\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exerice 1: Recap: Functions of One Variable

A

Determine with the development point $\,x_0=0\,$ Taylor’s limit formula of second degree for the function

$$f(x)=2\cos(x)-2\sin(2x)\,,\,\,x\in \reel\,.$$

B

Tease-exercise: A smooth function $f$ of one variable fulfill that $\,f(2)=1\,$, $\,f’(2)=1\,$ and $\,P_2(1)=1\,.$ Determine the approximating polynomial of second degree $\,P_2(x)\,$ for $\,f\,$ with the development point $\,x_0=2\,$.

Exercise 2: Taylor’s Formulas and Approximation.

By hand: Given the function

$$f(x,y)=\e^{x+xy-2y},\quad\mathrm{where}\quad (x,y)\in\reel^2.$$
A

State Taylor’s limit formula of second degree for $\,f\,$ with the development point $\,(x_0,y_0)=(0,0)\,$ in standard form.

B

Determine the gradient $\,\nabla f(0,0)\,$ and the Hessian matrix $\,\mathbf H f(0,0)\,,$ and write in matrix form Taylor’s limit formula of second degree for $\,f\,$ with the development point $\,(x_0,y_0)=(0,0)\,.$

Intro to the following question: We now wish to find and approximate value for $\,f(\frac 34, \frac12)\,$ from an approximating second-degree polynomial for $\,f\,.$ Of course, it is easy to use the approximating second-degree polynomial with the development point $\,(0,0)\,$ that we readily get from the first question. On the other hand $\,(\frac 34, \frac 12)\,$ lies a little closer to $\,(1,1\,)$ from which is also relatively easy to develop. So perhaps on should rather use $\,(1,1\,)$ as the development point? Which difference does this make?

C

Determine the approximating polynomials of second degree, $\,P_2(x,y)\,$ and $\,Q_2(x,y)\,$ for $\,f\,$ with the development points $\,(0,0)\,$ and $\,(1,1)\,$, respectively. Determine their values in the point $\,(\frac 34, \frac 12)\,$ and compare to a computer value of $\,f(\frac 34, \frac 12)\,.$

Exercise 3: Application of an Approximating Polynomial

A function $\,f:\reel^2 \rightarrow\reel\,$ is given by

$$f(x,y)=\sqrt{x^2+y^2}\,.$$
A

Determine the approximating polynomial $\,P_2(x,y)\,$ of second degree for $\,f\,$ in the development point $\,(x_0,y_0)=(3,4)\,.$

In the following question we shall illustrate the error that we get if we apply the second-degree polynomial in stead fo the exact value.

B

Determine using the result in the first question the length of diagonal in a rectangle with the side length 2.9 and 4.2 (you may use Maple in the computation).

C

Compare to a Maple–value for the length of the diagonal.

D

Is the difference significant?

Exercise 4: A Proper Local Maximum

Given the function

$$f(x,y)=x^3-3x^2+y^3-3y^2\,,\quad (x,y)\in\reel^2.$$
A

Make for the set

$$A = \,\left\{(x,y)\in\reel^2\,|\,-2\leq x \leq2\,,\,\,-2\leq y \leq2\right\}\,$$

illustrations using Maple where first you see the graph for $\,f\,$ alone, then together with its approximating second-degree polynomial with the development point $\,(0,0)\,.$

B

What is the largest value that $\,f\,$ attains at the boundary of $\,A\,?$

C

It looks as if the graph for $\,f\,$ must have the horizontal tangent plane in the point of tangency

$$\,R=(0,0,f(0,0))=(0,0,0)\,.$$

Show this by determining a normal vector for the tangent plane in $\,R\,.$ And explain that the point $\,(x,y)=(0,0)\,$ is a stationary point.

D

In fact it also looks as if $\,f\,$ has a proper local maximum in the point $\,(0,0)\,$ with the value

$$\,f(0,0)=0\,.$$

This means that $\,f(x,y)\,$ must be negative when $\,(x,y)\,$ is sufficient close to $\,(0,0)\,.$ Show using Taylor’s limit formula of second degree for $\,f\,$ the development point $\,(0,0)\,$ that this is correct.

E

Advanced: Make a similar investigation of $\,f\,$ in and about the point $\,(x,y)=(2,2)\,.$

Exercise 5: Diagonalization and Reduction of a Quadratic Form

Given den symmetric matrix

$$ \mA=\begin{matr}{rrr} -2 & 1 & 1 \\\\ 1 & -2 & -1 \\\\ 1 & -1 & -2 \end{matr}. $$
F

State a positive orthogonal matrix $\,\mathbf{Q}\,$ and a diagonal matrix $\,\mathbf{\Lambda}\,$, such that

$$\,\mathbf{Q}^{\transp}\cdot\mA\cdot\mathbf{Q}=\mathbf{\Lambda}\,.$$

Consider the following second-degree polynomial in three variables:

$$ f(x,y,z)=-2x^2-2y^2-2z^2+2xy+2xz-2yz+2x+y+z+5\,.$$

Note that $\,f\,$ can be divided into two terms, the first is a quadratic form, let us call this $\,k\,,$ and the second term is a first degree polynomial.

G

Determine the expression $\,k(x,y,z)\,,$ and convert this to a matrix form, and reduce this.

H

Find an ordinary orthonormal basis for $\,\Bbb R^3\,$ in which the expression for $\,f\,$ is without mixed terms. Determine the expression.

Exercise 6: Tease-Exercise

A function $f\in C^{\infty}(\reel^2)$ fulfills the equations

$$f(x,0)=\e^x\quad\mathrm{and}\quad f'_y(x,y)=2y\cdot f(x,y)\,.$$
A

Find the approximating polynomial second-degree for the function $\,f\,$ with $\,(x_0,y_0)=(0,0)\,$ as development point.