\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Seven Indefinite Integrals You Must Know by Heart

For which of the following functions can you immediately state an indefinite integral?

  1. $x^n\,,\,\,n\in \mathbb N\,.$

  2. $\frac{1}{x}\,.$

  3. $\ln(x)\,.$

  4. $\frac{1}{1+x^2}\,.$

  5. $\cos(x)\,.$

  6. $\sin(x)\,.$

  7. $\exp(x)\,.$

If you have to pass: Find an indefinite integral using Maple’s int and please store the result in your long term memory.


Exercise 2: Seven Indefinite Integrals You Should Master

State an indefinite integral for each of the following functions:

  1. $x^n\,$ where $n$ is an arbitrary constant in $\mathbb Z\,.$

  2. $x^k\,$ where $k$ is an arbitrary constant in $\mathbb Q\,.$

  3. $\frac{1}{a\cdot x+b}\,$ where $a\neq 0$ and $b$ are arbitrary constants in $\reel\,,$ and $x$ belongs to a suitable interval.

  4. $\cos(a\cdot x+b)\,$ where $a\neq 0$ and $b$ are arbitrary constants in $\reel\,.$

  5. $\sin(a\cdot x+b)\,$ where $a\neq 0$ and $b$ are arbitrary constants in $\reel\,.$

  6. $\exp(a\cdot x+b)\,$ where $a\neq 0$ and $b$ are arbitrary constants in $\mathbb R\,.$

  7. $\exp(a\cdot x+b)\,$ where $a\neq 0$ and $b$ are arbitrary constants in $\mathbb C\,.$

Exercise 3: Computational Rules for Indefinite Integrals

A

Determine the indefinite integral

$$\int \left( 5\cos(x+1)-\sin(5x)+\frac{2}{x-3}-7\right)\mathrm dx\,,\,\,x>3$$

And explain the computational rules you have used.

Exercise 4: Sequences of Numbers

Intro: In this and the following exercise we give samples on important building blocks in integral calculus : Sequences of number and their possible convergence. From The Great Danish Encyclopedia (Gyldendal):

``convergence, concept of fundamental importance in mathematical analysis, in particular in the theory for infinite series. A sequence of real numbers $x_1,x_2,\ldots$ is called convergent, if a number $x$ exists, such that the number $x_n$ are arbitrarily close to $x$, when $n$ is sufficiently large $(\ldots)$. The number $x$ is called he limit value for the sequence, that is said to converge towards $x\,.$ If the sequence is not convergent, it is called divergent.’’

A

Four sequences $\,\left{a_n\right}\,,$ $\,\left{b_n\right}\,,$ $\,\left{c_n\right}\,$ and $\,\left{d_n\right}\,$ are for $n\in \mathbb N$ given by

$$a_n=\frac 1n\,,\,\,b_n=\frac{n-1}{2n}\,,\,\,c_n=\frac{n}{1000}\,\,\,\mathrm{and}\,\,\,d_n=\frac{4n^2+16}{8-3n^2}\,.$$

Decide which of these four sequences that are convergent, and state (without calculation) the limit values for those that are convergent.

Exercise 5: Integrals Using Left Sums

A

State a left sum $\,V_n\,$ for the Function

$$\,f(x)=x\,,\,\,x\in \left[\,0\,,\,1\,\right]$$

corresponding to a tesselation af the interval [$\,0\,,\,1\,$] in $\,n\,$ segments of equal length. Determine using this

$$\,\displaystyle{\int_0^1 x\,\mathrm{d}x}\,.$$

B

Same question as in question one, but now with the function

$$\,f(x)=3x+1\,,\,\,x\in \left[\,0\,,\,1\,\right]\,.$$

Exercise 6: The Fundamental Theorem. By Hand

A

Determine the integral

$$\int_0^1\,\frac{1}{1+u^2}\,\mathrm du\,.$$

B

Determine the double integrals

$$\int_1^2\,\Big (\int_0^1\,\frac{\e^{2u}}{v}\,\mathrm du\Big)\mathrm dv\,\,\,\,\mathrm{and}\,\,\,\, \int_0^{\frac{\pi}{2}}\,\Big (\int_0^1\,v\cos(uv)\,\mathrm du\Big)\mathrm dv.$$

C

Determine the triple integral

$$\int_0^1\Big(\int_0^1\Big(\int_0^1 24\,x^3\,y^2\,z\,\mathrm dx\Big)\mathrm dy\Big)\mathrm dz\,.$$

Exercise 7: The Tangent Vector and the Length of a Curve

Consider in the $(x,y)$-plane the parametric curve

$$\mathbf r(u)=(2\,u^2,u^3)\,,\,\,u\in \left[\,0,2\,\right]\,.$$
A

Determine the tangent vector for $\mathbf r(u)$ in the point $(2,1)\,$ and the length of the tangent vector. Plot the curve together with the tangent vector.

B

How long is the part of the curve that corresponds to $u\in \left[\,0,1\,\right]\,$ and how long is the part of the curve that corresponds to $u\in \left[\,1,2\,\right]\,?$

Exercise 8: Parametrization and Curve Integral

By Hand:

In the $(x,y,z)$-space we consider the circle C given by

$$C=\left\{(x,y,z)\in \reel^3\,|\,\,x^2+(y-1)^2=4\,,\,\,\,\mathrm{and}\,\,\,z=1\right\}\,.$$
A

State the centre and the radius for C. Chose a parametric representation $\,\mathbf r(u)\,$ for C corresponding to one passage of the circle. Determine the Jacobi-function corresponding to the parametric representation.

B

Given the function $\,f(x,y,z)=x^2+y^2+z^2\,.$ Determine the restriction $\,f(\mathbf r(u))\,,$ and determine the curvilinear integral

$$\,\int_C\,f\,\mathrm d\mu\,.$$

C

Is the curvilinear integral dependent of the parametric representation you chose for the circle? Test other parametric representations and compute the curvilinear integral based on these. E.g. you can change direction of the passage or the passage speed.

D

Does the curvilinear integral depend on the position of the circle? E.g. try to displace the circle 1 parallel to the direction of the $y$-axis, and compute the curvilinear integral once more.

Exercise 9: Arc Length Using the Mid-Point Sum

In eNote 23 we use left sums everywhere, since the functional values used are taken in the left endpoint of the interval. But it is also possible to use the midpoints of the intervals, when one states the sum, by which you obtain a so-called midpoint sum. We use this in the present problem where we must compute the length of the parabolic arc-segment

$$\left\{(u,v)\,|\,v=u^2\,;\,u\in\left[\,0;1\,\right]\right\}\,.$$
A

Assume that the interval $\left[\,0;1\,\right]$ is subdivided into $n$ segments of equal length $\delta u$, and let the division points be denoted $u_i$ as in eNote 23. Connect the points on the parabola vertically above the division points with straight line segments: parabola chords. Then the sum of the lengths of the chords will be a good approximation to the arc length. Show that the sum of lengths of the chords can be expressed as

$$\sum_{i=1}^{i=n} \sqrt{1+(2u_i+\delta u)^2}\,\,\delta u\,.$$

B

Explain that the sum so obtained is a mid-point sum for the function

$$f(u)=\sqrt{1+4\,u^2}\,,$$

and then determine the wanted lenght of the parabolic arc using Maple.