\\\\( \nonumber \newcommand{\bevisslut}{$\blacksquare$} \newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}} \newcommand{\transp}{\hspace{-.6mm}^{\top}} \newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace} \newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}} \newcommand{\eqnl}{} \newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}} \newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}} \newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}} \newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}} \newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}} \newcommand{\am}{\mathrm{am}} \newcommand{\gm}{\mathrm{gm}} \newcommand{\E}{\mathrm{E}} \newcommand{\Span}{\mathrm{span}} \newcommand{\mU}{\mathbf{U}} \newcommand{\mA}{\mathbf{A}} \newcommand{\mB}{\mathbf{B}} \newcommand{\mC}{\mathbf{C}} \newcommand{\mD}{\mathbf{D}} \newcommand{\mE}{\mathbf{E}} \newcommand{\mF}{\mathbf{F}} \newcommand{\mK}{\mathbf{K}} \newcommand{\mI}{\mathbf{I}} \newcommand{\mM}{\mathbf{M}} \newcommand{\mN}{\mathbf{N}} \newcommand{\mQ}{\mathbf{Q}} \newcommand{\mT}{\mathbf{T}} \newcommand{\mV}{\mathbf{V}} \newcommand{\mW}{\mathbf{W}} \newcommand{\mX}{\mathbf{X}} \newcommand{\ma}{\mathbf{a}} \newcommand{\mb}{\mathbf{b}} \newcommand{\mc}{\mathbf{c}} \newcommand{\md}{\mathbf{d}} \newcommand{\me}{\mathbf{e}} \newcommand{\mn}{\mathbf{n}} \newcommand{\mr}{\mathbf{r}} \newcommand{\mv}{\mathbf{v}} \newcommand{\mw}{\mathbf{w}} \newcommand{\mx}{\mathbf{x}} \newcommand{\mxb}{\mathbf{x_{bet}}} \newcommand{\my}{\mathbf{y}} \newcommand{\mz}{\mathbf{z}} \newcommand{\reel}{\mathbb{R}} \newcommand{\mL}{\bm{\Lambda}} \newcommand{\mnul}{\mathbf{0}} \newcommand{\trap}[1]{\mathrm{trap}(#1)} \newcommand{\Det}{\operatorname{Det}} \newcommand{\adj}{\operatorname{adj}} \newcommand{\Ar}{\operatorname{Areal}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\Rum}{\operatorname{Rum}} \newcommand{\diag}{\operatorname{\bf{diag}}} \newcommand{\bidiag}{\operatorname{\bf{bidiag}}} \newcommand{\spanVec}[1]{\mathrm{span}{#1}} \newcommand{\Div}{\operatorname{Div}} \newcommand{\Rot}{\operatorname{\mathbf{Rot}}} \newcommand{\Jac}{\operatorname{Jacobi}} \newcommand{\Tan}{\operatorname{Tan}} \newcommand{\Ort}{\operatorname{Ort}} \newcommand{\Flux}{\operatorname{Flux}} \newcommand{\Cmass}{\operatorname{Cm}} \newcommand{\Imom}{\operatorname{Im}} \newcommand{\Pmom}{\operatorname{Pm}} \newcommand{\IS}{\operatorname{I}} \newcommand{\IIS}{\operatorname{II}} \newcommand{\IIIS}{\operatorname{III}} \newcommand{\Le}{\operatorname{L}} \newcommand{\app}{\operatorname{app}} \newcommand{\M}{\operatorname{M}} \newcommand{\re}{\mathrm{Re}} \newcommand{\im}{\mathrm{Im}} \newcommand{\compl}{\mathbb{C}} \newcommand{\e}{\mathrm{e}} \\\\)

Exercise 1: A Flow-Curve in the Plane

A linear vector field $\mathbf U$ in the $(x,y)$-plane is given by

$$\mathbf U(x,y)=\left(\frac 18\,x +\frac 38\,y\,,\,\frac 38\,x +\frac 18\,y\,\right).$$
A

Determine the system matrix that corresponds to $\mathbf U$ and find (readily using Maple’s Eigenvectors) the eigenvalues of the matrix and the corresponding eigenvectors.

B

The flow curve $\,\mr_1(u)\,$ is determined by going through the point $\,(0,-1)\,$ at the time $\,u=0\,,$ and the flow curve $\,\mr_2(u)\,$ by going through $\,(0,\frac 12)\,$ at the time $\,u=0\,$. Find using the results from Question a) and the given initial conditions a parametric representation for $\,\mr_1(u)\,$ og $\,\mr_2(u)\,.$

C

Make a Maple-illustration that shows both the vector field and the two flow curves.

Exercise 2: Flow Curves in Space

In the $\,(x,y,z)$-space is given the vector field

$$\mathbf V(x,y,z)=(z\,,\,\frac 1{10}\,y\,,-x)\,.$$
A

Determine the eigenvalues for the system matrix that corresponds to $\,\mathbf V\,$.

B

Determine the flow curve $\,\mr(u)\,$ for $\,\mathbf V\,$ corresponding to the initial conditions $\,\mr(0)=(1,1,1)\,$ (readily using Maple’s dsolve).

C

Make a Maple-illustration where $\,\mathbf V\,$ is plotted together with $\,\mr(u)\,$ for $\,u\in [\,0,5\,\pi\,]\,.$

Consider the line segment $\,\mathcal L\,$ extending from the point $\,(1,1,1)\,$ to the point $\,(2,2,2)\,.$

D

Determine a parametric representation for $\,\mathcal L\,.$

E

Determine (readily using dsolve) the flow curve $\,\mr(u)\,$ for $\,\mathbf V\,$ corresponding to the inial condition, that $\,\mr(0)\,$ is an arbitrary point on $\,\mathcal L\,$.

F

Determine a parametric representation for the surface $\,\mathcal F\,$ that $\,\mathcal L\,$ runs through in the space, when we imagine that $\,\mathcal L\,$ flows with the vector field in the time $\,u\in [\,0,5\,\pi\,]\,,$ and plot $\,\mathcal F\,$ together with the vector field.

Exercise 3: Gradient Vector field in Space

A function $f$ is given by

$$f(x,y,z)=(x-1)^2+2\,(y-1)^2+(z-1)^2-4\,.$$
A

Show by hand (mental calculation ?) the gradient of $\,f\,.$

B

Find a parametric representation for the level surface $\,\mathcal K_0\,$ corresponding to $\,f(x,y,z)=0\,.$

C

The gradient of $\,f\,$ can be interpreted as a gradient vector field in space. Make a Maple-illustration that contains both a plot of the level surface $\,\mathcal K_0\,$ and a plot of the gradient vector field (use fieldplot3d).

D

Show that the gradient for $\,f\,$ in every point $\,P\,$ on $\,\mathcal K_0\,$ is perpendicular to $\,\mathcal K_0\,$ in $\,P\,$ (or more precisely: to the tangent plane to $\,\mathcal K_0\,$ in $\,P\,).$

E

What is the meaning of the well-known slogan: ‘‘The gradient points in the direction in which the function increases the most’’ in this context?

Exercise 4: Ponderings about Gradients

Two vector fields in space are given by: \begin{align} \mathbf U(x,y,z)&=(xy\cos(z)\,,y^2+xz\,,3z)\,\
\mathbf V(x,y,z)&=(2x\mathrm{e}^{x^2},2\cos(y^2)\,y\,,3)\, \end{align
}

A

The claim is that one of these vector fields is a gradient vector field while the other is not. Show that this statement is correct!

Exercise 5: Tangential Curve Integrals. By Hand

In the $(x,y)$-plane is given a vector field

$$\mV(x,y)=(x^2-2xy\,,\,y^2-2xy)$$

and a curve $\,K\,$ by the equation

$$y=x^2, \quad x\in\left[ -1,1\right]\,.$$
A

Determine the tangential curve integral

$$\int_K\mV\cdot\me\, d\mu.$$

In the $\,(x,y,z)$-space is given a vector field

$$\mV(x,y,z)=(\,y^2-z^2\,,\,2yz\,,-x^2)$$

and a curve $\,K\,$ with the parametric representation

$$\mr(u)=(u,u^2,u^3)\,, \quad u\in\left[ 0,1\right]\, .$$
B

Determine the tangential curve integral

$$\int_K\mV\cdot\me\, d\mu.$$


Exercise 6: Integration along a Stair Line

In the plane we consider an arbitrary point $\,P=(x,y)\,$ and the vector field

$$\,\mV(x,y)=(xy,x)\,.$$
C

Determine the tangential curve integral of $\,\mV\,$ along the straight line from the origin to $\,P\,.$

By the stair line from the origin to the point $\,P\,$ we understand the piecewise straight line that goes from the origin to the point $\,(x,0)\,$ and then from $\,(x,0)\,$ to $\,(x,y)\,.$

D

On a piece of paper with the $\,(x,y)$-coordinate system: Sketch the stair line for different choices of $\,P\,.$ Then determine the tangential curve integral of $\,\mV\,$ along the stair line from the origin to an arbitrary $\,P\,.$

E

Decide on the basis of you answers to Questions a) and b) whether $\,\mV\,$ is a gradient vector field.

Exercise 7: Indefinite Integrals

We consider in space point $\,P=(x,y,z)\,$ and the vector field

$$\,\mV(x,y,z)=(y\cos (xy),z+x\cos (xy),y)\,.$$

By the stair line from the origin to $\,P\,$ we understand the piecewise straight line from the origin to the point $\,(x,0,0)\,,$ and then from $\,(x,0,0)\,$ to $\,(x,y,0)\,$ and finally from $\,(x,y,0)\,$ to $\,(x,y,z)\,.$

A

Determine the tangential curve integral of $\,\mV\,$ along the stair line from the origin to $\,P\,.$

B

Investigate whether $\,\mV\,$ is a gradient vector field and if so state all indefinite integrals.

Given a vector field

$$\mU(x,y,z)=\frac{(y,x,2z)}{1+x^2y^2+2xyz^2+z^4}\,.$$
C

Determine using Maple the tangential curve integral of $\,\mU\,$ along a straight line from the origin to an arbitrary point $\,(x_0,y_0,z_0)\,.$

D

Investigate whether $\,\mU\,$ is a gradient vector field and if so state all indefinite integrals.