\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: Determination of an Indefinite Integral. By Hand

In the $\,(x,y,z)$-space is given the vector field

$$\mV(x,y,z)=(x+z,-y-z,x-y)\,.$$
A

Determine $\,\mathbf{Curl}(\mathbf V(x,y,z)\,)\,$ and argue that $\,\mV\,$ is a gradient vector field.

B

Determine using the tangential curve integral of $\,\mV\,$ along the stair line to an arbitrary point $\,(x,y,z)\,$ all indefinite integrals $\,\mV\,.$

Exercise 2: Divergence and Curl. By Hand

A

Determine both the divergence and the curl in the point $(1,1,1)$ of the vector field

$$\mathbf V(x,y,z)=(-y\,x\,,x\,y^2\,,x\,y\,z)\,.$$

Exercise 3: Explosion, Implosion and Rotation

In the $(x,y,z)$-space are given the vector fields \begin{align} \mathbf U(x,y,z)&=(x,y,z)\,,\
\mathbf V(x,y,z)&=(-y,x,1)\,,\
\mathbf W(x,y,z)&=(-x,-y,-z)\,. \end{align
}

A

Determine the divergence and curl of the three vector fields.

B

Decide on the basis of your answer to Question A) which of the vector fields $\,\mU\,,\,\mV\,$ og $\,\mW\,$ that are gradient vector fields.

Exercise 4: Tangential Curve Integrals in Gradient Vector Fields

Given a function

$$\,f(x,y,z)=\cos (x\,y\,z)\,,$$

a vector field

$$\mV(x,y,z)=\nabla(f(x,y,z))$$

and a curve $\,K\,$ that is the straight line from $\,(\pi,\frac{1}{2},0)\,$ to $\,(\frac{1}{2},\pi,-1)\,.$

A

Determine the tangential curve integral

$$\int_K\mV\cdot\me\, d\mu.$$

Given a vector field

$$\mV(x,y,z)=\nabla (x^2+yz)$$

and a curve $\,K\,$ with the parametric representation

$$\mr(u)=(\cos(u) ,\sin(u),\sin (2u)), \quad u\in\left[\, 0,2\pi\right] \,.$$
B

Determine the tangential curve integral

$$\int_K\mV\cdot\me\, d\mu.$$

Exercise 5: Circulations in the Plane

In the $\,(x,y)$-plane we consider the circles

$$C_1:\,x^2+y^2=1\,\,\,\mathrm{and}\,\,\,C_2:\,(x-1)^2+(y-1)^2=1\,.$$

Moreover a vectorfield

$$\,\mV(x,y)=(x^2+y^2,xy)\,$$

is given.

A

Determine the tangential curve integral of $\mV$ along the circles when the circles are run through one time counter-clockwise.

B

Determine the tangential curve integral of $\mV$ along the circles when the circles are run through one time clockwise.

C

From the results of Questions a) and b) : Is $\,\mV$ a gradient vector field?

Opg 6: Study of the Divergence (advanced)

In this exercise we will – in a simple example (with a vector field of first degree and constant divergence) – verify the following statement: The divergence states the local ‘‘tendency of expansion’’ in the vector space. Just follow the steps below - along the way you shall parametrize a spatial field in motion and determine its time dependent volume!

In the $\,(x,y,z)$-space the vector field

$$\,\mathbf V(x,y,z)=(5x-4z\,,-2x-y+4z\,,\,2x-z)\,$$

is given together with an axes parallel cube

$$\mathcal A=\left\{(x,y,z)\,|\,-\frac 12\,\leq x \leq \frac 12\,\,,1\leq\,y\leq 2\,\,,-\frac 12\,\leq z \leq \frac 12\,\right\}\,.$$
A

Determine (readily using dsolve) the flow curve $\,\mr(t)\,$ for $\,\mathbf V\,$ corresponding to the initial condition that $\,\mr(0)\,$ is an arbitrary point in $\,\mathcal A\,.$

Let $\,\mathcal A_t\,$ the solid that $\,\mathcal A\,$ is deformed into at time $\,t\,$ when we imagine that $\,\mathcal A\,$ flows with the vector field.

B

Find an expression for the volume Vol$(t)\,$ of $\,\mathcal A_t\,$ expressed as a function of $\,t\,.$ How large is the volume at time $\,t=1\,.$ Determine the ratio

$$\frac{\mathrm{Vol}\,'(0)}{\mathrm{Vol}(0)}\,\,$$

and compute Div$(\mathbf V(x,y,z)\,)\,$.