\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Tease Exercise

This exercise should be solved by hand.

A

Determine all extrema for the function $f (x,y) = x^2y+y.$

Exercise 2: Application of the Hessian Matrix

This exercise should be solved by hand.

A

Explain that the function $\,f (x,y) = x^2+4y^2-2x-4y\,$ has exactly one extremum, determine the ekstremum point and the extremum value.

B

What is the difference between an extremum and a proper extremum? Is the extremum found a proper extremum?

%####### begin:question %Vis ved kvadratkomplettering at niveaukurven for $f$ svarende til $f(x,y)=1$ er en ellipse. Angiv ellipsens centrum og halvakser. %####### end:question %####### begin:question %Vis at $f$ kan omskrives til en ligning på formen %

$$z-c_1=(x-c_2)^2 %####### end:question ### **Exercise 3: *Local Extrema for Functions of Two Variables*** Given the function f:\reel^2\rightarrow\reel by the expression $$

f(x,y)=x^3+2y^3+3xy^2-3x^2.

$$
C

Show that the points \,A=(2,0)\,, B=(1,-1)\, and \,C=(0,0)\, are stationary points for \,f\, and decide for each of these whether they are local maximum points or local minimum points. If so state the local maximum value/minimum value, and decide if they are proper.

D

Show that the approximating second-degree polynomial for \,f\, with the development point \,A\, can be written as an equation in the unknowns \,x,y\, and \,\,z in this form: $$</div> z-c_3=\frac 12\,\lambda_1(x-c_1)^2+\frac 12\,\lambda_2(y-c_2)^2.

$$ Which quadratic surface does this equation describe, and what does the constants mean?
E

Draw the graph for f together with the graph for the approximating second-degree polynomials for f with the development points A\,, B and C\,. Discuss whether you from the eigenvalues for the Hessian matrices in the three points can decide which type of quadratic surface the second-degree polynomials describe.

### **Exercise 4: *Global Maximum and Global Minimum*** A function with the domain \reel ^2 is given by $$

f(x,y)=xy(2-x-y)+1

$$ Let \,M\, denote the field in the \,(x,y)-plane where \,x\in\left[ 0,1\right], and y\in\left[ 0,1\right]\,.
A

Find by hand all stationary points for \,f\, on \,M\,.

B

Determine the global maximum and minimum for \,f\, on \,M\, and the points in which these values are attained.

C

Determine the range of \,f\, on \,M\,.

D

Plot the graph for f together with points that shows where on the graph the maximum and the minimum value are attained, and check whether your results look alright.

### **Exercise 5: *Global Maximum and Global Minimum*** Consider the function f:\reel^2\rightarrow\reel given by $$

f(x,y)=x^2-3y^2-3xy

$$ and the set \,M=\left\{\,(x,y)\,|\,x^2+y^2\leq 1\,\right\}\,.
A

Explain that \,f\, has both a global maximum and a global minimum on \,M\, and determine these values together with the points in which they are attained.

### **Exercise 6: *Global Extrema for a Function of Three Variables*** We consider the function f:\reel^3\rightarrow \reel given by $$

\,f(x,y,z)=\sin(x^2+y^2+z^2-1)-x^2+y^2-z^2\,.

$$ together with the solid unit sphere $$

\mathcal K=\left{(x,y,z)\in \reel^3\,|\,x^2+y^2+z^2\leq 1\right}\,.

$$
A

Show that \,f\, in the interior of \,\mathcal K\, only has one stationary point, viz. \,O=(0,0,0)\,, and investigate whether \,f\, has an extremum in \,O\,.

B

Determine the global maximum value and the global minimum value of \,f\, on \,\mathcal K\, and the points in which they are attained.

C

Determine the range of \,f\, on \,\mathcal K\,.

### **Exercise 7: *Supplementary Exercise*** Given the function f:\reel^2\rightarrow\reel with the expression $$

f(x,y)=\exp(x^2+y^2)-4xy\,

$$
A

Find all stationary points for \,f\,.

B

Find all extrema.

C

Decide whether \,f\, has a global maximum or minimum, and state the values for these if they exist.

D

State the range of the function.