere in Standard Form

In an ordinary $(O,\mathbf i, \mathbf j)$-coordinate system in the plane a circle can – as is well known – be described by a quadratic equation in standard form

$$\,(x-c_1)^2+(y-c_2)^2=r^2\,$$

where $(c_1,c_2)$ is the centre and $r$ is the radius.

A

State the standard equation for the circle in the figure.

cirkel2.png

B

A circle has the equation

$$\,x^2+y^2+8x-6y=0\,.$$

Put it in standard form and by this determine the centre and the radius.

C

A spehre in $(x,y,z)$-space has the equation

$$x^2+y^2+z^2-2x+4y-6z+13 = 0\,.$$

Put it in the standard form

$$(x-c_1)^2+(y-c_2)^2+(z-c_3)^2=r^2$$

and by this determine the centre and the radius.

Exercise 2: The Standard Equation for the Three Typical Conic Sections

Intro: In the following examples we look at quadratic equations in more variables without mixed terms. Here it is possible to proceed by removing the linear terms. This technique is called completing the square and was practiced in Exercise 1 with circles and sphere. In the following we shall use the technique as a step towards the identification of conic sections.

A

An ellipse in the $(x,y)$-plane centered at $(c_1,c_2),$ and with the semi-axes $a$ and $b$ and the axes of symmetry $x=c_1$ and $y=c_2$ has the standard equation

$$\frac{(x-c_1)^2}{a^2}+\frac{(y-c_2)^2}{b^2}=1.$$

An ellipse is given by the equation

$$\,4x^2+y^2+8x-6y+9=0\,.$$

Complete the square, put the equation in standard form, and state the centre of the ellipse, the semi-axes and the axes of symmetry.

B

A hyperbola in the $(x,y)$-plane centered at $(c_1,c_2),$ with the semi-axes $a$ and $b$ the axes of symmetry $x=c_1$ and $y=c_2$ has the standard equation

$$\frac{(x-c_1)^2}{a^2}-\frac{(y-c_2)^2}{b^2}=1.$$

Or alternatively (if it is not horizontal, but vertical):

$$\frac{(y-c_2)^2}{a^2}-\frac{(x-c_1)^2}{b^2}=1.$$

A hyperbola is given by the equation

$$\,x^2-y^2-4x-4y = 4\,.$$

Complete the square, put the equation in standard form, and state the centre of the hyperbola, the semi-axes and the axes of symmetry.

C

A parabola in the $(x,y)$-plane with vertex $(c_1,c_2)$ and axis of symmetry $x=c_1$ has the standard equation

$$y-c_2=a(x-c_1)^2.$$

Or alternatively, if the parabola is not vertical but horizontal, making the axis of symmetry $y=c_2$:

$$x-c_1=a(y-c_2)^2.$$

A parabola is given by the equation

$$\,2x^2+12x-y+17=0\,.$$

Complete the square, put the equation in standard form, and state the vertex of the parabola and the axis of symmetry.

Exercise 3: Identification of a Conic Section

In an ordinary $(O,\mathbf i, \mathbf j)$-coordinate system in the plane a conic section is given by the following quadratic equation in two vaiables

$$9x^2+16y^2-24xy-40x-30y+250=0.$$

We shall find the type an characteristics of the conic section and proceed step by step.

A

The left-hand side of the quadratic equation can be split into two terms, the first terme is a quadratic form, – let’s call this $k(x,y),$ – and the second term is a linear polynomial. State the quadratic form and find its Hessian matrix.

B

Determine a symmetric $2\times 2$-matrix $\mA$ that fulfills

$$\,\displaystyle{k(x,y)=\begin {matr}{cc} x & y \end{matr}\mA\begin{matr}{rr} x \\\\ y \end{matr}\,,}$$

and find a positive orthogonal matrix $\mathbf{Q}$ and a diagonal matrix $\mathbf{\Lambda}$, such that

$$\mathbf{Q}^{\transp}\cdot\mA\cdot\mathbf{Q}=\mathbf{\Lambda}\,.$$

C

Now state the form that $k$ attain after the reduction.

D

In a new coordinate system $(0,\mathbf q_1,\mathbf q_2),$ that appears by rotating $(O,\mathbf i, \mathbf j),$ the equation for the given conic section is changed so as to be without mixed terms. State the orthonormal basis that is part of the new coordinate system, and determine the new equation for the conic section.

E

Which type of conic section are we talking about? State its characteristics, both in the new and in the old coordinate system. Illustrate using Maple.

Exercise 4: Determination of a Conic Section

A

In an ordinary orthogonal $(x,y)$-coordinate system in the plane a curve is given by the equation:

$$52x^2+73y^2-72xy-200x-150y+525=0.$$

Describe the type and position of the curve, and state parametric representations for possible axes of symmetry.

B

Plot the conic sections and the axis of symmetry using Maple and compare with a plot of level curves for the polynomial

$$f(x,y)=52x^2+73y^2-72xy-200x-150y+525\,.$$

In particular, consider the level curve corresponding to the height 0!