\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Definite Integrals

A

Determine an indefinite integral to each of the functions

$$x^3\,,\,\,\frac{1}{x^3}\,\,\,\,\mathrm{and}\,\,\,\,\sin(3x-\frac{\pi}{2})\,.$$

B

Compute the following definite integrals

$$\int_0^{1}x^3\,\mathrm{d}x\,,\,\,\int_1^{2}\frac{1}{x^3}\,\mathrm{d}x\,\,\,\,\mathrm{and}\,\,\,\,\int_{-\frac{\pi}{2}}^{0}\sin(3x-\frac{\pi}{2})\,\mathrm{d}x\,.$$

Exercise 2: Integration by Parts. By Hand

A

Determine an indefinite integral for the function $\,x\cos(x)\,,$ and check whether this is correct.

B

Determine the indefinite integral $\displaystyle{\,\int{t\e^t \mathrm dt}\,},$ and check that it is correct.

C

Determine an indefinite integral to the function $\,x^2\ln(x)\,,\,\,x>0\,.$

D

A first order linear differential equation is given by $\,x’(t)-2x(t)=3t\,.$ Solve it using the general solution formula.

Exercise 3: Integration by Substitution

To the questions in this Exercise, use the substitution formula

$$\int{f(g(x))g'(x)\mathrm dx}=\int{f(t)\,\mathrm dt}\,\,\,\mathrm{where}\,\,\,t=g(x)\,.$$
A

Determine an indefinite integral to $\,\displaystyle{x\e^{x^2}}\,.$

B

Find the indefinite integral $\displaystyle{\int \frac{x}{x^2+1} \, \mathrm dx\,.}$

C

Find and indefinite integral to $\,\displaystyle{\frac{\sin (x)}{3 -\cos(x)}}\,$ and then determine $\displaystyle{\int_0^{\pi} \frac{\sin (x)}{3 -\cos(x)} \mathrm dx\,.}$

Exercise 4: Parametrization and a Curvilinear Integral. By Hand

Intro: If a curve in the $(x,y)$-plane is given as the graph for a function

$$y=f(x)\,,\,\,x\in \left[a,b\right]$$

it is easy to state a parametric representation for the curve:

$$\begin{matr}{c}x\\\\y\end{matr}=\mathbf r(u)=\begin{matr}{c}u\\\\f(u)\end{matr}\,,\,\,u\in \left[a,b\right]\,.$$

A curve $K$ is given as a segment of the graph for the function $\ln(x)\,:$

$$K=\left\lbrace (x,y)\in\reel^2\,\vert\, y=\ln(x)\,,\,\,x\in\left[ 1\,,\,2\sqrt 2\right] \right\rbrace .$$
A

State a parametric representation for the curve and determine the Jacobi-function that belongs to the parametric representation

B

Compute the curvilinear integral $\displaystyle{\int_Kx^2\,d\mu\,.}$

Exercise 5: Area and Volume. Advanced

Please enjoy the architect Norman Forster’s glass-skyscraber The Gherkin in London in the Figure below!

gherkin.jpg gherkinMaple.png

We have in the $\,(x,z)$-plane in the space delimited a field $\,A\,$ by the coordinate axes and the graph for the function

$$x=f(z)=\frac 12\,\sqrt{-z^2+2z+3}\,,\,\,\,\,z\in\left[0,3\right]\,.$$
A

A solid model of The Gherkin appears when we rotate the field $\,A\,$ about the $\,z$-axis by the angle $\,2\pi\,.$ Determine the volume of the model.

B

Determine the area of the field $\,A\,.$